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Abstract

Identifying security flaws and distinguishing non-susceptible code from vul-
nerable code is a difficult undertaking. Security flaws are usually inert until
they are exploited. Software metrics have been widely utilized to forecast and
signal a variety of software quality features. We investigate static code met-
rics and behavioural code metrics, their correlation, and their association with
security vulnerabilities in Android applications. The aim of the study is to un-
derstand: (i) the comparison between static software metrics and behavioural
code metrics; (ii) the ability of these metrics to predict security vulnerabilities,
and (iii) which are the strongly correlated static code metrics and behavioural
code metrics. From our study, we have found that even though static code met-
rics require higher computational power, it provides better results to predict
the risky behaviour of android applications and Random Forest Regression
provides more stable results with a better R2 score for this specified dataset

which we create for our thesis.
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CHAPTER 1

INTRODUCTION

We first provide an overview of our study in this section, which discusses the
problem statement and the nature of the problem in depth. The research chal-
lenges pertinent to the entire scenario are also addressed on the basis of the
description of the issue. We also note the thesis objectives, motivations and our
contribution in separate subsections. At the end of this section we describe the

organization of the thesis.

1.1 Overview

1.1.1 Static Analysis

Static analysis is a way of debugging apps that involves inspecting the code
without executing the program. It provides an understanding of the code
structure in more detail. This analysis method helps ensure that the code main-
tains the industry standards. In the context of static analysis, it focuses on scan-
ning source code for certain coding patterns that are related with some type of

warning or information.

1.1.2 Static Code Metrics

Static Code Metrics are a set of software metrics that provide quantitative in-
sight into the code. Some popular static code metrics are - Line of Code (LOC),
Number of Bugs, Number of Classes, Methods and Functions, Technical Debt,
Cyclomatic Complexity, Cognitive Complexity etc. Common tools like Sonar-
Qube [14], Raxis [1], QARK [7] etc. are used to find out static code metrics

from the source code.

1.1.3 Behavioural Code Metrics

Behavioural Code Metrics is a set of software metrics that provide qualita-

tive insight into the code. Some popular used behavioural metrics are - Tele-



phony services abuse, Remote connection establishment, PIM data leakage,
Audio/video flow interception, Denial of Service, Arbitrary code execution,
Geo location information leakage etc. There are some common tools like AndroWarn
[8], Android Lint [6] etc which are used to figure out the behavioural code

metrics from the source code

1.1.4 Fuzzy Risk Score

This risk score is an estimate of the security and privacy risks of your Android
application. Androrisk assigns each app a risk value from 0 to 100, depending
on the accesses and settings of the application. The higher the risk score, the
greater the vulnerability of the application. Each authorization has a weight
assigned to it based on its sensitivity and potential risk (i.e. access to the In-
ternet, geolocation, or payment systems). Androrisk looks at 21 different risk
categories that an app might provide to end-users in terms of security and pri-
vacy. Androrisk uses fuzzy logic[9] to calculate the application’s security and

privacy risk based on the mapping of actions to the 21 categories.



1.2 Problem Statement

There has been lots of work in the field of static analysis of the Android ap-
plication in the past, but most of them have been geared towards a static code
metrics. The field of behavioural code metrics in the static analysis domain
is relatively new and is quite promising. Having explained the various appli-
cations of static analysis and our motivation for this domain, we can finally

declare our problem statement as follows:

The primary objective of our thesis is to conduct a comparative study of

static code metrics and behavioural metrics for predicting risk scores in

Android applications.

1.3 Organization of the Thesis

In Chapter 2, we discuss the background knowledge needed to understand the
concept of our thesis.We talk about the different tools and methods we have
used. In Chapter 3, we dive into the existing literature reviewed for our work.
In Chapter 4, we present the methodology of our work and the preparation
processes of our dataaset.In Chapter 5, we present our results and discussion

followed by the conclusion in Chapter 6.



CHAPTER 2
BACKGROUND KNOWLEDGE

2.1 Android APK Decompilation

‘ Apktool ‘ ‘ dex2jar ‘ Luyten‘

)

APK
(Encoded Resource and
Dex File)

Java Files
(Source Code)

SAMLI Files
(Assembly Files)

Jar Files
(Java Byte Code)

S

Figure 1: Process of Android APK Decompilation

Android APK decompilation is the method of conducting reverse- engineer-
ing the android APK files to recover the almost similar version of Java source
code.[10] This is the most effective way to recover a similar version of the
source code. It gives us an idea about the vulnerability of any application. It is
considered to be a good approach to detecting the threat of the application. In
case modding any app, APK decompilation is required. There are certain steps
which are followed during the Android APK decompilation. APK is basically
a zipped file where encoded resources and dex files are stored. Apktool [3] de-
codes the APK and converts them into SAMLI files. SAMLI files are basically
assembly files. The SAMLI files are then passed to the dex2jar [11] converter
in order to convert the SAMLI files into jar files. This jar file contains the Java
byte codes in a zipped file. These Java byte codes are not readable. To extract
the source code from the byte code, Luyten [4], JD GUI can be used. Luyten

helps to convert the byte code into the readable format of the source code.

2.1.1 Apktool

Apktool [3] is a reverse engineering tool for 3rd party, closed, binary Android
apps which decode resources to the nearly original form and rebuild them after
making some modifications. Working with this app is easier than with other
tools because of the file structure. It helps us in the automation of some repet-

itive tasks like building APK etc.



2.1.2 dex2jar

dex2jar [11] is a code converter that converts a .dex file to .class files. The
outputis provided as a zipped file. It is designed to read the Dalvik Executable
(.dex/ .odex) format. smali/baksmali disassembles dex and reassembles dex

from smali files.

2.1.3 Luyten

Luyten [4] is an open-source Java decompiler GUI and converts bytecode to

source code.

2.2 SonarQube

SonarQube [14] is an open-source platform for continuous code quality in-
spection and static code analysis to uncover static code metrics like LOC, Code
Smells, Cyclomatic Complexity, Code Duplications etc. Analyzing an android
APK requires certain steps to be followed. At first the APK is decompiled into
Java code. Then the environment is setup for the project. Through the terminal
instructions, the Java code is analyzed and it provides the desired static code

metrics.

2.3 Androwarn

Androwarn [8] is an open-source tool for detecting and warning users about
potentially dangerous Android app behavior. Static analysis of the applica-
tion’s Dalvik bytecode, which is created throughout the process from the APK,
is used to make the detection. When an APK is run through Androwarn, a re-
port is created based on the user’s chosen technical detail level. Essential, Ad-
vanced, and Expert are the three detail levels. The report is available in three

formats: HTML, JSON, and txt.



24 AndroGuard

Androguard[5] is a python tool to analyze Android applications. It is mainly
used to conduct Mobile Forensics, Malware Detection and Security Detection
The Androrisk module from the Androguard tool was used to calculate the

Fuzzy Risk Score. AndroGuard can work with:
e DEX, ODEX

e APK

Android’s binary XML

Android resources

Disassemble DEX/ODEX bytecodes
e Decompiler for DEX/ODEX files

It can be used from the CLI or graphical frontend for AndroGuard, or use
AndroGuard purely as a library for your own tools and scripts. It is also avail-

able in a specialized Linux environment,SANTOKU [13]



CHAPTER 3
LITERATURE REVIEW

3.1 Predicting Android Application Security and Privacy Risk
With Static Code Metrics

The goal of this article is to help Android app developers examine the secu-
rity and privacy risks connected with their apps. As predictors, they employ
static code metrics. They assessed the security and privacy risk of an Android
application by determining how vulnerable it is to leaking end-user private
information and exposing vulnerabilities. They look into how well static code
metrics derived from the source code of Android applications can be utilized to
predict the security and privacy risk of those apps. They used SonarQube [14]
to collect 21 static code metrics from 1,407 Android applications and used the
data to forecast the security and privacy risk of the apps. They used a radial-
based support vector machine (r-SVM) [15]. They received a precision of 0.83
for r-SVM.[12]

3.2 Empirical Analysis of Static Code Metrics for Predicting
Risk Scores in Android Applications

They explore which software static metrics have a stronger link to source code
security vulnerabilities. They theorized that certain metrics may be used to
identify vulnerable from non-vulnerable code. The researchers looked at a
dataset of 1407 Android apps with various static code metrics. The goal of
this project is to create an empirical study that will look for correlations be-
tween these measures, as well as their impact on finding vulnerabilities in
source code, and to produce a collection of metrics that will help anticipate
security problems. Some of the static measures revealed a significant link in

the outcomes of this empirical study.[2]



CHAPTER 4
ProrPoseEp METHOD

4.1 Dataset Preparation

e APK Selection :We have scraped 119 android applications from Google
Playstore. In the case of choosing the applications, we have tried to focus

on the most used applications in Bangladesh.

e Extracting Static Code Metrics :Following the APK selection process, we
have collected the required metrics from SonarQube. The static code met-

rics we have extracted for this process are mentioned in the following

table.
Scraping Decompile Project Analysis
N [ apk | ™ (-D il d-\‘ . ) (" Staticcode |
ecompile tatic Code
/ \ e APK ‘ ‘ Code > SonarQube ‘ :> Metrics
Goodle Play -~ @ J J
N
Static
Metric

Figure 2: Extracting Static Code Metrics

e Extracting Behavioral Code Metrics :After scrapping the apps from the
google store we pass them through Androwarn. Then we get a featured
report generated for each application. And the report provides 10 be-
havioural features which are as follows:

— Device settings exfiltration
— Geolocation information leakage

— Connection interfaces information exfiltration

— Telephony services abuse



- Audio/video flow interception

— Remote connection establishment
- PIM data leakage

— Arbitrary code execution

— Denial of Service

- Telephony identifiers exfiltration

Project
— Setup [
|:> APK ‘ And Behavioural > Behawoural

/ — narowarn — CodeMetrics — Metric
- Dataset J

Scrapmg Analysis/ B |

Figure 3: Extracting Behavioural Code Metrics

Telephony identifiers exfiltration means the theft or leakage of any de-
vice information like IMEI, IMSI, MCC, MNC, LAC, CID, operators name
etc. Device settings exfiltration includes software version leakage, usage
statistics, systems settings, logs leakage. Geolocation information leak-
age is about the GPS/WiFi geolocation information theft or reading the
information from the application. Connection interfaces information ex-
filtration is theft of WiFi credentials, Bluetooth MAC address etc. Denial
of Service defines event notification deactivation, file deletion, process

killing, virtual keyboard disable, terminal shutdown/reboot.

Calculating Fuzzy Risk from Androrisk: As we can see in Figure 1, we
can calculate the Fuzzy Risk score from The Androrisk module of An-
droGuard. Each authorization has a weight assigned to it based on its
sensitivity and potential risk. Some assigned weights are: MONEY RISK:
5, SMS RISK: 5, PHONE RISK: 5, INTERNET RISK: 2, PRIVACY RISK: 5,
DYNAMIC RISK: 5, etc. These values are used to calculate a risk score.



(" N 7 R Metric
‘ APK “ > ‘ AndroRisk “ >‘ Fuzzy Risk Score | | Dataset

. J J \ J

Behavioural
Metric
__ Dataset

Figure 4: Fizzy Risk Score Calculation

e Dataset 1 (Static Code Metrics) : After analyzing the apps in Sonar-
Qube, we have figured out the required metrics and noted them down.
In this dataset, there is a total of 16 features. Androrisk Fuzzy Risk Score

has been used as label data for this dataset.

e Dataset 2 : After the report generation the data was stored as a binary
dataset. The columns contained the metrics and the rows had the appli-
cation names. The apps which showed the behaviours had the value of
1, and the others had 0 in them. The last column contained Androrisk

Fuzzy Score which we used as the variable in our regression model.

0, 'INTE
SIGNATU

Figure 5: Fuzzy Risk Value Result of a Bangladeshi App
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Index |App Name :;:,:Ili(:ated :’i'l‘:;i"t“d Loc Functions  |Classes Files ‘g::'e"";":(’m 2:"“;7:"‘"; g:'g':::::ly :::l';":::m
1 Bondhu 30 18[14179 2440 415 3190 1497 5111111111
2 BHEFC 2453 103[150115 12069 2134 26873 20001 50
3 Bangabandhu 1049 73[12063% 10448 1708 23019 24863 5141111111
4 Family Planning 548 3148971 5126 620 10960 10004 2
s Bangladeshi Fire Service 7628 045243303 31527 5311 58679 52190 100
6 BMET Info 150 3044087 4823 574 9308 9548 5141111
7 village Court 7663 937[343165 31680 5333 58623 51919 22
3 Green Life 469 24[25480 2504 352 6006 5060 3
o Health Service 564 4449895 5156 636 11163 1018 1
10 Immunization Alert 142 23[43361 5762 558 9184 9491 4
" Mobile Health Service 4363 530[ 189746 18560 3009 23163 27916 29
12 DS Recovery 17 19[28477 3324 251 156124 6241 5141111
Textile Calculator 132 3835368 3912 409 7508 7658 5
14 SshornoKishori 2820 309153975 15577 2259 27825 25098 02
15 Care Satisfaction 1524 143106452 9082 111z 16163 14337 50
16 ERD 2590 304[130038 12946 1859 23267 21221 93
7 Rabies 500 32[38781 3384 403 2319 8289 1
18 Grontho Kendro 517 20[30706 3348 456 7090 6303 [}
1 Disaster Info 357 159|25867 2714 357 6007 5955 52
20 8TES Info 388 101]8o110 9720 1146 s22]e2 19311 23222 50

Figure 6: Dataset 1
A B E F 4 H J K

Tele, y Device Connection Telephony Audio/videe  |Remote PIM data External PIM data Arbitrary code

dentifiers setting interfaces services flow connection leakage: memory modification: |execution:

Khabar Koi 1 - - Ml = Ml - - h
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Bangladesh Televis 1 - -1 -1 - - - - -
The Daily $tar - Ban 1 > |1 -1 - - [1 - - -
AFATHTE TH R 1 ~ 1 -1 -1 -1 -1 - -
Bangladesh Train T 1 =1 - =1 - - -
Meena Game 1 =l Ml - - - -1 -
dominos 1 - -h -1 - = - ~
g - - - - - - -
All Laws Of Banglad 1 ~ 1 -1 > |1 -1 - -
Bangladeshi Matr 1 - -1 =1 1 1 -1 - -1 -
Azan Bangladesh 1 - - |1 -1 - |1 - |1 - 1 -
My Airtel - Banglade -1 - ~ - - -
Bangladesh Flag 1 - -1 > |1 - -1 M -1 v
Bangla Calendar { 1 ~ (1 ML -1 -1 -1 - -
I orEImEs 1 il -1 -1 - ~ -
Bangladesh Directory 1 - - -i - =i ~ -1 -
Bangladesh Pratidi 1 -1 - = h - - -

Figure 7: Dataset 2

4.2 Workflow

The workflow is divided into two parts for the two categories of analyzers. One
describes the SonarQube analyzer workflow which takes the decompiled APK
as input rather than APK. And the other one is for Androwarn which takes
direct APK as an input object. From the discussion above, it is visible that
datasets were also prepared considering the two separate analyzers our study
has. The separate metric datasets are passed through Regression models sepa-
rately. Then the predicted fuzzy score from each analyzer model is compared
with one another. Comparison is carried out based on the evolution metric val-
ues that the three models individually generate for each of the analyzers. The

models were trained by three different regression models. We used Linear Re-

11



gression, SVR (Support Vector Regression), and Random Forest Regression.
We used these regression models to find the best-fit lines and values for our
model. For extracting the correlation value between the features of the sam-
ple data, we used Spearman’s Rank Correlation value gained after the model
training.

Static

Metric .
Dataset o

Experimental
Result

Regression Model >

Comparison

Experimental

jour: », | Regression Model
Behavioural | =) AL Result

Metric
_ Dataset )

Figure 8: Workflow of the proposed comparison model
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CHAPTER §

REsuLTSs AND DISCUSSION

The three regression models reflect a very keen observation of the dataset we
have. The evolution metrics our models have are MAE( Mean Absolute Error),
MSE(Mean Squared Error), RMSE( Root mean squared error) and R2 score.
The MAE value for static code metrics for linear regression, SVR, and Ran-
dom Forest was, respectively, 41.8122, 19.5646, and 12.6839. That means the
error value decreased significantly from each regression model used. It can
be inferred that, as linear regression minimizes the error between the actual
and predicted values through best line fit, it gives a higher error value for the
static code metrics in our dataset. Whereas, in the case of the behavior met-
ric model, the MAE values from the regression models, 19.0226, 16.6093, and
18.2660, respectively maintain consistent values. But the error value increased
in the Random Forest model. This inconsistency is a reason to infer static code
metrics better than the behavioural ones.

Next, if the RMSE values and MSE values are analyzed, a consistent decre-
ment in the case of static code metrics is observed from the values (63.8278,
29.5648, and 15.2452 respectively). Whereas for the behavioural metric, the er-
ror value was somewhat in the same range, which means the data samples were
resistant to any changes and had inconsistency for any changes. As observed
from the values, 22.2731, 26.8461, and 21.4201, it is visible that the RMSE value
increased for the SVR model, and the last one was for Random Forest. But it
was likely that SVR would give a lesser RMSE value than linear regression.
This inconsistency is also a reason to denote behavioural metrics as worse than
static code metrics.

The R2 score shows some interesting insights from the result. Before that,
if the values are observed we see, for static code metrics the values are -3.7932,
-0.0284, and 0.7265. Here the convergence of the data plots got better gradu-
ally from linear regression to Random Forest regression. But if the scores for

behavioural metrics are observed from the table, (0.2608, -0.0739, and 0.3163)

13



LR SVM RF Regression
S.M B.M S.M B.M S.M B.M
MAE | 41.8122 | 19.0226 | 19.5646 | 16.6093 | 12.6839 | 18.2660
MSE | 4073.99 | 496.0891 | 874.0825 | 720.7143 | 232.4183 | 458.8199
RMSE | 63.8278 | 22.2731 | 29.5648 | 26.8461 | 15.2452 | 21.4201
R2 score | -3.7932 | 0.2608 | -0.0284 | -0.0739 | 0.7265 | 0.3163

Table 1: Results and Comparison

the inconsistency is again observed for these types of metrics. Though random
forest gives a better convergence visualization for behavioural metrics, it is low

compared to the R2 score for static code metrics.

The R2 score is another strong proof that SonarQube gives better feature
metrics than Androwarn. In other words, static code metrics implies stronger

results in predicting risk scores in applications than behavioural metrics.

100

Predicted values

20

40 B0
Actual Values

Figure 9: Regression line for Androwarn
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0 0 10 50 & 100
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Figure 10: Regression line for SonarQube

The spearman’s correlation coefficient for the features for static code metrics
gave a good and clear visualization value, whereas for behavioural metrics it

gave negative values and maximum values were below 80
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Thus from the discussion above, it can be concluded that 1) Static code
metrics give more consistent and better performance metric values compared
to behavioural metrics. 2) The behavioural metrics have less relevance to each

other in one particular android application.
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CHAPTER 6

CONCLUSION

As per discussed in former sections, the goal was to come to a distinctive con-
clusion about the two types of metrics used in the study. After analysing the
results and discussing the explanations afterwards, it is clear that there are
some unique differences and distinctions between the performance of predict-
ing risk scores between the two metrics. It is evident that set of static code
metrics is better in predicting risk scores than behavioural metrics. The value
of our evolution metrics proved our problem statement. But surely the work
can be improved in future. Furthermore, while this experiment measured only
between the two categories of metrics, more comparative studies are required
to gain more insight into different patterns of metrics clusters, to investigate,
for instance, whether any other groups of metrics give better results than static
code metrics. Or behavioural metrics if associated with different other metrics

gives a better prediction in risk scores than it gives a single entity of metric set.
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