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Abstract

Identifying security flaws and distinguishing non-susceptible code from vul-

nerable code is a difficult undertaking. Security flaws are usually inert until

they are exploited. Software metrics have been widely utilized to forecast and

signal a variety of software quality features. We investigate static code met-

rics and behavioural code metrics, their correlation, and their association with

security vulnerabilities in Android applications. The aim of the study is to un-

derstand: (i) the comparison between static software metrics and behavioural

code metrics; (ii) the ability of these metrics to predict security vulnerabilities,

and (iii) which are the strongly correlated static code metrics and behavioural

codemetrics. From our study, we have found that even though static codemet-

rics require higher computational power, it provides better results to predict

the risky behaviour of android applications and Random Forest Regression

provides more stable results with a better R2 score for this specified dataset

which we create for our thesis.
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Chapter 1

Introduction
We first provide an overview of our study in this section, which discusses the

problem statement and the nature of the problem in depth. The research chal-

lenges pertinent to the entire scenario are also addressed on the basis of the

description of the issue. We also note the thesis objectives, motivations and our

contribution in separate subsections. At the end of this section we describe the

organization of the thesis.

1.1 Overview

1.1.1 Static Analysis

Static analysis is a way of debugging apps that involves inspecting the code

without executing the program. It provides an understanding of the code

structure inmore detail. This analysismethod helps ensure that the codemain-

tains the industry standards. In the context of static analysis, it focuses on scan-

ning source code for certain coding patterns that are related with some type of

warning or information.

1.1.2 Static Code Metrics

Static Code Metrics are a set of software metrics that provide quantitative in-

sight into the code. Some popular static codemetrics are - Line of Code (LOC),

Number of Bugs, Number of Classes, Methods and Functions, Technical Debt,

Cyclomatic Complexity, Cognitive Complexity etc. Common tools like Sonar-

Qube [14], Raxis [1], QARK [7] etc. are used to find out static code metrics

from the source code.

1.1.3 Behavioural Code Metrics

Behavioural Code Metrics is a set of software metrics that provide qualita-

tive insight into the code. Some popular used behavioural metrics are - Tele-

1



phony services abuse, Remote connection establishment, PIM data leakage,

Audio/video flow interception, Denial of Service, Arbitrary code execution,

Geo location information leakage etc. There are some common tools likeAndroWarn

[8], Android Lint [6] etc which are used to figure out the behavioural code

metrics from the source code

1.1.4 Fuzzy Risk Score

This risk score is an estimate of the security and privacy risks of your Android

application. Androrisk assigns each app a risk value from 0 to 100, depending

on the accesses and settings of the application. The higher the risk score, the

greater the vulnerability of the application. Each authorization has a weight

assigned to it based on its sensitivity and potential risk (i.e. access to the In-

ternet, geolocation, or payment systems). Androrisk looks at 21 different risk

categories that an appmight provide to end-users in terms of security and pri-

vacy. Androrisk uses fuzzy logic[9] to calculate the application’s security and

privacy risk based on the mapping of actions to the 21 categories.

2



1.2 Problem Statement

There has been lots of work in the field of static analysis of the Android ap-

plication in the past, but most of them have been geared towards a static code

metrics. The field of behavioural code metrics in the static analysis domain

is relatively new and is quite promising. Having explained the various appli-

cations of static analysis and our motivation for this domain, we can finally

declare our problem statement as follows:

The primary objective of our thesis is to conduct a comparative study of

static code metrics and behavioural metrics for predicting risk scores in

Android applications.

1.3 Organization of the Thesis

In Chapter 2, we discuss the background knowledge needed to understand the

concept of our thesis.We talk about the different tools and methods we have

used. In Chapter 3, we dive into the existing literature reviewed for our work.

In Chapter 4, we present the methodology of our work and the preparation

processes of our dataaset.In Chapter 5, we present our results and discussion

followed by the conclusion in Chapter 6.

3



Chapter 2

Background Knowledge

2.1 Android APK Decompilation

Figure 1: Process of Android APK Decompilation

Android APK decompilation is the method of conducting reverse- engineer-

ing the android APK files to recover the almost similar version of Java source

code.[10] This is the most effective way to recover a similar version of the

source code. It gives us an idea about the vulnerability of any application. It is

considered to be a good approach to detecting the threat of the application. In

casemodding any app, APK decompilation is required. There are certain steps

which are followed during the Android APK decompilation. APK is basically

a zipped filewhere encoded resources and dex files are stored. Apktool [3] de-

codes the APK and converts them into SAMLI files. SAMLI files are basically

assembly files. The SAMLI files are then passed to the dex2jar [11] converter

in order to convert the SAMLI files into jar files. This jar file contains the Java

byte codes in a zipped file. These Java byte codes are not readable. To extract

the source code from the byte code, Luyten [4], JD GUI can be used. Luyten

helps to convert the byte code into the readable format of the source code.

2.1.1 Apktool

Apktool [3] is a reverse engineering tool for 3rd party, closed, binary Android

appswhich decode resources to the nearly original form and rebuild them after

making some modifications. Working with this app is easier than with other

tools because of the file structure. It helps us in the automation of some repet-

itive tasks like building APK etc.

4



2.1.2 dex2jar

dex2jar [11] is a code converter that converts a .dex file to .class files. The

output is provided as a zipped file. It is designed to read the Dalvik Executable

(.dex/ .odex) format. smali/baksmali disassembles dex and reassembles dex

from smali files.

2.1.3 Luyten

Luyten [4] is an open-source Java decompiler GUI and converts bytecode to

source code.

2.2 SonarQube

SonarQube [14] is an open-source platform for continuous code quality in-

spection and static code analysis to uncover static code metrics like LOC, Code

Smells, Cyclomatic Complexity, Code Duplications etc. Analyzing an android

APK requires certain steps to be followed. At first the APK is decompiled into

Java code. Then the environment is setup for the project. Through the terminal

instructions, the Java code is analyzed and it provides the desired static code

metrics.

2.3 Androwarn

Androwarn [8] is an open-source tool for detecting and warning users about

potentially dangerous Android app behavior. Static analysis of the applica-

tion’s Dalvik bytecode, which is created throughout the process from the APK,

is used to make the detection. When an APK is run through Androwarn, a re-

port is created based on the user’s chosen technical detail level. Essential, Ad-

vanced, and Expert are the three detail levels. The report is available in three

formats: HTML, JSON, and txt.

5



2.4 AndroGuard

Androguard[5] is a python tool to analyze Android applications. It is mainly

used to conduct Mobile Forensics, Malware Detection and Security Detection

The Androrisk module from the Androguard tool was used to calculate the

Fuzzy Risk Score. AndroGuard can work with:

• DEX, ODEX

• APK

• Android’s binary XML

• Android resources

• Disassemble DEX/ODEX bytecodes

• Decompiler for DEX/ODEX files

It can be used from the CLI or graphical frontend for AndroGuard, or use

AndroGuard purely as a library for your own tools and scripts. It is also avail-

able in a specialized Linux environment,SANTOKU [13]
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Chapter 3

Literature Review

3.1 Predicting Android Application Security and Privacy Risk

With Static Code Metrics

The goal of this article is to help Android app developers examine the secu-

rity and privacy risks connected with their apps. As predictors, they employ

static code metrics. They assessed the security and privacy risk of an Android

application by determining how vulnerable it is to leaking end-user private

information and exposing vulnerabilities. They look into how well static code

metrics derived from the source code ofAndroid applications can be utilized to

predict the security and privacy risk of those apps. They used SonarQube [14]

to collect 21 static code metrics from 1,407 Android applications and used the

data to forecast the security and privacy risk of the apps. They used a radial-

based support vector machine (r-SVM) [15]. They received a precision of 0.83

for r-SVM.[12]

3.2 Empirical Analysis of Static Code Metrics for Predicting

Risk Scores in Android Applications

They explore which software static metrics have a stronger link to source code

security vulnerabilities. They theorized that certain metrics may be used to

identify vulnerable from non-vulnerable code. The researchers looked at a

dataset of 1407 Android apps with various static code metrics. The goal of

this project is to create an empirical study that will look for correlations be-

tween these measures, as well as their impact on finding vulnerabilities in

source code, and to produce a collection of metrics that will help anticipate

security problems. Some of the static measures revealed a significant link in

the outcomes of this empirical study.[2]
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Chapter 4

Proposed Method

4.1 Dataset Preparation

• APK Selection :We have scraped 119 android applications from Google

Playstore. In the case of choosing the applications, we have tried to focus

on the most used applications in Bangladesh.

• Extracting Static CodeMetrics :Following the APK selection process, we

have collected the requiredmetrics fromSonarQube. The static codemet-

rics we have extracted for this process are mentioned in the following

table.

Figure 2: Extracting Static Code Metrics

• Extracting Behavioral Code Metrics :After scrapping the apps from the

google store we pass them through Androwarn. Then we get a featured

report generated for each application. And the report provides 10 be-

havioural features which are as follows:

– Device settings exfiltration

– Geolocation information leakage

– Connection interfaces information exfiltration

– Telephony services abuse

8



– Audio/video flow interception

– Remote connection establishment

– PIM data leakage

– Arbitrary code execution

– Denial of Service

– Telephony identifiers exfiltration

Figure 3: Extracting Behavioural Code Metrics

Telephony identifiers exfiltration means the theft or leakage of any de-

vice information like IMEI, IMSI,MCC,MNC, LAC, CID, operators name

etc. Device settings exfiltration includes software version leakage, usage

statistics, systems settings, logs leakage. Geolocation information leak-

age is about the GPS/WiFi geolocation information theft or reading the

information from the application. Connection interfaces information ex-

filtration is theft of WiFi credentials, Bluetooth MAC address etc. Denial

of Service defines event notification deactivation, file deletion, process

killing, virtual keyboard disable, terminal shutdown/reboot.

• Calculating Fuzzy Risk from Androrisk: As we can see in Figure 1, we

can calculate the Fuzzy Risk score from The Androrisk module of An-

droGuard. Each authorization has a weight assigned to it based on its

sensitivity and potential risk. Some assignedweights are: MONEYRISK:

5, SMS RISK: 5, PHONE RISK: 5, INTERNET RISK: 2, PRIVACY RISK: 5,

DYNAMIC RISK: 5, etc. These values are used to calculate a risk score.

9



Figure 4: Fizzy Risk Score Calculation

• Dataset 1 (Static Code Metrics) : After analyzing the apps in Sonar-

Qube, we have figured out the required metrics and noted them down.

In this dataset, there is a total of 16 features. Androrisk Fuzzy Risk Score

has been used as label data for this dataset.

• Dataset 2 : After the report generation the data was stored as a binary

dataset. The columns contained the metrics and the rows had the appli-

cation names. The apps which showed the behaviours had the value of

1, and the others had 0 in them. The last column contained Androrisk

Fuzzy Score which we used as the variable in our regression model.

Figure 5: Fuzzy Risk Value Result of a Bangladeshi App

10



Figure 6: Dataset 1

Figure 7: Dataset 2

4.2 Workflow

Theworkflow is divided into two parts for the two categories of analyzers. One

describes the SonarQube analyzer workflowwhich takes the decompiled APK

as input rather than APK. And the other one is for Androwarn which takes

direct APK as an input object. From the discussion above, it is visible that

datasets were also prepared considering the two separate analyzers our study

has. The separate metric datasets are passed through Regression models sepa-

rately. Then the predicted fuzzy score from each analyzer model is compared

with one another. Comparison is carried out based on the evolutionmetric val-

ues that the three models individually generate for each of the analyzers. The

models were trained by three different regression models. We used Linear Re-

11



gression, SVR (Support Vector Regression), and Random Forest Regression.

We used these regression models to find the best-fit lines and values for our

model. For extracting the correlation value between the features of the sam-

ple data, we used Spearman’s Rank Correlation value gained after the model

training.

Figure 8: Workflow of the proposed comparison model
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Chapter 5

Results and Discussion
The three regression models reflect a very keen observation of the dataset we

have. The evolutionmetrics ourmodels have areMAE(MeanAbsolute Error),

MSE(Mean Squared Error), RMSE( Root mean squared error) and R2 score.

The MAE value for static code metrics for linear regression, SVR, and Ran-

dom Forest was, respectively, 41.8122, 19.5646, and 12.6839. That means the

error value decreased significantly from each regression model used. It can

be inferred that, as linear regression minimizes the error between the actual

and predicted values through best line fit, it gives a higher error value for the

static code metrics in our dataset. Whereas, in the case of the behavior met-

ric model, the MAE values from the regression models, 19.0226, 16.6093, and

18.2660, respectively maintain consistent values. But the error value increased

in the Random Forest model. This inconsistency is a reason to infer static code

metrics better than the behavioural ones.

Next, if the RMSE values and MSE values are analyzed, a consistent decre-

ment in the case of static code metrics is observed from the values (63.8278,

29.5648, and 15.2452 respectively). Whereas for the behavioural metric, the er-

ror valuewas somewhat in the same range, whichmeans the data sampleswere

resistant to any changes and had inconsistency for any changes. As observed

from the values, 22.2731, 26.8461, and 21.4201, it is visible that the RMSE value

increased for the SVR model, and the last one was for Random Forest. But it

was likely that SVR would give a lesser RMSE value than linear regression.

This inconsistency is also a reason to denote behavioural metrics as worse than

static code metrics.

The R2 score shows some interesting insights from the result. Before that,

if the values are observed we see, for static code metrics the values are -3.7932,

-0.0284, and 0.7265. Here the convergence of the data plots got better gradu-

ally from linear regression to Random Forest regression. But if the scores for

behavioural metrics are observed from the table, (0.2608, -0.0739, and 0.3163)

13



LR SVM RF Regression
S. M B. M S. M B. M S. M B. M

MAE 41.8122 19.0226 19.5646 16.6093 12.6839 18.2660
MSE 4073.99 496.0891 874.0825 720.7143 232.4183 458.8199
RMSE 63.8278 22.2731 29.5648 26.8461 15.2452 21.4201
R2 score -3.7932 0.2608 -0.0284 -0.0739 0.7265 0.3163

Table 1: Results and Comparison

the inconsistency is again observed for these types of metrics. Though random

forest gives a better convergence visualization for behavioural metrics, it is low

compared to the R2 score for static code metrics.

The R2 score is another strong proof that SonarQube gives better feature

metrics than Androwarn. In other words, static code metrics implies stronger

results in predicting risk scores in applications than behavioural metrics.

Figure 9: Regression line for Androwarn
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Figure 10: Regression line for SonarQube

The spearman’s correlation coefficient for the features for static codemetrics

gave a good and clear visualization value, whereas for behavioural metrics it

gave negative values and maximum values were below 80

15



Figure 11: Heatmap depicting spearman’s correlation between features in
Androwarn

Figure 12: Heatmap depicting spearman’s correlation between features in
SonarQube
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Thus from the discussion above, it can be concluded that 1) Static code

metrics give more consistent and better performance metric values compared

to behavioural metrics. 2) The behavioural metrics have less relevance to each

other in one particular android application.

17



Chapter 6

Conclusion
As per discussed in former sections, the goal was to come to a distinctive con-

clusion about the two types of metrics used in the study. After analysing the

results and discussing the explanations afterwards, it is clear that there are

some unique differences and distinctions between the performance of predict-

ing risk scores between the two metrics. It is evident that set of static code

metrics is better in predicting risk scores than behavioural metrics. The value

of our evolution metrics proved our problem statement. But surely the work

can be improved in future. Furthermore, while this experiment measured only

between the two categories of metrics, more comparative studies are required

to gain more insight into different patterns of metrics clusters, to investigate,

for instance, whether any other groups of metrics give better results than static

code metrics. Or behavioural metrics if associated with different other metrics

gives a better prediction in risk scores than it gives a single entity of metric set.

18
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