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Abstract

There have been considerable advancements in semi-supervised learning in the remote

sensing community. It is a technique that uses a small number of labeled data to train a

model. Generally, deep learning networks learn from labeled data only. But since find-

ing a huge corpus of a labeled dataset is rare and manually labeling datasets is time-

consuming and expensive. And labeling remote sensing satellite images is much more

challenging than typical image datasets with good accuracy. Our proposed method

aims to solve the problem for labelling unlabelled data with better accuracy. We use a

SSL technique with a proper class-rebalancing technique to help solve the imbalanced

dataset problem. We do it by creating “artificial” labels and training a model to gain

reasonable accuracy. Moreover, it is a common occurrence that datasets are typically

class-imbalanced. And if they are trained using it, with a high number of samples, the

model becomes biased towards the majority classes and away from minority classes

having few examples. This becomes a primary problem to the poor performance of

an SSL model. We use a distribution alignment strategy to iteratively redistribute the

classes through re-sampling. We showed that our proposed method improve a state-

of-the-art SSL method with a tweaked augmentation strategy to generate high-quality

pseudo-labels, updating the labeled set handling imbalanced data through re-sampling

and also can reduce model bias. This is done on various class-imbalanced satellite im-

age datasets. This method consistently outperforms other methods and greatly reduces

the need for labeled data and also solves the issue of class imbalance in datasets.
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Chapter 1

Introduction

In recent times there seems to be a significant abundance of satellite and aerial re-

mote sensing images all because of the advancement of earth observational technol-

ogy. Nowadays, there are numerous satellites revolving around the earth collecting

huge remote sensing data. And the amount is growing exponentially every day. It has

been said that there were 300 satellite launches for collecting earth satellite data in the

year 2018 alone [14].

As the amount of remote sensing data grows, so does the demand for effective

image processing. And at the same time, for this, numerous deep learning approaches

have been created. Therefore, in the remote sensing community, there has been study

for processing satellite and aerial imagery efficiently using deep learning methods

[15] [16] [17]. Deep learning methods rely heavily on labeled data for training neural

networks. Usually, these labeled data have been manually annotated by experts. That

is why labeled data is limited. And manually annotating satellite images is difficult.

This problem of manually annotating labels can be solved through semi-supervised

learning(SSL). SSL trains a neural network using only a few labeled data and a large

amount of unlabelled data. Semi-supervised learning combines unsupervised learning

which is unlabeled training data and supervised learning which is only labeled training

data. And there have been significant advancements in the last few years in the domain

of semi-supervised learning(SSL). These methods save time and cost and also reach

the accuracy of the fully-supervised techniques applied in the same situations [5] [3]

[4]. And there have been few works where semi-supervised learning has been applied
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to process satellite images by Liu et al. [18] Wu and Prasad [19].

Moreover, it is seen that the datasets available are class-imbalanced i.e. major-

ity classes have large number of samples and minority classes having few samples.

Models trained on class-imbalanced data become biased Models trained on data with

unequal distributions of classes become biased favouring majority classes and this be-

comes a primary reason for an SSL model to perform poorly. Many methods have

been proposed to help reduce model bias like the work done by Buda et al. [20] where

they introduce a technique for re-sampling. There have also been other works like re-

weighting and averaging to solve model bias. But all of these methods rely on labeled

samples. SSL on imbalanced data has not been studied extensively. It is relatively new

to the scene. There have been works to handle imbalanced data by using distribution

alignment with SSL algorithms by Wang et al. [21], Mayer et al. [22], Kim et al. [23],

Chen et al. [24], He et al. [25], Wei et al. [9].

Figure 1.1: LULC scene classification. Images taken from AID dataset [1]

In this work, we propose a semi-supervised learning method built on a recent ad-

vancement [5] together with a distribution alignment strategy to tackle the issue of
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labeling land use and land cover images and handle the class imbalance problem. We

compare our results with supervised learning, MSMatch [8] and FixMatch[5] with

tweaked Augmentation on three datasets, EuroSAT benchmark dataset [10] [26], UC

Merced Land Use (UCM) dataset [11] and WHU-RS19 [12] [13]. Our method uses

a class-rebalancing strategy to re-train an improved semi-supervised learning model

with a specific augmentation strategy that involves collecting pseudo-labeled data

from the unlabeled set to expand the initial labeled set. Each completely trained SSL

model is referred to as a generation.

To retrain the semi-supervised learning model with tweaked augmentation, the

pseudo-labeled samples are taken from the unlabeled set and incorporated into the

labeled set after each generation. We employ a stochastic update technique instead

of updating the labeled set with all pseudo-labeled samples generated from the SSL

model, in which samples are picked with a high probability(threshold crossing 95%)

if they are from minority classes since they are more likely to be right predictions.

The data distribution derived from the labeled set determines the updating probability.

As a result, our proposed technique reduces pseudo-labeling bias and increases the

accuracy of the test set.

We show that our proposed method outperforms FixMatch [5] under custom aug-

mentation by 2.32% accuracy in the case of UCM dataset, 1% improvement in the

case of EuroSAT and 2.31% in the case of WHU-RS19.

1.1 Overview

1.1.1 Semi-Supervised Learning

Semi-supervised learning is a machine learning technique that trains a model with lim-

ited amount of labelled training data and a huge amount of unlabelled data. This type

3



Figure 1.2: Outline of the different machine learning approaches

of learning problems are a bit challenging as they are neither supervised or unsuper-

vised.

Every machine learning model learns from data. In supervised learning, the ma-

chine learning model learns from labeled data. That is, it predicts a label and then

calculates the difference between the prediction and the actual label. The model tries

to minimize the difference and then increase the accuracy. In unsupervised learning,

the model tries to identify patterns, trends, or categories. So, there is no need for

labels.

Semi-supervised learning merges supervised and unsupervised learning. This uses

a small amount of annotated data and a huge corpus of unlabeled data. This relieves the

need to have a huge amount of labeled data. Finding a good amount of labeled data is

unrealistic as manual labeling takes up time and cost. Semi-supervised learning helps

create artificial labels and train a classifier using the labeled data and unlabelled data

with ”pseudo” labels.

How semi-supervised learning works:

• Train the model on a small amount of labelled data, similar to supervised learn-

ing, until it gives a good accuracy.

• Then use the model on unlabelled data to predict outputs i.e the pseudo-labels

for the unlabelled data.

4



• Retrain the model with pseudo and labelled datasets together in order to decrease

error and increase the model’s accuracy

Figure 1.3: Basic technique of semi-supervised learning

1.1.2 Land Use and Land Cover Detection

Land Use/Land Cover (LULC) detection is the grouping or classification of human

actions and natural compounds on the earth surface. Land cover refers to the surface

cover on the ground like flora, water, urban infrastructure, forest and Land use refers

to the purpose the land serves, for example, airports, highways, or agriculture. Land

cover and land use (LULC) detection refer to the identification of land types namely

- forests, water bodies, soil, desert, snow areas, and land use which is the human

interaction with the physical environment, are - industrial areas, human habitats, crop

farming, etc.

This research has extensive applications in multiple sectors. Some of the applica-

tions of Land Cover and Land Use Detection are:

• Land conservation

• Disaster Management

• Sustainable development
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Figure 1.4: Land use land cover (LULC) map for the year of 2013, Dhaka [2]

• Land resource management

• Urban Expansion

• Legal Boundaries for Tax and Property Evaluation

• Weather Predictions

• Vegetation Mapping

• Natural Hazard Detection, etc.

1.2 Motivation

A remote sensing picture usually includes a number of different ground objects. As a

result, from the method described by Cheng et al. [17], detecting a scene from a remote

sensing image containing a diversity of ground objects is challenging for the model

to achieve sufficient accuracy. Satellite images have much more pixel and resolution

than a classical photograph. To work with these type of image data, experts need to

manually annotate rigorous number of data.

Having a method which can automatically label these type of data and work with high
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resolution images introduces a lot of possibilities in land scene classification. Semi-

supervised land scene classification can correctly generate labels for land cover and

land use detection on remote sensing data with limited amount of labels and reach a

reasonable accuracy. Although significant research has been done in this area, it is still

a relatively new field of study.

1.3 Problem Statement

There has been sufficient work in the domain of land cover and land use in the past, but

most of them have been geared toward balanced datasets. Or it required manual expert

labeling. Automatically identifying land cover and land use using a small amount of

labeled data is relatively new. Having explained the various applications of and cover

and land use and our motivation for this domain, we can finally declare our problem

statement as follows:

The primary objective of our thesis is to develop an effective method for detecting

land cover and land use from abundant remote sensing data. In particular, we aim

to use unlabelled data with limited labelled data and investigate semi-supervised

learning methods to achieve better performance in classifying remote sensing im-

ages.

1.4 Research Challenges

1.4.1 Challenges of Remote Sensing Image Scene Classification

In scene classification tasks, the main goal is to correctly classify the scene from the

image and label it correctly. For example, correctly classifying a remote sensing image

from rural to forest, crops, mountains or riverine areas, from urban to industrial, res-

idential, commercial areas. Land cover includes the forest, river, desert, beach, pond

etc. and Land use includes airports, freeways, bridge, harbour, crops farmland, resi-

dential areas, industry, resorts etc. Usually, A remote sensing image usually includes a
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number of different ground objects. Recognizing a scene from a remote sensing image

comprising multitude of ground objects is strenuous for the model to provide adequate

accuracy, as Cheng et al. [17] show in their work.

The challenges of remote sensing scene classification using semi-supervised learn-

ing is given below:

Challenges faced due specificness of satellite data: If we compare a satellite

image with a classical photograph, we can see that satellite images have much more

pixel and resolution than a classical photograph.

Also, a classical photograph has three channels, red green and blue but a satellite

image can have upto dozens of channels including RGB, these are called multispec-

tral(MS) images.

There has been several datasets established for scene classificaton tasks for image

processing. Like EuroSat by Helber et al. [10], UCM and the Aerial Image Dataset

(AID)

Challenges faced in working with satellite data:

• Big intraclass variance (variety within class)

• High interclass similarity (low similarity between classes)

• Huge variety of objects

• Dead pixels

• Cloud appearances, shadows, haze

• Color casting due to atmospheric effects

• Overexposure due to sun

• Imaging altitude variation

Ground objects appear in different style, shape and scale in remote sensing im-

ages. For example, a school buildings, bridges and airports can be of different style,

8



shapes and scales. Also some of the images appear in different situations due to the

atmospheric conditions, weather, cloud, haze etc. in the same class. It causes intra-

class diversity. Sometimes satellite take images of an area at different angles and due

to this sometimes the sensors cannot capture with a proper resolution. And since a

huge varierty of objects can appear in a single scene, it becomes difficult for a model

to provide a single label to a scene with various objects appearing in different style,

shape and scale.

1.4.2 Challenges of Imbalanced Datasets

The class distribution of labeled and unlabeled data being balanced is a typical as-

sumption made inherently during the design of datasets. However, in many real-world

cases, this assumption is incorrect, and poor SSL performance is the result. In fact,

in SSL, where insufficient label information prevents adjusting the unlabeled set, data

imbalance presents much more complications. When pseudo-labels are created by an

starting model trained on imbalanced data they can be detrimental to the model and

they’re biased towards the majority classes. And therefore, training with these biased

pseudo-labels aggravate the bias and degrades model quality. The poor performance

of conventional SSL algorithms on imbalanced data is mostly due to limited recall

on minority classes. In terms of recall, the biased model trained on imbalanced data

does well for majority classes, while it does worse for minority classes in terms of

precision. Therefore, imbalanced datasets pose as a research challenge in our work.

1.5 Objective

To develop a semi-supervised learning method that can detect land cover and land use

changes with high accuracy and do scene classification with “correct” labels that can

save time and cost which would otherwise be spent on manual labelling.
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1.6 Contributions

• We have worked with more diverse augmentation strategy. Tweaking the aug-

mentation parameters helped us to get better Consistency Regularization and

the better Consistency Regularization helped to get better accuracy on Satellite

images.

• We have increased recall of imbalanced classes by class rebalancing.

• We have worked on Distribution Alignment to get more accurate pseudolabels.

• We have reduced model bias towards majority classes by handling data imbal-

ance.

• Finally we have correctly labeled data with reasonable accuracy.

1.7 Organization of the Thesis

The remainder of this article is organized as follows:

Chapter 2 gives a Literature review discussing the recent advancements in Semi-

Supervised Learning, different approaches of Semi-supervised learning and Distribu-

tion Alignment used in Remote Sensing Scene Classification.

Chapter 3 introduces our proposed method. This section describes the different

experiments we performed in detail.

Chapter 4 presents result analysis and comparison of our proposed method with

other methods.

Chapter 5 presents an overall conclusion of our thesis and discusses our future plan

of work.

10



Chapter 2

Literature Review

The importance of labelled data in training a neural network in deep learning meth-

ods is a serious limitation. And getting labelled data for satellite imagery is vexing

as satellite and aerial data are collected using various sensors and applications and

these data are in various spectral bands and resolution. So training a classifier with-

out labelled data is particularly difficult. That is why, Semi-supervised learning (SSL)

comes into the picture. In the following sections, we discuss the recent advancements

in semi-supervised learning techniques and the recent works done on Land cover and

Land use change (LULC) detection.

2.1 Recent Advancements in Semi-Supervised Learn-

ing

Pseudo-labeling is a semi-supervised learning method where “artificial” labels are cre-

ated to label the unlabelled data. First, the model gets trained with labeled data and

then the labels for unlabelled data are predicted. After that, the model gets retrained

with both the labeled and unlabelled data. This aids in the development of a model

with minimal error and eliminates the need for time-consuming and costly human data

labeling.

In the paper, Lee et al. [27] use a denoising autoencoder and dropout to handle
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noisy data and boost performance. This pseudo labeling technique became very pop-

ular. However, this paper has certain limitations. This method is sensitive during

initial predictions and pseudo labeling works best in problems that involve cluster-

ing assumptions. Also if there are very few labels, this technique does not give good

performance.

Jeong et al. [28] used a consistency regularization(CR) based method to enhance

image object detection in a dataset that is abundant in unlabeled data. The authors

demonstrated two object detector models: a one-stage detector and a two-stage detec-

tor. In the one-stage detector model, the object detection performance was enhanced

by using a combination of consistency loss in both classification and localization of

the labeled and unlabeled images and adding it to the original object detectors’ classi-

fication and localization loss. They used the Jenson-Shannon divergence (JSD) as the

consistency regularization loss. And they also added Background elimination(BE) to

the consistency losses. They used the Mean Average Precision (mAP) as a metric. In

the two-stage detector model, they use a Regional Proposal Network (RPN) network

where they only pass a specific feature from the original image to it and compute a

supervised RPN loss. Using the feature map from the backbone network and Region

of Interest(RoI) pooling from the RPN, outputs compute the cost for network training.

It is seen that training with consistency loss and also applying background elimina-

tion (BE) significantly improves the performance of object detection and provides the

best mAP. It makes it much more efficient and faster than traditional Semi-supervised

learning(SSL) to object detection problems. In the one-stage detector, the proposed

method can be applied to both labeled and unlabeled images. It is shown to be helpful

for classification and localization. However, the two-stage detector has been shown to

have less improvement than the single-stage detector due to not applying consistency

loss in RPN.

MixMatch by Berthelot et al. [3] is a semi-supervised learning approach that com-

bines entropy minimization, consistency regularization, and traditional regularization.

In this paper, the authors used data augmentation and sharpening function to boost

performance. Data augmentation is applied to input data then “guessed” labels are

generated and after that, the decision boundary is “sharpened” to improve the consis-

tency of the artificially labeled unlabelled data. After that, the unlabelled and labeled
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data is shuffled and combined using MixUp algorithm (technique proposed by Zhang

et al. [29]) to artificially increase data and then fed to the model to improve accuracy.

Figure 2.1: MixMatch “guessed” labelling process [3]

Using MixUp by Zhang et al. [29] and the hyperparameters seems to provide the

strongest contribution to the performance of Data Augmentation and Sharpening ben-

efits accuracy but the MixUp seems to be the most important factor. A lot less data is

needed to train which is great because MixMatch uses the MixUp function to artifi-

cially increase data. Even though MixMatch consistently beats state-of-the-art meth-

ods and costs to generate the transformation, MixUp’s accuracy is significantly higher.

ReMixMatch by Berthelot et al. [4] is an improved version of MixMatch by Berth-

elot et al. [3]. Here the consistency regularization component of MixMatch is re-

placed by augmentation anchoring. The middle and green graphs of the figure are the

prediction for a weakly augmented image. The blue graph is the target for predic-

tions on strong augmentations of the same image. Augmentation anchoring creates a

weakly augmented version of each unlabeled input initially which is called “anchor”.

Then it generates multiple strongly augmented versions of the same unlabeled input.

They used a variant of AutoAugment based on control theory augmentation dubbed as

CTAugment. The authors use augmentation anchoring to urge each output to be near

to the prediction (guessed label) for a weakly enhanced version of the identical input.

Then, distribution alignment was added to MixMatch by altering the “guessed

labels”. This ensures that the distribution of unlabeled data predictions matches the

distribution of labeled data given. Distribution alignment was needed because the

dataset’s marginal class distribution was uniform. The empirical ground-truth class

distribution is split by the average predicted results on unlabeled data to update the

guesses label distributions.

After that, they updated labeled samples and their labels for shuffling. The weakly
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Figure 2.2: Augmentation Anchoring [4]

Figure 2.3: Distribution Alignment [4]

enhanced unlabeled examples are then combined with the heavily augmented unclas-

sified example and guessed label. Lastly, They have done MixUp followed by the

technique of Zhang et al. [29].

FixMatch by Sohn et al. [5] is an algorithm that brilliantly combines consistency

regularization and pseudo-labeling. At first, the model gets trained by the available

labeled data and gets hyper tuned.

Figure 2.4: Diagram of FixMatch [5]
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After the model gets hyper tuned, the next phase of the algorithm works in two

pipelines, at first, a weakly-augmented image is given into the model to obtain pre-

diction as shown in the red box in the diagram 2.4 above. Then the model assigns a

probability to a class. If the probability is above a threshold (shown as a dotted line

in the figure2.4), the prediction is then converted to a one-hot pseudo-label. Then, the

authors use the same unlabeled image to compute the model’s prediction for a strong

augmentation. They train the model to make its prediction on the strongly-augmented

version of the image by running a cross-entropy loss with pseudo-labeling, here they

take the pseudo-label as a true label and try to minimize the loss.

For the weak augmentation strategy they chose Standard flip and Left-Right shift

and for the strong augmentation strategy, they worked with RandAugment by Cubuk

et al. [30] with cutOut Strategy and CTAugment with Cutout. In both RandAugment

and CTAugment, they used almost similar augmentations like Autocontrast, Bright-

ness, Contrast, Invert, Rotate, etc.

As stated above, the authors used CutOut Strategy with both augmentation strate-

gies and in this paper, they emphasized on CutOut Strategy to have a better result.

Randomly selecting space from the image and replacing it with random size pixels.

Figure 2.5: cutOut Strategy [5]

Randomly selecting space from the image and replacing it with random size pixels.

Without CutOut, Fixmatch’s error rate drastically increases.
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To conclude, it is a very simplistic approach to SSL. Despite its simplicity, Fix-

Match achieves a state-of-the-art performance across varieties of benchmarks. It achieves

94.3 % accuracy on CIFAR-10 with just 250 labels for 10 classes and 88.61% accu-

racy with just 40 labels (4 data per class). Here, sometimes the accuracy varies on

the quality of the labeled images. If the quality is too poor accuracy gets hampered.

Many other SSL algorithms come at great calculation costs and complex learning al-

gorithms that achieve such great performance. However, it has a few lackings such as

the algorithm is Substantially dependent on Augmentation Strategy, and if Augmen-

tation Strategy is replaced Error Rate significantly increased. nevertheless, Fixmatch

achieves such great accuracy without having such computational cost and complexity.

2.2 Semi-supervised learning and Remote Sensing Scene

Classification

2.2.1 Remote Sensing Scene Classification

There are many publicly available data on remote sensing images. And many machine

learning and deep learning methods have been used to utilize these data. There has

been convolutional neural network (CNN) based remote sensing image classification,

auto-encoder based, and also, generative adversarial network (GAN) based remote

sensing image classification. And both supervised, self-learning, and semi-supervised

learning has been applied for remote sensing image classification. For instance, Oth-

man et al. [31] suggested a remote sensing image scene classification method based on

convolutional features and a sparse autoencoder in their paper. Though autoencoder-

based remote sensing image classification has gotten good results, they can not com-

pletely utilize scene class information, these techniques cannot learn the optimum dis-

criminating features to recognize distinct scene classes. In works, by Teng et al. [32]

and Ma et al. [33], there have been many GAN-based remote sensing image classifica-

tions in a semi-supervised manner. In the paper by Cheng et al. [34] a new technique

for learning discriminative convolutional neural networks (D-CNNs) was proposed.

Cheng et al. [17] surveyed auto-encoder-based, GAN-based, and CNN-based remote
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sensing image classification. There have been few reports of GAN-based remote sens-

ing image classification and CNN-based image classification is superior to it. These

CNN-based techniques require annotated images for better performance and results,

that is where semi-supervised learning comes in. Semi-supervised learning helps arti-

ficially sample unlabelled images to give better results.

2.2.2 Remote Sensing Image Classification using Semi-Supervised

Learning

Deep neural networks, often need a high number of labeled samples for training. And

these labeled samples are manually annotated by professionals. This is especially

aggravating when it comes to satellite imagery or remote sensing image datasets as

these are not easily labeled by humans. One way to solve this problem is using semi-

supervised learning (SSL) methods. These are designed to train machine learning al-

gorithms with a limited collection of labeled training data and a usually bigger volume

of unlabeled training samples. There have been many works proposed on this. Like,

Wu and Prasad [19] proposed deep learning for hyperspectral image classification by

making use of deep convolutional recurrent neural networks (CRNN). So it provides

high-quality pseudo-labels, leading to better deep neural network initialization.

Cenggoro et al. [6] classified imbalanced LULC data using variational semi-supervised

learning. The figure illustrates the architecture of VSSL technique used to resolve the

imbalance problem in the Land Use and Land Cover data of Jakarta City.

Figure 2.6: Variational Semi-Supervised Learning (VSSL) technique [6]

VSSL is used for deep generative model. It is built by combining a standard Varia-

tional Autoencoder (VAE) and a modified version of VAE called M2 VAE. Variational
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Autoencoder (VAE) is a variant of autoencoder. The VSSL learns from both labeled

and unlabeled data simultaneously. The VSSL makes use of a deep learning model.

However, because this strategy assumes that the data is unbalanced, it may limit the

model’s capacity to generalize.

In this paper, Fan et al. [7] proposed Semi-MCNN for Urban Land Cover clas-

sification. Here they have used Submeter HRRS Images. They proposed a semi-

supervised learning strategy in addition to multiple deep learning-based CNNs. First,

an ensemble teacher model trains the training data. Then, the fine-tuned ensembled

teacher model selects samples and generates a new dataset. Finally, the newly gener-

ated dataset trains a student model to get the final model.

Figure 2.7: Flow of Semi-MCNN[7]

The MSMatch method by Gómez and Meoni [8] takes advantage of recent im-

provements as well as new neural network architectures to address the challenge of

land scene classification. The authors have followed the pipeline of Fixmatch by Sohn

et al. [5] on satellite image dataset. To create a pseudo-label for the image, the weakly
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augmented image is used.

Figure 2.8: Overview of the processing pipeline of MSMatch [8]

They computed cross-entropy loss between a pseudo-label on the weakly aug-

mented image and the model’s classification of the strongly augmented image. Thus,

consistency regularization is employed. Pseudo-labeling uses the model to automati-

cally label unlabeled data and consistency regularization ensures that the model should

predict the same output for similar inputs.

2.3 Distribution Alignment

Distribution Alignment (DA) by Berthelot et al. [4] is particularly well suited to class-

imbalanced circumstances, aligning the distribution which the model predicted in case

of unlabeled samples with the class distribution of the labeled training set. The mis-

match of feature distributions between labeled and unlabeled samples is a result of

SSL overfitting. The feature distribution alignment method of Mayer et al. [22] is

highly effective when just a small number of tagged samples are used. This method

explains why feature distribution alignment emerges and how to prevent it. The tech-

nique of Augmented Distribution Alignment by Wang et al. [21] used an adversarial

training strategy inspired by domain adaptation efforts to decrease the distribution dis-

tance of labeled and unlabeled data, and generated training samples which are pseudo

to solve the labeled data’s small sample size issue. The feature-based refinement and

augmentation method named FeatMatch by Kuo et al. [35] generates a diverse range of
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complex transformations based on information retrieved through clustering. By keep-

ing features computed across iterations in the memory, this approach avoided the need

for notable additional computation. These are then applied as part of the regularization

loss which is consistency-based, along with standard image-based augmentation. The

DASO approach by Oh et al. [36] works with the semantic pseudo-label and the linear

one class. Another technique, Uncertainty-Aware Self-Distillation (UASD) by Chen

et al. [24], generates soft targets that prevent catastrophic error propagation and en-

able learning from unconstrained unlabelled data including out-of-distribution (OOD)

samples. This is based on a unified formulation that combines self-distillation and

OOD filtering. He et al. [25] proposed a method named DARS which produces unbi-

ased pseudo labels. The true class distribution of the labeled data can be matched with

the pseudolabels.

2.3.1 DARP: Distribution Aligning Refinery of Pseudo-label for

Imbalanced Semi-supervised Learning

In DARP by Kim et al. [23], to adjust the pseudo-labels that are produced from a

biased model, a convex optimization problem is stated and a simple iterative algorithm

is constructed.

With a proven guarantee, the DARP method is a procedure for solving the pro-

posed (convex) optimization. It solves the original optimization’s Lagrangian dual to

obtain the unique optimal solution. When executing DARP, several minor and noisy

items in the original pseudo-labels are eliminated and this improves the condition of

the refined pseudo-labels even more.

2.3.2 CReST: A Class-Rebalancing Self-Training Framework for

Imbalanced Semi-Supervised Learning

CReST by Wei et al. [9] retrains a baseline SSL model again and again. It uses a

labeled set which is expanded by adding pseudolabeled samples from an unlabeled set.
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Here, minority class pseudolabeled samples are selected more frequently by following

an estimated class distribution.

A class-rebalancing selftraining strategy (CReST) frequently samples pseudo-labeled

data which is gained from the unlabeled set to replace the original labeled set. To re-

train an SSL model, pseudo-labeled samples from the unlabeled set are added to the

labeled set after every generation (fully-trained baseline model). Samples are selected

with a higher probability if they are identified as minority classes, as these are more

likely to be accurate predictions. The labeled set’s data distribution determines the

updating probability.

Figure 2.9: Adaptive training of CReST (Class-Rebalancing Self-Training) [9]

The proposed technique is initially tested on the long-tailed CIFAR10 (CIFAR10-

LT) and long-tailed CIFAR100 (CIFAR100-LT) described in the papers by Cui et al.

[37] and Cao et al. [38] respectively. The backbone was Wide ResNet-28-2 by Zagoruyko

and Komodakis [39], which was based on Oliver et al. [40], Sohn et al. [5]. They also

evaluated CReST on ImageNet127 by Huh et al. [41], Wu et al. [42] to verify its per-

formance on large-scale datasets.
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SSL techniques are used to leverage the unlabeled and labeled data to generate

a teacher model in the very first step which is even better, rather than exclusively

training on labeled data. More crucially, rather of incorporating each sample in the

labeled set in the second phase, the labeled set has been enlarged with a subset. The

more unlabeled samples that are determined as that class are added in the labeled set,

the less frequent that class is.

CReST has been improved by introducing distribution alignment by Berthelot et al.

[4] with a temperature scaling factor to adjust the alignment strength using multiple

generations. This allows data distributions of prediction to be more adjusted to re-

duce model bias. As a result of the suggested technique, the bias is reduced, and the

accuracy of balanced test set improves.

CReST has been compared to DARP by Kim et al. [23], created particularly for

data imbalances. MixMatch and FixMatch are drop-in additions to basic SSL algo-

rithms that are used in both DARP and this technique. The datasets utilized in CReST

are the same ones used in DARP. On MixMatch, the model regularly achieves up to

a 4.0% accuracy improvement over DARP for all three imbalance ratios, and up to a

2.4% accuracy gain on FixMatch.

But CReST is complex and time-consuming because distribution alignment with

temperature scaling has been added to this method.
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Chapter 3

Proposed Method

This chapter narrates our proposed methodologies in details. In the first section, we

discussed about the general overview of our proposed method’s pipeline. In the sub-

sequent sections, we discussed about the different parts of our method’s pipeline and

how they are contributing to improve accuracy and reduce model’s bias towards major

classes.

3.1 General Pipeline Overview

The objective of our proposed method is to have good accuracy on imbalanced satellite

dataset. Our proposed method helps to rebalance the dataset by each generation and

moves towards removing model biasness to the majority classes.

Figure 3.1 illustrates a basic overview of our pipeline. At first a base SSL algorithm

is used and model gets trained with available labeled data and unlabeled data. Here

Fixmatch is used with our tweaked augmentation as a base SSL algorithm. Then in

the next phase, After the model gets confident enough it pseudolabels the images from

Unlabeled dataset. If the pseudolabel’s confidence reaches the predefined threshold

then we move to the last phase. In this phase, pseudolabels from the minority classes

and with high precision are chosen with a higher sampling rate and pseudolabeles that

are from majority classes are chosen with lower sampling rate to rebalance our dataset.
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This completes one generation. The algorithm runs for several generations to remove

model bias towards majority classes.

Figure 3.1: Proposed Method

3.2 Framework

Here, we will discuss about the two phases of our proposed method.

3.2.1 Baseline SSL Method: Fixmatch with Tweaked Augmenta-

tion

FixMatch algorithm is used here for leveraging unlabeled data, that brilliantly com-

bines consistency regularization and pseudo-labeling. At first the model is trained by

the labeled data which is available. Then the model is hypertuned. After that, in next

phase algorithm works in two pipeline, at first a weakly-augmented image is fed into

the model. This helps to obtain prediction as shown with blue line in the diagram 3.3

above. When the model assigns a probability to any class and it crosses the thresh-

old, then the prediction is converted to a one-hot pseudo-label. We determined the
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Figure 3.2: Baseline SSL Method: Fixmatch

model’s prediction for a strong augmentation of the unlabeled image as shown with

pink line in the diagram 3.3 above. Then we trained the model to make it’s prediction

on the strongly-augmented version of the image by running a Cross-entropy loss with

pseudo-label, here we take the pseudo-label as true label and try to minimize the loss.

For the weak augmentation strategy we chose Standard flip and Left-Right shift

and for the strong augmentation strategy we worked with RandAugment by Cubuk

et al. [30]. For RandAugment we have used Autocontrast, Brightness, Contrast, Invert,

Rotate etc. We have tweaked the augmentation parameters to get better result on

remote sensing datasets. This helped us to get better accuracy on Satelite imagery

using FixMatch.

3.2.2 Class Rebalancing

In this section, we discuss about how our proposed method is actually handling class

imbalance. After having confident pseudolabels, if the pseudolabel is confident enough

and if it belongs to minority classes, the pseudolabeled image gets added to the labeled

set. Now, the pseudolabels from minority classes are added with higher sampling rate

to increase the number of samples in minority classes of labeled set. This sampling

rate is decided by predefined sampling hyperparameter tuner α = 1/3. And with the

help of equation 3.1 we calculate the adaptive sampling rate.

25



µl =

(
NL+1−l

N1

)α

(3.1)

From the figure 3.3, we can see that the minority class pseudolabels are getting added

at higher sampling rate. and from the equation 3.1 we get higher sampling rate for

minority classes and lower sampling rate for majority classes. After getting added

Figure 3.3: Class Rebalancing

to labeled set, the model gets retrained with the newly added data and the previous

data and follows same pipeline. By finishing each iteration the algorithm completes

one generation and each generation new pseudolabels are added and the model gets

retrained. As new pseudolabels are added to minortiy classes the labeled set gets more

balanced each generation and by going through multiple generations the labeled set

gets balanced and reduces model’s bias.
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Chapter 4

Result Analysis

We experimented the performance of Fixmatch model on two Satelite datasets. We

carried out additional experiments for evaluating the efficiency.

4.1 Datasets

4.1.1 EuroSAT

EuroSAT by Helber et al. [10] is a dataset of satellite images collected using Sentinel-

2. In the Copernicus Earth observation program, it is open and fully available. This

datasets covers 10 classes with in total 27,000 images. Has a resolution of 64 × 64

which are in RGB and also in 13-band MS format. All are labeled and geo-referenced

images. The 10 classes are: Industrial Buildings, Residential Buildings, Annual Crop,

Permanent Crop, River, Sea and Lake, Herbaceous Vegetation, Highway, Pasture and

Forest These datasets are suitable for deep learning models.

4.1.2 UC Merced Land Use Dataset

The UCM dataset by [11] consists of 21 classes. Each class has about 100 land use

images, which makes total images 2100 in the dataset having 256 × 256 pixels. This

dataset is commonly used for scene classification.

27



Figure 4.1: Sample images from 10 classes of EuroSAT [10]

Figure 4.2: UCM contains 100 images from each of 21 land-use classes. 5 samples
from some categories are shown above [11]

4.1.3 WHU-RS19

WHU-RS19 [12] [13] is a collection of high-resolution satellite photos up to 0.5 m

that were extracted from Google Earth. In the image below, you can see several exam-

ples of the database. Airport, beach, bridge, commercial, desert, farmland, mountain,

football field, industrial, meadow, forest, park, parking, pond, port, residential, rail-

way station, river, and viaduct are among the 19 classifications of important scenes

in high-resolution satellite images. There are around 50 to 61 samples for each class.

It’s worth noting that samples of images from the identical class are obtained from

various places in satellite images of various resolutions, and varied sizes, orientations,

and illuminations. There are near a total of 1,013 images in the WHU-RS19 dataset.
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Figure 4.3: 5 samples from each of 19 categories of WHU-RS19 have been shown
above [12] [13]

4.2 Performance Metrics

Precision and recall are performance indicators for pattern recognition and categoriza-

tion in deep learning. These metrics produce more exact and accurate results. Some

models need more precision, while others need more recall. So, it becomes difficult to

understand the trade-off between precision and recall. Precision facilitates visualizing

the model’s reliability in classifying the model as positive. The recall evaluates how

well a model can identify positive samples.

Precision =
TruePositive

TruePositive+ FalsePositive
(4.1)

Recall =
TruePositive

TruePositive+ FalseNegative
(4.2)

Precision-Recall is used as metric to evaluate the classifier to handle imbalanced

data. When the proportion of true positives among positive predictions is analyzed,

Precision-Recall can offer an accurate prediction of future classification performance.
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4.3 Experimental Setup

PyTorch [43] is used to implement our proposed method. We experimented with Wide

ResNet-28-2 [39] as feature extractor. Learning rate is calculated using this equation:

µl =

(
NL+1−l

N1

)α

(4.3)

.

We have used learning rate, µ = 0.03, sampling rate tuner, α = 0.333, weight decay

= 0.0005 and imbalance ratio, γ = 3. The label fraction, β is used to measure the per-

centage of labeled data. For the optimizer, we have used Stochastic Gradient Descent

(SGD)[44]. We have done all the experiments with only 10% labeled data. We have

calculated loss with two loss functions.

The Supervised loss function:

Ls =
1

N

N∑
i

H(yi, y̌i) (4.4)

The Unsupervised loss function:

Lu =
1

N

N∑
i

δiH(ỹi, y̌i) (4.5)

4.4 Experimental Analysis

4.4.1 Experiment with FixMatch (Tweaked Augmentation)

Fixmatch with Tweaked Augmentation

We improved upon FixMatch by Sohn et al. [5] by using our custom augmentation

strategy. We experimented on three datasets-EuroSAT, UCM, and WHU-RS19 with

FixMatch by [5]. At first, with Fixmatch by Sohn et al. [5] on EuroSat by Helber et al.

[10] we were getting very poor results as Fixmatch’s augmentation strategy wasn’t

30



for satellite images. With the augmentation strategy, the satellite images were losing

too much information because of the heavy augmentations. As satellite images were

already a bit hazy and most of them had fogs and other visibility issues, with heavy

augmentation of Fixmatch, images were losing information. So, to solve this problem,

we’ll have to change Fixmatch’s augmentation mechanism and parameters.

Analysis of Recall and Precision with Tweaked Fixmatch

Datasets EuroSAT UCM WHU-RS19
Recall 0.888740168 0.8638202195238094 0.8337
Precision 0.911594744 0.8863465985714285 0.8768

Table 4.1: Recall and Precision with Tweaked Augmentation Strategy

After tweaking the augmentation parameters, we have calculated the recall and

precision using the FixMatch (with tweaked augmentation) method.

Transformation RGB Parameterrange
Autocontrast
Brightness x [0.1, 0.2]
Color x [0.05, 0.95]
Hue x 0.1
Equalize
Identity
Posterize
Shift x [0.1,0.2]
Rotate x [-30, 30]
Sharpness x [0.5, 1]
Shear x x [0.1, 0.2]
Shear y x [0.1, 0.2]
Solarize
Translate x x [0, 1]
Translate y x [0, 1]

Table 4.2: Tweaked Augmentation strategy for Satellite Images

With our tweaked augmentation Table 4.2 strategy we achieved better results on

the datasets. This table refers to the augmentations we used, the values give us optimal

performance. In Table 4.1, we analyze the precision and recall of Fixmatch with a

tweaked version of strong augmentation on the three datasets EuroSAT, UCM, and

WHU-RS19.
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Figure 4.4: No. of samples in each class (EuroSAT)

Figure 4.5: Recall and Precision (EuroSAT)

We see that the overall precision is higher in EuroSAT than in overall recall. This

is because the EuroSAT dataset is imbalanced. Originally, UCM and WHU-RS19 are

relatively balanced datasets. So we create an artificial imbalance on these two datasets

and apply FixMatch with the tweaked augmentation on it. From the figures, we can

see the recall and precision of each classes. As we can see from the table, the overall

precision is higher than that of the recall of UCM and similarly, the overall precision

of WHU-RS19 is higher than the overall recall. This is because these datasets are

imbalanced. As a result, the model becomes biased and the generated pseudo-labels
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are also biased, therefore there is recall degradation.

Figure 4.6: No. of samples in each class (UCM)

Figure 4.7: Recall and Precision (UCM)

Here, we can see in UCM dataset, class 19 and class 20 are relatively imbalanced.

But their Precision is higher according to other classes.
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Figure 4.8: No. of samples in each class (WHU-RS19)

Figure 4.9: Recall and Precision (WHU-RS19)

Here, we can see in WHU-RS19 dataset, class 17 and class 18 are relatively im-

balanced. Although recall is lower in those classes but Precision is higher according

to other classes.
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4.4.2 Experiment with Proposed Method

Precision and Recall with Proposed Method

Methods
Datasets

EuroSAT UCM WHU-RS19
Recall Precision Recall Precision Recall Precision

FixMatch with
Tweaked Augmentation 0.8887 0.9115 0.86382 0.8863 0.8337 0.8768

Proposed Method 0.9266 0.9211 0.8775 0.8654 0.8411 0.8592

Table 4.3: Comparison of Recall and Precision of Tweaked Augmentation Strategy
and Proposed Method

In table 4.3, we see the overall precision and recall of our proposed method against

the FixMatch with our tweaked augmentation. In the previous section, we discussed

the precision and recall of FixMatch with Tweaked Augmentation applied on the three

datasets EuroSAT, UCM and WHU-RS19. At that time, the datasets were imbalanced,

and evaluating the precision and recall we could show the model bias occuring in the

class-imbalanced EuroSAT, UCM and WHU-RS19 datasets. In this section, we apply

our proposed method where we show that it handles model bias that is caused due

to class-imbalance. Since EuroSAT is already imbalanced, we create an artificial im-

balance in the other two datasets UCM and WHU-RS19. We create this imbalance

using the hyperparameter called imbalance ratio (γ). We set γ = 3 for optimal perfor-

mance of our proposed method. And then we apply our proposed technique on these

artifically imbalanced datasets.

If there is model bias, the precision becomes high and recall becomes low. But

our proposed method reduces model bias, this is shown in table 4.3 where we can see

that recall and precision is very close. Like in EuroSAT, the precision is 0.9211 and

recall is 0.9266. Similarly, in UCM the precision and recall is 0.8654 and 0.8775 and

also for WHU-RS19 its 0.8592 and 0.8411 respectively. Precision and Recall being

close to each other means there is less model bias, so the pseudo-labels generated

can unbiased and high-quality. And from the table 4.3 we can see that our proposed

method achieves it. And also both overall precision and recall becomes better for our
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proposed method than the previously applied FixMatch with tweaked augmentation.

As a result, we can state that our suggested technique enhances precision and recall of

classes in the datasets and thus help alleviate model bias.

4.4.3 Performance after Class-Rebalancing

Methods
Dataset

Balanced Imbalanced
UCM WHU-RS19 EuroSAT UCM WHU-RS19

Fixmatch With
Tweaked Augmentation 93.48 94.74 96.13 92.65 91.25

Proposed Method
1st Gen 2nd Gen 1st Gen 2nd Gen 1st Gen 2nd Gen 1st Gen 2nd Gen 1st Gen 2nd Gen
94.93 95.34 93.50 93.51 96.75 97.12 94.95 94.97 93.55 93.56

Table 4.4: Performance accuracy after Class-Rebalancing

In Table 4.4, we compare the accuracy of our proposed method with FixMatch

(with our tweaked augmentation). We compare the accuracies in balanced and imbal-

anced datasets of the three benchmark datasets EuroSAT, UCM, and WHU-RS19 so

that we can accurately evaluate whether our proposed method with class-rebalancing

strategy is effective. On both balanced and unbalanced datasets, we see that our sug-

gested technique beats FixMatch.

In the Imbalanced section from table 4.4, we apply artificial imbalance on all three

datasets EuroSAT, UCM and WHU-RS19. Next, we compare the suggested method’s

accuracy to that of FixMatch (with tweaked augmentation), and we see that our pro-

posed technique outperforms 1%, 2.32% and 2.31% on EuroSAT, UCM and WHU-

RS19 respectively.

In the Balanced section of the table 4.4, we see our proposed method outper-

forms Fixmatch (with tweaked augmentation) by 1.86% in the original balanced UCM

dataset. Our method also outperforms Fixmatch (with tweaked augmentation) on bal-

anced WHU-RS19.

Our method performs better because of the class-rebalancing strategy as it incor-

porates high-quality pseudo-labels to the labeled set and redistributes it to the minority

classes and thus balancing the classes and alleviating model bias helping achieve better

accuracy.

36



4.4.4 Comparative Analysis with other Methods

Methods
Dataset

Balanced Imbalanced
UCM WHU-RS19 EuroSAT UCM WHU-RS19

Supervised[10][19] 95.02 96.24 98.57 - -
MS Match[13] 94.13 - 96.04 - -
Fixmatch With

Tweaked Augmentation 94.74 93.48 96.13 92.65 91.25

Proposed Method
1st Gen 2nd Gen 1st Gen 2nd Gen 1st Gen 2nd Gen 1st Gen 2nd Gen 1st Gen 2nd Gen
94.93 95.34 93.50 93.51 96.75 97.12 94.95 94.97 93.55 93.56

Table 4.5: Performance comparison between proposed method and other methods

In Table 4.5, we evaluate our proposed method with a fully-supervised method

[9] [10], MSMatch[8] and FixMatch with our tweaked augmentation. Comparing

the performance accuracies we see that our method performs (95.34%) as better as

the fully-supervised method (95.02%) and our method outperforms MSMatch[8] and

FixMatch with the tweaked augmentation by 1.21% and 0.6% on the UCM balanced

dataset.

In case of imbalanced EuroSAT, our method outperforms MSMatch and FixMatch

by 1.08% and 1% respectively. And it comes very close to the fully-supervised method

as well.
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Chapter 5

Conclusion

5.1 Summary

Land Use and Land Cover (LULC) detection is an important research area in the re-

mote sensing community. As there are abundant satellite data available everywhere,

and with time satellite images are being collected more and more every day. It’s

difficult to categorize it utilizing deep learning neural networks since it relies on la-

beled data. And there is a lack of annotated satellite images, the datasets are class-

imbalanced. Our method uses a semi-supervised learning technique with a custom

augmentation and a class-rebalancing distribution alignment strategy. We tweaked the

augmentation strategy inspired by the FixMatch paper [5], this tweaked augmentation

strategy helps improve the accuracy of the satellite image datasets as we can see from

Section 4. We also added a class-rebalancing strategy that aligns the class distribution

basically adding more samples to the classes with fewer samples, and thus balanc-

ing the dataset classes. This helps alleviate model bias. We demonstrated that our

proposed method is superior to earlier works. Our proposed technique has better ac-

curacy when we compare it with the supervised methods, FixMatch[5] with tweaked

augmentation, MSMatch[8].

Basically, our proposed method solves the issue of manually labeling data and

model bias caused by data imbalance.
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5.2 Future Work

In our work so far, we have applied a popular semi-supervised learning technique to

standard benchmark datasets of satellite imagery and we applied class-rebalancing dis-

tribution alignment to handle the class imbalance in the datasets. All of these datasets

have few labeled images. So one of the limitations of our proposed method is that

if we have datasets that have no labeled images i.e all images are unlabeled then we

wouldn’t be able to work with that dataset as our method requires a limited amount of

labeled data. Another limitations of our work is that our method needs a huge amount

of unlabeled data. So datasets having low amount of unlabeled data won’t yield a good

result with our proposed technique. Though we have worked with high-resolution

datasets, we hope to work on higher-resolution datasets in the future. We also want to

work with large-scale datasets like Million-AID [45], BigEarthNet [46]. We want to

explore more how different augmentation strategies would affect the model. We also

wish to incorporate our proposed method on LULC change analysis over different pe-

riods of time in a specific area. For now, we have worked with RGB satellite images,

we want to work with multispectral(MS) images that contain more bands and informa-

tion to see how our model can scale up to it. We hope to investigate such possibilities

in the future.

39



References

[1] Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai, Yanfei Zhong,

Liangpei Zhang, and Xiaoqiang Lu. Aid: A benchmark data set for performance

evaluation of aerial scene classification. IEEE Transactions on Geoscience and

Remote Sensing, 55(7):3965–3981, 2017.

[2] Md Rahman, Ram Avtar, Ali P Yunus, Jie Dou, Prakhar Misra, Wataru Takeuchi,

Netrananda Sahu, Pankaj Kumar, Brian Alan Johnson, Rajarshi Dasgupta, et al.

Monitoring effect of spatial growth on land surface temperature in dhaka. Remote

Sensing, 12(7):1191, 2020.

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital

Oliver, and Colin Raffel. Mixmatch: A holistic approach to semi-supervised

learning. arXiv preprint arXiv:1905.02249, 2019.

[4] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk

Sohn, Han Zhang, and Colin Raffel. Remixmatch: Semi-supervised learn-

ing with distribution alignment and augmentation anchoring. arXiv preprint

arXiv:1911.09785, 2019.

[5] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini,

Ekin D Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simpli-

fying semi-supervised learning with consistency and confidence. arXiv preprint

arXiv:2001.07685, 2020.

[6] Tjeng Wawan Cenggoro, Sani M Isa, Gede Putra Kusuma, and Bens Pardamean.

Classification of imbalanced land-use/land-cover data using variational semi-

supervised learning. In 2017 International Conference on Innovative and Cre-

ative Information Technology (ICITech), pages 1–6. IEEE, 2017.

40



[7] Runyu Fan, Ruyi Feng, Lizhe Wang, Jining Yan, and Xiaohan Zhang. Semi-

mcnn: A semisupervised multi-cnn ensemble learning method for urban land

cover classification using submeter hrrs images. IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, 13:4973–4987, 2020.
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