
Islamic University of Technology (IUT)

Department of Computer Science and Engineering (CSE)

Data Consistency in Large Scale Applications

Authors

Saiful Islam Niloy - 170042065

&

Md. Nishat Ishmum - 170042027

&

Md Ariful Islam - 170042040

Supervisor

Dr. Kamrul Hasan

Professor, Department of CSE

Co-Supervisor

Dr. Hasan Mahmud

Assistant Professor, Department of

CSE

A thesis submitted to the Department of CSE

in partial fulfillment of the requirements for the degree of B.Sc.

Engineering in SWE

Academic Year: 2020-21

April - 2022

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the

analysis and experiments carried out by Saiful Islam Niloy, Md. Nishat Ishmum

and Md Ariful Islam under the supervision of Dr. Kamrul Hasan, Professor of

the Department of Computer Science and Engineering (CSE), Islamic University

of Technology (IUT), Dhaka, Bangladesh. It is also declared that neither of this

thesis nor any part of this thesis has been submitted anywhere else for any degree

or diploma. Information derived from the published and unpublished work of

others has been acknowledged in the text and a list of references is given.

Authors:

Saiful Islam Niloy

Student ID - 170042065

Md. Nishat Ishmum

Student ID - 170042027

Md Ariful Islam

Student ID - 170042040

Co-supervisor:

Dr. Hasan Mahmud

Assistant Professor

Department of Computer Science and Engineering

Islamic University of Technology (IUT)

Supervisor:

Dr. Kamrul Hasan

Professor

Department of Computer Science and Engineering

Islamic University of Technology (IUT)

Acknowledgement

We would like to express our grateful appreciation for Professor Dr. Kamrul

Hasan, Professor of the Department, Department of Computer Science & Engi-

neering, IUT for being our adviser and mentor. His motivation, suggestions and

insights for this research have been invaluable. Without his support and proper

guidance this research would never have been possible. His valuable opinion, time

and input provided throughout the thesis work, from first phase of thesis topics

introduction, subject selection, modification till the project implementation and

finalization which helped us to do our thesis work in proper way. We are really

grateful to him.

We are also grateful to Dr. Hasan Mahmud, Assistant Professor, Department

of Computer Science & Engineering, IUT and Md. Jubair Ibna Mostafa,

Lecturer, Department of Computer Science & Engineering, IUT for their valuable

inspection and suggestions on our proposal.

Abstract

One of the challenges in large scale application is data consistency. In this pa-

per, we have studied a few of the algorithms which are used to tackle this issue.

We have also conducted some interview sessions with software experts and an-

alyze their judgment regarding this issue. We have tried to analyse this topic

based on two major software architecture. Mircoservice and monolithic architec-

ture. Microservice is a trending software architecture for large scale application

nowadays. It has many advantages along with some drawbacks. There are many

services that communicate with each other to do a single operation. So, maintain-

ing consistency is a big concern here. There are some ways to ensure consistency.

Generally, microservice-based application use eventual consistency model. But

this model has a chance of data loss. In some cases, data loss can be threatening

to the business. To avoid this situation strong consistency model can be used. But

algorithms that supports strong consistency comes with performance degradation

of software compare to eventual consistency model.

Contents

1 Introduction 3

1.1 Overview . 3

1.2 Problem Statement . 5

1.3 Motivation & Scopes . 5

1.4 Research Challenges . 5

1.5 Thesis Outline . 6

2 Background Study 7

2.1 ACID Property . 7

2.2 BASE Property . 8

2.3 CAP Theorem . 8

2.4 Strong Consistency . 9

2.4.1 Two-phase commit (2PC) pattern 9

2.4.2 GRIT . 10

2.4.3 Paxos Pattern . 10

2.5 Eventual Consistency . 11

2.5.1 SAGA Pattern . 11

2.5.2 Polling . 14

2.5.3 Event Sourcing . 15

3 Methodology 16

3.1 Case Study . 16

3.1.1 Stock Management System 17

3.1.2 Flash Sale . 18

3.1.3 Location Tracking . 18

3.1.4 Online Multiplayer Gaming 18

3.1.5 Profile Picture Change . 18

3.1.6 Shopping Cart . 19

3.1.7 Social Media . 19

1

3.1.8 Insurance Partner Management System 20

3.1.9 Printing System . 21

3.1.10 Reseller Site: Product Posting 21

3.1.11 DNS . 22

3.1.12 Sports Score . 23

3.1.13 Social Media Reaction Count 23

3.1.14 Product Rating . 23

3.1.15 View count on Youtube . 23

3.1.16 Salary Management System 24

3.2 Interview Session . 25

3.3 Method of Data Collection . 25

3.4 Method of Analysis . 25

3.5 Evaluation & Justification of this Methodological Choices 26

4 Results & Discussion 27

4.1 Overview . 27

4.2 Project Metric Analysis . 27

4.3 Data Consistency Analysis . 29

4.4 Limitations . 31

5 Conclusion and Future Work 31

2

1 Introduction

1.1 Overview

Monolithic software architecture is the most traditional software architecture.

Here all the functionality of the software wraped in a single project. If the user

base of the project is not large, this architecture works fine. But if the user base in-

crease, scaling needs to be done, functionality modification required. There might

be required few functionality scaling in large portion and others in small portion.

Monolithic architecture do not support scaling different functionality in different

number. Here all the functionality will be scaled in same times. In monolithic

architecture, fault isolation is difficult. As bug may arise from all the functionality,

it is difficult for a project member have to have idea of all the modules. So, as

the project grow, debugging becomes inefficient. Different programming language,

stack can be a barrier in monolithic architecture. There might be situation that

some functionality is efficient with one language, framework and other function-

ality with other programming language, framework. Monolithic architecture do

not support functionality wise language, stack separation. In monolithic architec-

ture, increase number of team can make things difficult. As all the functionality

wraped up in single project, so all the team need to be sync with each other. There

might be situation for one teams’ modification another teams’ functionality is not

working. So, to make a simple change also, there is a risk factor. In monolithic

architecture, if the application size is already large, it becomes difficult to make

changes or adding new things. Because the developer have to have the idea of the

related functionality that may have impact of the changes and new addition.

Microservice is a popular service-oriented software architecture for large scale,

extensive application. It is a combination of several small services deployed in-

dependently, have inter-communication between them worked as a single system.

Microservice support independent service scaling in different number of times. For

example, in a system, service 1 hits 1000 hits per second and service 2 hits 3000

3

hits per second on average. So, a system designer a scale service 2 and deploy it

in 3 servers using a load balancer and deploy service 1 in one server. Each service

has their own codebase as separate project. As a result, if a bug occurs, it is

comparatively easier [1] to find which functionality is creating issues and which

service is used for this. In this scenario, whole project need not be taken into con-

sideration while debugging as it has already been find out that the service which

is responsible for the issue. Separate programming language and separate frame-

work or stack can be used for separate services based on requirement. Because

each service deployed independently. So, functionality wise stack can be chosen

based on performance, time, resource availability etc. Separate teams can be or-

ganised for separate services. Here dependency between teams in comparatively

less than in monolithic architecture. Because each service is isolated by terms of

codebase and deployment. Faster deployment is possible. Because each service is

small compared to the whole project developed in monolithic architecture. As a

result, deployment difficulties reduces. Adding changes in system means calling

the responsible team to do that. Not all the teams may need to be acknowledged

about it. As a result, faster modification can be done compare to monolithic

architecture.

Microservice offers a lot of flexibility. But it has some cons also.[2] One of the

main challenges of microservice architecture is maintaining consistency among the

services. As to handle a request, there might need to call different several services

to do the job and response. Among the service calls, there may be one service

failed to work and also previous services make some changes to the database of

that request. Now it make the system[3] inconsistent. We have discussed about

two case study where this type of consistency issue arises. One of these is a part

of insurance management system [4]. Other is about the ticket booking system.

None of the cases can have hundred percent perfect solution. But based on the

scenario each of them trade off with some factor.

4

1.2 Problem Statement

One of the challenges in large scale application is data consistency. When an

application is scaled, there are multiple database replicas. When a new data is

inserted to one, it needs to replicate to all the other database replicas. To do

so, it takes some time. In this intermediate period of time, the system remains

inconsistent. This situation can happen in microservice architecture if two or more

service use same data and in monolithic architecture if the system is scaled and

there is multiple database replica.

1.3 Motivation & Scopes

There might be different data consistency requirement based on situations. Low

consistency requirement can be handled with eventual consistency. Some smart

pattern like event sourcing can be used to loss data due to consistency issue here.

In some cases, data loss might not be a matter. But in some cases data loss can

be deadly. Like in a system of high consistency requirement like flash sale, if it is

a distributed system, there might be a scenario where a single product is sold to

multiple customer, if consistency is not ensured. c Our research will give a general

overview of how industry expert approach this issue in different cases.

1.4 Research Challenges

One of the major challenge in this domain in consistency control in large scale ap-

plications, the most part of the research in this domain has happened in software

industry. Most of the research work was kept private for business value. So, it

was hard to go forward with reverences. Maintaining consistency in distributed

architecture is difficult. According to CAP theorem[5], both availability and con-

sistency can not be achieved at the same time. So, it has to trade off based on

requirement.

5

1.5 Thesis Outline

In chapter 1, we have discussed about the introduction of our work. In chapter 2,

we have showed the background study we have to do. In chapter 3, we have state

our methodology of work. Basically, we have two types of methodology. Case

study collection and interview with software experts. In chapter 4, we have shown

the outcome and analysis of the interview sessions. In chapter 5, we have draw

conclusion and states some scope for future work. The final section of this study

contains all the references.

6

2 Background Study

Consistency means the data integrity remains same before and after the trans-

action occurs. Without consistency there is a chance of data loss. Also in mi-

croservice architecture, some user may get new data and some user may get old

data.

There are two type of consistency model.

• Strong Consistency

• Eventual Consistency

Strong consistency model follows ACID property. Eventual consistency model

follows BASE property.[6, 7]

2.1 ACID Property

• Atomicity: Each transaction is considered as one unit and the entire will

be executed at once. Partial transaction is not allowed.

• Consistency: Database should be valid before and after every transaction.

Example- The total amount before and after the transaction must be main-

tained. Total before T occurs = 500(user 1) + 200(user 2) = 700. Here

100 transferred from user 1 to user 2. Total after T occurs = 400(user 1) +

300(user 2) = 700.

• Isolation: This attribute assures that several transactions can take place

at the same time without causing database inconsistencies.

• Durability: The updates and modifications to the database are written to

disk when the transaction has completed execution, and they survive even

if the system fails.

7

2.2 BASE Property

• Basically Available: Ensures data availability by replicating it among

database cluster’s nodes.

• Soft-state: Data may fluctuate over time due to the absence of strong

consistency. The developers are in charge of maintaining consistency.

• Eventual consistency: Although immediate consistency may not be fea-

sible with BASE, it will be achieved eventually (in a short time).

2.3 CAP Theorem

There is a famous theorem regarding distributed computing giving by Eric Brewer

called CAP theorem. It states about database consistency in distributed system.

Different approach later comes up for ensuring data consistency considering this

theorem.

Figure 1: CAP Theorem

According to CAP theorem, in a partitioned distributed data store, both consis-

tency and availability can not be achieved simultaneously. We have to trade off

between consistency and availability. [5]

8

2.4 Strong Consistency

In strong consistency model, user always get latest data. User might get data

little bit late but will always get the correct and consistent data.

2.4.1 Two-phase commit (2PC) pattern

Two-phase commit or 2PC pattern is one of the approach of strong consistency

model. [8] It is widely used in database systems. It is a blocking protocol used

to guarantee that all the transactions are succeeded or failed together in a dis-

tributed transaction. In some situation, we can use 2PC for microservices but it

is considered impractical within a microservice architecture.

2PC has two phases: a prepare phase and a commit phase. In the prepare phase,

all microservices that are going to participate in the transaction will be asked

if they are ready for some data change. Once all microservices are prepared, the

commit phase will ask all the microservices to make the actual changes. Normally,

there needs to be a global coordinator to maintain the lifecycle of the transaction,

and the coordinator will need to call the microservices in the prepare and commit

phases. 2PC is a very strong consistency protocol. The prepare and commit

phases guarantee that the transaction is atomic. The transaction will end with

either all microservices returning successfully or all microservices have nothing

changed. 2PC allows read-write isolation so the changes on a field are not visible

until the change is commited.

2PC can give us strong consistency but it is not recommended for many microservice-

based systems because 2PC is synchronous (blocking). The protocol will need to

lock the object that will be changed before the transaction completes. So in

transaction all participating services will remain block and other can’t use those

services. The lock could become a system performance bottleneck. Also, it can

happen that two transactions mutually lock each other (deadlock) when each

transaction requests a lock on a resource the other requires.

9

2.4.2 GRIT

It is a strong consistency model. In this model, there is three phase to ensure

consistency in database.

• The optimistic execution phase: When new data is fetched or updated

to the database, each database service state fetch and update operation as

r-set and w-set.

• The logical commit phase: At this stage, transaction manager operate

conflict resolution. Then it commits logically if no conflict but abort in case

of conflict.

• The physical materialization phase: Now transaction is materialised

by database and physical commit is made. [9]

2.4.3 Paxos Pattern

Paxos is a consensus based algorithm for database consistency. It works on dis-

tributed network in an asynchronous fashion.[10] It has three types of roles:

• Proposer: It sends value to the acceptors. The purpose is to get the value

agreed.

• Acceptor: It receives value from the proposers. Then decides whether to

agree on the value.

• Learner: When acceptor choose a value, it learns from that.

It has two phases:

Phase 1

• Proposers send prepare message with a version number to acceptors.

• If acceptor receive the prepare message with older version than it already

have, it ignores it. When acceptor receive the prepare message with updated

version, it ensures it will ignore the future request that has older version.

10

Phase 2

• When proposer receives a majority of promise messages from the acceptor,

it prepare accept message with identifier number n and a value v. Then the

proposer send accept message to all the acceptors with the value.

• When acceptor receives the accept message, it accept the value if it has not

sent a promise message with greater identifier number. Otherwise, it will

ignore the message.

• When the accept message is accepted, the acceptor will store the message

and send accepted message to the every proposor and learner.

2.5 Eventual Consistency

In eventual consistency model, data gets replicated to the replica server or other

necessary server eventually. Here user will receive data very fast. But there is a

chance of getting older data. And in this case, after some period the user will get

the updated and consistent data.

2.5.1 SAGA Pattern

Saga pattern is one of the approach of eventual consistency. [11] A Saga is mainly

a sequence of local transactions.[12] It is one of the 6 Important Data Management

Patterns of microservices. Saga pattern is mainly used in distributed system where

atomicity is not in high priority. It can provide eventual consistency. Here each

service perform its transaction and publish an event. The subsequent transaction

is triggered based on the event published by the previous service. And if any

service fail to do it’s task, they publish a failed event and based on that a series of

compensating transactions execute to undo the impact of all the previous services.

11

There are two types of Sagas:

• Orchestration-Based Saga: In Orchestration-Based saga, there is a or-

chestrator that manages all the transactions. It maintain which service need

to call and if some service failed it knows what need to be done and execute

compensation transaction. This orchestrator can also be thought of as a

Saga Manager.

Figure 2: Orchestration-Based Saga

From the figure 2 we can easily understand orchestrator-based saga. Here

at first order service is called. It employs the orchestrator and it send or-

der created event for the payment service. Payment service do it’s task and

send success or payment billed event event to the orchestrator. Then or-

chestrator send this event to next service the stock service. It stock service

failed to do it’s task it send stock failed event to the orchestrator. The

orchestrator know for which event what to do. So after getting the error

12

event it send rollback event to the previous services, in this case it send

the rollback event to payment service and the payment service execute it’s

compensation function to undo the transaction.[13]

• Choreography-Based Saga: In this approach, there is no central orches-

trator. Each service do their local transaction and create success or failed

event. The other services act upon those events. If it is success event next

service do it’s task and if it is failed event, it’s previous service perform the

compensation transaction and publish necessery events. By this way without

a coordinator or orchestrator this approach works. In this if the perticipat-

ing service series will become long it will be hard and complex. We can

implement this if we only have 2-4 services perticipating in the transaction.

Figure 3: Choreography-Based Saga

In the figure 3 we have a order service. It do it’s work and send or-

der created event to the message queue. The next service, payment service

trigger with the order created event event and perform necessery action.

Then it send payment billed event on success and the next service, stock

13

service do it’s work. It it success it send order prepared event event and de-

livery service trigger and do it’s job. After that it send delivery placed event

to the message queue and from that the order service can know that the

actions are performed successfully. If some service failed, let say delivery

service failed. Then it will publish delivery failed event and by that the

previous stock service will trigger and execute it’s compensation function.

Then it will trigger error event so that previous services can also perform

their compensating transactions.

The main benefit of the Saga Pattern is it give us high availability. It can

maintain data consistency across multiple services without tight coupling.

Also there are no chance of deadlock in this pattern.

However, there are some disadvantage of the Saga Pattern. It can’t give

us strong consistency so some time we may get old data instead of current

one but they will be consistent eventually. Saga pattern increase the com-

plexity from a programming point of view as developers need to design the

compensating transactions which can be very hard and complex.[13]

2.5.2 Polling

This model provide us eventual consistency. Here the process is to perform the

tasks assigned of synchronizing redundant data to the services that are interested

in it. A simple solution is to ask for new data on a regular basis via an interface

supplied by the master data service. Multiple data updates can be transferred at

the same time using timestamps. The length of the polling interval can be used to

regulate the size of the inconsistency window for each interested service separately.

Despite the fact that the data sets are ultimately consistent, the time range in

which they may diverge is much longer than with a synchronous solution. [4]

14

2.5.3 Event Sourcing

Instead of saving the most recent status of data into a database, the Event Sourcing

pattern allows you to save all events in a database in a sequential manner. The

name of this event database is event store. Rather than updating the state of a

data record, it appends each modification to a list of events in chronological order.

Any event that is triggered is saved in the event store. There will be no updates

or deletions to the data, and each event will be saved as a record in the database.

If the transaction fails, the failure is recorded in the database as a failure event.

Every record entry will be an atomic operation.

The API for adding and retrieving events for an entity is available in the store.

The event store functions similarly to a message broker. It announces the events so

that other services can be notified and handle them if necessary. It gives services

the ability to subscribe to events over an API. When a service saves an event in

the event store, it is sent to all subscribers who are interested. This method offers

a few advantages. It solves atomicity issues, keeps track of records’ history and

audits, and may be used with data analytics because historical records are kept.

Instead of keeping the current application state, it might be more useful in some

circumstances to save all state transitions and then accumulate them to the current

state as needed. This method can also be applied to the challenge of distributing

data changes. Events are published when master data changes. The history of all

events, unlike the Publish-Subscribe method, is saved in a central, append-only

event store. It is accessible to all services, and they can even construct their own

local databases from it, as long as they match their own constrained context. This

technique delivers a high level of consistency: any data modification is immediately

visible to all other components of the system. It’s important to note that a central

data store is introduced, which microservices try to avoid. This weakens the loose

coupling and may be a scaling concern; yet, the data storage’s append-only nature

allows for great speed. [4]

15

3 Methodology

We have collected some case studies from internet and our understandings where

different consistency and availability requirement has been shown. We have also

taken interview sessions of several industry expert about how they approach this

topic.

3.1 Case Study

We have done some case study of microservices consistency issue. [14]

Consistency Cases Availability

High

Stock Management

Low

Flash Sale

Finacial Transaction

Location Tracking

Online Multiplayer Gaming

Moderate

Profile Picture Change

High

Shopping Cart

Social Media Post

Insurance Mangement System

Printing System

Re-seller Site: Product Posting

Low

DNS

High

Sports Score

Social Media Reaction Count

Product Rating

Views on Youtube videos

Salary Mangement System

Table 1: Consistency-Availability Wise Category

16

3.1.1 Stock Management System

In stock management system, there are some stock of service or product. After

user order it, this product or service will be booked for the user and system will

wait until the next operation like payment. After the payment complete, user will

get the product, inventory product or service count will be updated. There can

be three services in a stock management system like order service, stock service,

payment service which interact each other to complete the task.[6]

• Order Service:When a user requests for a product, order service is called.

This service initiates the process. Then call the stock service for booking the

product. Then the order service calls the payment service to deduct money

from the user. After that the product purchase receipt is sent to the user

from the order service.

• Payment Service: This service deducts money for the user’s bank or

mfs(Mobile Financial Service) account and sends a success or fail response.

• Stock Service:When the order service calls it with the product id, then

this service just booked this product for the user and the remaining product

count decreases.

Figure 4: Stock Management System

17

• When Inconsistency Can Occured: To purchase a product, a sequence

of operations need to be done. During these operations if any of the services

failed inconsistency may occur.

– If the payment service fails after the product booking, the product is

booked in the database but payment has not been done.

– If the order service fails after the payment from the user account, the

user has not got a purchase receipt but payment has already been made.

3.1.2 Flash Sale

Ecommerce shops offers flash sale with huge discount on many occasion. Cus-

tomers purchases a lot of product in this period. In this case, there might be a

scenario that one item can be sold to multiple persons. Because a lot of hit to the

server comes this scenario.

3.1.3 Location Tracking

Location tracking means to track someones real time location. In this system, to

provide real time location, system needs to offer strong consistency. Otherwise,

there might be scenario that, two user is seeing different location of the tracked

person.

3.1.4 Online Multiplayer Gaming

People from over the globe play online multiplayer games now a days. It need to

provide strong consistency if different server used.

3.1.5 Profile Picture Change

If some person change his profile picture, there needs time to propagate this profile

picture to all the servers of the system. As a result, there might be a scenario

that, some person from another country is seeing the old profile picture.

18

3.1.6 Shopping Cart

If user add item to the cart, this data may be stored to multiple servers. As a

result, there might be scenario that when user check the cart, some product is

missing. User is watching previous state.

3.1.7 Social Media

• Post Service: This service is responsible for the user’s post information.

After the user posted successfully, at first it’s information stored on the

user’s nearest data server.

• Servers Across the Globe: For a large scale international software, there

need to set up data centers across the globe. If one user stores information,

it is first stored on one server. After that replicated to all the other region

servers.

Figure 5: Social Media

• When Inconsistency Can Occured: To replicate a user’s post to all the

servers needs some time. There might be a delay in replication on some

servers. So, in this intermediate time the whole system is in an inconsistent

state until replicated to all the servers.

There might be a case that, users’ post information replicated to some of

the servers but failed in some other region’s server. In this scenario, people

from some region can see the post, but people from some region can not.

19

3.1.8 Insurance Partner Management System

• Partner Service: This service is responsible for storing partner’s detail

information.

• Contract Service: This service handles the information about contract id,

contract type of the user.

• Communication Service: This service handles users’ contact information

like address, email, telephone etc.

• Account Service: This service is responsible for user bank account infor-

mation.

Figure 6: Insurance Partner Management System

• When Inconsistency Can Occured: When a new user comes to the sys-

tem, first the changes are applied to partner service. Then changes propagate

to other services. If propagation fails in any of the services, inconsistency

problems arise. [4]

20

3.1.9 Printing System

• Coordinator Service: When a user requests to print any document, co-

ordinator service calls the payment service. After that, the printing service

is called to print.

• Payment Service: This service deduct money from the user account. If it

fails for reasons like less money sends a failed response.

• Printing Service: This service adds documents to the available printer

queue or user chosen printer queue.

Figure 7: Printing System

• When Inconsistency Can Occured: There may be scenarios, like pay-

ment service has deducted money from the user. Then printing service may

fail because of paper shortage, lack of ink or hardware error of the printer. In

this case money has been deducted but printing has not been done. Another

case is like if any user clears the queue the money will not be returned.

3.1.10 Reseller Site: Product Posting

• History Service: User post information like post time, location and user

history like total number of products sold or bought by the user etc handled

by this history service.

21

• Search Service: Posts id, tile, thumbnail, short description etc are stored

by search service. During searching this service is used. When the post is

clicked to see details then another service(Post Details) is called.

• Post Details Service: Whole post information (post id, tile ,complete

description, image etc.) is stored by the post details service.

Figure 8: Reseller Site: Product Posting

• When Inconsistency Can Occured: When a user posts on the site, the

request goes to the post service. Then post service call history, search and

product detail service to store each service’s required information. But it

may happen that one of the services failed to do the operation.

– If the history service failed, history information will not be updated.

– If search service failed, this post will not be shown while searching.

– If the post details service fails, if any user clicks to see details of the

post, it will not be shown.

3.1.11 DNS

Domain name server stores the IP address of domains. When a new domain is

bought, it replicates its IP address to all the server eventually. As a result, we

can not access the domain immediately after buying the address. To be accessible

from all over the world, it takes time.

22

3.1.12 Sports Score

Sports score updates to server may take time. Like servers in different region of

the world have to update the latest data. But to replicate latest data to all the

server takes time.

3.1.13 Social Media Reaction Count

Social media provides reaction count. Now there might be situation that people

from all over the world giving reaction. Now to sum up the reaction to specific

server may require time. Now to maintain consistent distributed database at every

moment becomes harder.

3.1.14 Product Rating

When consumer rate the product the average product rating changes. But it

continuously sum up the rating and updating the average rating count becomes

expensive. Moreover in microservice there might be scenario, product rating is

used in multiple services. IN that scenario, to replicate the updated rating to the

other service takes time.

3.1.15 View count on Youtube

Youtube video is watched from all over the world. As result, view count needs

time to count.

23

3.1.16 Salary Management System

• Salary Service: This service works as a coordinator of the other service

here. Employee salary transactions are handled by this service. First salary

service calls the employee service and takes the bank account information

of the employee. Then call the Bank API to transfer salary to the bank

account of the employee. If the Bank API returns a success response, then

it calls a notification service to notify the user.

• Employee Service: This service is responsible for storing employees’ in-

formation like employee name, rank, contact number, home district, bank

account information etc.

• BANK Api: This is a third party service. Using this service, requests to

the bank can be sent for money transactions.

• Notification Service: This service collects phone numbers or email from

the employee service. Then sends notification to the employee about the

salary transaction.

Figure 9: Salary Management System

• When Inconsistency Can Occured: Salary service will use other services

to send salary and notify the employee. But after a salary transaction, if for

some reason notification service fails, the employee will not be notified.

24

3.2 Interview Session

For solving consistency issue different approach is followed based on business re-

quirement. We conduct formal interview session with software experts and follow

certain discussion topic to find a generalised way of thinking regarding this issue.

3.3 Method of Data Collection

We have conducted interview session with software experts. We have set a rule

to filter out our sample data. We have chosen working experience of minimum 3

years and microservice working experience of minimum 2 years. During interview

session, we have followed predetermined question set. Some of them are close

ended and some of them are open ended.

3.4 Method of Analysis

We have designed our interview structure into six section. First section takes per-

sonal information like name, email, working experience, designation, number of

project database consistency issue faced etc. Second section take project info. Like

project architecture, project type, size of database, active user count etc. Then in

the next section, we have take their opinion of based on project architecture. If

they want to share project experience which has followed monolithic architecture,

we have asked question from monolithic section and otherwise from microservice

section. Here we asked data consistency issue frequency, monitor tool for incon-

sistency detection, how this issue can be solved etc. Then if there was a manual

intervention section. If any manual participation required we asked question here.

At last section, we asked their overall opinion regarding this issue.

25

3.5 Evaluation & Justification of this Methodological Choices

This issue can solved in various ways. But to explore a general approach, we need

to learn it from software experts who have practically handle this issue. To do

so, interview session is important. Specially, it is convenient to make the question

understandable by explaining it. As a result, chances of getting the appropriate

answer increases than other methodology like survey. Also there is a chance of

asking follow up question based on the situation. It can be open ended question

also.

26

4 Results & Discussion

In this section, we have presented the outcome of the interview session. We have

shown some data in percentage format, discuss about the answers and also present

some important quote from the software experts.

4.1 Overview

We have taken interview from software experts. Among them, there were 1 chief

technology officer, 1 chief engineer, 3 senior software engineer and 2 software

engineer. The total participants in interview session in 7. Almost 57% of the

participants have more than 5 years of working experience and 43% participants

have less than 5 years of working experience. And 29% participants do not have

working experience in microservice, 43% of the participant have more than 3 years

of working experience in microservice. Each interview session continued for around

a hour.

4.2 Project Metric Analysis

Almost all the participants faced consistency issue at minimum 1 project. Among

the projects, 29% of them followed monolithic software architecture and 71% of

them followed microservice architecture.

Figure 10: Project Type

27

Among the projects, 66.7% of the projects were in the category of Fin-Tech and

11% for each of ERP, Stock Application and System Automation. 57% of the

projects have more than 100K of active user and 43% of the projects have less

than 100K active user. 62.5% of the projects used CQRS[15] approach.

Figure 11: Database Type

75% of the times SQL database used, 12.5% times No-SQL and 12.5% times both

type of databases was used in the projects. Another thing is, 37.5% of the project

has more than 100GB, 12.5% of the project between 10 to 100GB and 50% of the

projects have less than 100GB estimated database size.

Figure 12: Estimated Database Size

28

4.3 Data Consistency Analysis

25% of the projects were followed monolithic architecture and 75% of the projects

were followed microservice architecture. Among the microservice projects, 50%

have less than 10 microservices, 16.7% have less than 50 microservices and 33.3%

have less than 100 microservices.

Figure 13: Consistency Requirement

Among the projects, 22% of projects have low consistency requirement, 22% of the

projects have moderate consistency requirement, 33% of the projects have high

consistency requirement, 11% of the projects have both high and low consistency

requirement based of modules or services and 11% of the projects have high con-

sistency requirement for write operation and low consistency requirement for read

operation. Most of the projects faced consistency issue. Some of the projects do

not faced. The reasons for not facing are handled by application layer in a case,

availability was prioritize in another case. As we know, according to CAP theo-

rem, it is necessary to trade off between availability and consistency in distributed

approach based on business requirement[5].

About 43% of the project do not faced any consistency issue , 28% project faced

1-10 and 28% projects faced 10+ consistency issue per 10 thousand transaction.

Some of the projects used database consistency monitor tool or approaches. One

is if an event failed to acknowledge its’ success message, several attempt up to

threshold limit will be taken. If it fails even after several attempt, it automatically

29

Figure 14: Frequency of Data Consistency per 10K transaction

goes to another special queue for further manual intervention. Another approach

is check between databases when new data comes.

Several approach has been used for data consistency requirement application.

They are event sourcing, master-slave, event driven architectures and transac-

tion management tools. Some of the projects were depend completely on cloud

service provider to ensure database consistency. One of the software expert stated,

on their project, client app checks the inconsistency issue. If inconsistency found,

it will be acknowledged to server and server will take care further steps. Almost

all the software experts do not feel change requirement of software architecture

for ensuring database consistency. Some of them told due to tight deadline or not

on business requirement they can not think of improvement.

If inconsistency issue occurred, some of them use manual intervention upto certain

level like manually trigger an event. Few of them rely on cloud provider to maintain

this issue. They do not think to improve this section by automation because of no

requirement or for future scope. One of them told, there might need some must

manual intervention.

Most of the software experts told eventual consistency is enough to achieve data

consistency in microservice architecture. But context of business requirement

should be clearly understood for that. Some of them also told that it depend

on requirement like high consistency requirement application like FinTech service

may not be suitable to use eventual consistency.

30

Most of the software experts think, monolithic is not the best fit just for strong

consistency requirement. Some of them told it depends on on user count. Some

of them told, strong consistency can also be ensured by microservice architecture.

One of them told, if scalability is not required, monolithic architecture can be a

good choice.

One of the software expert told ”People should believe in eventual consistency.

Everything is eventual consistency in real world.” He try to focus that strong

consistency is not much found in real life. Almost every problem can be solved by

eventual consistency and also guaranteed high availability.

4.4 Limitations

We had lack of dataset collection. We have taken data from 8 software experts.

We taken interview with software experts from Bangladesh only. If we take data

from other part of the globe, our analysis will be more generalised and clear.

5 Conclusion and Future Work

We have interviewed several software experts. More interviews is required to get a

more clear and generalise ideas in this issue. Architecture decision depends on the

business requirement, cost vs performance analysis. If the feature is very less and

no requirement of scalability, monolithic architecture can be chosen. In that case

maintaining strong consistency is easier. In other case we can choose microservice

architecture. Here high availability can be achieved with eventual consistency.

Eventual consistency can handle almost every kind of requirement.

31

References

[1] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen,

and M. A. Babar, “Understanding and addressing quality attributes of

microservices architecture: A systematic literature review,” Information

and Software Technology, vol. 131, p. 106449, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0950584920301993

[2] “Microservice Trade-Offs.” [Online]. Available:

https://martinfowler.com/articles/microservice-trade-offs.html

[3] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. Zhang, “Microservice architecture

in reality: An industrial inquiry,” in 2019 IEEE international conference on

software architecture (ICSA). IEEE, 2019, pp. 51–60.

[4] A. Koschel and A. Hausotter, “Keep it in sync! consistency approaches for

microservices an insurance case study,” 2020.

[5] E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7, no.

10.1145. Portland, OR, 2000, pp. 343 477–343 502.

[6] D. Kizilpinar, “Data Consistency in Microservices Architecture,” May

2021. [Online]. Available: https://medium.com/garantibbva-teknoloji/data-

consistency-in-microservices-architecture-5c67e0f65256

[7] “Closer to Consistency in Microservice Architecture - DZone Microservices.”

[Online]. Available: https://dzone.com/articles/transaction-management-in-

microservice-architectur

[8] C. Barthels, I. Müller, K. Taranov, G. Alonso, and T. Hoefler, “Strong con-

sistency is not hard to get: Two-phase locking and two-phase commit on

thousands of cores,” Proceedings of the VLDB Endowment, vol. 12, no. 13,

pp. 2325–2338, 2019.

32

[9] G. Zhang, K. Ren, J.-S. Ahn, and S. Ben-Romdhane, “Grit: consistent dis-

tributed transactions across polyglot microservices with multiple databases,”

in 2019 IEEE 35th International Conference on Data Engineering (ICDE).

IEEE, 2019, pp. 2024–2027.

[10] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed Com-

puting Column) 32, 4 (Whole Number 121, December 2001), pp. 51–58, 2001.

[11] P. A. Bernstein and S. Das, “Rethinking eventual consistency,” in Proceed-

ings of the 2013 ACM SIGMOD International Conference on Management of

Data, 2013, pp. 923–928.

[12] M. Štefanko, O. Chaloupka, B. Rossi, M. van Sinderen, and L. Maciaszek,

“The saga pattern in a reactive microservices environment,” in Proc. 14th

Int. Conf. Softw. Technologies (ICSOFT 2019). SciTePress Prague, Czech

Republic, 2019, pp. 483–490.

[13] K. Malyuga, O. Perl, A. Slapoguzov, and I. Perl, “Fault tolerant central

saga orchestrator in restful architecture,” in 2020 26th Conference of Open

Innovations Association (FRUCT), 2020, pp. 278–283.

[14] K. Nath, “Consistency Guarantees in Distributed Sys-

tems Explained Simply,” May 2021. [Online]. Avail-

able: https://kousiknath.medium.com/consistency-guarantees-in-

distributed-systems-explained-simply-720caa034116

[15] Z. Long, “Improvement and implementation of a high performance cqrs ar-

chitecture,” in 2017 International Conference on Robots Intelligent System

(ICRIS), 2017, pp. 170–173.

33

