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Abstract

Sentiment analysis for software engineering has undergone much research to effi-
ciently develop tools and approaches to classify sentiment polarity for software en-
gineering contents. It started with customized tools based on lexicon and supervised
approaches like SentiStrength-SE, SentiCR, and Senti4SD. Pre-trained transformer-
based models like BERT, RoBERTa, and XLNet have later outperformed the tools.
These models give an improved classification of sentiment polarities for software en-
gineering content when fine-tuned on SE-specific datasets. Although the performance
of these models is much better than previously existing tools, there is still much room
for improvement, and that is what we have demonstrated in this work. We use three
pre-trained transformer-based models on four gold-standard SE-specific datasets and
ensemble the models to show the improvement of the ensemble approach over the
individual pre-trained transformer-based models. We use two key metrics to assess
performance: weighted-average F1 scores and macro-average F1 scores. We also ap-
ply text augmentation on the datasets that have some issues like small size and class
imbalance and then evaluate the performance of our approaches on the augmented
datasets as well. Our results show that the ensemble models outperform the pre-trained
transformer-based models on the original datasets and that data augmentation further
improve the performance of all the approaches used in the work.
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Chapter 1

Introduction

Sentiment analysis is a computational analysis of people’s attitudes, emotions, and
views regarding an entity, which might be a person, an event, or perhaps a topic [1]. It
can be used to determine the emotional tone of a body of writing. For a given text unit,
it can determine whether the text expresses a positive, negative, or neutral sentiment.

In recent times, the software engineering community has begun using sentiment
analysis and its tools for various purposes. It has been used to investigate the role
of emotions in IT projects [2], understanding the role of emotions in software devel-
opment [3], finding relations between developers’ sentiment and software bugs [4],
analyzing the relation between sentiment, emotions, and politeness of developers with
the time to fix a Jira issue [5], analyzing sentiments expressed in self-admitted tech-
nical debt comments [6], and so on. Since software development relies on human
efforts and interactions, it is more susceptible to the practitioners’ emotions. All these
research works make use of sentiment analysis to analyze various aspects of the soft-
ware engineering domain that are affected by sentiment and emotion and how they can
be used to improve this domain overall.

There are a number of tools available for sentiment analysis that are being used
in software engineering. These tools and techniques mainly follow three types of ap-
proaches: unsupervised approach, supervised approach, and Transformer-based ap-
proach. Unsupervised approach or the lexicon-based approach are used by tools like
SentiStrength-SE [7] and DEVA [8]. Both of these tools improved on previous domain-
independent tools that could not perform well when used in domain-specific contexts,
like in software engineering texts. The reason behind this is that the technical terms
that are specific for a domain have differences in meaning. SentiStrength-SE uses a
lexicon and rule-based technique and is evaluated on Jira issue comments. DEVA is
also evaluated on Jira issue comments and uses a lexical approach.

Next, there are tools using supervised learning approach. Examples of such tools
are SentiCR [9] and Senti4SD [10]. SentiCR is trained on code review comments. It
classifies code review comments into two classes - negative and non-negative. Senti4SD
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is trained on a gold standard of Stack Overflow questions, answers, and comments. It
is trained for supporting sentiment analysis in developers’ communication channels.

Lastly, there are the transformer model-based approaches for sentiment analysis
which have gained much attention in recent times. Fine-tuning different variants of pre-
trained transformer models like BERT, RoBERTa, and XLNet for software engineering-
specific content can outperform existing tools [11].

The pre-trained transformer-based models have been shown to outperform the un-
supervised and supervised tools even when they are trained and validated by software
engineering specific content. As shown in [11], pre-trained transformer models outper-
formed the existing best-performing tools, namely, SentiStrength, SentiStrength-SE,
SentiCR, Senti4SD, and Stanford CoreNLP by 6.5% to 35.6% in terms of macro and
micro-averaged F1-scores. Although the pre-trained transformer models perform bet-
ter than the previous existing tools, there is room for improvement and that is what we
have looked for in our research work. We conduct a study on the effectiveness of text
augmentation and ensembling on sentiment analysis using transformer-based models.

In our research work, we use four publicly available datasets with annotated senti-
ment polarities, each of which is a gold standard dataset. We chose three pre-trained
transformer-based models: BERT, RoBERTa, and XLNet. We then analyze the datasets
and find some issues. Apart from the GitHub dataset, the rest of the datasets are too
small, and class imbalance exists in the datasets. To tackle this, we apply text aug-
mentation with SE-specific Word2Vec [12] and EDA (Easy Data Augmentation) [13].
We use two versions of augmented datasets. For the first one, we do not consider the
class imbalance issue and augment the datasets equally for all the classes, and for the
second one, which we call controlled augmentation, we consider the class imbalance
issue and apply augmentation in a way to balance the classes along with increasing
the dataset size. Then on the augmented datasets, we perform sentiment analysis by
ensembling the chosen transformer-based models and analyze the results to see if the
ensemble models perform better than the individual transformer models. So, in our
study, we investigate the specific research questions as follows:

• RQ1: Do the ensemble models outperform the pre-trained models on the origi-
nal datasets?

• RQ2: Does data augmentation improve the performances of the models?

The experimental results demonstrate that the ensemble models outperform all the
pre-trained transformer models in three out of the four original datasets, i.e., datasets
without any augmentation, in terms of weighted- and macro-average F1 scores. The
ensemble models are outperformed only by the RoBERTa approach in the StackOver-
flow dataset. However, the other pre-trained transformer model approaches are outper-
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formed by the ensemble models. The results also demonstrate that the augmentation
approaches aid the performances of all the pre-trained transformer model approaches
as well as the ensemble models in two out of three datasets in terms of weighted- and
macro-average F1 scores.

The main contributions of this paper are:

• Use of SE-based Word2Vec for data augmentation, which is a novel approach.

• Controlled augmentation for tackling class imbalance in the datasets.

• Use of stacking ensemble on pre-trained transformer-based models to improve
SE-specific sentiment analysis.

• Showing the effectiveness of text augmentation and ensembling of transformer-
based models on sentiment analysis.

Structure of the paper: Section 2 talks about the background study done for this
work. Section 3 introduces the related works. Section 4 demonstrates the methodol-
ogy adopted for our research work. Here we talk about the datasets, transformer-based
models, ensemble, and augmentation approaches we use. Next in section 5, we evalu-
ate, analyze, and discuss the results of our experiments and present the main findings
of the research questions. Then we analyze the limitations of our work in section 6.
Finally, section 7 presents the future work and concludes the paper.
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Chapter 2

Background Study

2.1 Sentiment Analysis

In prior studies on sentiment analysis, psychologists explored two different approaches
to deciding upon the sentiment of a text. One method leverages a two-dimensional
model. The two axes of this bi-dimensional model are valence (pleasing vs. unpleas-
ing) and valence intensity. The second approach assumes that a limited set of emo-
tions exists, but there is no consensus about the number of these emotions or their
nature. [14] [15] The initial sentiment analysis process consisted of manual mining
of human opinions through interviews, surveys, etc. [16] The noticeable limitation to
such an approach was that the actual sentiment may be biased or suppressed due to dif-
ferent numbers of variables. [17] The researchers were interested in automated ways
to determine emotions to solve this. The computerized approach can be grouped into
the supervised or unsupervised method from a broader perspective. The supervised
process required a labeled dataset, meaning a dataset consisting of samples with corre-
sponding sentiment labels. To label these texts, researchers have explored both manual
and automated techniques. However, the high cost, chances of prohibition, and biases
in labeling were evident. In the case of unsupervised approaches, a dataset was not
required, but the problem of being sensitive to the domain words remained.

2.2 Sentiment analysis for Software Engineering

Emotions are an intrinsic element of human nature and can directly affect the task, team
play, creativity, etc. Most software developments are a collaborative effort consisting
of the collective contribution of a diverse team. Because software development is so
reliant on human action and the interrelation of the whole team, it is more vulnerable
to individual emotions. Consequently, a thorough understanding of developers’ emo-
tions and the elements that influence them may be used to facilitate better collabora-
tions, work assignments, and the development of measures to improve job satisfaction,

4



which can lead to greater productivity. The use cases of sentiment analysis in software
engineering studies are not only limited to the factors mentioned earlier. Researchers
have also explored a way to recommend software packages by leveraging the senti-
ment of commit comments on GitHub projects. A number of researches have been
conducted in this regard. The prior ones leveraged the off-the-shelf sentiment analysis
tools. The problem with these approaches was their sensitivity to the domain. [10]
Thus, researchers are inclined to use specific techniques for software engineering.

2.3 Unsupervised approaches

The most prior ones explored by the researchers, the off-the-shelf sentiment analysis
tools not designed/trained for the software engineering domain, were NLTK, Stanford
core NLP, sentistrength, etc. As these tools were designed/trained in a different con-
text, the researchers came to a consensus of poor performance based on the measure of
the accuracy of detecting the sentiment of a given text. So, the following line of work
in the community was driven towards designing a solution specific to the software en-
gineering domain. Upon achieving poor accuracy with sentistrength, Islam and Zibran
et al. worked on the dictionary that the tool leverages to include software engineering
specific words and update the existing polarity words based on the context. The au-
thors further expanded their work to add the capability to detect emotions other than
positive, negative, and neutral to their approach and offered the community DEVA, a
tool for multiple sentiment detection.

2.4 Supervised approaches

Stanford Core NLP was evaluated on software engineering texts by Lin et al. [18]
which did not perform well as the model was trained on movie reviews. Researchers
afterward used the Gradient Boosting Tree (GBT) based approach named SentiCR,
which leverages the bag of words extracted from the training dataset. The authors ad-
ditionally adopted the "Negation" technique. In a later work, the authors proposed a
method that also used a supervised method combining different features to determine
the sentiment of a given text. These approaches outperformed the previously men-
tioned unsupervised approaches.

2.5 Utilization of Pretrained models

Siba M et al. explored the word2vec approach for software engineering texts and found
the significant differences for exact words in natural language vs. software engineering
context. In the Natural Language Processing (NLP) community, the transformer-based
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models were introduced, outperforming existing approaches in different tasks, includ-
ing text classification. In this line of work, T. Zhang et al. [11] fine-tuned and evaluated
transformer-based models on software engineering domain-specific texts. This exper-
iment provided the community with the possibility as the results outperformed the
existing unsupervised and supervised software engineering-specific sentiment analysis
tools. In another work, Batra et al [19] author experimented with different transformer-
based models and a boosting-based ensembling technique in text sentiment analysis in
the software engineering domain. This approach also displayed improvement com-
pared to existing tools.

2.6 Data Augmentation approaches

However, the class imbalance was evident in the datasets used in these approaches,
meaning the number of samples for different sentiment polarities, i.e., positive, nega-
tive, and neutral, differed by a large margin. This issue causes supervised approaches
to perform poorly. There are several strategies to tackle this issue in the community.
One line of work is the Easy Data Augmentation (EDA) approach proposed by Wei et
al. [13]. The authors evaluated this technique and found that the improvement rate of
this technique increases inversely proportional to the size of the dataset.
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Chapter 3

Related works

In this section, we provide a brief description of the related works. The related work
can be divided into four groups: unsupervised approaches for SE-based sentiment ana-
lysis, Supervised approaches for SE-based sentiment analysis, pre-trained models of
NLP for sentiment analysis, and the Ensembling of pre-trained models.

3.1 Unsupervised approaches for SE based sentiment analysis

3.1.1 Senti Strength:

Thelwall et al. [20] developed the lexicon-based sentiment analysis technique named
SentiStrength, which uses dictionaries of both formal terms and informal texts ( like -
slang, emoticon). Each and every word included in the dictionaries are assigned with a
specific sentiment strength. SentiStrength categorizes sentences into positive and neg-
ative emotions and determines the strength of the emotions based on the dictionaries
and linguistic analysis.

3.1.2 Senti Strength SE:

Islam and Zibran analyzed 151 Jira issue comments using SentiStrength, which pro-
duces wrong outputs. Investigating the reasons for less accuracy of SentiStrength, they
found 12 reasons, of which domain-specific meanings of words were most prevalent.
So they built a modified version of SentiStrength by adding a domain-specific dictio-
nary [17]. New sentiment words and negations were added to the dictionary. It’s the
first sentiment analysis tool where SE-specific context was considered.
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3.2 Supervised approaches for SE based sentiment analysis

3.2.1 Stanford CoreNLP

Socher et al [21] introduced Stanford CoreNLP for single-sentence sentiment classi-
fication; polarity along with the sentiment value of a sentence is returned by the tool.
Stanford CoreNLP is trained with the Recursive Neural Tensor Network proposed by
Socher et al. on the Stanford Sentiment Treebank.

3.2.2 SentiCR

Ahmed et al. developed SentiCR [9] specifically for code review comments. It clas-
sifies code review comments into two classes - negative and non-negative. The super-
vised classifier used in sentiCR is GBT(Gradient Boosting Tree) [22], as it gave the
highest precision, recall, and accuracy among the eight evaluated classifiers.

3.2.3 Senti4SD

It’s the first supervised learning-based tool to generate feature vectors. Senti4SD [10]
makes use of three features - SentiStrength lexicons, n-gram extracted keywords from
the dataset, Word representations in a distributional semantic model(DSM) exclusively
trained on StackOverflow data. Four prototype vectors are calculated; p_pos, p_neg,
p_neu is the sum of positive polarity word vectors, negative polarity word vectors,
and neutral polarity word vectors, respectively, and p_subj is the sum of p_pos and
p_neg. Semantic features are extracted from these four vectors. Finally, using Support
Vector Machines, Senti4SD is trained to identify sentiment polarities of text based on
mentioned features.

3.3 Pre-trained models of NLP for sentiment analysis

3.3.1 BERT

A deep learning model designed to learn contextual word representations from unla-
beled texts [23]. It’s based on the transformer architecture but doesn’t have the decoder,
rather contains only a multi-layer bidirectional transformer encoder. The pre-training
of the model is accomplished by optimizing two tasks - masked language modeling
(MLM) and next sentence prediction(NSP). Originally there were two implementa-
tions of BERT: BERTBase with 12 layers, 12 self-attention heads, 110M parameters,
and a hidden layer size of 768 and BERTLarge with 24 layers, 16 self-attention heads,
340M parameters, and 1024 hidden layer size. Our work uses BERTBase.

8



3.3.2 RoBERTa(Robustly optimized BERT approach)

A modified version of BERT that changed pre-training steps by using larger mini-batch
sizes to train over more data for a huge time, train on longer sequences to remove NSP
loss and train with dynamic masking. When Liu et al [24] released it, it had achieved
state - of - the art results on GLUE, RACE and SQuAD benchmarks, surpassing BERT.

3.3.3 XLNet

[25] Based on Transformer-XL, it uses segment recurrence mechanism and relative en-
coding. To address the individual weakness of autoregressive language modeling(AR)
and autoencoding(AE) , it combines their strengths. XLNet performs better than BERT
on 20 tasks, including sentiment analysis, especially for long texts.

3.4 Ensembling of pre-trained models

Batra et al. [19] used data augmentation through lexical-based substitution and back
translation; as a pre-processing step to help train and fine-tune BERT variants - BERT,
RoBERTa, and ALBERT. Then a weighted voted scheme was applied to the final Soft-
max layer output of the BERT variants to ensemble the models and achieve the final
weighted prediction.
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Chapter 4

Methodology

Initially, to compare our methodologies, we replicated one unsupervised approach,
Sentistrength-SE, proposed by Islam and Zibran [17], and one supervised approach,
SentiCR, proposed by Ahmed et al. [9]. An overview of our methodology is shown in
Figure 4.1.

Figure 4.1: Overview of the methodology

4.1 Dataset

We used 4 gold-standard datasets with annotated sentiment polarity for our study.
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Table 4.1: Datasets

dataset total samples positive samples neutral samples negative samples
App review 341 186 25 130
Stack overflow 1,500 131 1,191 178
Jira 926 290 636
Github 7,122 2,013 3,022 2,087

4.1.1

Jira issues [18] The original dataset by Ortu et al. [5] had four labels of emotions : love,
joy, anger and sadness which Lin et al. [18] brought down to two labels by annotating
sentences with love and joy with positive polarity and sentences with anger and sadness
with negative polarity.

4.1.2 App reviews

Villaroel et al. [26] presented 3000 reviews from which 341 reviews were randomly
selected by Lin et al. [18]. The dataset has 5% confidence interval and 95% confidence
level making it statistically significant. In this dataset the ratio of four categories of
reviews - request for improving non-functional requirements, suggestion of new fea-
tures, bug reporting and other were maintained.

4.1.3 Stack Overflow posts (SO)

There are 1500 sentences in total. This dataset was gathered by Lin et al. [18] from
a July 2017 Stack Overflow dump. They choose threads that are (i) labeled with Java
and (ii) include one of the terms library, libraries, or API (s). After that, they chose
1,500 words at random and classified their sentiment polarities manually.

4.1.4 GitHub

The dataset has 7,122 sentences extracted from GitHub commit comments and pull-
requests. An iterative extraction was performed on the dataset of Pletea et al. [27] by
Novielli et al. [28] to obtain annotated text units.

Table 4.2: Pre-trained transformer models

Architecture Used Model Parameters Layers Hidden Heads
BERT bert-base-uncased 110M 12 768 12
RoBERTa roberta-base 120M 12 768 12
XLNet xlnet-base-cased 110M 12 768 12
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4.2 Fine-tuning transformer-based models

The first step in our research methodology was to fine-tune already pre-trained transformer-
based models for the downstream tasks. To do this, we split each dataset under our
study and kept 70% for the train-set and 30% for the test-set. We fine-tuned three
transformer-based models separately for each dataset with the train sets with the fol-
lowing configuration. The models are BERT, RoBERTa and XLNet. We refer to these
models collectively as pre-trained transformers (PTT). The following hyper-parameter
values for the BERT fine-tuning technique, according to the authors’ paper[13], oper-
ate well across all tasks: (1) Batch size: 16, 32; (2) Number of epochs: 2, 3, 4; (3)
Learning rate (Adam): 5e-5, 3e-5, 2e-5; We run all of these models in two epochs with
a batch size of 16. We also used the learning rate of 2e-5 and utilized the AdamW
optimizer. [] lists the models in the Hugging-face Transformers collection, along with
their names and default configurations.

(a) train-set before augmen-
tation

(b) train-set after basic aug-
mentation

(c) train-set after controlled
augmentation

Figure 4.2: Class frequency distributions for App Review train-set different approahes

(a) train-set before augmen-
tation

(b) train-set after basic aug-
mentation

(c) train-set after controlled
augmentation

Figure 4.3: Class frequency distributions for Stack Overflow train-set different approahes

4.3 Ensemble

Researchers have studied that merging numerous models can result in a more robust
model. We explored the stacking-based ensemble technique to aggregate the perfor-
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(a) train-set before augmen-
tation

(b) train-set after basic aug-
mentation

(c) train-set after controlled
augmentation

Figure 4.4: Class frequency distributions for Jira train-set different approahes

mance of the different transformer-based models. Because each of the models (that
are part of the ensemble) has a distinct basic functioning, the range of predictions is
substantially broader in the case of the ensemble. Each model was pre-trained on a
particular language modeling task, such as BERT’s next sentence prediction, XLNet’s
auto-regressive approach, and RoBERTa’s dynamic masking. From this intuition, we
take the softmax outputs of the last layer of these models for the text under study and
use them as features to aggregate. We experimented with two different approaches
to aggregate these features and compared the results. In one approach, we adopted
a decision tree-based approach and used Random Forest (RF), and in another one,
we adopted a regression-based approach and used Logistic Regression (LR). Three of
the datasets (SO, App review, and Github)under our study have three classes. So for
the logistic regression approach for these datasets, we adopted the one-vs-rest (OvR)
method. Thus, this final aggregating model produces the final prediction.

4.4 Augmentation

It is evident from the figure [] that three of the four datasets (App reviews, SO, and
Jira) have a small number of samples and a significant class imbalance issue. To aid
the small dataset size, we adopted three techniques from the work of [] authors, namely
Random synonym replacement: To replace random words in a sentence with their syn-
onyms; Random deletion: To delete random words in a sentence; Random insertion:
To insert random words in the sentence. For random synonym replacement, we ap-
plied two different techniques. One was to replace randomly selected words with the
synonyms found in Natural Language Toolkit (NLTK) wordnet library. Another one
is to replace using most similar words provided by a word2vec model trained specif-
ically on software engineering text as an artifact of the study conducted by Siba m et
al. []. As the Github dataset has more than 4k samples in the train-set, we do not apply
augmentation on this. Our first approach was to tackle the issue of the dataset being
small in size. Thus we applied the data augmentation techniques mentioned above to
all the sample texts in the SO, Jira, and App reviews data sets regardless of the class
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distribution. We refer to this step as Basic Augmentation throughout the paper. In our
second experiment, we applied the data augmentation techniques to balance the class-
wise frequency distribution. For each dataset, we augmented texts for the class with a
size smaller than the class with the maximum size until the distribution was reasonably
balanced. We refer to this step as Controlled Augmentation throughout the paper.
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Chapter 5

Evaluation and Discussion

In this section, we report, compare and analyze the performance of the pre-trained
transformer-based models and the ensemble models on the four datasets described in
Chapter 4. We conducted augmentation on all the datasets except for the GH dataset.
For each dataset, we report the performance of the approaches we used on the origi-
nal version, the basic augmented version, and the controlled augmented version. For
comparison, we also show the performance of SentiStrength-SE as a representative of
the lexicon approach-based sentiment analysis tool and SentiCR as a representative of
the supervised approach-based sentiment analysis tool only on the original version of
the datasets. We highlight the best performance in terms of the two main metrics (i.e.,
weighted-average F1 scores and macro-average F1 scores) in bold. We answer the re-
search questions based on the experimental results as follows.

Table 5.1: Results for the Appreview dataset

Dataset
Class Negative Neutral Positive Weighted-average Macro-average
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

App Review

Sentistrength-SE 86 28 42 10 38 15 72 79 75 73 57 58 56 48 44
SentiCR 77 79 78 14 12 13 84 84 84 76 77 77 58 58 58
BERT 62 49 55 0 0 0 68 87 77 61 66 63 43 45 44
RoBERTa 38 100 55 0 0 0 0 0 0 14 38 21 13 33 18
XLNet 50 56 53 0 0 0 65 68 66 54 58 56 38 41 40
Ensemble (RF) 64 86 73 0 0 0 84 74 79 70 73 71 49 53 51
Ensemble (LR) 65 70 67 0 0 0 76 82 79 67 72 69 47 51 49

App Review
Basic

Augmentation

BERT 85 91 88 50 12 20 91 95 93 86 88 86 75 66 67
RoBERTa 77 100 87 0 0 0 98 89 93 83 87 84 58 63 60
XLNet 80 95 87 0 0 0 93 89 91 82 85 83 58 61 59
Ensemble (RF) 87 95 91 40 25 31 95 94 94 88 89 89 74 71 72
Ensemble (LR) 85 95 90 0 0 0 94 94 94 84 88 86 60 63 61

App Review
Controlled

Augmentation

BERT 86 88 87 43 38 40 92 92 92 86 87 87 74 73 73
RoBERTa 83 91 87 33 12 18 94 95 94 85 88 86 70 66 66
XLNet 95 86 90 33 25 29 87 95 91 86 87 86 72 69 70
Ensemble (RF) 86 88 87 60 38 46 92 95 94 88 88 88 80 74 76
Ensemble (LR) 84 88 86 80 50 62 94 95 94 89 89 89 86 78 81
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Table 5.2: Results for the Stack Overflow dataset

Dataset
Class Negative Neutral Positive Weighted-average Macro-average
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Stack Overflow

Sentistrength-SE 38 14 20 82 92 87 29 23 26 72 77 74 50 43 44
SentiCR 42 58 49 90 85 87 46 44 45 80 78 79 59 62 60
BERT 69 42 53 86 97 91 80 28 41 83 84 82 78 56 62
RoBERTa 82 71 76 91 97 94 86 42 56 89 89 89 86 70 75
XLNet 80 20 32 81 99 89 0 0 0 74 81 75 54 40 41
Ensemble (RF) 74 58 65 88 96 92 77 40 52 86 86 85 80 64 70
Ensemble (LR) 77 63 69 89 97 93 81 40 53 87 88 87 82 66 72

Stack Overflow
Basic

Augmentation

BERT 67 54 60 90 95 93 73 56 63 86 87 86 77 68 72
RoBERTa 67 69 68 92 92 92 59 56 57 86 86 86 73 73 73
XLNet 75 68 71 91 95 93 73 56 63 88 88 88 80 73 76
Ensemble (RF) 69 58 63 90 94 92 66 58 62 86 86 86 75 70 72
Ensemble (LR) 70 64 67 91 94 93 69 56 62 87 87 87 77 72 74

Stack Overflow
Controlled

Augmentation

BERT 70 68 69 91 92 91 58 51 54 85 86 85 73 70 72
RoBERTa 74 63 68 90 96 93 86 56 68 88 88 88 83 71 76
XLNet 75 46 57 88 97 92 83 47 60 86 86 85 82 63 70
Ensemble (RF) 71 57 65 89 96 91 78 48 61 86 85 86 80 68 73
Ensemble (LR) 77 63 69 90 96 93 81 51 63 88 88 88 83 70 75

Table 5.3: Results for the Jira dataset

Dataset
Class Negative Neutral Positive Weighted-average Macro-average
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Jira

Sentistrength-SE 99 72 84 62 99 76 88 81 81 81 86 80
SentiCR 95 98 97 96 90 92 95 95 95 95 94 95
BERT 94 97 95 93 85 89 93 93 93 93 91 92
RoBERTa 98 96 97 91 95 93 96 95 95 94 95 95
XLNet 89 100 94 99 72 83 92 91 90 94 86 88
Ensemble (RF) 96 99 97 97 92 94 96 96 96 96 95 96
Ensemble (LR) 96 98 97 96 91 93 96 96 96 96 94 95

Jira
Basic

Augmentation

BERT 98 99 98 97 96 96 98 98 98 97 97 97
RoBERTa 97 99 98 98 94 96 97 97 97 98 96 97
XLNet 99 99 99 97 97 97 98 98 98 98 98 98
Ensemble (RF) 98 99 99 98 96 97 98 98 98 98 97 97
Ensemble (LR) 98 100 99 99 96 97 98 98 98 99 98 98

Jira
Controlled

Augmentation

BERT 96 100 98 100 92 96 97 97 97 98 96 97
RoBERTa 98 99 98 98 95 96 98 98 98 98 97 97
XLNet 98 95 96 89 96 92 95 95 95 94 95 94
Ensemble (RF) 99 99 99 97 98 97 98 98 98 98 98 98
Ensemble (LR) 98 99 99 98 96 97 98 98 98 98 97 98

5.1 RQ1: Do the ensemble models outperform the pre-trained mod-
els on the original datasets?

We answer the RQ1 by analyzing the performance of ensemble models and pre-trained
transformer-based models (PTT) only on the original version of the four datasets.

5.1.1 App-review dataset

The ensemble models outperform the PTT approaches in both weighted-average and
macro-average F1 scores. The best performing PTT approach is BERT for both the
F1 scores. BERT can achieve weighted- and macro-averaged F1 scores of .63 and
.44, respectively. The RF-based ensemble model can achieve weighted- and macro-
average F1 scores of .71 and .51, respectively, while the LR-based ensemble model
can achieve weighted- and macro-averaged F1 scores of .69 and .49, respectively. Our
results show that the RF-based ensemble model outperforms the best performing PTT
approach by 8%-50% in terms of weighted-average F1 score by 7%-33% in terms of
macro-average F1 score. This range is determined based on the improvement of the
best and worst scores of the PTT approaches. The performance of all our approaches is
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Table 5.4: Results for the Github dataset

Dataset
Class Negative Neutral Positive Weighted-average Macro-average
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Github

Sentistrength-SE 78 73 76 77 85 81 86 77 81 80 79 79 80 79 79
SentiCR 89 67 76 78 92 84 87 85 86 83 83 82 84 81 82
BERT 90 89 89 91 91 91 93 93 93 91 91 91 91 91 91
RoBERTa 89 87 88 91 90 90 90 94 92 90 90 90 90 90 90
XLNet 87 88 88 93 88 90 89 95 92 90 90 90 89 90 90
Ensemble (RF) 91 90 90 92 91 91 92 94 93 92 92 92 92 92 92
Ensemble (LR) 91 89 90 91 91 91 92 94 93 91 91 91 91 91 91

relatively poor here because the size of this dataset is small, and the class distribution
is highly imbalanced. But the ensemble models still perform better compared to the
other approaches.

5.1.2 Stack Overflow dataset

The best performing PTT approach is RoBERTa for both weighted- and macro-average
F1 scores for this dataset with an weighted- and macro-average F1 scores of .89 and
.75, respectively, which is better than the performance achieved by the ensemble mod-
els. The LR-based ensemble model performs better than the RF-based and can achieve
weighted- and macro-average F1 scores of .87 and .72, respectively. Although RoBERTa
outperforms the ensemble models, the ensemble models outperform the other two PTT
approaches. More specifically, the LR-based ensemble model outperforms the other
two PTT approaches by 5%-12% in terms of weighted-average F1 score and by 10%-
31% in terms of macro-average F1 score. This dataset also has a high imbalance in
class distribution.

5.1.3 Jira dataset

The ensemble models outperform the PTT approaches in both weighted- and macro-
average F1 scores here as well. The best performing PTT approach is RoBERTa which
can achieve an F1 score of .95 for both weighted- and macro-average. Both the RF and
LR-based ensemble models can achieve an F1 score of .96 for the weighted-average.
But the macro-average F1 score of the RF-based ensemble model is .96, which is
better than the .95 macro-average F1 score of the LR-based ensemble model. Our
results show that the RF-based ensemble model outperforms the best performing PTT
approach by 1%-6% in terms of weighted-average F1 score and by 1%-8% in terms of
macro-average F1 score.

5.1.4 GitHub dataset

This dataset is the largest in size and also has the most balanced class distribution,
which reflects in our results as well. All the approaches we use perform relatively well
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on this dataset. The ensemble models bring minor improvements to the already well-
performing PTT approaches. Here, the best performing PTT approach is BERT which
can achieve an F1 score of .91 for both weighted- and macro-average. The LR-based
ensemble model also can achieve an F1 score of .91 for both weighted- and macro-
average. But the RF-based ensemble model outperforms them slightly. It can achieve
an F1 score of .92 for both weighted- and macro-average. So the RF-based ensemble
model outperforms the best performing PTT approach by 1%-2% for both weighted-
and macro-average F1 scores.

5.1.5 RQ1 Main Findings

The ensemble models outperform the pre-trained transformer-based models by a sig-
nificant margin for three out of the four datasets. In the Stack Overflow dataset,
RoBERTa, which is a PTT approach, performs better than the ensemble models. How-
ever, the ensemble models outperform the other two approaches for this dataset in both
weighted- and macro-averaged F1 scores. So we conclude that the ensemble models
do outperform the pre-trained transformer-based models on the original datasets.

5.2 RQ2: Does data augmentation improve the performances of
the models?

We answer the RQ2 by comparing and analyzing the performance of PTT and the
ensemble models on the augmented versions of the datasets.

5.2.1 App-review dataset

In the basic augmentation approach, all the PTT and the ensemble approaches outper-
form the results achieved by training the models using the original train-sets in terms of
both weighted-average and macro-average F1 scores. The best performance improve-
ment is achieved for the bert-based-uncased PTT approach with a 23% improvement on
weighted-average and macro-average F1 scores. RF ensemble approaches, however,
achieve the best results when compared to PTT approaches, with weighted-average and
macro-average F1 scores of .89 and .72, respectively. We observe the improvement for
the LR ensemble model compared to when trained on the original train-set but do not
achieve the best results. The noticeable improvement is for the neutral class. All the
approaches fail to predict any neutral samples on the original dataset. Augmentation
helped improve in this case, and we observed bert-base-uncased, and the RF ensemble
approach improved in case of neutral sample detection. Overall, the results depict that
data augmentation enhanced the performances of the models for this dataset.
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We observe the best results for the controlled augmentation approach, especially
for the classes with the least number of samples. In the controlled augmentation ap-
proach, all the PTT approaches achieve an improved weighted-average and macro-
average F1 score. We observe that the LR ensemble approach achieves the best result
with weighted-average and macro-average scores of .89 and .81, respectively. The
number of samples for the neutral class was significantly lower than for the other
classes in the original train-set. For which, we can clearly observe the poor perfor-
mance for that class using all the approaches in the table 5.1. This controlled augmen-
tation approach enables all the models to improve the neutral class’s performances.

5.2.2 Stack Overflow dataset

In this dataset, we observe a different trend from the app review dataset when the basic
as well as the controlled augmentation approaches, are applied. We do not observe
any improvement in the basic and controlled augmentation approaches. This is be-
cause the imbalance percentage is higher than the Jira and the App reviews datasets.
So, when data augmentation is applied multiple times on the dataset to oversample the
undersampled classes, the quality of samples degrades. The best performing approach
remains xlnet-base-cased in terms of macro-average F1 score. However, we do see a
slight 1% improvement when basic augmentation is applied for the xlnet-base-cased
PTT approach. The ensemble approaches do not improve the results of the PTT ap-
proaches as well.

5.2.3 Jira dataset

Compared to when trained on the original train-set, we observe that augmentation
helped improve the results for all the PTT as well as ensemble approaches. We see
the best improvement of 8% in weighted-average F1 score and 10% in macro-average
F1 score is achieved by the xlnet-base-cased PTT model. We get the best results for
the LR ensemble approach, which achieved a weighted-average and macro-average F1
score of .98. Similar to the App review dataset, we can observe significant improve-
ment through augmentation for this dataset as well. Unlike the App review dataset,
when the controlled augmentation approach is taken for the Jira dataset, we do not
observe improvement across all PTT and ensemble approaches. The reason behind
this, according to our observation, can be that after applying basic augmentation to
the original dataset, the dataset size was increased. Still, the class imbalance was not
significant compared to the app review dataset. For this reason, we observe better per-
formance on the basic augmentation approach.
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5.2.4 RQ2 Main Findings

The augmentation approaches aid the performances of all the PTT approaches as well
as the ensemble approaches in two out of three datasets in terms of weighted- and
macro-average F1 scores with most significant improvements for the undersampled
classes. So we conclude that augmentation approaches can be adopted to aid datasets
with a small number of samples and class imbalances.
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Chapter 6

Limitations

One of the limitations of our study is that we only used datasets that are publicly avail-
able from previous works. As a result, we are not able to ensure the quality of the
manual annotations of the dataset. This limitation also extends to our data augmenta-
tion technique. As mentioned in Chapter 4 we augment existing data through adopting
various approaches. So the quality of the augmented data relies on the quality of the
original dataset.

Another potential limitation of our work is related to the random splitting of data in
our experimental setup. We split the dataset randomly into a 70-30 ratio, where 70% of
the dataset was used to train and the rest 30% was used to test. As the data is random
in each split, in each run the results might vary. This can be addressed by using more
rigorous techniques like k-fold which we plan on doing in the future.
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Chapter 7

Conclusion and Future Works

Our work builds on the prior studies on sentiment analysis in software engineering per-
spective. In this study we provide a comparative study on performance of ensembled
models and pre-trained transformer-based models. It also investigates the requirement
and performance of data augmentation in fine-tuning ensembled and pre-trained mod-
els. The pre-training was done on four datasets - Stack Overflow posts , Mobile app
review dataset (App), GitHub pull-request and commit comments (GitHub), Jira issue
comments (Jira). Our experiments reveal that overall, ensemble models perform better
than pre-trained transformer-based models in three out of the four original datasets,
i.e., datasets without any augmentation, in terms of weighted- and macro-average F1
scores. Our results also demonstrate that the augmentation approaches aid the perfor-
mances of all the pre-trained transformer model approaches along with the ensemble
models in two out of three datasets in terms of weighted- and macro-average F1 scores.

Ensemble models have more potential to give better performance in sentiment ana-
lysis from a software engineering perspective. Thus we are interested in exploring
more ensemble techniques in the future. It is evident that the existing datasets under
recent study has noticable class imbalance issues. So, we also aim to explore other ap-
proaches of handling imbalance of dataset, specifically for software engineering texts.
The quality and size of the dataset is also an important factor in the model performance,
so we intend to work on generating a larger dataset and quality data annotation.
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