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Abstract

Technical question answering sites, like Stack Overflow, are gaining enormous atten-
tion from the learners and practitioners of specialized fields to exchange their pro-
gramming knowledge. Question answering on different topics has engaged all levels
of programmers. All the developers don’t have the same level of expertise, and the
question differs among them in terms of complexity and context. However, the ex-
isting approach of Stack Overflow models primarily filters out the questions based
on tags, which is inefficient for predicting the difficulty level. Due to the limitation
of the process, a large part of these posts fails to attract the attention of appropriate
users, resulting in valid questions having no answer or significant delay in response
time. Therefore, to address these limitations, we proposed three different supervised
models using TF-IDF, Topic Modeling(LDA), and Doc2Vec that build more compli-
cated relationships by extracting context-dependent features between the user and the
question. Each of the models builds an informative relationship that helps classify the
difficulty of a question. Extensive experiments on different variations of the datasets
demonstrate the improved efficacy of our proposed models over contemporary models.
The experiments find out that even with limited information, the models performance
scores are satisfactory and the Doc2Vec model outperforms the other models under
consideration.

viii



Chapter 1

Introduction

In this chapter, we present the overview of the whole research work. The outline
includes a comprehensive motivation problem explanation as well as the objective of
our study. Also it discussed the contribution made with our study. Thesis organization
is noted at the last part of this chapter for readers easiness.

1.1 Overview

Developers frequently use community Q&A sites like Stack Overflow to solve pro-
gramming challenges. Every day, over 6,000 new questions are posted to Stack Over-
flow, and approximately 10 million users1. The users ranging from beginners to skilled,
participate in constructive exchanges of knowledge on this site, forming a dynamic pro-
gramming community. Anyone can ask questions about a variety of topics to fix their
issues, and other users can respond or offer their thoughts on the same. To make this
procedure more user-friendly, Stack Overflow offers several filtering and preference
choices such as Interesting2, Bountied 3, Watched list4, and Ignored Tags4 for suggest-
ing appropriate ones.

However, querying the live server5, we found that it takes around 16 days to get an
answer whilst the standard deviation varies up to 113 days. Besides, 30% of the total
questions remain unanswered, which hinders the efficacy of Stack Overflow.

Many researchers have been drawn to this concern, and they have addressed it from
many angles. To better understand the problem, Wang et al. [1] conducted an empir-
ical study on four Stack Exchange websites to find out the reasons for not getting the

1https://stackexchange.com/sites?view=list#traffic
2https://stackoverflow.com/?tab=interesting
3https://stackoverflow.com/?tab=bounties
4https://stackoverflow.help/en/articles/5611335-watch-or-ignore-tags
5https://data.stackexchange.com/stackoverflow/queries
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answers fast from the QnA systems. Whereas Mondal et al. [2] explored the factors re-
sponsible for remaining a question unanswered and suggested four models predicting
potential unanswered questions.

Still, this challenge has not yet been resolved and researchers are now looking at it
from a different perspective by assessing the difficulty of a question to solve this prob-
lem. Neung and Twitte [3] took the help of concept hierarchy to measure the question
difficulty as they considered difficulty identification related to words and not the ap-
plicational logic. While Hassan et al. [4] used supervised learning considering various
features and questions of three predefined topics from Stack Overflow and D. Thukral
et al. [5] generated a graph network with the assistance of temporal effect to estimate
the relative question difficulty.

Now, we approached to estimate the difficulty of Stack Overflow posts by taking
the contextual features of users and posts into account. Our work proposes and evalu-
ates models that would work for the post classification according to difficulty.

To accomplish our objective of the proposed models, we first manually labeled
the randomly collected 738 Stack Overflow questions on Java which would work as
an extension to the existing dataset of 507 posts. The labelling was done into three
classes basic, intermediate, and advanced. The whole dataset is generalized as it has
no dependency on the sub-topics of Java. The questions were thoroughly labeled by
each of the labelers while mentioning the reason for categorizing the post in a certain
class. And the major voting approach was fol]owed for the final label. The whole
validation of manual labeling was executed by the experts. After the labeling process,
three overlapping feature sets were formulated, and each of the features was extracted
to complete the dataset. We implemented three supervised learning models, Tf-Idf,
Topic Modeling, and Doc2Vec, with different classifiers to find the most appropriate
one for Stack Overflow data and evaluate them with the metrics of accuracy, precision,
recall, and f1-score.

1.2 Motivation

Stack overflow, starting its journey in 2008, has gained tremendous popularity among
programmers. The Q&A site helps the users to find the most suitable answer for their
problems. As developers works quickly evolve, all it needs to meet the need of the
users by lower the response time. All programmers irrespective of their background,
can question about any topic related to programming on the Stack Overflow site or
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answer any query of their fellow programmers that they can find fit for interest and
experience. From beginner to expert, any level of user has the chance to answer the
same questions. This way each question is a complete environment of constructive
discussion where each of the answers gives their opinion about solving the question
and contributes to the knowledge bank, namely, Stack Overflow. Knowledge sharing
does come with a prize in form of reputations and question upvotes. If any answer
resolves the questioners doubt, the questioner would accept the answer and it would
be added to the answers accept rate.

The questioning process is hard, as the wording of questions matters to make any
question understandable, this depends on the questioners largely. Still, Stack Overflow
supplies tools to guide users to increase straightforward. Questions in stack overflow
have median time of 11 minutes [6]. On the contrary, 10.8% of the questions have
no answers within 24 hours [7] which makes it necessary to recommend the questions
to the user that would be able to make the best of it. Another fact, about 21.6% of
questions are not answered because of failing to attract the appropriate user [8]. As
a solution, many researchers worked on [6, 9] recommendation systems that would
be helpful to reach out to potential users, thus less question response time and better
chance to have accepted answer in questioners hour of need. But question recommen-
dation needs to be aware of the content that is being recommended to users, whether it
mates users interest and answering history. These types of characteristics have already
been seen in the current Stack Overflow figure 1.1

Figure 1.1: Stack Overflow Recommendation System

But implemented recommendation system only works with the watchlist 1.2 se-
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lected by users. It does not ensure that the level of complexity of the questions matches
with the users. Because each level of difficulty requires a different level of cognitive
demand.

Figure 1.2: Stack Overflow WatchList System

The questions having a certain level of difficulty associated with it are beneficial
for the Stack Overflow user community in multiple folds. The most intuitive ones are,

• Self-learns would have a better chance to involve in the community and increase
their knowledge by participating in their level posts or discussions so that a
learner might not feel demotivated while seeing their profile full of questions
above their expert level. As most of the users are mostly relying upon online
resources about 60%6, Stack Overflow would be a more effective resource if it
can uphold the users recommendations.

• Suggesting users according to their expertise a way to increase the chance of
getting any faster than the normal system in Stack Overflow. It would be able to
make sure that beginners also have a chance to answer or gain knowledge from
the discussions and expert users can challenge their expertise level by trying to
solve harder questions

• Topic wise difficulty categorization can help with the documentation of libraries
or APIs. QnA sites like Stack Overflow can have the user perspective of the API
and the need that documentation needs to fulfil.

1.3 Objective

Our study explores the difficulty estimation models, in order to determine the best
model to work with the recommendation system. Till now only three research work
has been published, addressing the question of difficulty. [10] works with Stack Over-
flow questions to create a hierarchy of topics in Javascript, providing an idea that each

6https://insights.stackoverflow.com/survey/2021#developer-profile-developer-roles
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Figure 1.3: 2021 Survey of Stack Overflow users

level of the tree represents a higher complexity than its previous level and too many
topics related questions also tend to be harder. Then we encounter a research work [4]
that was part of our comparison, works with Stack Overflow posts with its features to
create an estimation model with TF-IDF and a certain list of features related to ques-
tioners and the question itself. And last but not least, we gathered our knowledge on [5]
estimating relative difficulty for Stack Overflow data, they associate temporal effect on
the questions difficulty estimating network graph. But the complexity of the models
does not fit well to create a recommendation system.

Our work tries to investigate different textual analysis models with three variations
of the dataset having three feature lists for testing each of them to its limit. three set
of features are, semantic features list relating to only post body, pre-hoc features
includes features that are made public with the posting and lastly post-hoc features
are the list consists of features that available after the answering of the posts are done.
The whole approach to estimate the difficulty of Stack Overflow questions by taking
the contextual features of users and posts into account. We evaluated our proposed
methods in details to answer this given research questions.

• RQ 1: Which model performs well to define question difficulty level?
By evaluating the proposed models, we would be able to identify the best model
and extract most important features from post context.

• RQ 2: How do pre-hoc features perform in comparison to post-hoc features
in the best model?
Realizing importance of pre-hoc features for a recommendation system, we pro-
ceeded to find the models’ performance to compare it to the post-hoc features.

5



• RQ 3:How do different features correlate with the question’s difficulty level?
The taken features have different inherent qualities that makes it susceptible to
difficulty of Stack Overflow questions. And we answer the research question by
exploring the relation the features for estimating the difficulty.

1.4 Contribution

For the question difficulty estimation model, we first gathered a dataset of posts from
the data dump of Stack Overflow from 2017, because of the consistency and complete-
ness of the dump. The dataset we have chosen is of length 738 and combined with the
existing dataset from [4] , we get the total length of the merged dataset, 1245. Then we
randomly selected posts from the firstly selected data list and distributed them among
the authors of this paper for manual labeling them into three categories according to the
certain ruleset. The labeled dataset was then fulfilled by considering the feature list of
three types, one would take the syntactic features(title, body, tags) only, the second fea-
ture list is consist of the pre-hoc features, the features available with post-publication
without any answers and last we considered features of post-hoc which is available for
posts with answers. First, only syntactic features are important for questions having
no answers and users having no previous history. The second feature list is designed
for posts features and the questioners history, the last feature list is targeted toward
the questions that need to have quality answers and constructive discussions. Then we
chose three models for textual analysis and extract the fixed number of features from
these three models. And after extracting and combining all the features (textual, post
and user details). We used k=10, for k cross-validation and applied the classifiers. Af-
ter generating all the metrics for evaluation, We came to the conclusion that the textual
features are well extracted by Doc2vec model with vector size 36. The contribution of
our research work can be list like,

• We analyzed not only the contextual features of posts but also the users and
proposed three state-of-the-art models that performed better than the existing
supervised model. The proposed models are evaluated and compared with one
another to find an ultimately generalized difficulty estimation model with differ-
ent feature sets limiting the details of the posts and users.

• For the cold start problem, we identified a well-tuned feature set that only in-
cludes question-based characteristics when the questioner is new or unfamiliar.

• We expanded the existing pre-hoc and post-hoc features to make them more
comprehensive and self-contained.

6



• We demonstrated the changes in different features concerning the difficulty level
of the question to understand the nature of different level questions, their ques-
tioners and the user’s attitude towards the question.

1.5 Thesis Organization

The rest of the thesis is organized into chapters given as follows,
In chapter 2, we included all the necessary background studies that would be used

further in the paper, it describes TF-IDF, the Topic Modeling technique called LDA
and lastly Doc2Vec.

In chapter 3, we presented all the related works that have influenced our study di-
rectly or indirectly.

In chapter 4, we described the whole methodology, starting from the data collec-
tion, and the whole dataset creation to the last step of methodology, classification.

In chapter 5, we discussed the result generated in our methodology stage. The
elaboration of the result is also included in this chapter.

In chapter 6, we mentioned all the threats and the explanation, validating all the
threats from our study.

In chapter 7, the thesis works future pursuit and our plan to follow it through. And
with that, it concludes the thesis work.

7



Chapter 2

Background Study

Inside this chapter, we discuss about the background studies that are related to our
research.

2.1 Topic Modeling

Topic modeling is a type of text analysis approach in which "bags" or combinations of
words are analyzed collectively, instead of individually, to identify the variety of the
meaning of words depending on the context in natural language.
In 1998, Papadimitriou, Raghavan, Tamaki, and Vempala first described Topic model-
ing in Latent semantic indexing: a probabilistic analysis. [11]
A machine learning technique in which text data can be automatically analyzed to de-
tect clusters of words for a set of documents. As the previously categorized and a
predefined list of tags, training data are not necessary, it is referred unsupervised ma-
chine learning. Topic modeling is counting words and classifying them according to
their affinitive word pattern in order to infer topics from unstructured data. By analyz-
ing patterns like word frequency and proximity between words, the topic model can
cluster relevant feedback, and also words and expressions that appear frequently. With
this information, it can be immediately identified the topic of each group of texts. It is
a sort of statistical modeling that is used to uncover the abstract "topics" that appear in
a collection of documents by analyzing the data.

8



Figure 2.1: Topic Modeling Overview

Topic Modeling can be performed by various algorithms or methods. Some of them
are LDA (Latent Dirichlet Allocation), NMF (Non-Negative Matrix Factorization),
LSA (Latent Semantic Analysis), PLDA (Parallel Latent Dirichlet Allocation), PAM
(Pachinko Allocation Model), etc [12].

Figure 2.2: Topic Modeling Steps

2.1.1 LDA:

When it refers to fitting a topic model, Latent Dirichlet allocation (LDA) is a method
that is particularly well-known. Each text is considered a collection of topics, and each
topic is treated as a collection of vocabulary words. Rather than being divided into
discrete sections, this permits documents to "overlap" one other in terms of content, in
a manner that reflects the way natural language is generally used [13–15].
In 2000, J. K. Pritchard, M. Stephens, and P. Donnelly first proposed LDA [16, 17]„
and David M. Blei, Andrew Y. Ng, and Michael I. Jordan rediscovered it in 2003. [18]
Rather than the mathematical terms, the LDA model can be described using two main
principles to obtain a much clearer understanding of the interrelations between topics.
They are:

• Every document is a mixture of topics: A document can contain words of a few
topics in different percentages/ratios. As an explanation, if document X contains
70% words of the topic Climate Change, it may contain 30% of the topic Global
Warming.

9



• Every topic is a mixture of words: If we consider two topics for example Math-
ematics and Biology, equation, addition, summation etc. will be the most com-
mon words in Mathematics; on the other hand genetic, DNA, class, organism
etc. There can be some common words between these two topics such as re-
search, science, accuracy etc.

The first principle, Every document is a mixture of topics is applied by Bag Of Words.
But for the second principle, the calculation is needed to determine the probabilistic
distribution of words that corresponds to a topic.
In LDA firstly words of each of the documents are randomly assigned to the prede-
fined K topics and then PTD needs to be calculated for each of the words(W) of every
document (D). Here PTD represents counting the number of words that correspond to
the topic T in a given document D, leaving out the current word. The probability of
a word (W) corresponding to a topic depends on how many words of document (D)
correspond to a topic(T). Then PTW , the counting of the number of documents to be
corresponding to a topic (T) by the consideration of word(W), needs to be calculated.

Figure 2.3: LDA Overview

In the figure, the left-most level is represented as documents, the intermediate level
as topics, and the right-most level as words. As a result, it clearly demonstrates the
concept that documents are represented as the proportion of topics, and topics are
represented as the proportion of words [12].

10



2.2 Doc2Vector:

Doc2Vector is a method to numerically represent the documents, which is based on
Word2Vector. Using the concept of Word2vec, vector representations of each word in
a document can be built. Word2vec can be implemented using a number of algorithms,
including Continuous Bag-of-Words, Skip-Gram, and others [19, 20].
In 2013, Mikolov, Tomas; et al. published paper. [21, 22] about first creation of
Word2Vec. The concept of Doc2Vec was first introduced by Mikilov and Le in 2014
[23].

To learn the weights, Word2Vec utilizes a basic neural network with only one hid-
den layer. Rather than focusing on the predictions that this neural network might be
able to provide, it is concerned about the hidden layers weights because these weights
are basically the word vectors. It produces word-vectors that are adjacent to each other
in vector space that contain similar definitions depending on the context, while word-
vectors that are far from each other have different meanings depending on context. The
Continuous Bag-of-Words(CBOW) model and the Skip-Gram model are the two most
used algorithms for constructing Word2Vec representations [19, 20, 24].

Word2Vec aims to generate representation vectors from words. Doc2vec [25], on ei-
ther hand, is intended to produce a numerical presentation of a document independent
of its length. As documents do not appear as logical frameworks like words, hence an-
other way must be devised in its absence. Quoc Le and Tomas Mikolov [23] suggested
the Doc2Vec method for processing arbitrary length text. Excluding the addition of
a paragraph vector, the above approach is nearly identical to Word2Vec. Distributed
Memory (DM) and Distributed Bag of Words (DBOW) are the two different methods
of Doc2Vec, like Word2Vec. Estimating the probability of a word occurring in a given
context and paragraph vector is the work of DM. A sentence or document’s paragraph
ID is fixed, which shares the same paragraph vector during the training process. On
the other side, in the presence of simply a paragraph vector, DBOW indicates the prob-
ability distribution of a paragraph containing a collection of random words [20, 25].

2.3 TF-IDF:

TF-IDF, the short form of the term frequency-inverse document frequency, it is a sta-
tistical measurement that can determine the importance or relevance of words or any
string representations in a document amongst a collection of documents.This collection
of documents is also called a corpus. There are some contents that remain underval-
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ued. So to understand those contents better, search engines use TF*IDF.
To determine the importance of words in the document and corpus, a score is as-
signed to each of the words. In the fields of information retrieval and text mining,
this method is commonly employed. Tf-IDF was first introduced by Spärck Jones, K
in 1972 [26, 27].

Term frequency is calculated by examining the frequency of occurrences of a spe-
cific term that is of interest in relation to the document. To determine how frequent
(or infrequent) a word is within a corpus, inverse document frequency method is used.
TF-IDF score can be achieved by multiplying the TF and IDF values together.

T F =
(Number o f times termt appears in a document d)

(Total number o f terms in the document d)
(2.1)

To determine how frequent (or infrequent) a word is within a corpus, inverse doc-
ument frequency method is used. Calculating the IDF is as follows: divide the total
quantity of documents by the quantity of documents in the collection containing the
phrase in question.

IDF(t) = loge
(Number o f documents in total)

(T he number o f documents containing the termt)
(2.2)

As TF-IDF is a weighting system, according to the term frequency (tf) and the inverse
document frequency (tf) of the word in consideration (idf), it allocates a weight to each
word in a document.

12



Chapter 3

Related Works

Community question answering(CQA) services are places where learners and experts
gather to share their knowledge as well as their problems with each other. In the
twenty-first century, CQAs have opened all the boundaries for self-learning. Anyone
from anywhere around the world can learn about anything they are enthusiastic about,
and the other people sharing the same interest would help him to gain his goal. While
the popularity of community question answering (CQA) services is increasing day by
day, the number of users is also rising. They are asking more and more questions each
day, making the number of incoming questions grow in a rapid way. If we take the
example of Stack Overflow, we can see that till now, the number of questions asked
in one day is 7600 for Stack Overflow, which denotes the escalation of question counts.

In the past decades, numerous research works have been done focused on different
problems of Stack Overflow. The domains related to our thesis work are the question
difficulty estimation and user expertise. Question routing often comes as an integrated
part of these two domains.

3.1 Understanding the problem

The root problem here is the concerning duration between the question asked and be-
ing answered, as the questions are not being answered at the same pace the questions
are being asked, which often leaves many questions unanswered.

In order to better understand the problem, Wang et al. [1] conducted an empirical
investigation on four of the most popular stack exchange websites to determine the
reasons behind slow responses from CQA systems. They listed 46 factors and four di-
mensions: question, asker, answer, answerer, and applied logistic regression to them to
find out the relation between the factors and the reason for receiving a proper answer.
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After conducting the analysis, they found that: When all other factors are taken into
consideration, the time it takes to acquire an accepted answer has the biggest link with
the individual answering the inquiry. Slow-answered questions account for 61.386.9
percent of all answers given by non-frequent answerers. So questions that were an-
swered slowly would have gone unanswered if they had not been responded to by the
non-frequent answerers. Their findings put light on the fact that the non-frequent an-
swerers who usually answer questions that frequent answerers fail to answer aren’t
acknowledged under the existing incentive system, which is unfair. However, despite
the fact that the existing incentive system is found to be effective at motivating frequent
answerers, frequent answerers tend to answer questions that are simple. Their research
outcome recommends that the CQA services need to enhance their incentive system in
order to encourage non-frequent responders to be more engaged in giving answers as
well as to answer questions quickly in order to reduce the amount of time that users
need to wait for an answer [1].

However, the researchers approached the problem from various perspectives and
came up with numerous methods and techniques for the solution. The main goal behind
those approaches is to make the users interested to answers the questions.

3.1.1 Question Difficulty

To measure the questions’ difficulty level, Neung V. and Twittie S. [3] suggested a
different concept. They focused on the priority of users’ difficulty in finding the right
question to answer and proposed a method to measure the question difficulty based
on the concept hierarchy. For their research, they chose only the JavaScript-related
questions. They represented their proposed method in three parts. In the first part,
they measured the difficulty level with the help of a concept hierarchy, for which they
constructed a concept hierarchy following the method proposed by a previous study
by consulting with multiple books and websites. After which, they extracted the key-
words that represent the concepts or domains from the questions dataset and measured
the question scope with the function they came up with. In the second part, they con-
sidered the features of the question-answer communities. They followed a previous
research work to find out the most correlating five features and calculated the fea-
ture scores for the questions concerning the question asker. Their final approach was
to combine the previous two approaches to determine the question’s difficulty level.
Moreover, what they found from their research is that applying only the first approach,
which is the core contribution of their work, gives results similar to the previous stud-
ies, but after combining them with the feature scores, the result improved. Even though
they acknowledged that this process has some limitations as difficulty may not always
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be related to words but also the applicational logic.

Unlike these works, Hassan et al. [4] proposed a supervised learning-based, difficulty-
aware scoring system while considering multiple features from Stack Overflow. They
focus on developing a tool to estimate the difficulty level of a SO question automati-
cally with and without an answer. Initially, they only considered 936 questions related
to Java Strings, Threads, and Inheritance and categorized them into Basic, Interme-
diate, and Advanced level. As the first step of supervised learning, they manually
labeled the question from the viewpoint of learners. Basic questions include simple
problem-solving questions or comparisons of two functions or something that can be
answered directly from beginner-level books or basic API documentation. Intermedi-
ate questions most likely contain why-type questions, or how to solve more efficiently,
questions involving time complexity, resource constraints, conceptual reasoning, un-
derlying philosophy, or design principle. However, Advanced questions require in-
depth programming knowledge, critical thinking, well understanding of internal lan-
guage structure, or dealing with questions about rarely used frameworks or APIs. Then
they preprocessed the questions and selected different features under two categories:
Pre-Hoc, the features which can be used immediately after the question is posted, and
Post-Hoc, which can be retrieved at a later stage after the question is answered. Using
the Pre-Hoc features separately and with the inclusion of Post-Hoc features, they cat-
egorized the question with the following classifiers (Adaboost, Naive Bayes, k-nearest
Neighbour, Bayesian Network, j-48, Random Forest, Random Subspace, Simple Lo-
gistic, Logitboost, SVM) and evaluated the accuracy. Finally, they found a satisfactory
outcome with Random Forest of highest mean accuracy, 0.671 with only Pre-Hoc and
0.752 with the inclusion of Post-Hoc using 10-fold cross-validation.

The aforementioned studies tried to estimate the question difficulty from a bunch
of questions, whereas D. Thukral et al. [5] proposed the concept of the relative diffi-
culty of questions. They acknowledged the previous works done by other researchers
and presented their own way to measure the relative difficulty level of questions from
community question answering services. They were motivated by the limitations of
previous works and tried out a novel approach to measure relative question difficulty
automatically. For the research work, they considered three of the CQA traits, textual
descriptions, temporal effects, and users’ information. Among those, the temporal ef-
fect was first suggested in their work to estimate difficulty level. Their work’s main ap-
proach was to build a network assuming the questions as the vertices, where the edges
were assigned based on the predefined hypotheses. They mapped that network with
the prediction problem of directionalities of the edges. And using those edges, they
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estimated the relative difficulty between the two questions. Their proposed method
significantly outperformed four of the state-of-art methods and was also able to over-
come the limitations like the interruption of data noises, multidomain datasets, cold
starts, etc.

3.1.2 User Expertise

Alongside measuring and estimating the question difficulty level, many researchers
have worked from the perspective of the users’ skills and expertise level [9], [28], [29].

In one study, Li et al. [28] suggested that users can be rated based on their an-
swering profile, and new questions can be routed to the top-rated users based on their
availability. For that, they made users’ performance profiles based on their answering
history. Then estimated their expertise level considering the answer quality and rated
them. Finally, after checking for availability, the questions are routed to the top an-
swerers.

Wang et al. [9] conducted an empirical study and found that more than 66% of the
users have their daily comment activities over 30% and active users on the previous
day are likely to be active the next day. So they proposed an answerer recommen-
dation system approach that would find the suitable answerers on the basis of the an-
swerer’s topical expertise, interest, and activeness, known as IEA. For topical expertise
and interest, they used a model called TEM (Topic Expertise Model), from which they
collected variables like user topic distribution, user topical expertise distribution, and
expertise-specific vote distribution. For calculating the user activeness, they used the
historical activity, meaning questions, answers, and comments which are provided by
the user. For a new incoming question, the recommendation scores of its candidate
answerers are calculated. All candidate answerers are ranked according to that score
and can obtain a rank list of answerer recommendations. Then, the answerers with
the top N highest recommendation score are selected as the recommended answerers
for the new question. To measure the evaluation metrics, they used nDCG@N, Pear-
son rank correlation coefficient, and Kendall rank correlation coefficient. Not only the
IEA, they compared the recommendation system with the previous studies, too, like
TEM, TTEA, and TTEA-ACT. And, IEA outperformed others. They also tested the
usefulness of comments by measuring the comment-less IEA.

Where Wang et al. [9] signified the usefulness of comments, Diyanati et al. [29]
actually applied comment mining in their research. They took both the questioner’s
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and responder’s credibility and expertise of Stack Overflow into consideration. Their
intuition was that to find out valid answers to a question, the expertise level of the
individuals can be useful. To determine the user expertise, they extracted 18 months’
worth of data from a data dump that includes questions, answers, and comments, as
well as data about the user’s profile. They tested out two methods for their research.
The first method is based on the scoring system of SO, and the second one uses com-
ment mining. For the first method, the main hypothesis was that the questions’ and
answers’ scores are linked. Stack Overflow provides scores based on the user’s activ-
ity and the activity history. So, the hypothesis is that a user with more experience is
more likely to ask questions with higher scores, and the responses to those questions
appear to be higher-scored as well. They considered four cases based on the mean/max
scores of the questions and answers. Then, to find the correlation between the scores
of questions and answers, linear regression was applied. And it was discovered that
there is no significant association between these two scores after examining over 15000
users and the scores of their queries and replies. Then they proceeded with the second
method. They included comments in this method for a better result, as most of the
comments seem to be informative. To aid their process, they used two features from
the dataset, reputation(score given by SO) and userID for each user. The comment
mining starts with finding similarities between words of two comments and later cal-
culating similarities between those comments. Once they found out the similarity of
the comments for all the questions and answers, the comments were clustered based on
the similarity where similarity is above the similarity parameter. To remove outliers,
the clusters with members less than three are re-examined. Comments of these individ-
uals are evaluated for similarities, and if the similarity is above 90%, that means these
comments are variations of the same comment and don’t provide any information. So,
they are considered fraud/trivial and removed from the list to omit outliers. Then it
comes to calculating the total score for the comments. Comments are mostly textual
and hold positive and negative semantics. To calculate the total score, they used the list
of positive and negative words from a past research work as well as another list that’s
provided by five professional programmers. The stop words removal was done, and
the words from the comments were compared. And finally, the scores were calculated
for the relevant sentences. The fact that when a negative verb is followed by a neg-
ative adjective, the result is eventually positive was considered. To calculate a user’s
total score, they used an equation that takes two parameters SO provided score and the
score from comments. The users were clustered into five categories using the K-means
algorithm. To determine the accuracy of the method, they took the top 20 users from
each category and gave these data to 5 professional programmers. With professionals’
opinions and the kappa test, they calculated the recall, accuracy, and F-Measure and
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compared(MRR value) the results with another research work where their method out-
performed the others.

3.1.3 Question Difficulty and User Expertise

While works on question difficulty estimation and user expertise had been done sep-
arately, some researchers tried to combine these two approaches for a better out-
come [30], [31], [32], [33], [34], [35].

Liu Yang et al. [30] first proposed the idea of applying both the topic modeling
and the expertise level together. Their intuition about this approach was that no one is
an expert on all topics, and thus expertise based on topics only seems feasible. They
proposed a novel probability-based model, Topic Expertise Model(TEM). They used
the tag and voting information to help the model learn topics. And finally, from the
outcome of the model, they extended the PageRank algorithm and provided a new link
structure algorithm called CQARank.

Liu et al. [31] worked on a technique to estimate the question difficulty level in
community question answering services (CQA) and proposed a competition-based
model. Unlike the past work, which was based on the PageRank algorithm, they com-
bined the concept of user expertise with the question difficulty in their proposed model.
In the model, they performed a total of four questioner-answerer pairwise comparisons.
The estimation of difficulty was mapped with the concept of competition from a sense
that each comparison is a competition, and the user with higher expertise would win
the competition, and by winning, the users’ skill increases. Then, they considered the
relative skills of the questioner as the difficulty level of the question and the relative
skills of other users as the user expertise score. To evaluate their work, they used accu-
racy as an evaluation metric, and the research outcome significantly outperformed the
previous PageRank-based approach. Along with this, they further reflected on their
intuition about the question bodies representing the difficulty level of the questions.
After conducting an analysis of the question descriptions, the outcome of the analysis
supported their intuition.

But, as this approach [31] suffered from data sparseness and cold start problems,
Wang et al. [32] combined the textual descriptions of the questions with the previous
method proposed by Wang et al. [31]. As far as our knowledge, this is the first re-
search work that takes textual descriptions of questions into consideration. Their work
serves a novel approach named Regularized Competitive Model (RCM). RCM solved
the problems existing in the previous method [31]. The competition-based model re-
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quires each question to have an answer to be compared, and each question is compared
exactly twice, which introduces the sparse data problem and can’t measure difficulty
for new questions. By integrating a regularizer that prevents overfitting with the com-
petition model, the RMC model was formulated and was used to estimate the difficulty
level of well-resolved questions. On the other hand, for newly posted questions, they
took the assistance of the K-Nearest Neighbor algorithm, where the k-nearest neigh-
bors of those well-resolved questions were found out as the similarity in the textual
descriptions of two questions suggests their difficulty level to be close as well. After
performing RMC on Stack Overflow data, the result came out better than before, which
actually signified the contribution of textual description to estimate the difficulty level.

Lin et al. [33] used a probability-based model to find the hard questions and pro-
posed a question difficulty rank(KG-DRank) algorithm based on knowledge gap. The
idea is that,the users with higher knowledge base are more likely to answer a hard
question. So, from the users history, or in other word, from the knowledge or expertise
of a user, hard questions can be detected.

In another study, Wang et al. [34] tried to make a personalized recommendation
system that would work with new questions on CQA sites. And for their research,
they chose the popular CQA site, Stack Overflow. They worked with a Stack Overflow
dataset that includes new questions, questions with answers, and the answering history
of users. They considered both topic modeling and link structure for their work. At
first, they prepared question profiles from both answered and unanswered questions
with the help of topic modeling based on the Twitter-LDA model. Then from the an-
swered questions, they constructed the user profile with the help of their answering
history. And the final concept was to match the question profile with the user profile
and recommend the new questions to a group of experts for which they applied the
NEWHITS algorithm.

After analyzing the previous works, J. Sun et al.(2018) [35] proposed a framework
for question difficulty and expertise estimation in CQA sites that will help to appro-
priately route and assign questions to users with the suitable expertise. By analyzing
previous studies, they propose an approach to avoid overfitting, address the cold-start
problem, and also to improve the scalability of the solution. The focus of the research
work was fixed on question difficulty estimation, user expertise estimation, and ques-
tion routing. In the process, they first built the competition graph to incorporate their
intuitions. Then they examined the use of different heuristic-based algorithms to es-
timate question difficulty and estimated difficulty levels for newly posted questions
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using EGA and language-aware features. And routing newly posted questions to pos-
sible answerers based on textual features, question difficulty, and user expertise rank
generated by QDEE’s [35] prior processes. In this process, they have used various
methods and found: Leveraging the expertise gain assumption (EGA) to handle graph
sparseness can significantly improve the question difficulty estimation results; the dif-
ficulty estimation model cannot be applied to cold-start questions, only 3% - 10% of
users are considered as Owls (users who prefer to answer hard questions) in Stack
Overflow.

Although the primary focus of research works mentioned here was suggested to
have more questions answered in CQAs, Allamanis et al. [36] tried to retrieve insights
from the Stack Overflow’s questions. To give guidelines and improve the IDE tech-
nologies and smart documentation systems, they did an analysis of stack overflow’s
questions. They have done topic modeling after categorizing questions into program-
ming concepts and types of information in these two perspectives. At first, they tried to
analyze different concepts of the questions by applying topic modeling with 150 topics
and 2000 iterations as concepts focus on the question’s confusion, not the questioner’s
need. The result was described using the orthogonality(cosine similarity) between the
language, tools, and platforms and found similarities between several languages’ pro-
gramming tasks. As an extension of this part, they considered the code identifiers along
with the question’s texts and applied the new LDA and found that, though SO questions
are related to code, only code cannot describe concepts. After that, the question types
came into their focus as they indicated the reasons for which questions were asked.
The question and answer texts were chunked, and noun phrases were removed; topic
modeling was run on the remaining active phrases with 100 topics and 2000 iterations.
By analyzing this result, it is found that for retrieving code-related information and
understanding code better, the question type is very impactful. Then they combined
the results of these results of two topic modeling and analyzed them to find correlation
through covariance. As a result, they found top correlations; using the concepts and
identifiers, the most problematic issues can be determined easily. There was another
conclusion that the type of the asked questions can be estimated based on a few terms
about the domain, which is beneficial for integrated development environments (IDEs).

3.1.4 Limitations

A huge portion of the related work is done on the resolved questions. Even though
many researchers worked with new questions [28], [32], [34], [1] and considered cold
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start problems [32], [5], they worked on questions of specific topics. So, none of these
works provides a generalized approach to estimate the question difficulty.
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Chapter 4

Methodology and Dataset Generation

4.1 Dataset Generation

In this section, the dataset extraction method from Stack Overflow for the text classifi-
cation models will be discussed. Also, the discussion will continue on what and how
the features are selected about a post and its owner. And lastly, what are the inherent
properties of the dataset that are linked to the difficulty classification will be presented.

The posts and their details were collected from the Stack Exchange data dump
of 20171. We only considered the posts from Stack Overflow and its users as it has
gained a sky-high reputation in the past years from its establishment in the field of
programming, continuing to maintain over 18 million registered users and more than
22 million questions. It would be safe to say that the Stack Overflow site has posts
about any available topic of programming. And like any other Q&A site, the questions
on Stack Overflow deal with a certain level of difficulty per post as it relates to certain
topics of programming. And this paper is going to continue its discussion on how the
machine learning approach can determine question difficulty and how accurately. The
dataset selected for the experiment contains the overall picture of the questions for a
particular language.

4.1.1 Data Extraction from Stack Overflow

Java is certainly one of the popular languages that are being used right now. And ac-
cording to the Stack Overflow 2017 survey, which includes data from 2013 to 2017,
illustrates the fact that about 39.7%2 of the developers are using Java, putting it in the
third position. The java language contains professionals, where 37.9% of them are web
developers, 39.9% of desktop developers, and 41.4% of them are part of DevOps. This

1https://archive.org/details/stackexchange
2https://insights.stackoverflow.com/survey/2017#technology
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information undoubtedly makes it a beneficial language for learners. Also, both aca-
demics and jobs both sectors have a higher requirement for Java programming. And
it is the basis for a largely used framework like Spring which takes the dominant part
of the usage of Java. Throughout the world, the language Java is broadly used stating
from websites, system software, data storage, IT infrastructure and complicated pro-
grams like data science according to a survey done in 2020 by Jetbrains3. So it can
be effortlessly advocated why Java is chosen as a representative for further work on
Stackoverflow questions.

Now to take a step forward, we need to assemble a dataset that is stable and evenly
distributed to present the overall scenario of posts generally answered in Stack Over-
flow. In the research field, a significant number of works depend on Stack Overflow
data like [37], where the researchers tried to extract useful information for API docu-
mentation from Stack overflow posts which would add useful insights for developers.
Then again, in another paper [38], the researchers tried to use the Stack Overflow data
to connect with IDE for the developers’ convenience. The java language has a special
place where researchers used their methods for answering many of the unsolved prob-
lems and represent the posts, questioners, and answerers for its own societal context
using legacy data of Java Community in Stack Overflow [39].

Following the consistency, we used the Stack Overflow data dump of December
20174 and used the Microsoft SQL Server database for the data storage facilities. The
data dump is of size 19GB formatted in .7z as it was compressed, and after extraction,
the database took about 137 GB of the hard disk space. So using this type of dataset
is useful for representing a deep-rooted effect of users’ and posts’ characteristics but
laborious in the case of manual labeling, which will be further explained later in the
current section. We considered a simple query to get a subset that would satisfy the
requirements for a certain post which would make the labeling and further the machine
learning process much easier. The query result returned about 2000 rows of certain
characteristics. The query is limited to answered questions, the interval of the first
answer to a question, and the question score. Query constraints were used to make sure
that the upcoming manual labeling operation could get an unbiased and overall equal
number of instances. And with that, it also helped construct a dataset of Java with its
diversified topics. And selecting randomly 700 rows having post Id, post title, post
body, and post tags for labeling and moving on to the next step to difficulty labeling.

3https://www.jetbrains.com/lp/devecosystem-2020/java/
4https://archive.org/details/stackexchange
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4.1.2 Difficulty Labeling

After the first set for manual labeling had been constructed, we went ahead to label the
data manually by analyzing the post body. The categories to consider while labeling
was decided to be Basic, Intermediate, and Advanced. And the whole labeling process
was executed by four of the authors, and the validation of the labeling was done by
the experts. The reason for marking a question in a certain label was mentioned by
each of the labelers, which made the process of validating the labels a bit easier and
parallelly it worked as the labeler’s perspective for the question that might not match
with other labelers. The distribution of the posts among the researchers was done in
random order, and we were clueless about any post coming to us for labeling. So, this
more or less eliminates the bias of any topic related to Java, as upcoming posts might
not be on the same topic. The forwarded question to each of the labellers had com-
mon posts between them so that each of the posts was allocated to at least three of the
labelers. This would give a chance to rule out any chance of mislabeling a post. For
final labeling, we followed the majority voting approach. Both labelers would put their
suggestive label with their approach of thinking, and the conflict would be discussed
with the remaining team members and take our stand on the post. If the label of a
post could not be determined by the authors, the experts were consulted to resolve the
dispute.

The idea of labeling the question by the human examiner is originally inherited
from the work [4], where the researcher used supervised learning on the manually
labeled dataset. Our idea was set on a similar sort of suggestion with an extension of
breaking down each of the rules on a more granular level so that it provides enough
clarity of the label a question is getting. The rule set that was mentioned in [4] was
discussed among the supervisors and us, and we found this ruleset is not enough to
label correctly. So we divided each of the rules into fragments, Table 4.1 .Subdivided
rules are each connected to questions that were incorporated into the dataset.
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Table 4.1: Labeling Rule Set

Difficulty Class General Rule set Granular Breakdown

Basic

Questions on simple built-in functions/API
documentation/beginner level knowledge

Simple Built-in-funtion

Simple Operator

API documentation

Beginner level Theory Question

Basic OOP problem

Simple Program Understanding

Questions related to comparison between
functions of various languages

Analysis of various languages’ functions

Beginner level query difference

Simple problem solving

Questions with simple problem-solving
Simple query problem solving

Simple functionality related

Questions with simple exception, error and other
problem

Solve for nullpointer exception

Simple Error Handling

Simple configuration problem

Intermediate

Questions demanding deeper understanding of the
programming language to answer

Built-in function deep understanding

Need more knowledge about the algorithms

Multiple questions

Need knowledge on Advanced Programming topics

Difference between two packages

Questions stating the answer of the problem but
still inquires about more efficient answer

Looking for Appropriate way

Analyzing different alternatives

Questions about a system’s computational cost,
space utilization, or other resource usages

Efficient way

Performance, optimization, accuracy

Memory related

Questions requiring conceptual thinking in
response to any programming structure, API, or
design principle

Reverse programming

Underlying philosophy of any programming construction

Design pattern

Feasibility study

Question about built-in documentation in details

Required Testing Related Knowledge
Automated testing related problem

Requires knowledge of Testing

Advanced

Questions about critical challenges that
require in-depth technical expertise or
logical reasoning to solve

Critical problems where solution needs in-depth programming knowledge or conceptual thinking.

Multiple question, Solution needs in-depth programming knowledge or logical thinking.

Multiple question and in depth knowledge needed

Questions that require advanced in-depth knowledge of
internal language structure

In-depth knowledge of internal language structure.

In-depth knowledge of packages

Questions that deals with infrequently/rarely used
framework/API

Deals with infrequently/rarely used framework

Deals with deprecated framework

Related to real life scenario
Efficiency related Question in real life scenario

Optimization in Real life scenario

Other Rules

Mentioned having the answer, asking for suggestion

In-depth knowledge on Garbage Collection Algorithm

In-depth testing and security knowledge

Need in-depth knowledge multiple topics

Large amount of study already known

Need deep knowledge about design architecture , SW maintenance, and SDLC,new plugin

Works on large dataset, artificial intelligence
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After labeling the first selection of questions, we measured three classes that we
divided the questions into. And established that we did not have enough questions in
Advance class. To prevent the bias factor, we add about 50 more rows to the labeling
process and start our iteration all over again. And at the end, we had 738 posts labeled
and verified. Table 4.2 shows the dataset after labeling, with the dataset already exist-
ing in [4]. And the whole extended dataset would be used for posts feature extraction
in the following procedure.

Table 4.2: Dataset wise class Distribution

Class Distribution
Dataset Name Total No. of Smaples

Basic Intermediate Advanced

Filter 507 375 104 28

Generalized 738 360 305 73

Merged 1245 735 409 101

4.1.3 Feature Extraction

The dataset after labeling only consists of post Identification number, post body, and
post tags, but still pre-hoc features, the features that will be available just with most of
the post publications, and post-hoc features that will be available when answerers start
interacting with the published post. The feature list Table 4.3 was decided on having
a notion that these will be having crucial for determining the difficulty of a question,
and this conception was built from [4] where they considered the question body size,
response time, score of a question, view count and answer count. We not only consid-
ered the body but also the title and tags with it. The user profile details were considered
for every questioner and answerer, and features like reputation, accept rate, and badges
were scraped from the data dump. We also considered details extracted from the post
body like Line of Code snippet, URL, and image count.

After extracting the code snippets, the considered post body was appended to the
title and tags. The code snippets are the section that is written between the anchor
tag of <code></code>. So, each of the textual and code sections could be featured
separately for document analysis models. The user profile details were considered for
every questioner and answerer, and features like reputation, accept rate, and badges
were scraped from the data dump at that timestamp. We also considered details ex-
tracted from the post body like Line of Code snippet, URL, and image count.
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Table 4.3: The Features and their definition with associated feature list

Feature Name Defination Included in

Processed Body
Post full textual body excluding code
snippets and the html tags like <p>,
<code>,<href>

Semantic Features,Pre-hoc,Post-hoc

Tags
Post tags, decided at the time of posting,
e.g. <java> <oop><multithread>

Semantic Features,Pre-hoc,Post-hoc

Title Post title, decided by questioner Semantic Features,Pre-hoc,Post-hoc

Question Length Length of the whole Processed Body Semantic Features,Pre-hoc,Post-hoc

Url+Image_Count Number links the post Semantic Features,Pre-hoc,Post-hoc

LOC

Line of Code, counting only physical lines
of source code in snippet extracted from
post body Summing up all the LOCs from
a certain post

Semantic Features,Pre-hoc,Post-hoc

User Reputation
User Reputation Point given by Stack
Overflow activities like answering,
questioning

Pre-hoc,Post-hoc

User_Bronze_Badge Number of awards for basic use of the site Pre-hoc,Post-hoc

User_Gold_Badge
Number of awards for important
contributions from members of the
community

Pre-hoc,Post-hoc

User_Silver_Badge
Number of awards for being experienced
users who regularly use Stack Overflow

Pre-hoc,Post-hoc

Accept Rate
The percentage of answers accepted based
on the questions asked by the user.

Pre-hoc,Post-hoc

View Count Number of time viewed by users Post-hoc

Favorite_Count Number of times save as favorite Post-hoc

Up_vote_Count
Number of up votes for being useful and
appropriate

Post-hoc

Answer Count Number of answers in a question thread Post-hoc

Question_Score
The total number of upvotes it received
minus the total number of downvotes it
received

Post-hoc

First_Answer_Interval
Interval in days between question creation
date to first answer creation

Post-hoc

Accepted_Answer_Interval
Interval in days between question creation
date to accepted answer creation

Post-hoc

Code snippet was extracted for the post body and kept for further counting. The
line of code was calculated using 5Pygout, a python command-line tool that counts
only physical lines of source code. For each snippet in a particular post, we measured
the LOC metrics. If a post has more than one code snippet, the line number of codes
is summed together. And for the feature of URL and image count refers to the number
of hyperlinks in the post, as we can not identify which hyper references are related
to which image and which are related to code or general links about the questioning

5https://pygount.readthedocs.io/en/latest/
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concept. The relationship between the features would be explored while working on
the models and their contribution to the result predicting the difficulty of posts.

4.1.4 Dataset Quality

To present the quality of our dataset, it is important to understand what we intended
for the dataset to achieve. The dataset represents the overall picture of all Java-tagged
questions. The questions are consistent with tags from Java varied from development,
testing, and deployment. In other words, the total number of unique tags in the dataset
is 758, which indicates it is certainly exploring all renowned areas of the Java pro-
gramming language and the concepts used mostly by the developers. This certainly
helped us to gain a better understanding of user behavior in the Java community in
Stack Overflow. The dataset contains a balanced number of rows for each of the cate-
gories described in the table 4.2.

Now, as it can be seen, we have an almost similar number of rows for two of the
classes but are a little behind in the Advance class. As the advanced topics are not
usually used by Stack Overflow users or not many experts rely on a Q&A site for their
problems. We also added the dataset from [4] to increase the volume of our dataset,
and it does not validate as it is already validated by the paper’s authors, which was
extracted from the 2017 data dump and correlates with our labeling rules. The dataset
from the [4] paper has collected only posts on three of the topics related to Java. But
the dataset we collected had far more topics and posts, so the dataset after merging with
the published [4] dataset does make it biased to some extent but not overwhelming to
the model considered in this paper. Our dataset acts as an extension to the obtained
artifact.

4.2 Methodology

For predicting the difficulty class for a post, we proceeded to work on our textual fea-
tures that would be inherited from the post body for the document analyzing model.
This section will describe all comparing methodologies that can have a satisfactory
effect on the difficulty classification for the documented questions. We extracted three
essential sections from a certain post. One part referred to the code snippet; the sec-
ond one indicated the paragraph texts, and lastly, the hyperlinks. And preprocess-
ing had been operated only for textual elements from the questions. These prepro-
cessed bodies would be used for analysis by TF-IDF vectorizer, topic modeling by
LDA and Doc2Vec, and document vectorizer for extraction of features for classifica-

28



tion of posts.The codes and result artifacts are kept in open repository6

4.2.1 Preprocessing

After the dataset preparation, we took the next step to preprocess the new post body,
excluding the code snippets. The semantic relationships between abstract concepts are
the main feature that needs to be measured by the document analytical models.

• Title, Tags and Textual Body Composition
The title and tags from a question describe the main aspect and straightforward
concept of the post. Usually, the title is the part where the major question is
described with the least wording. After the inclusion of the title and tags to the
body, the new body would represent the whole post alphabetically, which would
help us to discover a further semantic association between body, title, and tags.

• Tokenization
In the step of tokenization, we tokenized each of the posts into smaller units(words)
on a space delimiter so that it would be easier to extract important terms and their
occurrences. And the word tokenizer used for the Stack Overflow dataset was
from the Gensim [40] library’s simple_preprocess function, which not only to-
kenizes but also includes a lower casing, removing any accent marks from the
sentence. And lastly only storing strings with a minimum length of 3 to a list of
tokens.

• Stop words Removal
After getting the list of tokens, the words that are most commonly used but
bare minimum information about the sentence are the stopwords, like articles,
pronouns and prepositions. So in classifying the posts the stopwords would only
take space on the contrary provide barely any importance. We used the most
commonly used NLTK [41] library for using its documented English stopwords
appending it to the Stanford CoreNLP stopword7 stopword list.

• Stemming & Lemmatization
The first list of tokens is joined with space delimiter and then the examination of
each word to convert it to its original form starts. And for this task, we used the
NLTK librarys well defined Snowball stemming function. And before lemmati-
zation, we used extracted the only specific part of speech using the SpaCy [42]
open-sourced NLP library of python. We used the en_code_web_sm model for

6https://github.com/SMAMonisha/Difficulty-wise-Stack-Overflow-Question-Classification-for-
Recommendation-System

7https://github.com/stanfordnlp/CoreNLP/blob/main/data/edu/stanford/nlp/patterns/surface/stopwords.txt
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tagging the words, allowing only the selected parts of speech to be included in
the list of each document. We only allowed ’NOUN’, ’ADJ’, ’VERB’, ’ADV’
to be part of the further calculation as in a sentence these parts would most likely
carry the valuable meaning. Now, lemmatization would take place to the words
to dictionary form of words with the same SpaCy library.

• Bag Of Word
Each of the list filtered tokens would be converted to a dictionary having each
of the words mapped to a unique identity number. And for this purpose, we
used the Gensim librarys corpora package. Using this dictionary, we created the
BOW for each sentence.

• Frequency Limitation
We limited word frequency to eliminate the outliers so that uncommon words
and meaningless words would not be added to the models in further steps. To
identify the frequency limit, we needed to plot the frequency of each word in all
of the documents cumulatively. And decided to exclude words that appear less
than 30 times in all of the posts.

4.2.2 Document Analysis Model

For semantic analysis, we encounter many papers that used [4] TF-TDF for informa-
tion retrieval from each of the post bodies, and Topic modeling [7, 36] for extracting
the comprehensive information from posts and lastly Doc2Vec is used to vectorize a
document as a representation of that list of tokens.

The first model to execute the datasets was TF-IDF [43], the whole process starts
after preprocessing of the data and we calculate the step by step according to the main
equation of term frequency and inverse document frequency. Lastly multiplied it to-
gether to get a vector representation of TF-IDF. After executing the model, we get
more than 1600 features(words) for each of the documents.

And the second model that we considered was Topic Modelings popular technique
Latent Dirichlet Allocation [44]. We used LDA to seek the unseen documents in a
particular document. For yielding an LDA model, we applied Gensims LDA model
which took the created corpus, id to word mapped dictionary from the preprocessing
step and lastly the number of topics for finding from each of the post body. The topic
number is a variable that we had the chance to choose for our model. We tried to set
topic numbers from 20 to 40, and each of the models was measured using the accuracy,
recall, precision and F-1 score. Ultimately, we found that our model performs the best
using the number of topics set to 23.
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At last, we built our Doc2Vec [22] with Gensims doc2vec model with parameters
of vector size, min count set 2 which would remove words having a frequency less than
2 and epoch number over the whole dataset. Given the whole dataset, the first task was
to construct a dictionary of vocabulary from the stream of documents. Then vocabulary
dictionary and the preprocessed corpus were passed to train the Doc2Vec model. Now
any document, this model can infer the vector representation of that document. Vector
length can be set by users, so we tried vector sizes from 20 to 40 and the best score of
accuracy was given by the vector size 36.

4.2.3 Classification

As all textual analysis models provided the features representing the post body in vec-
torized format, we incorporated the extracted textual features with the features divided
into pre-hoc and post-hoc categories. To determine the best model for extracting tex-
tual features and their correlation with the other features, we applied different multi-
class classifiers to the dataset. The most used classifier for text classification [43], e.g.,
Random Forest [45], XGBoost [46], Adaboost [47], and lastly, SVM [48].

To perform classification on the dataset, we executed K-fold cross-validation where
K=10, using the Sklearn [49] library of python. And the whole models with the classi-
fier were run 10 times to train and test. The aforementioned classification models were
tuned using the parameters to get a better classifier. Here we discuss all necessary
variables that were set to different classification algorithms.

• We set the Random Forest to have 15 n_estimators meaning to create that num-
ber of decision trees, a depth of 8(max_depth) for each of the trees, and the
criterion for trees was chosen to be entropy.

• Then for Xgboost , we used the boosting rounds(n_estimators) of 40 with a
learning rate of 0.05. And the maximum tree depth was set to 8 as before.

• Adaboost was implemented with the parameters set to n_estimators 1000, and
the learning rate was kept constant like Xgboost.

• Lastly, the single vector classification, SVC model was built for the one-vs-rest
(ovr) decision function of shape and enabling the probability estimation to fit the
training data with measuring the metrics of performance.

And for each fold, we calculated the accuracy, precision, recall, F-1 score, and
AUC-ROC using Sklearns metrics package. After completing all folds, the average
for each of the metrics was calculated for comparing the text analyzing models perfor-
mances.

31



Chapter 5

Results and Discussion

In this section, the performance of each model with different feature sets is evaluated
using different machine learning classifiers. First, we will compare the three text anal-
ysis models for each type of feature set separately and then calibrate the complete
understanding to find the best model. Secondly, the efficacy of the pre-hoc feature set
will be analyzed in contrast to the post-hoc feature set for different datasets. Then the
relationship between features and question difficulty level will be addressed in order
to provide insights into the characteristics of questions of various levels of complexity,
as well as their questioners and how they influence other users. Finally an overall dis-
cussion will be presented to connect all the findings.

5.1 Performance of Question Classification Models

The performance of three models using different classifiers on semantic features of
question is shown in Table 5.1. As we can see, for almost every classifier, the Doc2Vec
based model outperforms the other two models. With the classifier XGBoost, the
Doc2Vec based model can classify the question based on difficulty with an accuracy
of 0.656 and F1-score 0.626 whilst Tf-Idf based model performs with an accuracy of
0.653 and F1-score 0.622 and TM based model achieve an accuracy and precision of
0.62 and 0.579 respectively. Among the classifiers, AdaBoost has slightly better ac-
curacy than XGBoost but relatively lower coverage, and the longer time requirement
makes it less preferable.

Table 5.2 and Table 5.3 show performance metrics of textual models for all the
classifiers with pre-hoc features and post-hoc features, respectively. For pre-hoc fea-
tures, with accuracy and F1-score of 0.657 and 0.629, the Doc2Vec-based model using
XGBoost classifier provides better performance. The Tf-Idf based model performs rel-
atively poorly than the Doc2Vec based model with an accuracy of 0.646 and F1-score
of 0.629. Lastly TM based model performs comparatively with the lowest accuracy
and f1 score of 0.622 and 0.586.
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Table 5.1: Performance metrics of Tf-Idf based model, TM based model and Doc2Vec based
model with different classifiers using Semantic Features of Question

Semantic Features of Question

Classifier Model Accuracy Precision Recall F1-score AUC-ROC

Random
Forest

Tf-Idf Based 0.615 0.545 0.615 0.509 0.698

TM Based 0.624 0.569 0.624 0.549 0.702

Doc2Vec Based 0.643 0.608 0.643 0.594 0.713

XG-
Boost

Tf-Idf Based 0.653 0.61 0.653 0.622 0.746

TM Based 0.62 0.582 0.62 0.579 0.68

Doc2Vec Based 0.656 0.625 0.656 0.626 0.746

Ada-
Boost

Tf-Idf Based 0.643 0.577 0.643 0.59 0.712

TM Based 0.632 0.586 0.632 0.581 0.612

Doc2Vec Based 0.659 0.633 0.659 0.625 0.674

SVM

Tf-Idf Based 0.63 0.548 0.63 0.56 0.71

TM Based 0.63 0.548 0.63 0.56 0.71

Doc2Vec Based 0.63 0.548 0.63 0.56 0.722

Considering the post-hoc feature set, usually, most of the classifiers perform better
with the Doc2Vec model except for the XGBoost classifier, where the performance of
the Tf-Idf based model clearly surpasses both TM and Doc2Vec based models. That is
accuracy of 0.663 and F1-score of 0.638 for Tf-Idf based model where an accuracy of
0.659 and an F1-score of 0.632 for Doc2Vec based model and accuracy of 0.644 and
F1-score of 0.617 for TM based model.

But the dataset of the Tf-Idf based model was split after calculating the Tf-Idf
score for overall data to keep the feature set constant whilst for the other two models,
we partitioned the dataset before performing any preprocessing in order to keep it as
realistic as possible. As a result, the Tf-Idf based model gains the advantage of learning
the test set, which is not the case for any classification or filtering system and renders it
ineffective as a question classifier in real life. Hence we can overlook the Tf-Idf based
model, and in comparison to the TM-based model, we can infer that the Doc2Vec-
based model performs better.

However, it is seen in Table 5.4 as the feature set grows, the overall performance
of all question classification models improves. Unlike the TM-based model, where
adding features boosts performance significantly, Doc2Vec and Tf-Idf-based models
are strongly context-dependent, slowing performance improvement with nearby less
important features.
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Table 5.2: Performance metrics of Tf-Idf based model, TM based model and Doc2Vec based
model with different classifiers using Pre-hoc Features

Pre-hoc Features

Classifier Model Accuracy Precision Recall F1-score AUC-ROC

Random
Forest

Tf-Idf Based 0.626 0.553 0.626 0.525 0.711

TM Based 0.623 0.55 0.623 0.549 0.673

Doc2Vec Based 0.655 0.628 0.655 0.605 0.746

XG-
Boost

Tf-Idf Based 0.646 0.602 0.645 0.615 0.741

TM Based 0.622 0.587 0.622 0.586 0.679

Doc2Vec Based 0.657 0.64 0.657 0.629 0.744

Ada-
Boost

Tf-Idf Based 0.644 0.577 0.644 0.591 0.71

TM Based 0.621 0.582 0.621 0.576 0.61

Doc2Vec Based 0.663 0.64 0.663 0.63 0.673

SVM

Tf-Idf Based 0.586 0.423 0.586 0.446 0.62

TM Based 0.586 0.423 0.586 0.446 0.637

Doc2Vec Based 0.586 0.456 0.586 0.448 0.635

Answer to the RQ1: In general, the Doc2Vec based model with XGBoost classifier
outperforms all other models in classifying difficulty wise questions, with an accuracy
of 0.657. Even for any unknown or new user with no prior information about the
questioner, it can filter questions with an accuracy of 0.656.

5.2 Comparative Analysis of Pre hoc and Post hoc Features

Now, this comparison is significant since the goal of our research is to forecast the
difficulty level of a question in order to assist in appropriate question filtering for an-
swering, hence reducing response time and unanswered questions. Pre-hoc features
are chosen such that they are available whenever a new question emerges, making
them better for filtering purposes, whereas post-hoc features are only available after
the question has been resolved.

Table 5.5 and Table 5.6 represent the performance metrics of each textual model
for pre-hoc and post-hoc features side by side in the context of different data sets. We
disregard the Tf-Idf model based model since it is unsuitable for question filtering in a
real-world setting.
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Table 5.3: Performance metrics of Tf-Idf based model, TM based model and Doc2Vec based
model with different classifiers using Post-hoc Features

Post-hoc features

Classifier Model Accuracy Precision Recall F1-score AUC-ROC

Random
Forest

Tf-Idf Based 0.618 0.554 0.618 0.52 0.743

TM Based 0.647 0.613 0.647 0.597 0.721

Doc2Vec Based 0.648 0.62 0.648 0.603 0.719

XG-
Boost

Tf-Idf Based 0.663 0.637 0.663 0.638 0.762

TM Based 0.644 0.61 0.644 0.617 0.734

Doc2Vec Based 0.659 0.636 0.659 0.632 0.738

Ada-
Boost

Tf-Idf Based 0.652 0.59 0.652 0.608 0.729

TM Based 0.654 0.629 0.654 0.628 0.658

Doc2Vec Based 0.667 0.643 0.67 0.646 0.692

SVM

Tf-Idf Based 0.594 0.487 0.594 0.454 0.677

TM Based 0.594 0.482 0.594 0.454 0.676

Doc2Vec Based 0.594 0.482 0.594 0.454 0.68

Table 5.4: Performance of different models with growing feature sets

Models Features Accuracy Precision Recall F1-score Auc-Roc

Tf-Idf Based

Semantic 0.653 0.61 0.653 0.622 0.746

Pre-hoc 0.646 0.602 0.645 0.615 0.741

Post-hoc 0.663 0.637 0.663 0.638 0.762

TM Based

Semantic 0.62 0.582 0.62 0.579 0.68

Pre-hoc 0.622 0.587 0.622 0.586 0.679

Post-hoc 0.644 0.61 0.644 0.617 0.734

Doc2Vec Based

Semantic 0.656 0.625 0.656 0.626 0.746

Pre-hoc 0.657 0.64 0.657 0.629 0.744

Post-hoc 0.659 0.636 0.659 0.632 0.738

According to the tables, in both models, post-hoc features surpass pre-hoc features
by no more than 0.04 points for any performance indicator, with slightly better cov-
erage. Even for a data set with a wide range of topics, pre-hoc features can classify
questions with an accuracy of 0.58 and 0.598 using TM and Doc2Vec based models,
respectively, while post-hoc features can classify with an almost identical accuracy of
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Table 5.5: Performance comparison of Pre-hoc and Post-hoc features for TM based model
using different data sets

TM Based Model

Existing Dataset
(Topic Wise)

Our Dataset
(Random) Merged Dataset

Metrics Pre-hoc Post-hoc Pre-hoc Post-hoc Pre-hoc Post-hoc

Accuracy 0.733 0.747 0.58 0.597 0.622 0.644

Precision 0.662 0.674 0.578 0.587 0.587 0.61

Recall 0.733 0.747 0.58 0.597 0.622 0.644

F1-Score 0.683 0.696 0.567 0.585 0.586 0.617

AUC-ROC 0.632 0.703 0.692 0.72 0.679 0.734

Table 5.6: Performance comparison of Pre-hoc and Post-hoc features for Doc2Vec based
model using different data sets

Doc2vec Based Model

Existing Dataset
(Topic Wise)

Our Dataset
(Random) Merged Dataset

Metrics Pre-hoc Post-hoc Pre-hoc Post-hoc Pre-hoc Post-hoc

Accuracy 0.739 0.732 0.598 0.629 0.657 0.659

Precision 0.668 0.648 0.592 0.625 0.64 0.636

Recall 0.739 0.732 0.598 0.629 0.657 0.659

F1-Score 0.689 0.675 0.578 0.617 0.629 0.632

Auc-ROc 0.693 0.725 0.721 0.746 0.744 0.738

0.597 and 0.629 using TM and Doc2Vec based models, respectively.
In general, with pre-hoc features, the Doc2Vec based model conducts difficulty

wise question classification with an accuracy of 0.657 and F1-score of 0.629, whereas
the TM based model performs it with an accuracy of 0.622 and F1-score of 0.644,
demonstrating the efficiency of pre-hoc features

As for the importance of different features, from the semantic features of the ques-
tion, we extract the competency of the question title, question content, tags, question
size, and LOC for each question classifier. Apart from semantic features, the most
important pre-hoc features are questioner reputation and users’ bronze badge counts,
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Figure 5.1: Importance of Pre-hoc and Post-hoc Features

whereas post-hoc features include time interval between questioning and first answer,
view count, time interval between questioning and answer acceptance, upvote count,
and favorite count.

Answer to the RQ2: Pre-hoc features perform nearly identical to post-hoc features in
both the TM-based and Doc2Vec-based models, with a maximum difference of .04 for
any performance metric.

5.3 Correlation between Features and Question Difficulty Level

To understand the relationship between features and question difficulty level, we look
at Table 5.7 to see how the value of features changed as complexity increased and got
some interesting insights.
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Table 5.7: Changes of different features according to question difficulty

Features
Basic (736) Intermediate (410) Advanced (102)

Avg Median Avg Median Avg Median

Question size 66 50 115 80 212 164

LOC 7 4 13 6 23 13

User Reputation 22193 4810 25352 7660 16397 4510

User_Bronze_Badge 96 41 112 50 90 60

User_Gold_Badge 17 6 18 6 11 5

User_Silver_Badge 62 29 75 32 56 31

Accept Rate 58 0 63 0 64 89

View Count 189697 56300 99439 11700 21408 12400

Answer Count 9 5 8 4 4 5

Favorite_Count 81 12 124 11 24 3

Question Score 281 60 289 45 77 46

Up_Vote_Count 283 60 290 47 78 46

First_Answer_Interval 4956 4 6959 9 21278 11500

Accepted_Answer_Interval 27902 5 40154 15 73601 11

Url+Image_Count 0.3 0 1 0 2 1

Researchers have suggested that the complexity of the question is proportional to
the length of the question. We noticed, however, that Code Size is proportionate to
the difficulty of the questions after adding the code snippet for classifying complexity.
After more analysis, we uncover two plausible reasons. The first is that deciphering
lengthier codes is more difficult. The second issue is that people tend to include as
much content (textual and code) as possible to communicate a complex subject prop-
erly. As a result, as the number of lines of code increases, so does the difficulty.

With rising question complexity, both the View_Count and the Answer_Count
rapidly fall as users choose to go through the questions that they can understand. And
the more difficult the question, the more experience is required to answer it, limiting
the number of answer counts for difficult questions while allowing users from beginner
to expert to answer the easiest, increasing the number of answer counts for basic level
questions.

As for Favorite_Count, Question Score, and Up_Vote_Count, we can see that the
intermediate level questions gain the highest score while advanced level ones receive
the lowest. So it is safe to infer that users prefer a certain amount of brainstorming
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to solve a problem, but they do not want to spend too much time and mental energy
comprehending a single question.

Other strong measures of the complexity of the questions are the User reputation,
as well as the User badges. However, one essential point to note is that people with a
higher reputation ask intermediate-level questions, while those with a lower reputation
ask the most challenging questions. Knowing that upvotes, accepted answers, and
bounty contribute to user reputation, it is easy to see why people who ask intermediate-
level questions have a greater reputation than those who ask tough ones.

Though on average, questioners of intermediate level inquiries have the most user
badges and questioners of advanced level queries have the least, the median value
reveals a proportional relationship between user badge and question difficulty. This
is because active users frequently ask efficiency-related or why-type questions which
are of intermediate level difficult questions, whereas infrequent users occasionally ask
about critical/rare situations that belong to most difficult ones.

The Accept Rate, on the other hand, rises with difficulty level, implying that users
improve their ability to ask questions based on their domain expertise. They ask less
irrelevant, redundant, or unclear inquiries the more knowledgeable they are.

However, as the difficulty of the question increases, so does the first_answer_interval
and accepted_answer_interval, and these intervals lengthen significantly for advanced
questions. One possible cause is that only a few users have the level of knowledge
and competence required to answer difficult issues. Considerably understanding the
difficult question takes time, and discovering the answers takes even longer. Another
reason could be that because the number of challenging questions and potential an-
swerers is limited, attracting the attention of appropriate users for the responses takes
time.

Finally, although, the relationship between Url and image counts and difficulty is
not particularly strong, simple questions typically contain fewer subsidiary resources
than difficult questions, owing to the fact that difficult questions require more infor-
mation to convey them clearly. Another possible reason is that the questioner actually
analyzes the question himself to find the solution and then includes his conclusions
with the questions to provide some guidance to others.

Answer to the RQ3: While question size, LOC, accept rate, URL, and image count,
first_answer, and accepted_answer interval are proportionally connected to question
difficulty, view_count and answer_count are inversely proportional to difficulty. How-
ever, up to the intermediate level difficulty, user reputation and badges, favorite count,
question score, and upvote count increase, but drop for advanced level questions.
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Figure 5.2: Question difficulty vs. different features

5.4 General Discussion

Many filtering and preference options are available on Stack Overflow, including tags,
most watched, and most recent. However, failing to draw the attention of appropriate
users results in many valid questions remaining unanswered, or replies arriving after
a long period of time. Our study’s purpose is to predict a question’s difficulty level in
order to assist in question filtering for answering, lowering response time and unan-
swered questions.

To support our research, we first focused on developing a model that can classify
questions based on difficulty while maintaining optimal performance and applicability
for real-world circumstances. We had to rule out the Tf-Idf based model from our three
options owing to its intrinsic constraint of sparse vectorization. For the other models,
Doc2Vec based model performs better for all sorts of data sets and feature sets than
TM based model and is more context-dependent than TM based model, which is more
feature dependent.

After comparing different classifiers, we discovered that XGBoost outperforms the
others in terms of performance, coverage, and time. Therefore we may conclude that
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the Doc2Vec based model combined with the XGBoost classifier could be a viable
model for detecting question difficulty.

However, until a self-competent feature set is extracted, the model will not be
enough to solve the problem. When it comes to extracting features, one crucial con-
sideration is to focus on those features that are available when a new question arises,
because otherwise it will be unable to resolve difficulties with unanswered questions
or delay response time.

Here, post-hoc features are evidently not available when a question is posted;
rather, they are available after the question is answered. But it is vital for understanding
the characteristics of different difficulty level questions and users, as well as examine
the competency of pre-hoc features that are suited for question filtering.

Because post-hoc features provide more information than pre-hoc features, perfor-
mance increase with post-hoc features is natural. However, while comparing the per-
formance indicators of the two feature sets, we discovered that the result for pre-hoc
features did not decrease by more than 0.04, demonstrating the robustness of pre-hoc
features.

To cope with cold start problems where the questioners’ information is absent, we
used semantic features to examine the model’s performance and achieve satisfactory
results.

Finally, in order to better grasp the characteristics of difficult questions, we looked
at the relationship between attributes and question difficulty. We discovered that basic
level questions are modest in size and have fewer subsidiary components, which grows
as the difficulty level increases. And this complexity level proportional affects the
resolving and approved answer time intervals.

Advanced level questions, on the other hand, have the lowest view count and an-
swer count because they need in-depth knowledge and a high level of competence.
However, intermediate level questions have the greatest favorite count, question score,
and up_vote count, as users choose to solve the questions to learn more about their
degree of expertise. And among the most reputed and active users, the intermediate
level questions are more popular due to their real-world applicability.
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Chapter 6

Threats to Validity

In our study, some threats and challenging aspects raised a question on the validity of
our work. These are:

• Internal validity

• External Validity

• Constructive Validity

6.1 Internal Validity

Threats to internal validity include the models tendency towards topic based question
difficulty classification that may overlook the actual context of the inquiry. We mit-
igate this threat by employing a data set in which questions were chosen at random
regardless of the topic. At first we extracted the data dump of stack overflow 2017 then
arbitrarily picked the questions. Our data set has 908 distinct tags, ensuring that the
training and testing set is topic diverse.

Another concerning factor is the incorporation of features that are highly related
to the language since we have considered only Java language. But we didnt use any
language specific feature to keep it extendable for other languages. Moreover, we
selected Java because it is very popular and mature. According to Stack Overflow
survey we found 39.7% of the developer using this language. Besides it covers a lot of
programming philosophies from testing to object oriented programming which exhibits
the characteristics of any generic programming community.

6.2 External Validity

Threats to external validity concern the generalizability of our models for any scenario.
While several features are available for simply assessing question difficulty, there can
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only be a limited number of features accessible to enable difficulty-based question fil-
tering, which may reduce the models’ efficiency. To address this problem, we prepare
different feature sets like pre-hoc features for usual situations and semantic features
for the cold start problem where a user is anonymous or new in the community. Then
we train our models accordingly on different types of data sets for assessment. Finally,
we found that, for pre-hoc features, all model preforms with an minimum accuracy of
0.615 whilst with no prior information of users, all models have an accuracy of at least
0.60, which is fairly satisfactory.

6.3 Construct Validity

The main challenge regarding the construction validity is labeling the dataset. With
anonymous majority voting, we attempted to mitigate this threat. At least four re-
searchers categorized each item separately, and conflicts were resolved through expert
judgment. Only the question body, title, and tags were evaluated for labeling to mini-
mize the bias of other features.

To ensure the validity of the rules set, we focused on Hassan et al. [4]s rules and
divided them into granular levels for better understanding. We sought advice from
specialists to adjoin any new rules.

43



Chapter 7

Conclusion and Future Work

In this research work, we have done a comparative analysis and found that the Doc2Vec
model works the best for difficulty based question classification. The motivation be-
hind this work was to recommend questions to suitable users based on the question
difficulty level. So, for that, we needed to categorize the questions into different dif-
ficulty levels, which we have already done. In our work, we mostly considered Java-
related questions. As Java is the most popular programming language with a well-built
developers’ community, we could gather diverse types of questions in Stack Overflow
to support our research work.

So, our future works will explore the performance of our model on other program-
ming languages like C#, Python, Pearl, Ruby, etc. Other than that, to build the desired
recommendation system, the user base is also needed to be categorized for getting
the question answered. The users can be categorized based on their activities on Stack
Overflow(asking and answering questions), expertise level, and activeness. To measure
the users expertise level, further works can be done, like proposing some framework or
model. The temporal data related to users activities are also essential for recognizing
the active users because recommending questions to an inactive user will be futile.

And finally, we need a recommendation system that would recognize the hidden
relations between the question types and the users and recommend the questions to
users with enough expertise to answer the questions. So, there are a lot of scopes for
future works from this research work.
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