
1

Islamic University of Technology

Department of Mechanical and Production Engineering

DATA DRIVEN APPROACH TO

CONSTRUCT FLOW FIELD OF A 2D

AIRFOIL

A Thesis by

NAHIYAN CHOWHDURY

FAHMID HOSSAIN

ABRAR MAHI-Al-RASHID

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Bachelor of Science in Mechanical Engineering

June, 2022

2

DATA DRIVEN APPROACH TO CONSTRUCT

FLOW FIELD OF A 2D AIRFOIL

NAHIYAN CHOWHDURY

STUDENT ID: 170011024

FAHMID HOSSAIN
STUDENT ID: 170011049

ABRAR MAHI-AL-RASHID
STUDENT ID: 170011053

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Bachelor of Science in Mechanical Engineering

DEPARTMENT OF MECHANICAL AND PRODUCTION

ENGINEERING

June, 2022

3

CERTIFICATE OF RESEARCH

This thesis titled “DATA DRIVEN APPROACH TO CONSTRUCT FLOW FIELD OF A

2D AIRFOIL” submitted by NAHIYAN CHOWDHURY (170011024), FAHMID

HOSSAIN (170011049) and ABRAR MAHI AL RASHID (170011053) has been

accepted as satisfactory in partial fulfillment of the requirement for the Degree of

Bachelor of Science in Mechanical Engineering.

Dr. Md. Rezwanul Karim (Supervisor)

Associate Professor

Department of Mechanical and Production Engineering (MPE)

Mr. Tahsin Sejat Saniat (Co-Supervisor)

Lecturer

Department of Mechanical and Production Engineering (MPE)

4

Prof. Dr. Md. Anayet Ullah Patwari (Head of the Department)

Professor

Department of Mechanical and Production Engineering (MPE)

Islamic University of Technology (IUT)

5

DECLARATION

I hereby declare that this thesis entitled “DATA DRIVEN APPROACH TO CONSTRUCT FLOW

FIELD OF A 2D AIRFOIL” is an authentic report of our study carried out as requirement for

the award of degree B.Sc. (Mechanical Engineering) at Islamic University of Technology,

Gazipur, Dhaka, under the supervision of Dr. Md. Rezwanul Karim, Associate Professor, MPE,

IUT in the year 2022

The matter embodied in this thesis has not been submitted in part or full to any other institute for

award of any degree.

Nahiyan Chowdhury

Student ID: 170011024

Fahmid Hossain

Student ID: 170011049

Abrar Mahi-al-rashid

Student ID: 170011053

6

Acknowledgments

In the Name of Allah, the Most Beneficent, the Most Merciful

At first, we show our gratitude to our creator Allah (SWT), the most merciful and

the most benevolent for giving us the strength, skills and ability to complete this

project and write this dissertation in spite of facing many struggles.

We show our greatest gratitude to our honorable supervisors, Dr. Md. Rezwanul

Karim and co-supervisor Mr. Sayedus Salehin and Mr. Tahsin Sejat Saniat for their

guidance and support without which it would have been almost impossible to

complete our work.

Nahiyan Chowdhury

Fahmid Hossain

Abrar Mahi-al-rashid

June, 2022

7

Table of Contents

ABSTRACT 8

NOMENCLATURE 9

LIST OF FIGURES 10

LIST OF TABLES 12

Chapter 1: INTRODUCTION 13

1.1 13

1.2 Deep Learning Algorithm: 13

1.2.1 CNN: 14

1.2.2 Convolutional Layer: 16

1.2.3 ReLU Layer: 17

1.2.4 Max Pooling: 18

1.2.5 U-net Architecture: 19

1.2.6 Attention Unit: 20

1.2.7 U-net with attention unit: 21

1.3.1 Governing equations 23

1.3.2 Mass Conservation 24

1.3.3 Momentum Conservation 25

1.6.4 Energy Conservation 26

1.3.5 Partial Differential Equation (PDE) 27

1.3.6 CFD Methodology 28

1.3.7 Preprocessor 28

1.3.8 Solver 32

1.3.9 Postprocessor 33

1.4 Problem Statement 33

1.4 Objectives and Goals 34

1.5 Methodology 34

Chapter 2: LITERAURE REVIEW 35

2.1 Introduction 35

2.2 Scopes and Limitations 36

Chapter 3: EXPERIMENTAL METHODOLOGY 39

3.1 Introduction 39

3.2 Data Pre-processing 40

3.3 Training and Validation 46

Chapter 4: RESULT and DISCUSSION 48

4.1 Inference 48

4.2 Results and Discussion 48

8

Chapter 5: CONCLUSION and RECOMMENDATIONS 53

REFERENCES 55

9

ABSTRACT

Machine learning is quickly becoming a significant scientific computer tool, with enormous

potential to broaden the field of computational fluid dynamics. Various research has been

conducted in the recent past which emphasized on how the use of different Machine Learning

algorithm is playing an important role in the enhancement of computational fluid dynamics. In this

work we try to discuss about how we created an architecture of a Machine Learning algorithm by

using U-net, which is a type of convolutional neural network and tried to apply it in order to

reproduce a flow field around a 2D airfoil, which can be easily, if not quickly, produced using

CFD analysis. The principal aim of this thesis is to check whether our Deep learning architecture

is capable of providing an acceptable prediction of the flow field or not. If the flow field from DL

matches with that of CFD, then we can use this observation for further study and if it does not

match, there is still room for further correction. In order to execute the experiment, 3325 CFD

simulations were carried out and the flow fields achieved from the simulation as the result of the

experiment were separated into two groups.80% of the data was taken for training the DL

algorithm and 20% were used for validation. After implementing the DL algorithm, some of the

results were found to be almost similar to the results produced from the CFD simulation.

Keywords: Computational Fluid Dynamic, Machine learning, Deep learning, U-net, Airfoil,

Attention

10

NOMENCLATURE

CFD

ML

DL

CNN

AOA

DM

Computational fluid dynamics

Machine Learning

Deep Learning

Convoluted Neural Network

Angle of Attack

Designmodeller

DOE

 Re

Design of Experiment

Reynolds Number

 T

 LES

Absolute temperature

Large-Eddy Simulation

RANS

MSE

MAE

RMSE

Reynolds-averaged Navier–Stokes

Mean Squared Error

Mean Absolute Error

Root-Mean-Square-Deviation

11

LIST OF FIGURES

Figure 1: Flattening of a 3x3 image matrix into a 9x1 vector 14

Figure 2: Matrix Form of 4x4x3 RGB Image 15

Figure 3: Convolutional operation with 2*2 kernel, 1 stride 16

Figure 4: ReLU Function 17

Figure 5: Max Pooling 18

Figure 6: U-net Architecture 19

Figure 7: Attention Unit 19

Figure 8: U-net with attention gate 20

Figure 9: Difference between Lagrarian and Eulerian Approach [1] 23

Figure 10: Methodology of CFD 27

Figure 11: Flowchart for flow physics in CFD [7] 29

Figure 12:Categorization of Turbulence Modelling 31

Figure 13: In the context of DNS, turbulence modeling, and ROM, a breakdown areas where ML

could help CFD to improve. Image source: [36]–[39] 36

Figure 14: Experiment Methodology 38

Figure 15: Framework of Data Collection 39

Figure 16: Flowchart of Data Pre-processing 40

Figure 17: Workbench arrangement for NACA 644221 41

Figure 18: Geometry of NACA 644221 42

Figure 19: Mesh of NACA 644221 43

Figure 20: Pressure Profile of NACA 644221 at AOA: 0o & Re: 1.8 × 106 44

Figure 21: Velocity Profile of NACA 644221 at AOA: 0o & Re: 1.8 × 106 44

Figure 22: Machine Learning Architecture 45

Figure 23: Architecture of U-net with attention mode [49] 46

12

Figure 24: Inference flowchart 47

Figure 25: Testing airfoil NACA 63415 comparisons of the flow velocity field. From left to

right, v-CFD, v-prediction (u-net) 48

Figure 26: From left to right, v-CFD and v-prediction (u-net) 49

Figure 27: From left to right, v-CFD, and v-prediction (u-net) 49

Figure 28: From left to right, v-CFD and v-prediction (u-net) 50

LIST OF TABLES

4.1 Error assessment example for case 3…………………………………....................51

13

Chapter 1: INTRODUCTION

1.1 Background

For many industrial applications, Fluid mechanics is of greatest significance. Governing equations

for most of the fluid flow are non-linear Navier–Stokes equations which are partial differential

equations of mass conservation and momentum conservation of Newtonian Fluid. Computational

Fluid Dynamic (CFD), one of the significant subjects of numerical simulation, aims to solve these

Navier–Stokes equations to model actual fluid flow. It offers detail information on different types

of fluid flow. But one of the glaring limitations of CFD is that it can become computationally

expensive or may be intractable due to the complexity of fluid mechanics especially for turbulent

flow. Here with availability of sufficient amount of data, data driven approach can enhance the

performance of CFD.

Deep learning, a subdivision of machine learning, is swiftly becoming a core component in data

science, enabling numerous advances across many disciplines of engineering. [1] It is inspired

form the neural structure of human body. The building block for Deep learning is Artificial Neural

Network (ANN) and Convolutional Neural Networks (CNN) which make excellent non-linear

approximation. CNN uses numerous layers to extract features from raw data. CFD could become

one of its potential applications. Deep learning can increase the speed of high-fidelity simulations,

develop both high and low fidelity simulation and also can enhance the understanding of some

fluid flow by Reduced order Models. [2]

In this work we have presented a deep learning model “U-net with Attention block” to create

velocity field over an airfoil from pressure field of that airfoil.

1.2 Deep Learning Algorithm:

Before discussing about the U-net architecture, we are discussing about the building block of the

architecture which are given as follow.

1.2.1 CNN:

14

A convolutional neural network (CNN) is a kind of artificial neural network (ANN) which is

generally applied to analyze visual imagery. CNN in U-net architecture consists of three layers

which are,

1. Convolutional Layer

2. ReLU Layer

3. Max Pooling

These layers in contracting path reduces the spatial information while increasing feature

information. In the expending the feature and spatial information are combined through up-

convolutions and concatenations.

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning system capable of taking an

input picture, assigning weight (learnable weights and biases) to certain aspects in the image, and

discriminating between them. ConvNet requires far less pre-processing than other classification

techniques. While traditional techniques need the hand-engineering of filters, ConvNets can learn

these filters/characteristics with sufficient training.

A ConvNet's design is inspired by the structure of the Visual Cortex and is similar to the Human

Brain's connection pattern of Neurons. Individual neurons may respond to stimuli only in a

restricted area of the visual field known as the Receptive Field. Many of these fields overlap. A

collection of similar fields can be utilized to fill the whole visual field.

An image is nothing more than a matrix of pixel values. Why not simply flatten the picture (for

example, converting a 3x3 image matrix to a 9x1 vector) and feed it to a Multi-Level Perceptron

for classification?

15

Figure 1: Flattening of a 3x3 image matrix into a 9x1 vector

When class prediction is applied to basic binary images, the approach may produce an average

precision score; however, when applied to complex images with pixel dependencies throughout,

the method yields little to no accuracy. Using proper filters, a ConvNet may capture the Spatial

and Temporal correlations in an image. Because to the reduced number of parameters involved and

the reusability of weights, the architecture achieves superior fitting to the picture dataset. In other

words, the network may be trained to recognize the complexity of a picture.

16

Figure 2: Matrix form of a 4x4x3 RGB Image

In the picture, we have an RGB image which has been divided by its three-color planes — Red,

Green, and Blue. Grayscale, RGB, HSV, CMYK, and other color spaces exist in which images can

be found.

One can anticipate how computationally hard things will get once the photos exceed 8K

(76804320) dimensions. The role of the ConvNet is to compress the images into a form which is

easier to process, without sacrificing features which are crucial for generating a decent forecast.

This is critical for designing an architecture that is capable of learning features while also being

scalable to large datasets.

1.2.2 Convolutional Layer:

Convolutional Layer is the first layer in a CNN and also the core building block. Through images

17

a convolution sweeps and calculates its input. By this convolution, a particular feature is detected

from the input and feature maps are produced. The input is convolved using kernels. Using the

sliding window method Kernels are applied across the image. If more kernels are applied then

more features would be extracted. This kernel is slided across the input file, and computes a dot

product which is provided to an activation map. Padding is used to assist the kernel with processing

the image. Padding is the method of adding pixels to an image. In conjunction with padding, Stride

is a parameter of the kernel that signifies the amount of movement over the image.

Figure 3: Convolutional operation with 2*2 kernel, 1 stride

Different kernel detects different features of the input. There is a formula which is used in

determining the dimension of the activation maps:

𝑌 = (𝑁 + 2𝑃 — 𝐹)/ 𝑆 + 1

Where, Y= Dimension of the output, N = Dimension of image, P = Padding, F = Dimension of

Kernel, S = Stride.

1.2.3 ReLU Layer:

ReLU (rectified linear activation function) layer is one of the most widely used activation functions

in Deep learning. It returns 0 if it gets negative value, and if a positive value is given, it returns the

same value. ReLU function converts all the negative values to zero and it activates only for positive

input. ReLU increases non-linearity in the CNN. The function is as below:

18

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)

Figure 4: ReLU Function

1.2.4 Max Pooling:

In all the CNN block we have used Max Pooling. Max pooling is used to replace output with the

max values to reduce data size. This reduces overfitting. Strides and Size are the two

hyperparameter used for pooling.

Figure 5: Max Pooling

19

1.2.5 U-net Architecture:

In “BioMedical Image segmentation” by Olag Ronneberger et al. [3]U-net was first introduced. It

proved its potential in image segmentation and image transformation. Just like its predecessor

Auto-encoders U-net has two parts which are contracting path or encoder and expending path or

decoder. However, it differs in having a concatenating relation between the encoder and the

decoder.

In the encoder there is a large number of kernel channels. This makes the network propagate

context information to higher resolution layers. The encoder is symmetric to the decoder in the

contracting path which make the architecture U-shape. The encoder has a typical CNN. It consists

of two 3*3 Convolution layer each having a 3*3 max pooling layer and a ReLU layer. Similarly,

the decoder has a 2*2 up-convolution, a concatenation with the correspondingly encoder’s cropped

feature map, two 3*3 convolutions each having a ReLU layer. The architecture is shown in Figure

1.6:

Figure 6: U-net Architecture

20

1.2.6 Attention Unit:

In deep learning Attention Unit imitate closely to cognitive attention. It was first introduced in

“Attention Is All You Need” [4] paper. In image segmentation it reduces computational wastages,

make the training of the algorithm faster and smother.

The attention gate takes two inputs which are vectors x and y. From the next lowest layer y vector

is taken. The two vectors are summed. It provides larger aligned weights and relatively smaller

unaligned weights. The resultant vector passes a ReLU layer and a sigmoid layer. Then it is up

sampled using trilinear interpolation.

Figure 7: Attention Unit

1.2.7 U-net with attention unit:

During the connection between encoder and decoder many low levels of feature extractions occurs

due to the poor feature representation in the initial layers. To avoid this redundant feature

concatenation in the expending path attention units are added in the skip connection.

21

Figure 8: U-net with attention gate

1.3 Background of CFD

Computational fluid dynamics is the mathematical description and numerical solution of a

physical event involving fluid flow (CFD). It is a field of fluid mechanics that investigates and

solves fluid flow issues using numerical analysis and data structures. Computers are utilized to

do the computations necessary to model the fluid's free-stream flow and interaction with

boundary-constrained surfaces. High-speed supercomputers, which are often required to handle

the most complex and large-scale problems, can produce superior results. Ongoing research

results in software that increases the accuracy and speed of complicated modeling situations like

transonic or turbulent flows. The first validation of such software is frequently accomplished

using experimental equipment such as wind tunnels. Additionally, previous analytical or

empirical judgments of a certain issue may be utilized for comparison. For final validation, full-

scale testing, such as flight tests, is typically performed. CFD is used in a variety of applications,

including aerodynamics, aerospace analysis, weather simulation, hypersonic, natural science and

environmental engineering, biological engineering, fluid flows and heat transfer, industrial

system analysis and design, visual effects for cinema and gaming, and engine and combustion

analyses.

22

The following is a summary of CFD history:[5]

● Improvements in mathematical models and numerical approaches till 1910.

● Model and technique integration to obtain numerical answers based on manual

computations between 1910 to 1940

● Early computers were able to solve flow over and around a cylinder with the aid of a

mechanical desk calculator in 1953 by enabling the transition to computer-based

computations (ENIAC). This was executed by Kawaguti.

● Between 1950 and 1960, the United States' Los Alamos National Laboratory conducted

the first computer-based research on flow of fluid based on the famous equation derived

by Navier and Stokes. Vorticity is calculated using the stream function method. This is

the first implementation of 2D, transient, incompressible flow in the world.

● Hess and Smith released "Calculation of potential flow about arbitrary bodies" in 1967,

the first scientific study on 3D computer research. Contribution of many methodologies,

such as the Arbitrary Lagrangian-Eulerian model, the k-turbulence model, and the

SIMPLE algorithm, which are all still employed in commercial code production.[6]

● Between 1960 and 1970, Boeing, NASA, and others debuted proceeded to deploy several

deliverables like submarines, ships, motor transport and automobiles, helicopters and

planes.[7], [8]

● Between 1980 and 1990, Jameson et al. enhanced the reliability of transonic flow solutions

in three dimensions. Commercial codes are being used in both academics and industry.

● Significant advances in informatics are observed from 1990 to present where widespread

use of CFD in nearly every field has been achieved.

1.3.1 Governing equations

The main framework of thermo-fluids research is guided by governing equations based on fluid

physical property conservation laws. The three conservation laws are the fundamental

equations:[9]

● The Continuity Equation and Mass Conservation

● Newton's Second Law of Momentum Conservation

● Energy Conservation from First Law of Thermodynamics

Within a closed system, mass, momentum, and energy are stable constants, according to these

23

notions. Everything, in essence, must be kept.

For the investigation of fluid flow with temperature fluctuations, certain physical parameters are

essential. The three variables that are unknown, are required to be determined concurrently from

the three widely established conservation equations are velocity v, pressure p, and absolute

temperature T. Regardless, p and T are variables that are independent thermodynamically. The

conservation equations' final version adds four extra thermodynamic variables: density, enthalpy

h, viscosity, and thermal conductivity k. These latter parameters are determined in a unique

fashion by the values of p and T.

Fluid flow should be evaluated to determine vecv, p, and T at all points of the flow regime. This

is crucial when developing any device that incorporates fluid flow. Furthermore, measuring fluid

flow using kinematic characteristics is a key topic. Lagrangian and Eulerian methods can be used

to study fluid movement. The Lagrangian theory of fluid motion is founded on the notion of

following a sufficiently large fluid particle to distinguish properties. Initial coordinates at time t0

must be checked, as well as the instantaneous coordinates at time t1. Following millions of

individual particles down the journey is nearly difficult.

Figure 9: Difference between Lagrangian and Eulerian Approach [1]

Motion is always time-dependent in the Lagrangian formulation. As a, b, and c are a particle's

24

starting coordinates, x, y, and z are the same particle's coordinates at time t. A Lagrangian flow's

motion is described as follows:

𝑥 = 𝑥(𝑎, 𝑏, 𝑐, 𝑡)𝑦 = 𝑦(𝑎, 𝑏, 𝑐, 𝑡)𝑧 = 𝑧(𝑎, 𝑏, 𝑐, 𝑡)

The constituents of velocity at the position (x,y,z) at time t are denoted by u, v, and w in the

Eulerian method. As a result, the independent variables x, y, z, and t are functions of the unknown

variables u, v, and w. The velocity of an Eulerian flow at time t is described as follows:

𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡)𝑣 = 𝑣(𝑥, 𝑦, 𝑧, 𝑡)𝑤 = 𝑤(𝑥, 𝑦, 𝑧, 𝑡)

1.3.2 Mass Conservation

The equation for mass conservation is as follows:

𝐷𝜌𝐷𝑡 + 𝜌(𝛻 ⋅ 𝑣 ⃗) = 0
Where. ρ is the density, v⃗ the velocity and ∇ the gradient operator.

∇ ⃗ =i ⃗ ∂∂x+j ⃗ ∂∂y+k ⃗ ∂∂z

The flow is considered to be incompressible if the density is constant, and the continuity equation

becomes:

𝐷𝜌𝐷𝑡 = 0 → 𝛻 ⋅ 𝑣 ⃗ = 𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑦 + 𝜕𝑤𝜕𝑧 = 0

1.3.3 Momentum Conservation

The Navier-Stokes Equation, which describes the conservation of momentum, is given by:

𝜕

𝜕𝑡
(𝜌�⃗�)⏞𝐼 + 𝛻 ⋅ (𝜌�⃗��⃗�)⏞𝐼𝐼 = −𝛻𝑝⏞𝐼𝐼𝐼 + 𝛻 ⋅ (𝜏‾)⏞𝐼𝑉 + 𝜌�⃗�⏞𝑉

Where, p is static pressure, τ¯ is viscous stress tensor and ρg⃗ is the gravitational force per unit

volume. Here, the roman numerals denote:

25

I: Local change with time

II: Momentum convection

III: Surface force

IV: Diffusion term

V: Mass force

According to Stoke's Hypothesis, the viscous stress tensor may be defined as follows:

𝜏𝑖𝑗 = 𝜇𝜕𝑣𝑖𝜕𝑥𝑗 + 𝜕𝑣𝑗𝜕𝑥𝑖– 23(𝛻 ⋅ 𝑣 ⃗)𝛿𝑖𝑗

If the fluid is incompressible and has a constant viscosity coefficient, the Navier-Stokes equation

is reduced to:

𝜌𝐷𝑣 ⃗ 𝐷𝑡 = −𝛻𝑝 + 𝜇𝛻2𝑣 ⃗ + 𝜌𝑔 ⃗

1.6.4 Energy Conservation

The first law of thermodynamics asserts that the amount of work and heat contributed to a system

will result in an increase in the system's energy:

𝑑𝐸𝑡 = 𝑑𝑄 + 𝑑𝑊

Where, dQ is the amount of heat delivered to the system, dW is the amount of work done on the

system, and dEt is the increase in total energy. An example of a frequent sort of energy equation

is:

𝜕

𝜕𝑡
(𝜌�⃗�)⏞𝐼 + 𝛻 ⋅ (𝜌�⃗��⃗�)⏞𝐼𝐼 = −𝛻𝑝⏞𝐼𝐼𝐼 + 𝛻 ⋅ (𝜏‾)⏞𝐼𝑉 + 𝜌�⃗�⏞𝑉

The roman numerals are:

26

I: Local change with time

II: Convective term

III: Pressure work

IV: Heat flux

V: Source term

1.3.5 Partial Differential Equation (PDE)

The mathematical model only provides interrelationships between transport factors that are either directly

or indirectly involved in the entire operation. Regardless of whether or not every parameters in those

equations discussed has a relative influence on the real circumstances, any interchange in parameters must

be evaluated concurrently using the numerical methods for solution, which includes differential equations,

vector and tensor notations. A PDE has several variables and is represented by the symbol "". When an

equation is derived using "d," it is referred to as an Ordinary Differential Equation (ODE) since it only has

one variable and its derivation. PDEs are used to convert the differential operator () into an algebraic

operator in order to achieve a solution. PDEs are frequently employed in heat transfer, fluid dynamics,

acoustics, electronics, and quantum physics to address issues. Thomee's work might be valuable in building

on a concept. [10]

Example of ODE:

𝑑2𝑥𝑑𝑡2 = 𝑥 → 𝑥(𝑡)

Where, T is the single variable

Example of PDE:

𝜕𝑓𝜕𝑥 + 𝜕𝑓𝜕𝑦 = 5 → 𝑓(𝑥, 𝑦)
Where, both x and y are the variables

27

The numerical solution is an approach based on discretization for providing approximate answers

to tough problems that analytic methods are incapable of handling. Furthermore, the precision of

the discretization has a substantial influence on the numerical solution's validity. Some of the most

common discretization methods include finite difference, finite volume, finite element, spectral

(element) approaches, and boundary element.

1.3.6 CFD Methodology

CFD methodology can be divided into three parts[11], [12], which are:

1. Preprocessor

2. Solver

3. Postprocessor

A brief description of the whole CFD methodology is given in the figure in Figure 1.10.

Figure 10: Methodology of CFD

1.3.7 Preprocessor

28

The first step in any CFD study is to define and construct the geometry of the flow area, which acts

as the computational domain for the CFD calculations. The geometry can be created in any CAD

software like Solidworks, Autocad, Autodesk and other CAD softwares or the built-in software in

ANSYS, which are Spaceclaim and Designmodeller. [13]–[16]

For investigation, the solution domain is divided into multiple cells. Mesh refers to the

computational framework's integration of these cells. Mesh is a method of dividing a domain into

tiny cells or components, allowing a mathematical model to be applied to each cell under the

condition of linearity. This indicates that the behavior and attitude of the variable parameters to be

resolved must be linear inside each cell. This criterion also suggests that a finer mesh is required

in locations where the predicted physical qualities are likely to be highly dynamic. Readers are

highly encouraged to read these literatures [17], [18] in order to understand more about mesh. Mesh

structure errors are a common cause of simulation failure. This might be because the mesh applied

is sufficiently coarse, not covering all the results that happens to occur in this single cell element

in a synchronized manner, but rather covering a variety of results that change as the mesh becomes

finer. Thus, an examination of independence is required. The structure of mesh has a major effect

on the precision of the solution. The analyst must pay close attention to the kind of cell, the quantity

of cells, and the calculation time in order to implement precise solutions and acquire reliable

results. Mesh convergence is defined as the optimization of these constraints, which may be

organized in the following manner:

a. Produce a mesh structure with an acceptable number of parameters and ensure that the

quality of mesh and coverage of the CAD model are sufficient for inspection. Carry out

the inquiry.

b. In mesh constructions, increase the number of elements. Repeat the analysis and suitably

compare the solutions in the aftermath.

c. Continue to fine-tune the mesh until the results match the previous ones.

After meshing, we have to select the materials to be used and also select the flow physics. A

flowchart for flow physics is shown in the Figure 1.11.

29

Figure 11: Flowchart for flow physics in CFD [7]

Proper starting and boundary conditions must be utilized while solving the Navier-Stokes equation

and the continuity equation. Here we shall discuss about Neumann and Dirichlet Boundary

Conditions briefly. For further knowledge of boundary condition, readers can look into this. [19]

Neumann and Dirichlet Boundary Conditions

• A Dirichlet boundary condition describes a variable's value at the boundary, such as

u(x) = constant

• When using a Neumann boundary condition, one defines the gradient normal to the variable's

border, for example

∂nu(x) = constant

30

• Remember that multiple types of boundary conditions may be used for different variables at the

same boundary.

Inlet

Inflow

• Variables transferred on the boundary, either by a predefined profile or (at the user's discretion)

by executing an initial 1D, fully developed-flow calculation.

Stability

• Fixed total pressure and temperature (in compressible flow) or total head (in incompressible

flow); typical compressible input condition

Outlet

Outflow

• The normal gradient of all variables is 0.

∂n(Ø) = 0

Pressure

• If the exit is subsonic, except for the constant pressure value, the usual outlet condition in

compressible flow.

1.3.8 Solver

In the solver section, let us begin with turbulence modeling. One of the most challenging tasks in

science and mathematics is calculating turbulent flows. For decades, scholars have been confused

by exact turbulence solutions, and it is commonly believed that there is no closed form solution to

31

any fluid flow issue except the most fundamental laminar circumstances. Regardless, there are

ways for doing calculations with enough precision to make engineering and design decisions. The

accuracy of turbulent simulations has gradually grown as processing capabilities have become

more powerful and numerical modeling has progressed. The first CFD problems were fairly simple,

2D incompressible steady-state settings with laminar flows. The first three-dimensional CFD

simulation, as far as we know, was not completed until 1967. [6] Simultaneously, the first climate

models were being developed to represent global fluid circulation. Shortly thereafter, progress

increased as processing power and modeling approaches improved. The incorporation of

turbulence modeling into CFD solutions was a considerable step forward. Early turbulence models

accounted for turbulence impacts using a concept known as "eddy viscosity." Eddy viscosity is a

notable increase in viscosity caused by small-scale chaotic disturbances in a fluid (or turbulent

viscosity). The models do not attempt to replicate microscale turbulent dynamics, but rather

attempt to mimic them by increasing fluid viscosity. As we shall see, turbulent viscosity is

significant in Reynolds Averaged Navier Stokes (RANS) models. Other options, as we will see,

do not rely substantially on the turbulent viscosity concept. A detailed study on turbulence

modelling was conducted by Gorman et al [20], which will give the readers a good idea about

turbulence modelling. The categorization of turbulence modelling is shown in Figure 1.12.

Figure 12: Categorization of Turbulence Modelling

Convergence is an important concept in computational analysis. The flow of fluid has a nonlinear

mathematical model with several intricate models such as turbulence, phase shift, and mass

transfer, all of which have a substantial influence on convergence. In addition to the analytical

model, the numerical solution uses an iterative process to get answers by lowering errors between

stages. The error is indicated by the difference between the final two values. The result gets more

32

dependable as the absolute error falls, suggesting that it is reaching a stable solution. How can

analysts know about the convergence of a solution? Even if the intended situation is transient,

convergence should continue until a steady-state condition is reached, suggesting that outputs

change over time. Each time step must achieve convergence as if they were all steady-state

processes. What are the requirements for convergence? Like stone remnants, equation residuals

change with each iteration. Convergence happens as iterations get closer to a certain value. Those

activities must be conducted for every time step in a temporary circumstance. Convergence can

also be altered in the following manner:

● Initial conditions, Courant number, under-relaxation may all be used to speed up the

process.

● The answer does not necessarily have to be right, but it must converge; the chosen mesh

and mathematical model would be erroneous or have ambiguities.

● Stabilization approaches include adequate quality and refinement of mesh, and first- to

second-order discretization procedures.

● If required, verify that the solution is reproducible to avoid misunderstanding.

1.3.9 Postprocessor

After solving the Navier-Stokes equations numerically, it is now time for postprocessing. In the

postprocessor, we retrieve the output by means of X-Y plots, vectors, contours, line contours,

streamlines and many other formats. It is plausible to create animations of the results.

1.4 Problem Statement

The generation of flow field around an external object is a common simulation experiment which is

practiced by many beginners. In our thesis we focused on generating the flow field of a 2D airfoil by using

a data driven approach. This is a common and beginner level simulation that can be achieved by any CFD

software. But generating the flow field using Machine Learning (ML), and making prediction is something

that is not much studied. The challenge here is to build the architecture of ML using CNN in order to predict

the flow field of any given model of NACA airfoils at a different angle of attack (AOA) and Reynolds

number (Re).

1.4 Objectives and Goals

33

The objectives and goals of our experiment is simple. In short, the aim of this thesis is:

1. To simulate and analyze the flow regime of a 2D airfoil using ANSYS Fluent.

2. To collect the velocity and pressure filed around the airfoil from Fluent.

3. To collect the velocity and pressure filed around the airfoil from U-net.

4. To compare and contrast the results of Fluent with that of U-net.

1.5 Methodology

The methodology can be summarized by the following:

● At first, the different geometry of the NACA models were collected.

● Then geometry of the models was generated.

● After this meshing was applied.

● Boundary conditions were then specified.

● With a suitable turbulence model, in this case Spalart-Allmaras model is used, the calculation is

executed.

● The velocity and pressure fields were collected.

● The experiment was repeated 3325 times by changing parameters like NACA models, angle of

attack and Reynolds number.

● The ML algorithm is trained with 80%of the data and 20% data were used for validation.

34

Chapter 2: LITERAURE REVIEW

2.1 Introduction

From the literature review it can be found that there is a huge potential for Machine Learning in

improving CFD. The areas where Machine learning is applicable are as follow, increasing the

computational power of DNS (direct numerical simulations), Turbulence modelling and

developing reduced order model for better the physical understanding. [21] Our work mainly

focuses on Turbulence modelling particularly RANS modeling. Ling et al. [22] gave a feasibility

study on ML for RANS modeling. Duraisamy et al. [23] review work gives an excellent

understanding on ML application in RANS modeling. Ahmed et al. [24] also provides emerging

ML approaches to RANS modeling.

Obiols-Sales et al. [25] proposed a process in order to help increase the processing power for

convergence of RANS simulations on the basis of Spalart–Allmaras (SA). Kutz. [26] provided

an architecture to embed Galilean invariance. There are also physical informed ML models to

improve RANS modeling [27]. Jiang et al. [28] developed a physics-informed residual network

for RANS modelling based. Weatheritt and Sandberg [29] using gene-expression programming

provided interpretable RANS models. J.-L. Wu [30] proposed a physical informed Random Forest

for RANS modeling. Mi et al. [31] developed neural networks which can detect the different flow

regimes. Use of Artificial Neural Network can also be seen in CFD. Beck et al. [32] used ANN

with convolutional filter to develop the mapping of the flow. Lapeyre et al.[33] also used the

similar approach but with CNN. Another interesting approach developed by Novati et al.[34]

using multi-agent reinforcement-learning in turbulence modeling. Guo et al [35] used CNN to

predict velocity field over several geometrical shapes achieving 98% accuracy. Ma et al [36]

proposed DL model for closure of two-fluid bubble flow. Gibou [37] provided different directions

for ML applications in multiphase flow. Skinner [38] used CNN for airfoil optimization from

airfoil parameters.

Machine learning is seen to be applied in high-fidelity cases too. Many machine learning

approaches are developed recently to increase the efficiency of DNS. Bar-Sinai et al. [39]

proposed a deep learning technique to estimate spatial derivatives in low-resolution grids. Jeon

35

and Kim [40] developed a deep neural network to simulate finite-volume discretization and they

tested it with reactive flows which obtained excellent agreement with reference. Stevens and

Colonius [41] improved the accuracy of finite-difference/finite-volume methods by using fully

convolutional LSTM network. Decreasing the size of the computational domain needed to retain

physical properties of the system is an approach to accelerate numerical simulations. Fukami et

al. [42] used a convolutional autoencoder with an MLP to develop a time-dependent inflow

generator for wall-bounded turbulence simulation. It was tested in a turbulent channel flow at 180

Reynolds Number. Another approach could be without simulating the far field to set the right

pressure-gradient distribution. Morita et al. [43] developed such a method using Bayesian

optimization based on Gaussian-process regression which showed promising results. T. Shan et

al. [44] solved Poisson’s equation to accelerate CFD using deep learning technique. A. Ozbay et

al. [45] used fully-convolutional neural networks to solve the Poisson problem. It decomposed

the problem into a homogeneous Poisson problem and multiple inhomogeneous Laplace

subproblems which resulted in lower percentage errors. This method could also be used in lower

fidelity that rely on turbulence models.

2.2 Scopes and Limitations

In this work, we have used ML to enhance the performance of CFD and provide an alternative

route to achieve the flow field of a 2D airfoil. In case of using ML as a catalyst for the performance

of CFD, there are mainly three major areas in which we can focus on. The areas are – direct

numerical solution (DNS), turbulence modelling and reduced-order model (ROM). The

relationship of ML and these three models are presented visually in the Figure 2.1.

36

Figure 13: In the context of DNS, turbulence modeling, and ROM, a breakdown areas where ML

could help CFD to improve. Image source: [36]–[39]

Deep learning, for instance, may be costly to train and requires a large amount of data. As a result,

it is vital to identify areas where machine learning outperforms decades-old methodologies with

increased accuracy and efficiency. Besides, the question of how training data is collected and if the

associated costs are included when benchmarking. In this circumstance, transfer learning is a viable

area for enhancing CFD. [50]

It should also be noted that there are deep learning options that may be better suited for specific

applications. Finally, the information available to the user on the training data must be evaluated:

certain flow factors was included in the ML model to increase learning efficiency and prediction

accuracy. [21]

A variety of machine learning algorithms have recently been developed to increase DNS efficiency.

Bar-Sinai et al. [51] suggested a deep learning-based strategy for estimating spatial derivatives in

low-resolution grids that outperformed classic finite-difference techniques. Stevens and Colonius

devised a similar strategy to enhance the performance of fifth-order finite-difference techniques in

shock-capturing simulations.[52]

37

DNS is unfeasible for many application scenarios as a result of the computational cost of resolving

all scales for high Reynolds number flows, as well as challenges caused by complicated geometries.

Industrial CFD often depends on either RANS models, which simulate no turbulent scales, or

coarsely resolved LES, which resolve just the biggest turbulent scales and model lesser ones.[21]

Machine learning is also being utilized in fluid dynamics to create reduced-order models (ROMs).

ROMs are based on the notion that even complicated flows frequently have a few prominent

coherent features. [53], [54]

Creating a ROM entails determining a set of reduced coordinates, which often describe the

amplitudes of critical flow structures, and determining a differential-equation model for how these

amplitudes change over time. Either of these phases have experienced significant breakthroughs in

machine learning in recent years. One popular ROM strategy is to learn a low-dimensional system

of coordination also with correct orthogonal decomposition (POD). [54], [55]

Chapter 3: EXPERIMENTAL METHODOLOGY

38

3.1 Introduction

In chapter 1, we have briefly discussed about our methodology. Here we discuss the methodology

in details. For clarity, we have divided our experimental methodology into three parts which are

– data preprocessing, training and validation, and inference. The figure below shows the brief

methodology of our experiment. We have used the works of Vinothkumar et al. [56] , who

developed a DL approach to predict the flow field around 2D airfoil, as our benchmark.

Figure 14: Experiment Methodology

3.2 Data Pre-processing

In this part, we had done several works. The CFD simulation as well as the collection of data had been

executed in this step. At first, we have collected the coordinates of different NACA models from this site

[57]. 95 different NACA models are selected. For each model, simulation was run for five sets of angle of

attack (AOA), which are 0o, 3o, 6o, 9o and 12o, and seven sets of Reynolds number (1100000, 1200000,

1300000, 1500000, 1600000, 1800000, 2000000). In total 3325 cases were simulated. The framework of

39

data collection is shown in the Figure 3.2.

Figure 15: Framework of Data Collection

After the NACA models were collected, geometry of the model is formed. After the formation of

geometry, a suitable structured mesh was generated. The mesh was relatively coarse. For the

solution, Spallart-Almaras model was chosen as the turbulent model. In this way different sets of

NACA were configured in ANSYS FLUENT and the boundary conditions were selected. Then

batch simulation was executed. From the results in post-CFD, we had to reconfigure the color

scale and normalize the dimension of the geometry. The images of pressure and velocity regimes

were collected using a fixed scale. The data generated was then used for training and validation.

The flowchart of data pre-processing is shown in Figure 3.3.

40

Figure 16: Flowchart of Data Pre-processing

Our workflow in the workbench of ANSYS Fluent is shown in the figure below. This workflow is

for NACA 644221. In the workbench, we have arranged this NACA model into 35 different

projects. In each row, we have kept the Reynolds number constant and changed the angle of attack.

In each column, we have kept the angle of attack constant and the Reynolds number is changed.

NACA Air Foil model
Collection

Ansys Fluent
Configuration

Selection of Boundary
Condition

Batch simulation For
Specific set

Color Scale
configuration &

Dimension
Normalization

Collection of Pressure
and Velocity regime
images using fixed

scale

41

Figure 17: Workbench arrangement for NACA 644221

We have made our geometry in Designmodeller. At first, extracted the csv files of different NACA

models and imported it into the DM. In the DM we made a sketch of the airfoil and the environment

around it with using operations like surfaces from edges, surfaces from sketch, sketch, rotation and

boolean. The geometry of NACA 644221 is shown in Figure 3.5.

42

Figure 18: Geometry of NACA 644221

In mesh generation, we have used structured mesh. Linear element order had been used. There

were five inflation layers. For the inflation, the growth rate is 1 and for the edge sizing the growth

rate is 1.2. The mesh generated is shown in the figure 3.6.

43

Figure 19: Mesh of NACA 644221

After meshing, in the solver, the material is chosen. Pressure-based solver is used along with

absolute velocity formulation. Air is chosen as the flowing fluid. Spalart-Allmaras model is chosen

for turbulence modelling. This is a one-equation based turbulence model for aerodynamic flows.

[58] After coverging, from the post-CFD, we formatted the velocity and pressure flow field and

collected the picture to train in the CNN. In the figure below, the picture for velocity profile and

pressure profile are shown for NACA 644221 at AOA 0o and Re 1.8 × 106.

44

Figure 20: Pressure Profile of NACA 644221 at AOA: 0o & Re: 1.8 × 106

Figure 21: Velocity Profile of NACA 644221 at AOA: 0o & Re: 1.8 × 106

3.3 Training and Validation

The data achieved from the data pre-processing is processed in this step. 80% of the data were used

45

for training the ML algorithm and 20% data were used for validation. The algorithm is based on

U-net. U-Net is a CNN for biological image segmentation developed at the University of Freiburg's

Computer Science Department. The architecture of the network was improved and enlarged to

function with less training photographs and produce more precise segmentations. The basic idea is

to add successive layers to a standard contractual network, with up sampling operators replacing

pooling operations. As a result, the output resolution is improved by these layers. A subsequent

convolutional layer may learn to create a precise output based on this information. The architecture

of the ML is shown in Figure 3.9.

Figure 22: Machine Learning Architecture

In this process we have used U-net with attention mode. In the context of picture segmentation,

attention is a method of highlighting just the important activations during training. There are two

kinds of attention: hard and soft. Hard attention works by emphasizing significant portions of a

picture by cropping or iterative region suggestion. Soft attention works by giving different sections

of the image distinct weights. The structure of U-net with attention mode can be observed in the

46

Figure 3.10.

Figure 23: Architecture of U-net with attention mode [59]

Chapter 4: RESULT and DISCUSSION

4.1 Inference

This step is the post processing part. Although this is a part of the experimental methodology, the

47

inclusion of this part in this chapter is more relevant because in this step we deal with the results.

Below is the inference flowchart. At first, we have collected data from CFD in the pre-processing

part and then trained them using U-net. Then based on the results achieved, we made a comparison

of the two types of data, one from CFD and other from U-net, in this step.

Figure 24: Inference flowchart

4.2 Results and Discussion

In this paper, we used deep learning approaches to estimate the flow field over an airfoil. The

prediction strategy consists of two steps. In the first U-net (with attention model) is used phase to

parameterize the model. The flow field across airfoils is predicted in the second stage. The model

is trained to forecast the flow field using the parameters collected from the U-net, as well as

Reynolds number, angle of attack, and x-y coordinates (pressure and velocity components. Both

networks' training information and prediction results are shown in Figure 4.2-4.6. As a flow

prediction network, the U-net model with convolutional layer, max-pooling as well as attention

model is used. The model is trained in such a way that the training RMSE is decreased.

Case 1:

Reynolds Number: 1800000 Angle of Attack: 0°

Comment: hardly any visible fluctuation

48

Figure 25: Testing airfoil NACA 63415 comparisons of the flow velocity field. From left to right, v-CFD, v-

prediction (u-net)

Case 2:

Reynolds Number: 2000000 Angle of Attack: 3°

Comment: Visible diverge of flow regime, Acceptable hue

49

Figure 26: From left to right, v-CFD and v-prediction (u-net)

Case 3:

Reynolds Number: 1600000 Angle of Attack: 9°

Comment: diverge of flow regime, vague hue formation

50

Figure 27: From left to right, v-CFD, and v-prediction (u-net)

Case 4:

Reynolds Number: 1600000 Angle of Attack: 12°

Comment: Prominent flow regime inaccuracy

Figure 28: From left to right, v-CFD and v-prediction (u-net)

Figure 25 illustrated in Case 1 shows the flow field (velocity components) prediction results for a

training airfoil case and a testing airfoil case. The anticipated flow field contour patterns closely

resemble the CFD data. Figures 26 and 27 compare velocity profiles for the testing airfoils at 3o

and 9o angles of attack in Case 2 and 3. Despite the fact that various color regimes shift, the

projected velocity profiles nearly match the CFD data, as seen by the comparison. Case-4, Figure

28, in contrast to the other instances, is significantly inaccurate because to its relatively high angle

of attack and high Reynolds number. As a result, projections for modest requirements fall within

51

an acceptable range.

The results reveal that the trained model does a good job of predicting the flow field. This also

suggests that the parameterization is effective and that the u-net network can recover geometric

properties from the parameters, allowing for accurate flow field prediction. Once trained, the

present technique is far quicker than classic CFD algorithms, forecasting the flow field at a

particular airfoil in only a few seconds. Furthermore, because to the presence of boundary

conditions, CFD techniques require a fairly large flow domain to be addressed surrounding the

airfoil once trained. The flow domain of interest, on the other hand, is selectable using the current

approach. In most cases, such as flow around an airfoil, the flow field near the airfoil and in the

wake is quite significant, as shown in this approach close to the airfoil. Furthermore, prediction is

performed even when the flow field values are unknown inside the airfoil design. This might be

one source of the decline in accuracy near the surface. Because airfoil coefficients are calculated

from surface flow field distributions, values near the boundary are typically more significant.

Overall, the suggested technique is well-suited to forecasting flow fields.

In the table below, we have shown an error assessment for case 3. The Root-Mean-Square-

Deviation (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), standard deviation

and BIAS is shown.

Error matrix Value

RMSE 10.59888787

MAE 9.599160503

MSE 11.23436917

BIAS -8.110127022

Standard deviation 4.49375656

Table 4.1: Error assessment example for case 3

Chapter 5: CONCLUSION and RECOMMENDATIONS

Although the errors of some simulation is within acceptable range, for some case the errors are

substantially prominent. This may occur for various factors. The most important factor is we had

sparsity of data pool. Throughout our literature review, we could not find any dataset. So, at first,

we had to manually generate data, which was time consuming and tedious. Despite simulating

3325 data, we lacked the information to meet the threshold point for the training of ML algorithm.

52

Apart from this, the computers we had for the execution of the training and simulation, were not

of compatible power. We had low configuration computers, which consumed precious time in data

pre-processing, as well as, in training. Moreover, our mesh could have been finer. And lastly, the

algorithm is not perfect. It needs to be optimized through trial and error, which can be a concern

for further future.

Further research may allow for the reduction of the time required to expand the breadth of a CNN

(convolutional neural network) model without the need to completely retrain it. The study of

dissimilarity may be used to guide the selection of preprocessing strategies for ML aided turbulence

modeling in order to improve prediction performance. Future work might concentrate on

developing more appropriate assessment measures.

There are a number of emerging ML subjects that offer potential for CFD. Non-intrusive sensing,

or the capacity to anticipate flow based on reports at the wall, is one such field. This problem,

which has serious effects for closed-loop flow management, was completed using CNNs in

turbulent channels.[50]

In relation to this study, a number of research have been published that demonstrate the feasibility

of executing super-resolution predictions (e.g., when little flow in wall-bounded turbulence using

CNNs, autoencoders, and generative adversarial networks (GANs). [60]–[63]

Another potential path is to impose restrictions on the ML model based on physical invariances

and symmetries, which has been applied for SGS modeling [64], ROMs [65]and geophysical

fluxes.[66]

There are also significant challenges in CFD that necessitate unique ML techniques. A fascinating

problem in CFD is producing efficient coarse-resolution simulations in uncontrolled 3D wall-

bounded turbulent flows. Because Turbulent Kinetic Energy (TKE) production is subject to

turbulent changes in these high-tech flows, adjusting coarse and fine grades may not be sufficient

to deliver correct results. These challenges will need the creation of new approaches in order to

advance the profession.

Despite the limitations, we anticipate that the trend of using ML to build CFD will continue. This

advancement will be fueled by a rise in the amount of high-fidelity data, massive processing power,

and a full understanding of and proficiency with these successful models. It is also vital to increase

the use of reproducible research standards. Given the significance of data in the development of

ML modes, we recommend that the community continue to establish appropriate benchmark

53

mechanisms and best guidelines for accessible data and software in order to fully realize the

promise of ML to enhance CFD. [67], [68].

54

REFERENCES

[1] S. A. Niederer, M. S. Sacks, M. Girolami, and K. Willcox, “Scaling digital twins from the

artisanal to the industrial,” Nature Computational Science 2021 1:5, vol. 1, no. 5, pp. 313–320,

May 2021, doi: 10.1038/s43588-021-00072-5.

[2] M. P. Brenner, J. D. Eldredge, and J. B. Freund, “Perspective on machine learning for advancing

fluid mechanics,” Physical Review Fluids, vol. 4, no. 10, p. 100501, Oct. 2019, doi:

10.1103/PhysRevFluids.4.100501.

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image

Segmentation,” Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp. 234–241, 2015, doi:

10.1007/978-3-319-24574-4_28.

[4] “Attention is All you Need.”

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-

Abstract.html (accessed Jun. 04, 2022).

[5] “What is Computational Fluid Dynamics (CFD)? | SimScale | SimScale.”

https://www.simscale.com/docs/simwiki/cfd-computational-fluid-dynamics/what-is-cfd-

computational-fluid-dynamics/ (accessed May 07, 2022).

[6] J. L. Hess and A. M. O. Smith, “Calculation of Potential Flow About Arbitrary Bodies,”

Progress in Aerospace Sciences, vol. 8, no. C, pp. 1–138, 1967, doi: 10.1016/0376-

0421(67)90003-6.

[7] S. Samant et al., 25th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and

Astronautics (AIAA), 1987. doi: 10.2514/6.1987-34.

[8] R. Carmichael and L. Erickson, 14th Fluid and Plasma Dynamics Conference. American

Institute of Aeronautics and Astronautics (AIAA), 1981. doi: 10.2514/6.1981-1255.

[9] F. White, “Viscous Fluid Flow (McGraw-Hill Mechanical Engineering),” p. 640, 2005.

[10] V. Thomée, “From finite differences to finite elements A short history of numerical analysis of

partial differential equations,” Numerical Analysis: Historical Developments in the 20th Century,

pp. 361–414, Jan. 2001, doi: 10.1016/B978-0-444-50617-7.50016-1.

[11] J. Tu, G.-H. Yeoh, and C. Liu, Computational Fluid Dyanmics, vol. 53, no. 9. 2013.

[12] A. Sharma, Introduction to Computational Fluid Dynamics. 2022. doi: 10.1007/978-3-030-

72884-7.

[13] “SOLIDWORKS.” https://www.solidworks.com/ (accessed May 12, 2022).

[14] “AutoCAD Software | Get Prices & Buy Official AutoCAD 2023 | Autodesk.”

55

https://www.autodesk.com/products/autocad/overview?term=1-YEAR&tab=subscription

(accessed May 12, 2022).

[15] “Introduction to Ansys DesignModeler CFD | Ansys Training.” https://www.ansys.com/training-

center/course-catalog/fluids/introduction-to-ansys-designmodeler (accessed May 12, 2022).

[16] “Ansys SpaceClaim | 3D CAD Modeling Software.” https://www.ansys.com/products/3d-

design/ansys-spaceclaim (accessed May 12, 2022).

[17] “What is a Mesh? | SimWiki Documentation | SimScale.”

https://www.simscale.com/docs/simwiki/preprocessing/what-is-a-mesh/ (accessed May 12,

2022).

[18] “Handbook of Grid Generation - Google Books.”

https://books.google.com.bd/books?hl=en&lr=&id=fxABEAAAQBAJ&oi=fnd&pg=PR3&dq=T

hompson,+J.+F.,+Soni,+B.+K.,+Wheatherill,+N.+P.,+%E2%80%9CHandbook+of+Grid+Genera

tion%E2%80%9D,+1999&ots=0VUygSSuAr&sig=Yin-

XFxQV5IUBAJKXuPM6wnZ2aY&redir_esc=y#v=onepage&q&f=false (accessed May 12,

2022).

[19] “Quick overview of different ‘Boundary Conditions’ in CFD.”

https://www.manchestercfd.co.uk/post/quick-overview-of-different-boundary-conditions-in-cfd

(accessed May 12, 2022).

[20] J. Gorman, S. Bhattacharyya, L. Cheng, and J. Abraham, “Turbulence Models Commonly Used

in CFD,” Computational Fluid Dynamics [Working Title], Aug. 2021, doi:

10.5772/INTECHOPEN.99784.

[21] R. Vinuesa and S. L. Brunton, “The Potential of Machine Learning to Enhance Computational

Fluid Dynamics,” Oct. 2021, doi: 10.48550/arxiv.2110.02085.

[22] J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence modelling using deep

neural networks with embedded invariance,” Journal of Fluid Mechanics, vol. 807, pp. 155–166,

Nov. 2016, doi: 10.1017/JFM.2016.615.

[23] K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence Modeling in the Age of Data,”

https://doi.org/10.1146/annurev-fluid-010518-040547, vol. 51, pp. 357–377, Jan. 2019, doi:

10.1146/ANNUREV-FLUID-010518-040547.

[24] S. E. Ahmed, S. Pawar, O. San, A. Rasheed, T. Iliescu, and B. R. Noack, “On closures for

reduced order models—A spectrum of first-principle to machine-learned avenues,” Physics of

Fluids, vol. 33, no. 9, p. 091301, Sep. 2021, doi: 10.1063/5.0061577.

[25] O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chandramowliswharan, “CFDNet: A deep

learning-based accelerator for fluid simulations,” Proceedings of the International Conference on

56

Supercomputing, Jun. 2020, doi: 10.1145/3392717.3392772.

[26] J. N. Kutz, “Deep learning in fluid dynamics,” Journal of Fluid Mechanics, vol. 814, pp. 1–4,

Mar. 2017, doi: 10.1017/JFM.2016.803.

[27] J. X. Wang, J. L. Wu, and H. Xiao, “Physics-informed machine learning approach for

reconstructing Reynolds stress modeling discrepancies based on DNS data,” Physical Review

Fluids, vol. 2, no. 3, p. 034603, Mar. 2017, doi:

10.1103/PHYSREVFLUIDS.2.034603/FIGURES/11/MEDIUM.

[28] C. Jiang, R. Vinuesa, R. Chen, J. Mi, S. Laima, and H. Li, “An interpretable framework of data-

driven turbulence modeling using deep neural networks,” Physics of Fluids, vol. 33, no. 5, p.

055133, May 2021, doi: 10.1063/5.0048909.

[29] J. Weatheritt and R. Sandberg, “A novel evolutionary algorithm applied to algebraic

modifications of the RANS stress–strain relationship,” Journal of Computational Physics, vol.

325, pp. 22–37, Nov. 2016, doi: 10.1016/J.JCP.2016.08.015.

[30] J. L. Wu, H. Xiao, and E. Paterson, “Physics-informed machine learning approach for

augmenting turbulence models: A comprehensive framework,” Physical Review Fluids, vol. 7,

no. 3, p. 074602, Jul. 2018, doi: 10.1103/PHYSREVFLUIDS.3.074602/FIGURES/16/MEDIUM.

[31] Y. Mi, M. Ishii, and L. H. Tsoukalas, “Flow regime identification methodology with neural

networks and two-phase flow models,” Nuclear Engineering and Design, vol. 204, no. 1–3, pp.

87–100, Feb. 2001, doi: 10.1016/S0029-5493(00)00325-3.

[32] A. Beck, D. Flad, and C.-D. Munz, “Deep neural networks for data-driven LES closure models,”

Journal of Computational Physics, vol. 398, p. 108910, Dec. 2019, doi:

10.1016/j.jcp.2019.108910.

[33] C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot, “Training convolutional

neural networks to estimate turbulent sub-grid scale reaction rates,” Combustion and Flame, vol.

203, pp. 255–264, May 2019, doi: 10.1016/j.combustflame.2019.02.019.

[34] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos, “Automating turbulence modelling by

multi-agent reinforcement learning,” Nature Machine Intelligence, vol. 3, no. 1, pp. 87–96, Jan.

2021, doi: 10.1038/s42256-020-00272-0.

[35] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual

understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, Apr. 2016, doi:

10.1016/J.NEUCOM.2015.09.116.

[36] M. Ma, J. Lu, and G. Tryggvason, “Using statistical learning to close two-fluid multiphase flow

equations for a simple bubbly system,” Physics of Fluids, vol. 27, no. 9, p. 092101, Sep. 2015,

doi: 10.1063/1.4930004.

57

[37] F. Gibou, D. Hyde, and R. Fedkiw, “Sharp interface approaches and deep learning techniques for

multiphase flows,” Journal of Computational Physics, vol. 380, pp. 442–463, Mar. 2019, doi:

10.1016/J.JCP.2018.05.031.

[38] S. N. Skinner and H. Zare-Behtash, “State-of-the-art in aerodynamic shape optimisation

methods,” Applied Soft Computing, vol. 62, pp. 933–962, Jan. 2018, doi:

10.1016/J.ASOC.2017.09.030.

[39] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, “Learning data-driven discretizations for

partial differential equations,” Proc Natl Acad Sci U S A, vol. 116, no. 31, pp. 15344–15349, Jul.

2019, doi: 10.1073/PNAS.1814058116.

[40] J. Jeon and S. J. Kim, “FVM Network to Reduce Computational Cost of CFD Simulation,”

International Journal of Energy Research, May 2021, doi: 10.1002/er.7879.

[41] B. Stevens and T. Colonius, “FiniteNet: A Fully Convolutional LSTM Network Architecture for

Time-Dependent Partial Differential Equations,” Feb. 2020, doi: 10.48550/arxiv.2002.03014.

[42] K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata, “Synthetic turbulent inflow generator using

machine learning,” Physical Review Fluids, vol. 4, no. 6, p. 064603, Jun. 2019, doi:

10.1103/PHYSREVFLUIDS.4.064603/FIGURES/11/MEDIUM.

[43] Y. Morita, S. Rezaeiravesh, N. Tabatabaei, R. Vinuesa, K. Fukagata, and P. Schlatter, “Applying

Bayesian optimization with Gaussian process regression to computational fluid dynamics

problems,” Journal of Computational Physics, vol. 449, p. 110788, Jan. 2022, doi:

10.1016/J.JCP.2021.110788.

[44] W. Tang et al., “Study on a Poisson’s equation solver based on deep learning technique,” 2017

IEEE Electrical Design of Advanced Packaging and Systems Symposium, EDAPS 2017, vol.

2018-January, pp. 1–3, Jan. 2018, doi: 10.1109/EDAPS.2017.8277017.

[45] A. G. Ozbay, A. Hamzehloo, S. Laizet, P. Tzirakis, G. Rizos, and B. Schuller, “Poisson CNN:

Convolutional neural networks for the solution of the Poisson equation on a Cartesian mesh,”

Data-Centric Engineering, vol. 2, no. 6, Jun. 2021, doi: 10.1017/DCE.2021.7.

[46] R. Vinuesa, S. M. Hosseini, A. Hanifi, D. S. Henningson, and P. Schlatter, “Pressure-Gradient

Turbulent Boundary Layers Developing Around a Wing Section,” Flow, Turbulence and

Combustion, vol. 99, no. 3–4, pp. 613–641, Dec. 2017, doi: 10.1007/S10494-017-9840-Z.

[47] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos, “Automating turbulence modelling by

multi-agent reinforcement learning,” Nature Machine Intelligence 2021 3:1, vol. 3, no. 1, pp. 87–

96, Jan. 2021, doi: 10.1038/s42256-020-00272-0.

[48] R. Vinuesa and S. L. Brunton, “The Potential of Machine Learning to Enhance Computational

Fluid Dynamics,” pp. 1–13, 2021, [Online]. Available: http://arxiv.org/abs/2110.02085

58

[49] H. Eivazi, S. le Clainche, S. Hoyas, and R. Vinuesa, “Towards extraction of orthogonal and

parsimonious non-linear modes from turbulent flows,” Sep. 2021, doi:

10.48550/arxiv.2109.01514.

[50] L. Guastoni et al., “Convolutional-network models to predict wall-bounded turbulence from wall

quantities,” Journal of Fluid Mechanics, vol. 928, Dec. 2021, doi: 10.1017/JFM.2021.812.

[51] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, “Learning data-driven discretizations for

partial differential equations,” Proc Natl Acad Sci U S A, vol. 116, no. 31, pp. 15344–15349, Jul.

2019, doi: 10.1073/PNAS.1814058116.

[52] B. Stevens and T. Colonius, “Enhancement of shock-capturing methods via machine learning,”

Theoretical and Computational Fluid Dynamics, vol. 34, no. 4, pp. 483–496, Aug. 2020, doi:

10.1007/S00162-020-00531-1/FIGURES/12.

[53] C. W. Rowley and S. T. M. Dawson, “Model Reduction for Flow Analysis and Control,”

http://dx.doi.org/10.1146/annurev-fluid-010816-060042, vol. 49, pp. 387–417, Jan. 2017, doi:

10.1146/ANNUREV-FLUID-010816-060042.

[54] K. Taira et al., “Modal analysis of fluid flows: Applications and outlook,” AIAA Journal, vol. 58,

no. 3, pp. 998–1022, Oct. 2020, doi:

10.2514/1.J058462/ASSET/IMAGES/LARGE/FIGURE19.JPEG.

[55] “The structure of inhomogeneous turbulent flows | CiNii Research.”

https://cir.nii.ac.jp/crid/1571980075051475712 (accessed May 14, 2022).

[56] V. Sekar, Q. Jiang, C. Shu, and B. C. Khoo, “Fast flow field prediction over airfoils using deep

learning approach,” Physics of Fluids, vol. 31, no. 5, p. 057103, May 2019, doi:

10.1063/1.5094943.

[57] “Airfoil data information.” http://airfoiltools.com/airfoil/ (accessed May 11, 2022).

[58] P. R. Spalart and S. R. Allmaras, “One-equation turbulence model for aerodynamic flows,”

Recherche aerospatiale, no. 1, pp. 5–21, 1994, doi: 10.2514/6.1992-439.

[59] S. M. Nazia Fathima, R. Tamilselvi, M. Parisa Beham, and D. Sabarinathan, “Diagnosis of

Osteoporosis using modified U-net architecture with attention unit in DEXA and X-ray images,”

Journal of X-Ray Science and Technology, vol. 28, no. 5, pp. 953–973, Jan. 2020, doi:

10.3233/XST-200692.

[60] H. Kim, J. Kim, S. Won, and C. Lee, “Unsupervised deep learning for super-resolution

reconstruction of turbulence,” Journal of Fluid Mechanics, vol. 910, 2021, doi:

10.1017/JFM.2020.1028.

[61] A. Güemes, S. Discetti, A. Ianiro, B. Sirmacek, H. Azizpour, and R. Vinuesa, “From coarse wall

measurements to turbulent velocity fields through deep learning,” Physics of Fluids, vol. 33, no.

59

7, p. 075121, Jul. 2021, doi: 10.1063/5.0058346.

[62] K. Fukami, T. Nakamura, and K. Fukagata, “Convolutional neural network based hierarchical

autoencoder for nonlinear mode decomposition of fluid field data,” Physics of Fluids, vol. 32, no.

9, p. 095110, Sep. 2020, doi: 10.1063/5.0020721.

[63] “The structure of inhomogeneous turbulent flows | CiNii Research.”

https://cir.nii.ac.jp/crid/1571980075051475712 (accessed May 14, 2022).

[64] R. Wang, R. Walters, and R. Yu, “Incorporating Symmetry into Deep Dynamics Models for

Improved Generalization,” Feb. 2020, doi: 10.48550/arxiv.2002.03061.

[65] J. C. Loiseau and S. L. Brunton, “Constrained sparse Galerkin regression,” Journal of Fluid

Mechanics, vol. 838, pp. 42–67, Mar. 2018, doi: 10.1017/JFM.2017.823.

[66] H. Frezat, G. Balarac, J. le Sommer, R. Fablet, and R. Lguensat, “Physical invariance in neural

networks for subgrid-scale scalar flux modeling,” Physical Review Fluids, vol. 6, no. 2, p.

024607, Feb. 2021, doi: 10.1103/PHYSREVFLUIDS.6.024607/FIGURES/17/MEDIUM.

[67] O. Mesnard and L. A. Barba, “Reproducible and Replicable Computational Fluid Dynamics: It’s

Harder Than You Think,” Computing in Science and Engineering, vol. 19, no. 4, pp. 44–55,

2017, doi: 10.1109/MCSE.2017.3151254.

[68] L. A. Barba, “The hard road to reproducibility,” Science (1979), vol. 354, no. 6308, p. 142, Oct.

2016, doi: 10.1126/SCIENCE.354.6308.142/ASSET/35E106D4-FB4C-41F4-A7AE-

EDEFCD081B90/ASSETS/GRAPHIC/354_142_F1.JPEG.

