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ABSTRACT 

 
Machine learning is quickly becoming a significant scientific computer tool, with enormous 

potential to broaden the field of computational fluid dynamics. Various research has been 

conducted in the recent past which emphasized on how the use of different Machine Learning 

algorithm is playing an important role in the enhancement of computational fluid dynamics. In this 

work we try to discuss about how we created an architecture of a Machine Learning algorithm by 

using U-net, which is a type of convolutional neural network and tried to apply it in order to 

reproduce a flow field around a 2D airfoil, which can be easily, if not quickly, produced using 

CFD analysis. The principal aim of this thesis is to check whether our Deep learning architecture 

is capable of providing an acceptable prediction of the flow field or not. If the flow field from DL 

matches with that of CFD, then we can use this observation for further study and if it does not 

match, there is still room for further correction. In order to execute the experiment, 3325 CFD 

simulations were carried out and the flow fields achieved from the simulation as the result of the 

experiment were separated into two groups.80% of the data was taken for training the DL 

algorithm and 20% were used for validation. After implementing the DL algorithm, some of the 

results were found to be almost similar to the results produced from the CFD simulation.  

 

Keywords: Computational Fluid Dynamic, Machine learning, Deep learning, U-net, Airfoil, 

Attention 
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Chapter 1: INTRODUCTION 
 

1.1 Background 

 

For many industrial applications, Fluid mechanics is of greatest significance. Governing equations 

for most of the fluid flow are non-linear Navier–Stokes equations which are partial differential 

equations of mass conservation and momentum conservation of Newtonian Fluid. Computational 

Fluid Dynamic (CFD), one of the significant subjects of numerical simulation, aims to solve these 

Navier–Stokes equations to model actual fluid flow. It offers detail information on different types 

of fluid flow. But one of the glaring limitations of CFD is that it can become computationally 

expensive or may be intractable due to the complexity of fluid mechanics especially for turbulent 

flow. Here with availability of sufficient amount of data, data driven approach can enhance the 

performance of CFD.  

Deep learning, a subdivision of machine learning, is swiftly becoming a core component in data 

science, enabling numerous advances across many disciplines of engineering. [1] It is inspired 

form the neural structure of human body. The building block for Deep learning is Artificial Neural 

Network (ANN) and Convolutional Neural Networks (CNN) which make excellent non-linear 

approximation. CNN uses numerous layers to extract features from raw data. CFD could become 

one of its potential applications. Deep learning can increase the speed of high-fidelity simulations, 

develop both high and low fidelity simulation and also can enhance the understanding of some 

fluid flow by Reduced order Models. [2] 

In this work we have presented a deep learning model “U-net with Attention block” to create 

velocity field over an airfoil from pressure field of that airfoil. 

 

 

1.2 Deep Learning Algorithm: 

 

Before discussing about the U-net architecture, we are discussing about the building block of the 

architecture which are given as follow. 

 

 

 

1.2.1 CNN: 
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A convolutional neural network (CNN) is a kind of artificial neural network (ANN) which is 

generally applied to analyze visual imagery. CNN in U-net architecture consists of three layers 

which are,  

1. Convolutional Layer 

2. ReLU Layer 

3. Max Pooling 

These layers in contracting path reduces the spatial information while increasing feature 

information.  In the expending the feature and spatial information are combined through up-

convolutions and concatenations. 

 

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning system capable of taking an 

input picture, assigning weight (learnable weights and biases) to certain aspects in the image, and 

discriminating between them. ConvNet requires far less pre-processing than other classification 

techniques. While traditional techniques need the hand-engineering of filters, ConvNets can learn 

these filters/characteristics with sufficient training. 

 

A ConvNet's design is inspired by the structure of the Visual Cortex and is similar to the Human 

Brain's connection pattern of Neurons. Individual neurons may respond to stimuli only in a 

restricted area of the visual field known as the Receptive Field. Many of these fields overlap. A 

collection of similar fields can be utilized to fill the whole visual field. 

 

An image is nothing more than a matrix of pixel values. Why not simply flatten the picture (for 

example, converting a 3x3 image matrix to a 9x1 vector) and feed it to a Multi-Level Perceptron 

for classification? 
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Figure 1: Flattening of a 3x3 image matrix into a 9x1 vector 

 

When class prediction is applied to basic binary images, the approach may produce an average 

precision score; however, when applied to complex images with pixel dependencies throughout, 

the method yields little to no accuracy. Using proper filters, a ConvNet may capture the Spatial 

and Temporal correlations in an image. Because to the reduced number of parameters involved and 

the reusability of weights, the architecture achieves superior fitting to the picture dataset. In other 

words, the network may be trained to recognize the complexity of a picture. 
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Figure 2: Matrix form of a 4x4x3 RGB Image 

In the picture, we have an RGB image which has been divided by its three-color planes — Red, 

Green, and Blue. Grayscale, RGB, HSV, CMYK, and other color spaces exist in which images can 

be found. 

 

One can anticipate how computationally hard things will get once the photos exceed 8K 

(76804320) dimensions. The role of the ConvNet is to compress the images into a form which is 

easier to process, without sacrificing features which are crucial for generating a decent forecast. 

This is critical for designing an architecture that is capable of learning features while also being 

scalable to large datasets. 

 

1.2.2 Convolutional Layer: 

 

Convolutional Layer is the first layer in a CNN and also the core building block. Through images 
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a convolution sweeps and calculates its input. By this convolution, a particular feature is detected 

from the input and feature maps are produced. The input is convolved using kernels. Using the 

sliding window method Kernels are applied across the image. If more kernels are applied then 

more features would be extracted. This kernel is slided across the input file, and computes a dot 

product which is provided to an activation map. Padding is used to assist the kernel with processing 

the image. Padding is the method of adding pixels to an image. In conjunction with padding, Stride 

is a parameter of the kernel that signifies the amount of movement over the image.  

 

 

 

Figure 3: Convolutional operation with 2*2 kernel, 1 stride 

 

Different kernel detects different features of the input. There is a formula which is used in 

determining the dimension of the activation maps: 

 

𝑌 = (𝑁 +  2𝑃 —  𝐹)/ 𝑆 +  1 
 

Where, Y= Dimension of the output, N = Dimension of image, P = Padding, F = Dimension of 

Kernel, S = Stride. 

 

1.2.3 ReLU Layer: 

 

ReLU (rectified linear activation function) layer is one of the most widely used activation functions 

in Deep learning. It returns 0 if it gets negative value, and if a positive value is given, it returns the 

same value. ReLU function converts all the negative values to zero and it activates only for positive 

input. ReLU increases non-linearity in the CNN.  The function is as below: 
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𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) 

 

 

Figure 4: ReLU Function 

 

 

1.2.4 Max Pooling: 

 

In all the CNN block we have used Max Pooling. Max pooling is used to replace output with the 

max values to reduce data size. This reduces overfitting. Strides and Size are the two 

hyperparameter used for pooling. 

 

 

 

 

Figure 5: Max Pooling 
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1.2.5 U-net Architecture: 

 

In “BioMedical Image segmentation” by Olag Ronneberger et al. [3]U-net was first introduced. It 

proved its potential in image segmentation and image transformation. Just like its predecessor 

Auto-encoders U-net has two parts which are contracting path or encoder and expending path or 

decoder. However, it differs in having a concatenating relation between the encoder and the 

decoder.   

In the encoder there is a large number of kernel channels. This makes the network propagate 

context information to higher resolution layers. The encoder is symmetric to the decoder in the 

contracting path which make the architecture U-shape. The encoder has a typical CNN. It consists 

of two 3*3 Convolution layer each having a 3*3 max pooling layer and a ReLU layer. Similarly, 

the decoder has a 2*2 up-convolution, a concatenation with the correspondingly encoder’s cropped 

feature map, two 3*3 convolutions each having a ReLU layer. The architecture is shown in Figure 

1.6: 

 

 

 

 

Figure 6: U-net Architecture 
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1.2.6 Attention Unit: 

 

In deep learning Attention Unit imitate closely to cognitive attention. It was first introduced in 

“Attention Is All You Need” [4] paper. In image segmentation it reduces computational wastages, 

make the training of the algorithm faster and smother.   

The attention gate takes two inputs which are vectors x and y. From the next lowest layer y vector 

is taken. The two vectors are summed. It provides larger aligned weights and relatively smaller 

unaligned weights. The resultant vector passes a ReLU layer and a sigmoid layer. Then it is up 

sampled using trilinear interpolation. 

 

 

 

Figure 7: Attention Unit 

 

1.2.7 U-net with attention unit: 

 

During the connection between encoder and decoder many low levels of feature extractions occurs 

due to the poor feature representation in the initial layers. To avoid this redundant feature 

concatenation in the expending path attention units are added in the skip connection. 
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Figure 8: U-net with attention gate 

 

1.3 Background of CFD 

 

Computational fluid dynamics is the mathematical description and numerical solution of a 

physical event involving fluid flow (CFD). It is a field of fluid mechanics that investigates and 

solves fluid flow issues using numerical analysis and data structures. Computers are utilized to 

do the computations necessary to model the fluid's free-stream flow and interaction with 

boundary-constrained surfaces. High-speed supercomputers, which are often required to handle 

the most complex and large-scale problems, can produce superior results. Ongoing research 

results in software that increases the accuracy and speed of complicated modeling situations like 

transonic or turbulent flows. The first validation of such software is frequently accomplished 

using experimental equipment such as wind tunnels. Additionally, previous analytical or 

empirical judgments of a certain issue may be utilized for comparison. For final validation, full-

scale testing, such as flight tests, is typically performed. CFD is used in a variety of applications, 

including aerodynamics, aerospace analysis, weather simulation, hypersonic, natural science and 

environmental engineering, biological engineering, fluid flows and heat transfer, industrial 

system analysis and design, visual effects for cinema and gaming, and engine and combustion 

analyses. 
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The following is a summary of CFD history:[5] 

 

● Improvements in mathematical models and numerical approaches till 1910. 

● Model and technique integration to obtain numerical answers based on manual 

computations between 1910 to 1940 

● Early computers were able to solve flow over and around a cylinder with the aid of a 

mechanical desk calculator in 1953 by enabling the transition to computer-based 

computations (ENIAC). This was executed by Kawaguti. 

● Between 1950 and 1960, the United States' Los Alamos National Laboratory conducted 

the first computer-based research on flow of fluid based on the famous equation derived 

by Navier and Stokes. Vorticity is calculated using the stream function method. This is 

the first implementation of 2D, transient, incompressible flow in the world. 

● Hess and Smith released "Calculation of potential flow about arbitrary bodies" in 1967, 

the first scientific study on 3D computer research. Contribution of many methodologies, 

such as the Arbitrary Lagrangian-Eulerian model, the k-turbulence model, and the 

SIMPLE algorithm, which are all still employed in commercial code production.[6] 

● Between 1960 and 1970, Boeing, NASA, and others debuted proceeded to deploy several 

deliverables like submarines, ships, motor transport and automobiles, helicopters and 

planes.[7], [8] 

● Between 1980 and 1990, Jameson et al. enhanced the reliability of transonic flow solutions 

in three dimensions. Commercial codes are being used in both academics and industry.  

● Significant advances in informatics are observed from 1990 to present where widespread 

use of CFD in nearly every field has been achieved. 

1.3.1 Governing equations 

 

The main framework of thermo-fluids research is guided by governing equations based on fluid 

physical property conservation laws. The three conservation laws are the fundamental 

equations:[9] 

 

● The Continuity Equation and Mass Conservation 

● Newton's Second Law of Momentum Conservation 

● Energy Conservation from First Law of Thermodynamics 

 

Within a closed system, mass, momentum, and energy are stable constants, according to these 
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notions. Everything, in essence, must be kept. 

 

For the investigation of fluid flow with temperature fluctuations, certain physical parameters are 

essential. The three variables that are unknown, are required to be determined concurrently from 

the three widely established conservation equations are velocity v, pressure p, and absolute 

temperature T. Regardless, p and T are variables that are independent thermodynamically. The 

conservation equations' final version adds four extra thermodynamic variables: density, enthalpy 

h, viscosity, and thermal conductivity k. These latter parameters are determined in a unique 

fashion by the values of p and T. 

 

Fluid flow should be evaluated to determine vecv, p, and T at all points of the flow regime. This 

is crucial when developing any device that incorporates fluid flow. Furthermore, measuring fluid 

flow using kinematic characteristics is a key topic. Lagrangian and Eulerian methods can be used 

to study fluid movement. The Lagrangian theory of fluid motion is founded on the notion of 

following a sufficiently large fluid particle to distinguish properties. Initial coordinates at time t0 

must be checked, as well as the instantaneous coordinates at time t1. Following millions of 

individual particles down the journey is nearly difficult. 

 

 

 

Figure 9: Difference between Lagrangian and Eulerian Approach [1] 

 

 

Motion is always time-dependent in the Lagrangian formulation. As a, b, and c are a particle's 
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starting coordinates, x, y, and z are the same particle's coordinates at time t. A Lagrangian flow's 

motion is described as follows: 

 

𝑥 = 𝑥(𝑎, 𝑏, 𝑐, 𝑡)𝑦 = 𝑦(𝑎, 𝑏, 𝑐, 𝑡)𝑧 = 𝑧(𝑎, 𝑏, 𝑐, 𝑡) 

 

The constituents of velocity at the position (x,y,z) at time t are denoted by u, v, and w in the 

Eulerian method. As a result, the independent variables x, y, z, and t are functions of the unknown 

variables u, v, and w. The velocity of an Eulerian flow at time t is described as follows: 

 

𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡)𝑣 = 𝑣(𝑥, 𝑦, 𝑧, 𝑡)𝑤 = 𝑤(𝑥, 𝑦, 𝑧, 𝑡) 
 

1.3.2 Mass Conservation 

 

The equation for mass conservation is as follows: 

 

𝐷𝜌𝐷𝑡 + 𝜌(𝛻 ⋅ 𝑣 ⃗ ) = 0 
Where. ρ is the density, v⃗  the velocity and ∇ the gradient operator. 

 

∇ ⃗ =i ⃗ ∂∂x+j ⃗ ∂∂y+k ⃗ ∂∂z 

 

The flow is considered to be incompressible if the density is constant, and the continuity equation 

becomes: 

 

𝐷𝜌𝐷𝑡 = 0 → 𝛻 ⋅ 𝑣 ⃗ = 𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑦 + 𝜕𝑤𝜕𝑧 = 0 
 

1.3.3 Momentum Conservation  

 

The Navier-Stokes Equation, which describes the conservation of momentum, is given by: 

 

𝜕

𝜕𝑡
(𝜌�⃗�)⏞𝐼 + 𝛻 ⋅ (𝜌�⃗��⃗�)⏞𝐼𝐼 = −𝛻𝑝⏞𝐼𝐼𝐼 + 𝛻 ⋅ (𝜏‾)⏞𝐼𝑉 + 𝜌�⃗�⏞𝑉 

 

 

Where, p is static pressure, τ¯ is viscous stress tensor and ρg⃗  is the gravitational force per unit 

volume. Here, the roman numerals denote: 
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I: Local change with time 

II: Momentum convection 

III: Surface force 

IV: Diffusion term 

V: Mass force 

 

 

 

According to Stoke's Hypothesis, the viscous stress tensor may be defined as follows: 

 

𝜏𝑖𝑗 = 𝜇𝜕𝑣𝑖𝜕𝑥𝑗 + 𝜕𝑣𝑗𝜕𝑥𝑖– 23(𝛻 ⋅ 𝑣 ⃗ )𝛿𝑖𝑗 
 

If the fluid is incompressible and has a constant viscosity coefficient, the Navier-Stokes equation 

is reduced to: 

 

𝜌𝐷𝑣 ⃗ 𝐷𝑡 = −𝛻𝑝 + 𝜇𝛻2𝑣 ⃗ + 𝜌𝑔 ⃗  
 

1.6.4 Energy Conservation 

 

The first law of thermodynamics asserts that the amount of work and heat contributed to a system 

will result in an increase in the system's energy: 

 

𝑑𝐸𝑡 = 𝑑𝑄 + 𝑑𝑊 
 

Where, dQ is the amount of heat delivered to the system, dW is the amount of work done on the 

system, and dEt is the increase in total energy. An example of a frequent sort of energy equation 

is:  

 

 

𝜕

𝜕𝑡
(𝜌�⃗�)⏞𝐼 + 𝛻 ⋅ (𝜌�⃗��⃗�)⏞𝐼𝐼 = −𝛻𝑝⏞𝐼𝐼𝐼 + 𝛻 ⋅ (𝜏‾)⏞𝐼𝑉 + 𝜌�⃗�⏞𝑉 

 

 

The roman numerals are: 
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I: Local change with time 

II: Convective term 

III: Pressure work 

IV: Heat flux 

V: Source term 

 

1.3.5 Partial Differential Equation (PDE) 

 

The mathematical model only provides interrelationships between transport factors that are either directly 

or indirectly involved in the entire operation. Regardless of whether or not every parameters in those 

equations discussed has a relative influence on the real circumstances, any interchange in parameters must 

be evaluated concurrently using the numerical methods for solution, which includes differential equations, 

vector and tensor notations. A PDE has several variables and is represented by the symbol "". When an 

equation is derived using "d," it is referred to as an Ordinary Differential Equation (ODE) since it only has 

one variable and its derivation. PDEs are used to convert the differential operator () into an algebraic 

operator in order to achieve a solution. PDEs are frequently employed in heat transfer, fluid dynamics, 

acoustics, electronics, and quantum physics to address issues. Thomee's work might be valuable in building 

on a concept. [10] 

 

 

 

 

Example of ODE: 

 

𝑑2𝑥𝑑𝑡2 = 𝑥 → 𝑥(𝑡)     

Where, T is the single variable 

 

 

 

Example of PDE: 

 

𝜕𝑓𝜕𝑥 + 𝜕𝑓𝜕𝑦 = 5 → 𝑓(𝑥, 𝑦) 
Where, both x and y are the variables 
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The numerical solution is an approach based on discretization for providing approximate answers 

to tough problems that analytic methods are incapable of handling. Furthermore, the precision of 

the discretization has a substantial influence on the numerical solution's validity. Some of the most 

common discretization methods include finite difference, finite volume, finite element, spectral 

(element) approaches, and boundary element. 

 

1.3.6 CFD Methodology 

 

CFD methodology can be divided into three parts[11], [12], which are: 

 

1. Preprocessor 

2. Solver 

3. Postprocessor 

 

A brief description of the whole CFD methodology is given in the figure in Figure 1.10. 

 

 

 

Figure 10: Methodology of CFD 

1.3.7 Preprocessor 
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The first step in any CFD study is to define and construct the geometry of the flow area, which acts 

as the computational domain for the CFD calculations. The geometry can be created in any CAD 

software like Solidworks, Autocad, Autodesk and other CAD softwares or the built-in software in 

ANSYS, which are Spaceclaim and Designmodeller. [13]–[16] 

For investigation, the solution domain is divided into multiple cells. Mesh refers to the 

computational framework's integration of these cells. Mesh is a method of dividing a domain into 

tiny cells or components, allowing a mathematical model to be applied to each cell under the 

condition of linearity. This indicates that the behavior and attitude of the variable parameters to be 

resolved must be linear inside each cell. This criterion also suggests that a finer mesh is required 

in locations where the predicted physical qualities are likely to be highly dynamic. Readers are 

highly encouraged to read these literatures [17], [18] in order to understand more about mesh. Mesh 

structure errors are a common cause of simulation failure. This might be because the mesh applied 

is sufficiently coarse, not covering all the results that happens to occur in this single cell element 

in a synchronized manner, but rather covering a variety of results that change as the mesh becomes 

finer. Thus, an examination of independence is required. The structure of mesh has a major effect 

on the precision of the solution. The analyst must pay close attention to the kind of cell, the quantity 

of cells, and the calculation time in order to implement precise solutions and acquire reliable 

results. Mesh convergence is defined as the optimization of these constraints, which may be 

organized in the following manner: 

a. Produce a mesh structure with an acceptable number of parameters and ensure that the 

quality of mesh and coverage of the CAD model are sufficient for inspection. Carry out 

the inquiry. 

b. In mesh constructions, increase the number of elements. Repeat the analysis and suitably 

compare the solutions in the aftermath.  

c. Continue to fine-tune the mesh until the results match the previous ones. 

After meshing, we have to select the materials to be used and also select the flow physics. A 

flowchart for flow physics is shown in the Figure 1.11.  
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Figure 11: Flowchart for flow physics in CFD [7] 

 

 

Proper starting and boundary conditions must be utilized while solving the Navier-Stokes equation 

and the continuity equation. Here we shall discuss about Neumann and Dirichlet Boundary 

Conditions briefly. For further knowledge of boundary condition, readers can look into this. [19] 

 

 

Neumann and Dirichlet Boundary Conditions 

 

• A Dirichlet boundary condition describes a variable's value at the boundary, such as 

 

u(x) = constant 

• When using a Neumann boundary condition, one defines the gradient normal to the variable's 

border, for example 

 

∂nu(x) = constant 
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• Remember that multiple types of boundary conditions may be used for different variables at the 

same boundary. 

 

Inlet 

 

Inflow 

 

• Variables transferred on the boundary, either by a predefined profile or (at the user's discretion) 

by executing an initial 1D, fully developed-flow calculation. 

 

Stability  

• Fixed total pressure and temperature (in compressible flow) or total head (in incompressible 

flow); typical compressible input condition 

Outlet 

Outflow 

• The normal gradient of all variables is 0. 

∂n(Ø) = 0 

 

Pressure 

• If the exit is subsonic, except for the constant pressure value, the usual outlet condition in 

compressible flow. 

 

 

1.3.8 Solver 

 

In the solver section, let us begin with turbulence modeling. One of the most challenging tasks in 

science and mathematics is calculating turbulent flows. For decades, scholars have been confused 

by exact turbulence solutions, and it is commonly believed that there is no closed form solution to 
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any fluid flow issue except the most fundamental laminar circumstances. Regardless, there are 

ways for doing calculations with enough precision to make engineering and design decisions. The 

accuracy of turbulent simulations has gradually grown as processing capabilities have become 

more powerful and numerical modeling has progressed. The first CFD problems were fairly simple, 

2D incompressible steady-state settings with laminar flows. The first three-dimensional CFD 

simulation, as far as we know, was not completed until 1967. [6] Simultaneously, the first climate 

models were being developed to represent global fluid circulation. Shortly thereafter, progress 

increased as processing power and modeling approaches improved. The incorporation of 

turbulence modeling into CFD solutions was a considerable step forward. Early turbulence models 

accounted for turbulence impacts using a concept known as "eddy viscosity." Eddy viscosity is a 

notable increase in viscosity caused by small-scale chaotic disturbances in a fluid (or turbulent 

viscosity). The models do not attempt to replicate microscale turbulent dynamics, but rather 

attempt to mimic them by increasing fluid viscosity. As we shall see, turbulent viscosity is 

significant in Reynolds Averaged Navier Stokes (RANS) models. Other options, as we will see, 

do not rely substantially on the turbulent viscosity concept. A detailed study on turbulence 

modelling was conducted by Gorman et al [20], which will give the readers a good idea about 

turbulence modelling. The categorization of turbulence modelling is shown in Figure 1.12. 

 

 

Figure 12: Categorization of Turbulence Modelling 

 

Convergence is an important concept in computational analysis. The flow of fluid has a nonlinear 

mathematical model with several intricate models such as turbulence, phase shift, and mass 

transfer, all of which have a substantial influence on convergence. In addition to the analytical 

model, the numerical solution uses an iterative process to get answers by lowering errors between 

stages. The error is indicated by the difference between the final two values. The result gets more 
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dependable as the absolute error falls, suggesting that it is reaching a stable solution. How can 

analysts know about the convergence of a solution? Even if the intended situation is transient, 

convergence should continue until a steady-state condition is reached, suggesting that outputs 

change over time. Each time step must achieve convergence as if they were all steady-state 

processes. What are the requirements for convergence? Like stone remnants, equation residuals 

change with each iteration. Convergence happens as iterations get closer to a certain value. Those 

activities must be conducted for every time step in a temporary circumstance. Convergence can 

also be altered in the following manner: 

● Initial conditions, Courant number, under-relaxation may all be used to speed up the 

process. 

● The answer does not necessarily have to be right, but it must converge; the chosen mesh 

and mathematical model would be erroneous or have ambiguities. 

● Stabilization approaches include adequate quality and refinement of mesh, and first- to 

second-order discretization procedures. 

● If required, verify that the solution is reproducible to avoid misunderstanding. 

 

1.3.9 Postprocessor 

 

After solving the Navier-Stokes equations numerically, it is now time for postprocessing. In the 

postprocessor, we retrieve the output by means of X-Y plots, vectors, contours, line contours, 

streamlines and many other formats. It is plausible to create animations of the results. 

1.4 Problem Statement 

 

The generation of flow field around an external object is a common simulation experiment which is 

practiced by many beginners. In our thesis we focused on generating the flow field of a 2D airfoil by using 

a data driven approach. This is a common and beginner level simulation that can be achieved by any CFD 

software. But generating the flow field using Machine Learning (ML), and making prediction is something 

that is not much studied. The challenge here is to build the architecture of ML using CNN in order to predict 

the flow field of any given model of NACA airfoils at a different angle of attack (AOA) and Reynolds 

number (Re). 

 

1.4 Objectives and Goals 
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The objectives and goals of our experiment is simple. In short, the aim of this thesis is: 

 

1. To simulate and analyze the flow regime of a 2D airfoil using ANSYS Fluent. 

2. To collect the velocity and pressure filed around the airfoil from Fluent. 

3. To collect the velocity and pressure filed around the airfoil from U-net. 

4. To compare and contrast the results of Fluent with that of U-net. 

 

1.5 Methodology 

 

The methodology can be summarized by the following: 

 

● At first, the different geometry of the NACA models were collected. 

● Then geometry of the models was generated. 

● After this meshing was applied. 

● Boundary conditions were then specified. 

● With a suitable turbulence model, in this case Spalart-Allmaras model is used, the calculation is 

executed. 

● The velocity and pressure fields were collected. 

● The experiment was repeated 3325 times by changing parameters like NACA models, angle of 

attack and Reynolds number. 

● The ML algorithm is trained with 80%of the data and 20% data were used for validation. 
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Chapter 2: LITERAURE REVIEW  
 

 

2.1 Introduction 

 

From the literature review it can be found that there is a huge potential for Machine Learning in 

improving CFD. The areas where Machine learning is applicable are as follow, increasing the 

computational power of DNS (direct numerical simulations), Turbulence modelling and 

developing reduced order model for better the physical understanding. [21] Our work mainly 

focuses on Turbulence modelling particularly RANS modeling. Ling et al. [22]  gave a feasibility 

study on ML for RANS modeling. Duraisamy et al. [23] review work gives an excellent 

understanding on ML application in RANS modeling. Ahmed et al. [24] also provides emerging 

ML approaches to RANS modeling.  

 

Obiols-Sales et al. [25] proposed a process in order to help increase the processing power for 

convergence of RANS simulations on the basis of Spalart–Allmaras (SA).  Kutz. [26] provided 

an architecture to embed Galilean invariance. There are also physical informed ML models to 

improve RANS modeling [27]. Jiang et al. [28] developed a physics-informed residual network 

for RANS modelling based.  Weatheritt and Sandberg [29] using gene-expression programming 

provided interpretable RANS models. J.-L. Wu [30] proposed a physical informed Random Forest 

for RANS modeling. Mi et al. [31] developed neural networks which can detect the different flow 

regimes. Use of Artificial Neural Network can also be seen in CFD. Beck et al. [32] used ANN 

with convolutional filter to develop the mapping of the flow.  Lapeyre et al.[33] also used the 

similar approach but with CNN. Another interesting approach developed by Novati et al.[34] 

using multi-agent reinforcement-learning in turbulence modeling. Guo et al [35] used CNN to 

predict velocity field over several geometrical shapes achieving 98% accuracy. Ma et al [36] 

proposed DL model for closure of two-fluid bubble flow. Gibou [37] provided different directions 

for ML applications in multiphase flow. Skinner [38] used CNN for airfoil optimization from 

airfoil parameters. 

 

Machine learning is seen to be applied in high-fidelity cases too. Many machine learning 

approaches are developed recently to increase the efficiency of DNS. Bar-Sinai et al. [39] 

proposed a deep learning technique to estimate spatial derivatives in low-resolution grids. Jeon 
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and Kim [40] developed a deep neural network to simulate finite-volume discretization and they 

tested it with reactive flows which obtained excellent agreement with reference. Stevens and 

Colonius [41] improved the accuracy of finite-difference/finite-volume methods by using fully 

convolutional LSTM network. Decreasing the size of the computational domain needed to retain 

physical properties of the system is an approach to accelerate numerical simulations. Fukami et 

al. [42] used a convolutional autoencoder with an MLP to develop a time-dependent inflow 

generator for wall-bounded turbulence simulation. It was tested in a turbulent channel flow at 180 

Reynolds Number. Another approach could be without simulating the far field to set the right 

pressure-gradient distribution. Morita et al. [43] developed such a method using Bayesian 

optimization based on Gaussian-process regression which showed promising results. T. Shan et 

al. [44] solved Poisson’s equation to accelerate CFD using deep learning technique. A. Ozbay et 

al. [45] used fully-convolutional neural networks to solve the Poisson problem. It decomposed 

the problem into a homogeneous Poisson problem and multiple inhomogeneous Laplace 

subproblems which resulted in lower percentage errors. This method could also be used in lower 

fidelity that rely on turbulence models. 

 

2.2 Scopes and Limitations 

 

In this work, we have used ML to enhance the performance of CFD and provide an alternative 

route to achieve the flow field of a 2D airfoil. In case of using ML as a catalyst for the performance 

of CFD, there are mainly three major areas in which we can focus on. The areas are – direct 

numerical solution (DNS), turbulence modelling and reduced-order model (ROM). The 

relationship of ML and these three models are presented visually in the Figure 2.1. 
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Figure 13: In the context of DNS, turbulence modeling, and ROM, a breakdown areas where ML 

could help CFD to improve. Image source: [36]–[39] 

 

 

Deep learning, for instance, may be costly to train and requires a large amount of data. As a result, 

it is vital to identify areas where machine learning outperforms decades-old methodologies with 

increased accuracy and efficiency. Besides, the question of how training data is collected and if the 

associated costs are included when benchmarking. In this circumstance, transfer learning is a viable 

area for enhancing CFD. [50] 

It should also be noted that there are deep learning options that may be better suited for specific 

applications. Finally, the information available to the user on the training data must be evaluated: 

certain flow factors was included in the ML model to increase learning efficiency and prediction 

accuracy. [21] 

A variety of machine learning algorithms have recently been developed to increase DNS efficiency. 

Bar-Sinai et al. [51] suggested a deep learning-based strategy for estimating spatial derivatives in 

low-resolution grids that outperformed classic finite-difference techniques. Stevens and Colonius 

devised a similar strategy to enhance the performance of fifth-order finite-difference techniques in 

shock-capturing simulations.[52] 
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DNS is unfeasible for many application scenarios as a result of the computational cost of resolving 

all scales for high Reynolds number flows, as well as challenges caused by complicated geometries. 

Industrial CFD often depends on either RANS models, which simulate no turbulent scales, or 

coarsely resolved LES, which resolve just the biggest turbulent scales and model lesser ones.[21] 

Machine learning is also being utilized in fluid dynamics to create reduced-order models (ROMs). 

ROMs are based on the notion that even complicated flows frequently have a few prominent 

coherent features. [53], [54] 

Creating a ROM entails determining a set of reduced coordinates, which often describe the 

amplitudes of critical flow structures, and determining a differential-equation model for how these 

amplitudes change over time. Either of these phases have experienced significant breakthroughs in 

machine learning in recent years. One popular ROM strategy is to learn a low-dimensional system 

of coordination also with correct orthogonal decomposition (POD). [54], [55] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3: EXPERIMENTAL METHODOLOGY 
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3.1 Introduction 

 

 

In chapter 1, we have briefly discussed about our methodology. Here we discuss the methodology 

in details. For clarity, we have divided our experimental methodology into three parts which are 

– data preprocessing, training and validation, and inference. The figure below shows the brief 

methodology of our experiment. We have used the works of Vinothkumar et al. [56] , who 

developed a DL approach to predict the flow field around 2D airfoil, as our benchmark. 

 

 

 

 

Figure 14: Experiment Methodology 

 

 

 

 

 

3.2 Data Pre-processing 

 

In this part, we had done several works. The CFD simulation as well as the collection of data had been 

executed in this step. At first, we have collected the coordinates of different NACA models from this site 

[57]. 95 different NACA models are selected. For each model, simulation was run for five sets of angle of 

attack (AOA), which are 0o, 3o, 6o, 9o and 12o, and seven sets of Reynolds number (1100000, 1200000, 

1300000, 1500000, 1600000, 1800000, 2000000). In total 3325 cases were simulated. The framework of 
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data collection is shown in the Figure 3.2. 

 

 

 

Figure 15: Framework of Data Collection 

 

After the NACA models were collected, geometry of the model is formed. After the formation of 

geometry, a suitable structured mesh was generated. The mesh was relatively coarse. For the 

solution, Spallart-Almaras model was chosen as the turbulent model. In this way different sets of 

NACA were configured in ANSYS FLUENT and the boundary conditions were selected. Then 

batch simulation was executed. From the results in post-CFD, we had to reconfigure the color 

scale and normalize the dimension of the geometry. The images of pressure and velocity regimes 

were collected using a fixed scale. The data generated was then used for training and validation. 

The flowchart of data pre-processing is shown in Figure 3.3. 
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Figure 16: Flowchart of Data Pre-processing 

 

Our workflow in the workbench of ANSYS Fluent is shown in the figure below. This workflow is 

for NACA 644221. In the workbench, we have arranged this NACA model into 35 different 

projects. In each row, we have kept the Reynolds number constant and changed the angle of attack. 

In each column, we have kept the angle of attack constant and the Reynolds number is changed.  

 

NACA Air Foil model 
Collection

Ansys Fluent 
Configuration 

Selection of Boundary 
Condition

Batch simulation For 
Specific set  

Color Scale 
configuration & 

Dimension 
Normalization 

Collection of Pressure 
and Velocity regime 
images using fixed 

scale
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Figure 17: Workbench arrangement for NACA 644221 

 

 

We have made our geometry in Designmodeller. At first, extracted the csv files of different NACA 

models and imported it into the DM. In the DM we made a sketch of the airfoil and the environment 

around it with using operations like surfaces from edges, surfaces from sketch, sketch, rotation and 

boolean. The geometry of NACA 644221 is shown in Figure 3.5. 
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Figure 18: Geometry of NACA 644221 

 

In mesh generation, we have used structured mesh. Linear element order had been used. There 

were five inflation layers. For the inflation, the growth rate is 1 and for the edge sizing the growth 

rate is 1.2. The mesh generated is shown in the figure 3.6. 
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Figure 19: Mesh of NACA 644221 

 

 

After meshing, in the solver, the material is chosen. Pressure-based solver is used along with 

absolute velocity formulation.  Air is chosen as the flowing fluid. Spalart-Allmaras model is chosen 

for turbulence modelling. This is a one-equation based turbulence model for aerodynamic flows. 

[58] After coverging, from the post-CFD, we formatted the velocity and pressure flow field and 

collected the picture to train in the CNN. In the figure below, the picture for velocity profile and 

pressure profile are shown for NACA 644221 at AOA 0o and Re 1.8 × 106. 
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Figure 20: Pressure Profile of NACA 644221 at AOA: 0o & Re: 1.8 × 106 

 

Figure 21: Velocity Profile of NACA 644221 at AOA: 0o & Re: 1.8 × 106 

3.3 Training and Validation 

 

The data achieved from the data pre-processing is processed in this step. 80% of the data were used 
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for training the ML algorithm and 20% data were used for validation. The algorithm is based on 

U-net. U-Net is a CNN for biological image segmentation developed at the University of Freiburg's 

Computer Science Department. The architecture of the network was improved and enlarged to 

function with less training photographs and produce more precise segmentations. The basic idea is 

to add successive layers to a standard contractual network, with up sampling operators replacing 

pooling operations. As a result, the output resolution is improved by these layers. A subsequent 

convolutional layer may learn to create a precise output based on this information. The architecture 

of the ML is shown in Figure 3.9. 

 

 

 

 

 

 

Figure 22: Machine Learning Architecture 

 

 

In this process we have used U-net with attention mode. In the context of picture segmentation, 

attention is a method of highlighting just the important activations during training. There are two 

kinds of attention: hard and soft. Hard attention works by emphasizing significant portions of a 

picture by cropping or iterative region suggestion. Soft attention works by giving different sections 

of the image distinct weights. The structure of U-net with attention mode can be observed in the 
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Figure 3.10. 

 

 

 

 

 

 

 

Figure 23: Architecture of U-net with attention mode [59] 

 

 

 

 

 

Chapter 4: RESULT and DISCUSSION  
 

 

4.1 Inference 

 

This step is the post processing part. Although this is a part of the experimental methodology, the 
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inclusion of this part in this chapter is more relevant because in this step we deal with the results. 

Below is the inference flowchart. At first, we have collected data from CFD in the pre-processing 

part and then trained them using U-net. Then based on the results achieved, we made a comparison 

of the two types of data, one from CFD and other from U-net, in this step. 

 

 

 

 

 

 

 

Figure 24:  Inference flowchart 

 

 

 

4.2 Results and Discussion 

 

In this paper, we used deep learning approaches to estimate the flow field over an airfoil. The 

prediction strategy consists of two steps. In the first U-net (with attention model) is used phase to 

parameterize the model. The flow field across airfoils is predicted in the second stage. The model 

is trained to forecast the flow field using the parameters collected from the U-net, as well as 

Reynolds number, angle of attack, and x-y coordinates (pressure and velocity components. Both 

networks' training information and prediction results are shown in Figure 4.2-4.6. As a flow 

prediction network, the U-net model with convolutional layer, max-pooling as well as attention 

model is used. The model is trained in such a way that the training RMSE is decreased. 

 

Case 1: 

Reynolds Number: 1800000 Angle of Attack: 0° 

Comment: hardly any visible fluctuation  
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Figure 25: Testing airfoil NACA 63415 comparisons of the flow velocity field. From left to right, v-CFD, v-

prediction (u-net) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 2: 

 

Reynolds Number: 2000000 Angle of Attack: 3° 

Comment: Visible diverge of flow regime, Acceptable hue    
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Figure 26: From left to right, v-CFD and v-prediction (u-net) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 3: 

 

Reynolds Number: 1600000 Angle of Attack: 9° 

Comment: diverge of flow regime, vague hue formation  
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Figure 27: From left to right, v-CFD, and v-prediction (u-net) 

 

Case 4: 

 

Reynolds Number: 1600000 Angle of Attack: 12° 

Comment: Prominent flow regime inaccuracy 

 

   

Figure 28: From left to right, v-CFD and v-prediction (u-net) 

Figure 25 illustrated in Case 1 shows the flow field (velocity components) prediction results for a 

training airfoil case and a testing airfoil case. The anticipated flow field contour patterns closely 

resemble the CFD data. Figures 26 and 27 compare velocity profiles for the testing airfoils at 3o 

and 9o angles of attack in Case 2 and 3. Despite the fact that various color regimes shift, the 

projected velocity profiles nearly match the CFD data, as seen by the comparison. Case-4, Figure 

28, in contrast to the other instances, is significantly inaccurate because to its relatively high angle 

of attack and high Reynolds number. As a result, projections for modest requirements fall within 
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an acceptable range. 

The results reveal that the trained model does a good job of predicting the flow field. This also 

suggests that the parameterization is effective and that the u-net network can recover geometric 

properties from the parameters, allowing for accurate flow field prediction. Once trained, the 

present technique is far quicker than classic CFD algorithms, forecasting the flow field at a 

particular airfoil in only a few seconds. Furthermore, because to the presence of boundary 

conditions, CFD techniques require a fairly large flow domain to be addressed surrounding the 

airfoil once trained. The flow domain of interest, on the other hand, is selectable using the current 

approach. In most cases, such as flow around an airfoil, the flow field near the airfoil and in the 

wake is quite significant, as shown in this approach close to the airfoil. Furthermore, prediction is 

performed even when the flow field values are unknown inside the airfoil design. This might be 

one source of the decline in accuracy near the surface. Because airfoil coefficients are calculated 

from surface flow field distributions, values near the boundary are typically more significant. 

Overall, the suggested technique is well-suited to forecasting flow fields. 

In the table below, we have shown an error assessment for case 3. The Root-Mean-Square-

Deviation (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), standard deviation 

and BIAS is shown. 

 

Error matrix  Value 

RMSE 10.59888787 

MAE 9.599160503 

MSE 11.23436917 

BIAS -8.110127022 

Standard deviation 4.49375656 

 

Table 4.1: Error assessment example for case 3 

 

Chapter 5: CONCLUSION and RECOMMENDATIONS  

 
Although the errors of some simulation is within acceptable range, for some case the errors are 

substantially prominent. This may occur for various factors. The most important factor is we had 

sparsity of data pool. Throughout our literature review, we could not find any dataset. So, at first, 

we had to manually generate data, which was time consuming and tedious. Despite simulating 

3325 data, we lacked the information to meet the threshold point for the training of ML algorithm. 
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Apart from this, the computers we had for the execution of the training and simulation, were not 

of compatible power. We had low configuration computers, which consumed precious time in data 

pre-processing, as well as, in training. Moreover, our mesh could have been finer. And lastly, the 

algorithm is not perfect. It needs to be optimized through trial and error, which can be a concern 

for further future. 

Further research may allow for the reduction of the time required to expand the breadth of a CNN 

(convolutional neural network) model without the need to completely retrain it. The study of 

dissimilarity may be used to guide the selection of preprocessing strategies for ML aided turbulence 

modeling in order to improve prediction performance. Future work might concentrate on 

developing more appropriate assessment measures. 

There are a number of emerging ML subjects that offer potential for CFD. Non-intrusive sensing, 

or the capacity to anticipate flow based on reports at the wall, is one such field. This problem, 

which has serious effects for closed-loop flow management, was completed using CNNs in 

turbulent channels.[50] 

In relation to this study, a number of research have been published that demonstrate the feasibility 

of executing super-resolution predictions (e.g., when little flow in wall-bounded turbulence using 

CNNs, autoencoders, and generative adversarial networks (GANs). [60]–[63] 

Another potential path is to impose restrictions on the ML model based on physical invariances 

and symmetries, which has been applied for SGS modeling [64], ROMs [65]and geophysical 

fluxes.[66] 

There are also significant challenges in CFD that necessitate unique ML techniques. A fascinating 

problem in CFD is producing efficient coarse-resolution simulations in uncontrolled 3D wall-

bounded turbulent flows. Because Turbulent Kinetic Energy (TKE) production is subject to 

turbulent changes in these high-tech flows, adjusting coarse and fine grades may not be sufficient 

to deliver correct results. These challenges will need the creation of new approaches in order to 

advance the profession. 

Despite the limitations, we anticipate that the trend of using ML to build CFD will continue. This 

advancement will be fueled by a rise in the amount of high-fidelity data, massive processing power, 

and a full understanding of and proficiency with these successful models. It is also vital to increase 

the use of reproducible research standards. Given the significance of data in the development of 

ML modes, we recommend that the community continue to establish appropriate benchmark 
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mechanisms and best guidelines for accessible data and software in order to fully realize the 

promise of ML to enhance CFD. [67], [68]. 
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