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ABSTRACT

The design and performance analysis of Printed Circuit Heat Exchanger (PCHE) as pre-
cooler is being recent research trend as the researches on recuperator has already been
saturated. The improbable fluctuating properties of sSCO2 near the critical region makes
it arduous to design a component that runs under the critical region. However, the high
heat transfer coefTicient at near critical region is advantageous in increasing the second
law efficiency of the power cycle and reducing the size of cycle components, making it
cost effective. In this study an iterative nodal approach is implemented to develop a
design code in Python language for the design of zigzag channeled PCHE as the pre-
cooler for sCO2 recompression cycle integrated with Concentrated Solar Power
technology. For the real gas properties (RGP) of sCO2 CoolProp is used. The
performance study done under different sCO2 inlet pressure and different water inlet
temperature suggest the heat transfer rate can be enhanced by lowering the water inlet
temperature and sCO2 pressure down to 7.5MPa. The result also shows the pressure
drop on SCO2 side decreases upon increasing these parameters. The outcomes derived

from this work can be used to design and develop more advanced PCHEs for pre-cooler

application for wide range of Cooling-loads.

Keywords: PCHE, Zigzag, SCO2, Recompression , CSP
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NOMENCLATURE

Ac Cross section area of the channel, m2

Aff  Free flow area, m2

Aht  Total heat transfer area, m2

Cp Specific heat capacity at constant pressure, J/kg-K
d Channel diameter, mm

Dh Hydraulic diameter, mm

f Fanning friction factor

h Heat transfer coefficient, W/m2-K

] Colburn friction factor

k Thermal conductivity of the HX material

Leff Effective Heat transfer length, m
L Heat transfer length, m

\dot{m} Mass flow rate, kg/s

Nch Total number of channels

Nu Nusselt number

pl Longitudinal Channel pitch, mm

pt Transverse Channel pitch, mm
P Perimeter of the channel, m
Pr Prandtl number

Pin Inlet pressure, MPa
\mathbit{P}_{\mathbit{design}} Design pressure, kPa
Qun  Thermal capacity, MWth

Re Reynolds number
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St

Leff

Lmin

TIT

sCO2

w

H20

sCO2

cf

xf

Stanton number

Plate thickness between channels, mm
Effective conduction thickness, mm
minimum allowable plate thickness, mm
Joint Efficiency, %

Inlet temperature, K

Outlet temperature, K

Overall heat transfer coefficient, W/m2-K
Velocity, m/s

Turbine Inlet Temperature

Supercritical CO2

SUBSCRIPTS

water side of the heat exchanger
water side of the heat exchanger
sCO2 side of the heat exchanger
sCO2 side of the heat exchanger
parallel flow
counter flow

cross flow

GREEK

Zigzag angle

Fin angle
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p Density
G Maximum allowable stress, MPa
ATim Log mean temperature difference

Apsic  Frictional pressure drop, kPa

ABBREVIATIONS

CSP  Concentrated solar Power
BC  Brayton Cycle
RC  Recompression Cycle

ORC  Organic Rankine Cycle
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CHAPTER ONE

INTRODUCTION
1.1 Background

In this ever-changing global world, there remains crucial environmental issue that
affects the climate and imbalance of it in any point leads to the imbalance of the carth.
The world has been dependent on fossil fuels from the invention of steam engines. The
dependence on fossil fuels for electricity generation has fatalistic impact on the climate
due to green-house gas emissions. As an effort to minimize the environmental damage
recent trends for sustainable and renewable energy sources has been shown. These new
developments are likely to include CSP, Nuclear, and Green Hydrogen T echnologies
as well as increasing energy efficiency by waste-heat-recovery, and carbon-capture and
storage.(Commission, n.d.)(LR.EN.A., n.d.). So, the power cycles will possibly remain

canter of consideration for future energy research.

The sCO2 recompression cycle can be considered as a potential alternative for the
conventional steam Rankine cycles(Katz et al. 2021) in several power generation
sectors, such as, CSP at a higher pressure (Luu et al., n.d.)(Yin et al. 2020), nuclear
power at high temperature (J H Park et al., n.d.)(Pan Wu et al. 2020)(P Wu et al., n.d.),
waste-heat recovery (Marchionni, Bianchi, and Tassou, n.d.)(Bianchi et al., n.d.) (Song
et al., n.d.)or even conventional fossil fuel fired powerplants (S. Park et al., n.d.) .
Existing power cycles, e.g. the Rankine cycle and the simple Brayton cycle, usually

operates with steam and air as working fluid respectively.

Nevertheless, as an effort to achieve higher thermal efficiencies of the power cycle an
alternative working fluid is a necessity. The sCO2 power cycles, per se, is being
considered as a promising candidate for having high cycle efficiencies at temperatures
ranging from 620K to 1070K. The sCO2 power cycles also show satisfactory
operational pliability to keep up with the rising trend in renewable energy sources
(White et al. 2021).

The promise of sCO2 is underlined by the enormous increase in research over the
previous decade, as well as the financial assistance made available globally to promote
technical improvement. The thermo-fluid properties of Carbon dioxide e.g. density,

viscosity, specific-heat, thermal conductivity show an abrupt fluctuations near pre-
1
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The promise of sCO2 is underlined by the enormous increase in research over the previous
decade, as well as the financial assistance made available globally to promote technical
improvement. The thermo-fluid properties of Carbon dioxide e.g. density, viscosity, specific-
heat, thermal conductivity show an abrupt fluctuations near pre-cooler operating condition
namely the pseudo-critical region( Figure 1). The sCO2 shows a very high density when
cooling near to the critical temperature in the pre-cooler. The compressor requires low power
consumption to compress high-density sCO2 which results in high overall thermal performance
of the trans-critical and super-critical CO2 cycles. As a result, the sCO2 shows some
advantages as the working fluid in the cycle pre-cooler in comparison with supercritical-water
as it has a low specific-volume as well as other low critical-parameters.(Ehsan, Guan, and

Klimenko 2018).
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Figure 1: Abrupt change of Carbon dioxide properties(RGP )extracted from CoolProp near the pseoudo-critial temperature
at Pre-cooler design operating Pressure(SMPa)
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1.2 PROBLEM STATEMENT

Printed Circuit Heat Exchangers(Figure 4) are one of the most widely adopted heaters and
recuperators for supercritical CO 2 ( sCO 2 ) Recompression Closed Brayton Cycle (RCBC)
(White et al. 2021) .

Printed Circuit Heat Exchangers (PCHESs) serve as recuperators and pre-coolers in the power
cycle, and their design is critical to the cycle's efficiency and design. The recuperators and pre-
coolers are significant heat exchange facilities in the system, as well as on the system. security,
economy, and stability. The printed circuit heat exchanger is a cutting-edge new technology.
Given that PCHEs account for around 80% of the total expenditure in a sCO2 power
cycle(Brun, Friedman, and Dennis 2017), it is essential that their designs be optimized for

effective heat transmission and a modest pressure decrease.

Because of their excellent pressure and temperature resistance, compactness, and effectiveness,
PCHE:s are ideal candidates for the sCO2 Recompression Brayton cycle, resulting in an 85
percent volume decrease. (Figure 2) versus a shell-and-tube exchangers (Johnston, Levy, and

Rumbold 2001).

Figure 2: Size comparison of PCHE to STHE

1.3 METHODOLOGY OF THE STUDY

In our study, we proposed the thorough design of a 25MW class Pre-cooler. We validated the

the temperature profiles for sCO2 and water streams with Saeed et al for the same zigzag

11
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channel geometry (Muhammed Saeed, Ali Awais, and Berrouk 2021). We obtained similar
temperature profile with that mentioned study. For the in house design code we firstly defined
all the geometric parameters for the PCHE channel. Then , we analysed a single module of heat
exchanger consisting alternate channel stacks of sCO2 and water plates. Eventually, we have

proposed a combination of PCHE modules for desired heat load.

1.4 ARRANGEMENT

This thesis first introduces the importance of utilizing zigzag channeled PCHE for the pre-
cooler of sCO2 recompression cycle integrated with CSP, was followed by an elaborate
literature review. The literature review was done on sCO2 recompression cycle focusing on
CSP application as well as Printed Circuit Heat Exchanger focusing on Zigzag channel and
pre-cooler application. In the methodology chapter the physical model mathematical model an
iterative nodal approach has been described. The conclusion chapter follows the Results and

Discussion chapter for Design and Off- Design condition.

1.5 LIMITATIONS

This study mainly perfomed for single-phase thermo-hydraulic performance of CO2. No
comprehensive comparisons of thermo-hydraulic characteristics for PCHEs with
different channel configuration have been carried out. The study will not be applicable for

transient state designs.

12
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2 CHAPTERTWO: LITERATURE REVIEW

2.1 REVIEW OF S-CO2 RECOMPRESSION CYCLE
One of the most promising design variations of the supercritical CO> Brayton cycle is the sCO»
— Recompression cycle. At present, most of the research on recompression cycle is primarily

been focused on the supercritical CO2(Dostal 2004).

The simple BC has higher compactness as the required turbo-machineries are small in size than
the ORC with steam as the working fluid. Nevertheless, the BC requires higher compression
power to operate that can be eliminated by very high TIT about 1470K or more (H.LH.
Saravanamuttoo, H. Cohen and A.C. Nix 2017). To achieve higher efficiency with low cycle
operating temperature steam cannot be used as the working fluid. As a replacement of steam,
Helium or Carbon dioxide can be used in a closed cycle configuration. Helium as the working
fluid with 1120K — 1220K cycle operating temperature can make the cycle efficiency over 50%
while significantly reducing the cycle efficiency at around 770K in BCs for nuclear
applications (Herranz, Linares, and Moratilla 2009). This issue can be eliminated using sCO2

as the working fluid (Pérez-Pichel et al. 2012).

The recent trends of research can be seen on application of sCO2 cycles integrated with CSP
as one of the preventative measures towards the effects of climate change and potential of CSP
as a robust non-conventional source of energy. Linares et al. investigated various
configurations based on the recompression layout with IC+RH both wet and dry cooling
systems (Linares et al. 2020). Recently, Ehsan et al. comprehensively investigated the influence
of cooling system design under various working conditions on the optimal performance of
sCO2 recompression cycle as well as an iterative nodal approach for the design and
optimization of the air-cooled finned tube HX bundles within the NDDCT (Ehsan, Duniam, Li,
et al. 2019). Li et al. surveys the experimental facilities for a comprehensive review on Solar
thermal application of sCO2 power cycles including nuclear, fuel cell and other non-
conventional application (M. J. Li et al. 2017). Turchi et al. studied dry cooling for a
recompression cycle to reach a cycle efficiency about 50% employed with reheat and inter-
cooling, focusing on CSP (Turchi et al. 2013). Milani et al. proposed a recompression with
IC+RH integrated with hybrid fossil and solar thermal power plant for low carbon footprints

(Milani et al. 2017). Wang et al. proposed a multi-objective optimization approach to determine

13
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the most suitable layout to be recompression with IC and partial cooling in case of high

temperature at compressor with dry cooling system (K. Wang et al. 2018).

To employ the recommendation by Dostal printed circuit heat exchangers (PCHE) can be used
for sCO2 power cycles (Dostal 2004). However, Using PCHE as MSHE has some backlashes
e.g. clogging, cleaning issue, deterioration of the material due to the molten salt which was
observed by several studies(Moore et al. 2010)(Sabharwall et al. 2014)(Lao et al. 2019). In
HTR, LTR and Precoolers the aforementioned issues cannot be observed as the operating fluid
is sCO2. Thorough literature review on Precooler application of PCHE will be discussed in the

Section 2.2.

2.2 REVIEWONPCHE

The Printed Circuit Heat Exchanger typically consists of a pair of headers and nozzles acting
as inlets and outlets for both hot and cold fluid side as well as a diffusion bonded core
containing the flow channels. The diffusion bonding helps to grain structure development
across the joint boundaries of parent metal plates resulting a high joint efficiency which exhibits

almost same strength and ductility as the parent material.(Brun, Friedman, and Dennis 2017)

These chemically etched micro-channels having a semicircular cross-section significantly

enhances the surface area density of the PCHE (Ren et al. 2019).

However, the size of the channel is limited by the thermal performance on the upper limit as
for the bigger channel diameter the thermal resistances decreases and smaller channel results
large pressure drop for the lower (W. Kim et al. 2017). The depth of semicircular micro

channels can typically be 0.5-3mm (Zohuri 2016; Muhammad Saeed et al. 2020).

PCHEs are resilient to extreme operating temperature and pressure of above 1200k and
800MPa while maintaining the effectiveness over 97(Ji et al. 2009; Le Pierres, Southall, and
Osborne 2011).

PCHE can be manufactured using stainless steels and alloys including, stainless e.g. SS304,
SS316, SS316L, SS904L., Monel, cupronickel, nickel and super alloys e.g. Inconel 600, Incoloy
800, and Incoloy 825 (Foumeny and Heggs 1991). For this study SS316L has been used.

The PCHEs can have continuous and discontinuous fin configurations (Muhammed Saeed et

al. 2020). These two fin configurations can be further decategorized as Straight fins, Zigzag

14
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Fins, S- shaped fins, Airfoil shaped fins, and sinusoidal shaped fin configurations (Cheng et al.
2020; T. H. Kim et al. 2015; Joo Hyun Park et al. 2020; Liu et al. 2020; Nikitin, Kato, and
Ishizuka 2007; X. hui Li et al. 2019a; Nikitin, Kato, and Ngo 2006; Ngo et al. 2006; W. Q.
Wang et al. 2019; Muhammad Saeed and Kim 2019).

Several cross-sectional shapes have also been developed for continuous fin configurations such
as semicircular, rectangular, trapezoidal, triangular (S. G. Kim et al. 2016; Muhammad Saeed

and Kim 2017; Ngo et al. 2007; Lee and Kim 2013; Gupta et al. 2008).

Thermo-hydraulic properties of the PCHE of different configurations as discussed above have
been determined by both computational and experimental methods. Among all the above-
mentioned categories the straight and zigzag channels are mostly used in industrial facilities.
The reason for using straight channels is that they are easy and cost effective to manufacture

and Zigzag channel PCHE is preferred for its superior thermal-hydraulic characteristics.

Zigzag channel gives significant heat transfer advantages over the straight channel PCHE
configuration in laminar flow regions (Chen, Sun, and Christensen 2019). The zigzag
channeled PCHEs promotes turbulent flow while preventing the boundary layer formation.
They enhance the heat transfer area and the velocity enhancement at bending point elevates the

heat transfer performance (Q. Li et al. 2011)

A number of studies on the thermo-hydraulic characteristics has been done using He, sCO2
and/or water under ranges of Re and Pr to achieve the optimality in heat exchanger(Lee and
Kim 2013; Muhammad Saeed and Kim 2017; Chu et al. 2017; Ishizuka et al. 2005; Ngo et al.
2007; Yoon et al. 2017; W. Kim et al. 2017; Huang et al. 2019). But, very few studies has been

done on sCO2 cooling in near critical region.

Baik et al. conducted experimental investigation of zigzag PCHE under cooling condition of
sCO2 in near critical region. They proposed thermo-hydraulic correlations within Prandtl
number ranging from 2 to 33 and Reynolds number ranges from 15000 to 100000 for the sCO2
fluid side. The inlet test conditions on the SCO side was from 7.3 MPa to 8.6 MPa and 26 - 43
°C for pressure and temperature, respectively. Furthermore, they CFD aided investigation and

in combination of both methods they developed KAIST_HXD design code. (Baik et al. 2017).

Li et al. investigated the influence of sCO2 inlet conditions on the thermal performance of

Zigzag channeled PCHE. They proposed a new method for estimating the thermal performance

15
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considering the working condition. They showed a relation of overall heat transfer coefficient
with operating pressure, temperature, and mass flow rate on supercritical carbon dioxide side
suggesting a PCHE will perform better when the working point which is the ratio of average

working temperature to precooler temperature, is closer to 1. (X. hui Li et al. 2019b)

Zhang et al. studied computationally considering sCO2 for both hot and cold side of the zigzag
channeled PCHE with zigzag angle ranging from 110° to 130° based on the 1*' and 2™ laws of
thermodynamics. The inlet condition was considered (390.15 K, 21 MPa) on the Hot side and
(295.15 K, 8.5MPa) at the cold side of the PCHE. They discovered the HT enhancement has
close relation with the decrement of the generation of entropy as well as the increment of the
synergy between temperature and velocity gradient. They demonstrated the result showing that
the reverse-flow enhances the field-synergy and reduces the HT entropy-generation whereas
the secondary-flow increases the synergy between the temperature as well as velocity gradient

in PCHE (Zhang et al. 2019).

Cheng et al. experimentally investigated a 100kW PCHE under test conditions of inlet Re
ranging from 31157 to 52806 and inlet temperature varying from 363.4 K to 383.4 K, while
the water side inlet Re varied from 1084 to 1947 and the inlet temperature was considered
within 293.15 K — 299.7 K. The results suggested an increment of Overall HT performance
with increasing Re. On the other hand, the pressure drop on both side of the PCHE decreases

with increasing water inlet temperature (Cheng et al. 2020).

Saeed et al. performed a numerical investigation on the thermal-hydraulic characteristics of a
zigzag-channeled PCHE with sCO2 under precooler-conditions. They proposed a new
correlation (Table 1) for Nu and fanning friction factor for Reynolds number ranging from
5000 to 7000 and valid for Prandtl number of 2.2 < Pr < 13) on the segmental-averaged
values(Muhammad Saeed et al. 2020)

Most Recently, Muhammed Saeed, Ali Awais, and Berrouk’s work focused on the CFD based
design as well as analysis of a Zigzag-channeled PCHE for the pre-cooler application of a
sCO2-BC under different working conditions (Muhammed Saeed, Ali Awais, and Berrouk
2021).

16
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Table 1: Thermohydraulic Correlations Review for zigzag channel

Literature Workin Derivati
gfluids | 20 o Thermohydraulic Correlation on
&0 2 Type
<
Nikitin et Cco2 fo ot = (—1.402 x 1076 + 0.087 x 10~ I
al.(Nikitin, o +(0.04495 + 0.00038); S
Kato, and .- 2800 < Re < 5800 5
Hpai2lilo) S5 S Tl forco = (—1545 x 1076 £0.099 x 10" g
s +(0.09318 + 0.00090); =
6200 < Re < 12100
Ishizuka et CO2 h=0.210Re + 44.16 t
al.(Ishizuka o f =-2x10"%Re + 0.1023 3
et al. 2005) S (5000 < Re < 13000), g
I 1
8 3
Ngo et CO2 Nu = 0.1696Re629pr0317 m
al.(Ngo et al. g ;3.5 x 10% < Re < 2.3 x 10* e
2007) = 0.75 < Pr < 2.2 =
I f = 0.1924Re 0091 g
8 ;3.5 % 103 < Re < 2.3 x 10* 8
Baik et CO2 - Qo
al.(Baiket | Water Nu = 0.8405Re®37%*pr-08; g%
al. 2017) f = 0.0748Re~01%; 2 E
: for =5
= =
" 15000 < Re < 85000 =
o Nu = 0.2829Re0-6686,
f = 6.9982Re076¢;
50 < Re < 200
Saeed et CcO2 ®)
al.(Muhamm g
ad Saeed et 2
al. 2020) s Nu = 0.475Re.%61 pr017, o
= f = 0.13Re~00#4 5
'; (3000 < Re < 60000) -
(2.0 < Pr<13)
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3 CHAPTER-THREE: RESEARCH DESIGN

3.1 INTRODUCTION

The design code has been implemented and solved on Python 3.7. The thermo-hydraulic
properties of the working fluids has been extracted by coupling the CoolProp (Bell et al. 2014)
module with the design code. Similar geometry Zigzag channeled PCHE and correlations was
chosen from the experimental study of Baik et al. for the design(Baik et al. 2017). An iterative
nodal approach design method which is similar to some of the prior works based on segmental
method (Ke et al. 2017)(Guo and Huai 2017) (S. G. Kim et al. 2016)(Bennett and Chen 2019)

is implemented.

The inlet Temperature of sCO2 stream for the Design code is considered to be 348K and the
water inlet temperature 292K (Table 7). The cycle design mass flow rate for sCO2

recompression cycle integrated with CSP is 248.67 kg/s.(Table 2)

The flow stream (10) going towards the main compressor (MC) is wet cooled (Figure 3)by Pre-

cooler module

M in series

; 3
Moo 01— — IO~ — i 4

N in i — A - [ —

Figure 8) consisting zigzag channel PCHE units.
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3.2 sCO2 RECOMPRESSION CYCLE LAYOUT

Salar Tower

s _ Cooled Water oue
| Finncd tube hear exchanger buodles =

Helsosear field

I’ CSPplant equipped with TES Wat coaled sCO; Recomprassion cyde

Figure 3: sCO2 Recompression integrated with CSP
The advantage of recompression cycle (Figure 3 )over simple Brayton cycle is that it reduces

the pinch point effect occurring inside of a single recuperator.

The effect of pinch point mainly occurs due to the difference of Cp between s. To eliminate
this pinch point, AT between the lower pressure and higher-pressure stream at several points
of the recuperator should be higher than the minimum allowable AT which varies for working
fluids. However, large temperature gradients reduce the cycle thermal efficiency. The
recompression cycle decreases these gradients by reducing the mass flow rates at the higher-

pressure side.

This can be achieved by splitting the stream after LTR exit into two streams in a specific ratio
(SR). One of the streams follows the recompression cycle path going through the precooler and
main compressor. The other goes to the Recompression compressor, where the stream
condition is achieved as same as the LTR. The combined flow enters the HTR followed by
MSHE where the heat is added to the stream from Solar Tower before entering the Turbine.

The Stream going through the MC is cooled by water coming from the NDDCT. (Figure 3)

In addition, split ratio (SR) for a cycle can be defined as the ratio of the mass flow rate of main

compressor to the cycle mass flow rate from LTR.

iy My
SR=e—=——"—
Mg My + My,
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For this study the split ratio is considered to be 0.6, giving the main compressor i.e. precooler

mass flow rate 149.2 kg/s.(Table 2)

Table 2: sCO2 cycle conditions

Parameters Values
Cycle mass flow rate 248.67 kg/s
Main compressor mass flow rate 149.20 kg/s
SR 0.6
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3.3 PHYSICAL MODEL
A module of 26MW diffusion bonded zigzag channeled PCHE is considered for design.

The joint efficiency of typical joint is considered to be 0.7 (Y. W. Kim, Kang, and Kim 2018).
The material considered for this design is SST316 that can endure 20000psi stress and shows
high thermal-conductivity and resistance to corrosion even in extreme temperatures ranging
from 240K to 1270K according to “Section II Part D ASME Boiler and Pressure Vessel Code™
(The American Society of Mechanical Engineers (ASME) 2010).

After selecting the flow pattern and cross-sectional form of the channels of heat exchanger, the
thickness of the plate solid wall in between the neighboring channel must be addressed for the
design of compact heat exchangers. In accordance with the heat exchanger design part of
“ASME Boiler and Pressure Vessel Code” (The American Society of Mechanical Engineers
(ASME) 2011),the required minimum plate thickness can be calculated by the following

formula for semi-circular channels is,
tmin=PR /(SE - 0.6P)

where P is internal-design pressure, R is the channel-radius, § is the max allowable normal

stress for the material used and Joint efficiency E.

The maximum allowable design pressure inside a standard printed circuit heat exchanger may

be upto 500bars of gauge pressure.
The split view of PCHE single unit with diffusion bonded core was shown in Figure 4.

Table 3 summarizes all the Geometric parameters which are pre-defined. The channel

configuration and geometries of PCHE for pre-cooler prototype designed is shown in Figure 6.

A 1.8 mm thick SS316L stainless steel plate is considered to contain 32 chemically-etched
channels. The minimum allowable wall thickness is 1.517 mm according to ASME as
previously mentioned. For this study the minimum wall thick is 1.52mm which fulfills the
requirement. 56 such plates are stacked in Alternate channel configuration giving the total

number of channels to be 896

The Figure 7 shows the characteristics lengths of hot and cold side of the heat exchanger.
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Figure 4: Split view of PCHE (Courtesy MEGGiT(“Printed Circuit Heat Exchangers - Meggitt” n.d.))

Figure 5:The 3D view for channel configuration and nozzle flanges
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t, plate thickness

d, diameter

8, fin angle
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pr. Transverse pitch
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Figure 6: Zigzag Channel Geometry

/-' Longitudinal pitch
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Figure 7: Characteristics Length of Hot and Cold Channels
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Table 3: Geometric Parameters of Each PCHE Block

Parameter Value Unit
Length 1.5 m
Height 0.5 m
Width 0.5 m
Channel Diameter 1.8 mm
Channel Zigzag angle, alpha 100 degree
Fin angle, theta 40 degree
Fin thickness 3.0 mm
Transverse Pitch (y-axis) 2.35 mm
Longitudinal Pitch (x-axis) 7.22 mm
Pitch along Height (z-axis) 2.55 mm

Table 4: Derived Geometric Parameters
Parameter Value Unit
Available Free flow area on | 9120.19 mm”>
each side
Assumed Effective Plate 3.05 mm
Thickness
Total Heat Transfer Area 1802.7821137384228 m>

Table 5: PCHE Technical Characteristics
Parameter Value Unit
Plate Material Alloy-SST-316 -
Thermal Conductivity 16.4 W/n/k
Maximum Allowable Stress 20000 psi
Diffusion bond joint 0.7 -
Efficiency
Internal Design Pressure 500 barg
Minimum allowable Plate 1.517451 mm
thickness
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3.3.1 EQUATIONS FOR DEFINING CHANNEL GEOMETRY
The cross-sectional area, Ac, and perimeter, P, of a semicircular channel can be

calculated from the relations;

Hydraulic Diameter,

dZ
_4x free—flowarea 4 (HT]

] T md
wetted perimeter “7+d

Available free flow area for the sCO2,

Aff == AC XNCh

Total free flow area of the heat exchanger,

L _ i
cos (90" —%) ~ cos B

Legr =

The heat transfer area,

Aht - Leff X P X NCh

Inner Cross-sectional area for each water,
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Available total free flow area for fluid flow,
Aff == AC X NCh

Let W, H, and L be the width, height and length of the heat exchanger respectively. The

number of channels along width and height, given by Nw and Ny respectively, are defined as,

Where, 2 NCh = NWNH

The the effective physical-conduction thickness will vary along the semicircular locus between

neighboring channels, 1.e. {4, < X < pz so the effective thickness can be defined as the

mean of the upper limit and lower limit,

s Dz + tp.!ate
Bep'= ==

The effective thickness for the plate is taken into account for merely the thermodynamic
consideration as a compensation for the shape factor while determining the wall thermal

resistance.
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3.3.2 PCHE COMBINATION

The designed PCHE modules needs to be combined in series and/or parallel network to get

required heat rejection at a pre-determined mass flow rate.

However, The number of PCHE single units in the series or parallel combination is limited by

the pinch point effect. In the series combination the length of the HX units increases by the

factor of

; 3
Moo 1 —— -+

N n prarc R —

M

M in series

Mprecooler OUt

(

Figure 8). The pre-cooler mass flow splits into N number of streams for the parallel

combination. The capacity of the Heat Exchanger will be multiplied by the total number of

PCHE single

s 3
o - -

M L g ITTEN

units

M in series

Mprecooler -0Ul

(N*M).

Figure 8 depicts the PCHE network for pre-cooler. Nonetheless, the Heat rejection for each

unit may not be the same as the Temperature difference decreases along the length. Eventually,

pinch point effect will occur.
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precaoler +IMN
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I

M in series

Mprecooler -OUt

Figure 8: PCHE module combination for required Heat Rejection

For this study, the optimum number of rows of the Pre-cooler unit is 334, giving the mass

flow rate for each channel 0.5 g/s. Such two stacks need to be put in series to get the required

capacity of the Pre-cooler without encountering any pinch point. (Table 6)

Table 6: PCHE network for Full 25 MW class Pre-cooler

PCHE units in Series, M 2
PCHE units in Parallel, N 334
Number of total units, N*M 2%334
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3.4 MATHEMATICAL MODEL

3.4.1 ASSUMPTIONS

The heat exchanger would operate condition, 1i.e., operate
with constant flow rates and fluid temperatures (both at the inlet and within the
heat exchanger) independent of time. Heat losses to and from the surroundings are neglected.

under steady-state

Non-existence of thermal energy sources or sinks in the heat exchanger. The wall thermal
resistance is assumed as a constant and uniform in the entire heat exchanger. No phase change,
since we are only dealing with CO2 gas on one side and water on the other side of the
exchanger.

3.42 BOUNDARY CONDITIONS

The boundary condition for the design code is elaborately mentioned in Table 7. The hot
channel mand cold channel are in counter flow configuration as a result the pinch point
mentioned is the local temperature difference at a particular node. Cold side mass flow rate

has been considered based on initial energy balance.(Figure 11)

Table 7: Precooler Key Operational parameters and constraints

Parameter Design Values| Off-Design |Unit
Constraints
Heat Exchanger load Capacity , Qhx (MWth) 23.85 24 - 27 MW
Cold side inlet temperature, Ty 120 20 15-25 (°C)
Hot side temperature, Ti,scoz2 (°C) 75 65-105 ((°C)
Hot side outlet temperature, Tourscoz (°C) 33.13 33-39 (°C)
Cold(water) side inlet pressure, Py, (MPa) 0.101325*1.2 +2% MPa
Hot(sCO2) side inlet pressure, P scoz (MPa) 8MPa 7-10 MPa
Cold mass flow rate (kg/s), Mw 52020 298.44-596.88 | kg/s
Cycle mass flow rate(kg/s), Ms 149.2 - kg/s
Pressure drop constraints (hot and cold) <2% Pin - -
Pinch point temperature >5 =5 K
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3.4.3 Nodal approach

A single unit PCHE of pre-cooler prototype is divided into Ny - 38 sections (Error! Reference
source not found.) along the length to capture the abrupt fluctuations of sCO2 at near-critical
region. As a result the effective length of each section becomes 7.728 mm while the sectional
characteristics length is 5.92mm (Table 8).To, initialize the calculation, for the 38" section

meaning the 39™ node the inlet temperature of sCO2 is known and water outlet temperature is
assumed. After solving the nth section using steady state energy balance, the outlet condition
for a particular section is considered to be the inlet of the section before it for the sCO2 stream
and the inlet of that section will be the outlet for water stream as the hot and cold streams are

in counter flow configuration.(Figure 9)

The local steady state energy balance equation is considered to be,

- i -1 _ 4j E ) _ -1
th,locai - mS(h‘s.!ocai hs.ioca!,) =My (hs.iocal hs,LocaI

Where , h represents the enthalpy of the fluids.

The heat transfer correlations used in this design code experimentally derived by Baik et for
2000 < Re < 58,000 on the hot side sCO2 as the working fluid(Baik et al. 2017).

For the cold side the flow considered strictly laminar.
Baik et al. suggested the following correlations for the sCO2 heat transfer coefficient,
Nu, = 0.0293(Re,)?o198

For lower Reynolds number (30 < Re < 400) on the water sideas this one the preferred
correlation is Baik et al. (Baik et al. 2017),

h, = 11.04 Re,, + 570.36
To evaluate the Reynolds number on both side the the following equation has been used for
the both side .of the PCHE.
DnG

e =—

U

Here, G is the mass flux for available free flow area (A ) for corresponding streams.

The overall HT coefficient can calculated from the following Equation,

Roverau = RSCOZ + Rp{ate + Rwater
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1 1 L 1
2 ten SO g
Ua hs kp!ate hw

Where, k represents the plate thermal conductivity(16.2 W/m K)Heat Transfer area is
same for hot and cold side (Ant = Ascoz = Anz0). Heat transfer co-efficient for the sCO2 flow
stream is defined as,

_ Nug kg
s Dh

However, for finding the sectional values of overall HT coefficient,

1 1 tess 1

j :
Uo local h ( s,local’ stocai) kp{ate hW(Tw'm)

The local values of LMTD is taken as function inlet and outlet temperature of a particular
section for counter current flow.

ATy s (Ts_inlocal, Tw_inlocal, Ts_outlocal, Tw_outlocal) = AT)

Im,local

(Th in c.out) - (Th,out - Tc,in)
Th in Tc out
ln Ll 1S oL
(Th,out - Tc,in

ATlm cf =

The correction factor for counter flow is assumed to be 1 i.e. Fep = 1 . However, near the
header region the hot and cold channel is needed to be in cross-flow region. The LMTD

correction factor for cross-flow cannot as same as that of counter flow i.e. 0 < F,y < 1. The
correction factor for cross-flow s considered to be, Fy = 0.987 (W. Kim et al. 2017). The

cross flow LMTD becomes,

AT!m,xf =F xf AT!m,c)"

F is the length wise averaged correction factor considered for design code simplification.

Eg'ISL Fyr + Eg gg%Ff ik Eu sst Fxr

=F
L

The 1" bend in the channel starts at 15% of the effective length of the heat exchanger which
results the cross flow between the water and sCO2 channels followed by counter flow region.
At the end, from 15% from the 2™ header is considered to be in cross flow configuration.
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So, the Heat Tranfer capacity for a single section PCHE is defined as,

.}.' _ J' - .
th,laca! = Ua,!acal 8Ape F AT,

Im,local

—=0%A
Nx 6 ht

The definition for the Colburn j factor(Shah and Sekuli 2003) for respective hot and cold side
is,

je =St Pr?/3 = (Nu-Pr~'/3)/Re

Ahs; Ahs, Ahs; Ahs Ahs,

Figure 9: Nodal Approach across the length.
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Table 8: PCHE Design parameter used in nodal approach

Parameter Value Unit
Number of channels on each | 896 -
side, Nch

Length of Concern 225 mm
Effective Length 293.7166 m
Counter flow Length 0.70* Legr m
Cross flow Length 0.15% Legr m
Number of Nodes, n+1 39 =
Number of Sections, n 38 -
Sectional Length 5.92 mm
Sectional Heat Transfer 47.849327858796265 m’
Area, §An

3.4.3.1 Uncertainties consideration in Heat Transfer

The sectional uncertainty for the heat transfer rate is considered with respect to the sectional
heat rejection by sCO2 stream to get the better evaluation of heat transfer rate as an effort to
compensate the property fluctuation of sC0O2,and can be calculate by the following equations.

j+1 i
E j s |th,toca! - QSCOZ |
rrorhx.iocal - I

sC02

i=n—-1 i=n—-1

E QHX,sectiana! i ErrorHX,sectional = QHX
i=0 i=0

Qux = Qscoz = Quz0

3.4.3.2 Pressure Drop
The pressure is considered within the channels while neglecting the pressure drop through the
header region. The nodal approach is applied to evaluate the pressure drop on both hot and cold

side of a single PCHE. Figure 10 depicts nodal approach for determining the local pressure
drop on the sCO2 side.

To capture the abrupt tluctuations in properties of the sCO2 local density and local fanning

friction factor has been considered.
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Aps,iocat = APS( ps(Ts.iocat ’ Ps,!oca!):fs(Ts,tocai ] Ps,iocal))

Where, The friction factor used in this study was derived experimentally by Baik et al.(Baik et
al. 2017)

f. = 0.2515 Re—02031

And the frictional pressure drop can be determined from the following equation,

_ 2f5Gs? Legy

AP,
Dh Ps
AP, AP, AP, AP,
—> HX 1 HX 2 HXj HX n >
PSm Psuut
1 2 j n+1

Figure 10: Section-wise Pressure Drop

For the water side of the heat exchanger the properties of the water is considered merely in
the bulk mean temperature as the low temperature and the pressure change on the water side

does not have the any significant influence on the properties of water.
APw,laca[ = APS( ps(Tw,LacaI): fs(Tw,!ocal))
Where, the fanning friction factor (Baik et al. 2017) is defined as,

f, = 1.3856 Re~ 0482

The pressure drop on the water side,

_ sz Gw ? Leff

AR, —
¥ Dh Pw

The dimensionless Euler number (Shah and Sekuli 2003) for both hot and cold of the PCHE

can be determined from,

AP

Eu=AP = ——
“ Py
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Figure 11: Flow chart for the design of Precooler Heat Exchanger



3.5 CODE VALIDATION

The design code is validated against Muhammad Saeed’s CFD aided design (Muhammed
Saeed, Ali Awais, and Berrouk 2021). The similar geometry of each channel is considered to
be Zigzag configuration with semicircular with fin angle of 40°. The design code of
Muhammad Saeed et al. consisting of 144 segments along the length to allow Prandtl

number range of 1 - 13.

The temperature profile from Muhammad Saeed’s study with sCOZ2 inlet Temperature of

70°C and mass flow rate of each channel 0.5g/s is considered for the validation.

— — — —— ———— 355 - 306
340 - 313 A [
1 —A— water_saeed Y L e B 304
435 1 3127 —a— water_code L 345
311 —® sco2_saeed _ [ 340 [ 302
330 4 | —m—sco2_code &/ L
3101 " [ 335 - 300
325 ] - 330 —
<] 309 - b F2esx
= ] - 325 =
320 308 [ 320 [ 296
315,307- j3?5_294
9 - 310
310 4 A ] F - L 292
305 A L
305 - —_— 300 L 290
0.0 02 0.4 0.6 0.8 1.0
x/L

Figure 12: Temperature Profile Validation of counter current HX along the length against saeed et al
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4 CHAPTER-FOUR: DATA GENERATION/

COLLECTION, ANALYSIS AND DISCUSSION

4.1 TEMPERATURE PROFILES

Figure 13 demonstrates distribution of the temperature profile of sCO2 and the water coolant

along the normalized length of the pre-cooler. The temperature profile for sCO?2 is steeper than

that of water as sCO2 possesses superior heat transfer properties than water. The inlet

temperature of sCO2 is 348 K operating under a pressure of 8MPa. The water inlet temperature

is esteemed to be 291.87 K with 1.2 MPa. However, the inlet water pressure is supposed to be

atmospheric pressure but the pressure-drop induced to the fluid may have potential to create a

vacuum followed by a backpressure at outlet of the cold side. So, in order to compensate that

back pressure, the water should be pumped a slightly higher pressure that mere the atmospheric

pressure.
355 1 T T - T - T T T 306
350 ..\ —@— sCO2 temp distribution
: ..\.\ —m— water temp distribution - 304
345 \
' LR - 302
340 - .
4 \ \.\
||
335 | ¥ - 300
] -
< 330 \. ", p 2
= ] \ -298 =
3251 .\ s -
i b ..l- s
320 . " 296
315 4 Yo "
I 0 "n - 294
- .. I.
310 ®oe, "y
'Ooooooo.... m
e 1 S0000elly - 292
300 1 T T - T ' T g T 290
0.0 0.2 0.4 0.6 0.8 1.0
x/L

Figure 13: Counter Flow Temperatures Profile along normalized length
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4.2 HEAT TRANSFER CHARACTERISTICS

Figure 14 illustrates the Nusselt number and Prandtl number distribution as a manifestation of
thermodynamic performance of the Pre-cooler. The Nusselt number of sCO2 ranging from
104.5 to 54.6 for the cooling operation clarifies the Heat Exchangers designed for HTR and

LTR is not applicable for pre-cooler operation.

The design code has been developed under Prandtl number of 1 to 13. The maximum Prandtl
number reaches at the Pseudo-critical point of sCO2. However, the Prandtl number of water

varies only from 5 to 7.

The dimensionless heat transfer co-efficient, the Colburn j factor shows almost a linear trend.
Nonetheless, the Colburn factor is significantly higher for each section of the pre-cooler for
SCO2 than that of water as sCO2 has higher heat transfer properties than water, shown in

Figure 15

110 T T T T T T
- 14
100 - JH\- L
P4 \ B
" . 12
90 »
—— Nusselt Numbers sCO2 ‘ - -10
—&— Nusselt Numbers water
804 |-m— Pranctl Numbers sCO2 \
—&— Prandtl Numbers water fen
= a
Z 70
sosssoeeeeety 6
soee®® ;
60
-4
50 F
o0
p =t L 2
40 naguu®® L
*000p
T T T T T T T T T T T 0
0.0 0.2 0.4 0.6 0.8 1.0
x/L

Figure 14: Nusselt number and Prandtl Number Profiles of both hot and cold fluid
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Figure 15: Local thermo-hydraulic factors along the normalized length

4.2.1 Uncertainties

Eu

Figure 16 exemplifies the uncertainties associated with local heat transfer rate due to the abrupt

fluctuations of sCO2 properties. The local heat transfer rate would be higher at the beginning

as the local temperature difference is high. Then the heat transfer rate shows gradual decline as

the temperature difference reduces. However, the heat transfer rate shows a slight increment as

the thermodynamic properties enhances near the critical point. The sectional uncertainties rise

up when the sCO2 reaches about 20% of the length followed by a gradual decline as the sCO2

approaches the pseudo-critical region. The error becomes only 0.2% when the sCO2

temperature reaches 307.83 K which is near to the pseudo-critical region.
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Figure 16: Heat transfer Uncertainties in Counter flow

4.3 PRESSURE DROP CHARACTERISTICS
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Figure 17 demonstrates the Fanning friction factor as function of normalized length and relation

with Reynolds number. The local Fanning factor of sCO2 shows a steady inclination. However,

the friction factor for each section on the water side is surprisingly higher than that of SCO2

The Reynolds number of water remains fairly similar across the normalized length of the pre-

cooler whereas the Reynolds number for sCO2 gradually decreases. The changes in the trend

of Reynolds number significantly affects the Pressure drop characteristics, which will be

discussed later in this section 4.3.
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Figure 17: Relations of local Fanning factor

The sectional pressure drop variations of each fluid across the normalized length has been

illustrated in Figure 18.

The inlet for the sCO2 is the 0% of the normalized length meaning at the first node and for

water it is 100% of the normalized length which means at the last node.

The local pressure drop for sCO2 is dominating at the inlet section of the pre-cooler because

of the high Reynolds number and gradually declines. Nevertheless, the pressure drop on the

water side is more than that of sCO2 side. Because, near the pseudo-critical region the density

of sCO2 becomes high so the pressure drop reduces along the length and the Reynolds number

across the length of the water remains fairly constant, as depicted in Figure 17. Consequently,

the sCO2 pressure distribution shows a convex trend whereas the water pressure distribution

shows a concave trend, as shown in Figure 19.
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Figure 19: Pressure Distribution across the length for hot and cold fluid

43

(%1 CamScanner



4.4 OFF DESIGN
For the analysis of the Off-design performance of the heat exchanger the effect on the change
of the following parameters are considered while keeping the other parameters in design

condition.

4.4.1 Effect of sCO2 Inlet Pressure
The Off-design thermo-hydraulic performance for the sCO2 inlet pressures of 7MPa, 7.5MPa,
8.5MPa, 9 MPa ,10MPa has been investigated.

The effect of the operating pressures of sCO2 has been Temperature profile and Nusselt number
is illustrated in Figure 20. The increasing sCO2 operating pressure increases the outlet
temperature of sCO2. The theoretical outlet temperature of sCO2 is 302K under 7MPa
operating pressure whereas 308.59K for operating pressure 8.5MPa. However, at 9MPa and
10MPa outlet Temperatures shows a slight reduction of 1.2K and 2K respectively. The range

of local Nusselt numbers significantly reduces with the increase of sCO2 inlet pressure.

The effect of variation of sCO2 inlet pressure on the pressure drop characteristics is
demonstrated in Figure 21. The increment of the operating pressure of the working fluid
depreciates the net pressure drop across the length of the pre-cooler as the thermo-hydraulic
chrematistics become staunch at the far-critical regions. Nonetheless, the Euler number

increases with the increase of operation pressure.

Figure 22 manifests the local Reynolds Number distribution across the normalized length with
the variation of SCO?2 inlet pressure. The Reynolds number shows notable reduction with

increasing operating pressure.

The influence of sCO2 inlet pressure on Fanning Factor and Colburn factor with Reynolds
number 1s exemplified in Figure 23. The Fanning Factor shows exactly the same trend with
Reynolds number under sCO2 operating Temperature Variation. But, number of sample point
reduces with the increase of sCO2 pressure. The Colburn factor increases and the distribution

profile becomes more well defined with operating pressure.
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4.4.2 Effect of Water Inlet Temperature

The effect of inlet temperature of Water as the coolant on the Temperature profiles across the
normalized length in depicted in Figure 24. The inlet temperature was considered 348 K and
the pre-cooler pressure was set 8 MPa. The temperature profiles for each fluid shows the similar
trend when the water inlet temperature is 295.41K, 297.97K, 300.38K respectively. But The
heat rejection rate requirement may not be fulfilled for above-mentioned cases. Also, the water
inlet temperature may be higher than 300K during summer season due to high ambient air
temperature as water itself is being cooled by the atmospheric air in a NDDCT (Ehsan,
Duniam, Guan, et al. 2019). In those cases, the pumping power requirement will be higher as

the mass flow rate of water required is more.

360 T T T T T T
-1 308
352
_344- - 304 _
g 3
2 336 4300 @
2 2
© ©
@ 328 4 i @
3 296 3
C'EJ 320 "E’
[ 1 4292 =
N @
8 312 4 =
7] 288 =
304 -
~#— sCO2@Tw_in-15.8C| |[—&— water @Tw_in-15.8C
—@— sCO2@Tw_in-22.4C| |—3— water @Tw_in-22.4C - 284
296 |- &—sCO2@Tw_in-25C | | water@Tw_in-25C
—%— sCO2@Tw_in-27 4C| |—%— water@Tw_in-27 4C
T T T Y T T T T T ) T 280
0.0 0.2 0.4 06 0.8 10
x/L

Figure 24: Effect of water inlet condition on Temperature Profiles across the normalized length

The Temperature profiles becomes steeper when the water inlet Temperature is 288.8K since
the heat rejection happened to be the highest. As a result, the sCO2 outlet temperature becomes

298.5K.
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However, the outlet temperature should not be less the pseudo-critical temperature to keep the

cycle in Super critical region. If the pre-cooler outlet temperature reaches below 306.13K the

cycle will enter the sub-critical region which is undesirable. In such cases the water mass flow

rate must be reduced to halt the overcompensation of sCO2 outlet temperature.
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Figure 25, demonstrates the sectional heat exchanger capacity along the normalized length at

different water inlet Temperature. The profile for the heat transfer rate shows similar trend for

water inlet temperature above 283K.

However, the number of sections is being reduced in order to cope up with the pinch point

phenomenon. The heat transfer rate shows a gradual rise at the 80% of the lengthy of the Heat

Exchanger. The maximum heat transfer rate remains around 1.8MW for each case.
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Figure 26: Local Pressure Drop characteristics along the normalized length at different water inlet temperatures
The pressure drop profiles indicates the lower inlet temperature will result steeper pressure
drop profile but declined sectional pressure drop on the sCO2 side of the fluid, as shown in

Figure 26. However, maximum sectional pressure drop remains at 158Pa.
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Figure 27:(a) sCO2Z2 outlet temperature, (b) Total heat transfer rate for the pre-cooler, (¢)Total pressure drop characteristics
with respect to the water inlet Temperature

The influence of different water inlet temperature on the sCO2 outlet temperature, overall heat

rejection as well as net pressure drop on both fluids has been summarized in Figure 27 under

the inlet operating condition of 348K and 8MPa for sCO?2.

The heat transfer rate for pre-cooler is considerably affected by the variation of water inlet
temperature. The total theoretical heat rejection by the pre-cooler is 32.67 MW for 288.38K on
the other hand the heat rejection declines to only 14.43 MW for water inlet temperature of

300.38 K.

The mean outlet temperature of sCO2 increases with the increase of water inlet temperature.
The dereliction of reaching the outlet temperature to pseudo-critical temperature has some

adverse effect on pre-cooler performance.
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As a result, the sCO2 will not reach to its highest density, if, the temperature does not reach the
pseudo critical region at the pre-cooler pressure which will increase the requirement of

Compressor power consumption.

However, the water inlet temperature has a little effect on sCO2 net pressure drop. The water

pressure reduces with the increase of water inlet temperature.
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S CHAPTER-FIVE CONCLUSION AND
RECOMMENDATION

In this study, the in-house validated Python code an iterative nodal approach is implemented
to a zigzag channel PCHE for the precooler application of a SCO2 recompression cycle
integrated with CSP. The fluctuations of SCO2 properties near the critical region plays an
important role in designing the pre-cooler. This study also estimates the pre-cooler performance
under the off-design application of the pre-cooler. Because sCO2 has better heat transmission
capabilities than water, the temperature profile for sCO2 is steeper. The sCO2 pressure
distribution is convex, whereas the water pressure distribution is concave. On the water side,
the net pressure loss is greater. The increased sCO2 operating pressure raises the sCO2 output
temperature. The predicted exit temperature of sCO2 is 302K at 7MPa operating pressure and
308.59K at 8.5MPa operating pressure. The pressure drop profiles show that the lower the input
temperature, the steeper the pressure drop profile but the smaller the sectional pressure drop on
the sCO2 side of the fluid. The highest sectional pressure decrease, however, stays at 158Pa.
The mean sCO2 outflow temperature rises as the water intake temperature rises.
If the temperature does not reach the pseudo critical area at the precooler pressure, the sCO2

will not achieve its maximum density, increasing the demand of Compressor work.
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