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Abstract

Malware is becoming more prevalent, and several threat categories have risen dra-

matically in recent years. This paper provides a bird’s-eye view of the world of

malware analysis. It also presents a brief review of malware analysis approaches,

common detection types, and some basic preventive strategies from various angles.

An experiment has been done to show the influence of human factors on people.

This study shows that most people are more likely to fall victim to a malware at-

tack if that seems to come from a reliable source or person. The efficiency of five

different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision

Tree, Random Forest, Decision Forest) combined with features picked from the

retrieval of Android permissions to categorize applications as harmful or benign

is investigated in this study. On a test set consisting of 1,168 samples (each con-

sisting of 948 features), produce accuracy rates above 80% (Except Naive Bayes

Algorithm with 65% accuracy). Of the considered algorithms TensorFlow Deci-

sion Forest performed the best with an accuracy of 90%.
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Malware, malware analysis, malware detection, malware prevention, decision for-
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1 Introduction

Malware is on the rise. According to the ‘McAfee Labs Threat Report 2021’, the

years 2019 and 2020 have seen a significant increase in several threat categories, in

which malware took the first place. Understanding how different forms of malware

work and how to identify them is critical for properly securing networks [4]. To

carry out an attack, malicious hackers frequently mix multiple forms of malware.

Security professionals must be aware of the malware types that are frequently

combined, as well as how to build resilience against these threats [6].

Identifying malware is a core objective to defend against malware attacking a

system or removing malware from a compromised software system. We need to

check some characteristics such as how malware functions, its performance, and

its creating purposes. Therefore, the first step in detecting malware is malware

analysis [1].

Malware analysis focuses on observing how a suspicious file, URL, or software

behaves in a particular system and what the purpose is. The procedure’s output

helps in the detection and also the quick response of any dangerous outcome. It

can significantly support incident responders and security analysts [7].

There have been some major malware invasions and security threats in recent

years. The Estonian cyber attack that took place in 2007 targeted many institu-

tions in the country, including government establishments. The data breach that

took place at Yahoo in 2014 has been a major setback for the company. The

perpetrators stole data from more than 500 million users. Pegasus first came into

spotlight in 2016 as the dangerous spyware and recently it resurfaced again in 2021

and it can infiltrate any device and network without leaving a trace. Still there

is no efficient way to detect or prevent it that has been disclosed to the world.

Ransomware has proven to be a headache for many people. People are getting

scammed and losing money because of ransomware. In 2021, Acer got invaded by

ransomware from the REvil hacker group. CDProjekt Red, a well known publisher
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name in the gaming industry fell into the trap of ransomware as well in 2021 and

refused to pay ransom as they already had backups. But not everyone can avoid

this looming threat of ransomware and many end up paying in the end as they

have no other way out. Ensuring safety of users is of utmost importance. People

have their personal data stored in their smart devices or cloud storages and some-

times this information is crucial to their life and wellbeing. So, detecting malware

effectively and preventing security threats should be given the highest priority.

Malware creators make it a priority to make their creations undetectable. As time

went by, malware authors updated their techniques, and malware has become

more difficult to detect. Malware has become more sophisticated and complex.

There are limitations when it comes to malware detection techniques, and there

is room for improvement as well. Combining machine learning methods with

already established detection techniques can have a significant impact on the field

of malware detection.

Malware that is already known or has been discovered before can be detected

using signature-based malware detection. But the major flaw of signature-based

malware detection is that this particular method will render itself useless when

there is malware that has not been discovered yet. Also, polymorphic malware can

change its signature. The solution to this is heuristic-based malware detection,

which is effective against both discovered and undiscovered malware. But this

method has its downside as well, and that would be a high rate of false positives

and negatives. So a combination of techniques is needed to battle the ever growing

malware threat, and that’s why machine learning is being used in these cases to

get better results.

This paper takes a dive into malware analysis, detection techniques, some preven-

tion methods and then presents an experiment of five machine learning algorithms

being used in permission based malware detection and the results of that experi-

ment.

Section 2 gives a literature review of the world of malware. The distribution of
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malware on various operating systems is discussed in section 3. Analysis of mal-

ware is given in section 4. It covers a wider topic consisting of malware detection

and prevention techniques. Section 5 gives a review of related works. The pro-

posed approach for this paper is mentioned in section 6, with the result analysis

being done in section 7. Section 8 indicates the limitations and challenges faced

in conducting the work. Finally, the conclusion and future work finish the paper

in section 9.

9



2 Literature Review

Malware is a short term that is composed of the two words ”malicious” and ”soft-

ware”, which encompasses all types of software or programs designed to carry out

detrimental actions on a system [2]. Viruses, trojan horses, worms, ransomware,

adware, rootkits, wipers, logic bombs, bots, or any kind of malicious code or pro-

gram that infiltrates a computer with the intention of wreaking havoc can be

classified as malicious software or malware. According to Microsoft, ”[malware]

is a catch-all term to refer to any software designed to cause damage to a single

computer, server, or computer network.” Malware is destructive or manipulative

software that interferes with the usual operation of an electronic device. Malware

can leave a ruinous impact on personal computers, servers, tablets, smartphones,

and any other device that possesses computing proficiency [3].

There is one thing that needs to be clarified, and it is the particular process or

technique that is followed that ends up making malware is not at fault, nor can it

be used as an identifier of malware [5]. It is the intention behind the creation that

is scrutinized when identifying a program or software as malware. In short, the

intention of the maker is at stake here, not the making procedure or the features.

2.1 Malware Overview

Malware is classified into different categories based on how it attacks and spreads.

Here are six of the most common varieties of malware, along with their features

[8]. Each of them are represented with symbolic images from figure- 1 to figure- 6.

2.1.1 Virus

Virus is a malware that can spread and duplicate itself by piggybacking on normal

application code. Viruses try to harm a particular device by inserting corrupted

data, deleting hard drive information, or auto shutdown the system. They can

also steal valuable data, harm the networks, create botnets, pirate, generate self-

advertising, and many more [9]. Computer viruses are dangerous because they
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can spread very quickly unlike others [10].

Figure 1: Virus

2.1.2 Worm

Worm is a self-replicating malware that can spread without human interactions.

The key difference between a virus and a worm is, that the worm can clone itself

without any help. Viruses need the user to do action, such as downloading a file

or opening an email, whereas worms do not. Worms can get access to a system in

a variety of methods, including software backdoors, other computers on the same

network, operating system vulnerabilities, flash drives, and so on [13].

Figure 2: Worm
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2.1.3 Trojan horse

Trojans are a type of malicious software that looks and behaves the appearance

and behavior of legitimate software while containing malicious codes inside. For

example, a Trojan might be an email advising a user to update his or her anti-virus

software. As soon as the user hits the download button, it will be too late and

their PC will be infected [15]. Trojan itself cannot duplicate itself and reproduce.

However, mixing with a worm or virus, it can cause serious damage to a system

or user.

Figure 3: Trojan Horse

2.1.4 Spyware

A spyware is a type of application that enables hackers to monitor what you’re

doing on your device or what’s running on your system. Hackers may easily steal

your personal information by monitoring your activities, capturing personal infor-

mation, passwords, monetary transactions, and more. Furthermore, this malware

was clearly utilized to track your browsing behavior, including which sites you

visited and when [17].
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Figure 4: Spyware

2.1.5 Adware

Adware is a malware that puts unwanted advertising on screen. Those advertise-

ments can be really aggressive at times as well. The purpose of Adware would

be to collect data, redirect users to various advertising sites, and tinker with the

browser settings, which includes changing the default browser, search settings, and

homepage. However, there is some legit adware that will ask for permission before

collecting information [17].

Figure 5: Adware

2.1.6 Ransomware

Ransomware is malicious software that restricts access to a device and demands

some sort of resource for recovering the device. It either encrypts the data or

perpetually blocks access. Then it displays notifications to the user for payment
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to unlock. After payment, the attacker can unlock the device or give the key or

password to the user to unlock it. Ransomware is the most common attack pattern

in the 21st century, growing at an alarming rate over the years [19].

Figure 6: Ransomware

2.2 Evolution of Malware

Initially, what was created to carry out experiments or tests and pranks later

evolved and emerged as a tool for cybervandalism. In the modern age of informa-

tion technology and the internet, malware is a constant threat looming over our

digital devices, but it was not so imposing in its rudimentary stage. Below, there

is a representation of malware hallmarks throughout the years.

Malware in the 1970s: Authored by Bob Thomas in 1971, Creeper was an exper-

imental self-replicating program, and it would be classified as a worm by today’s

standards. In 1974, Wabbit was a self-replicating program that made many copies

of itself on a computer until it slowed the system down to the point where it

crashed. The first Trojan, dubbed “ANIMAL”, was created by Autodesk founder

John Walker in 1975.

The 1980s and 1990s: The first serious Windows PC virus, called ”Brain,” wasn’t

released until 1986. Brain, like previous viruses, was mostly innocuous, albeit it

did slow floppy disks to a halt and consume a significant amount of RAM [11].
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As computer networks continued to be adopted and expanded throughout the

1990s, malware propagation grew faster, and hence volume rose. Particular types

of malware flourished as technologies became more standardized.

Malware in the Early 2000s: SQL Slammer, which was created in 2003, spread so

quickly that it crippled the internet just under 30 minutes after it was released

[12]. The Cabir virus came out in 20insideich is regarded as the first mobile phone

virus [14]. Then there was Zeus in 2007, capable of obtaining the victim’s banking

information [16].

Malware Since 2010: During this decade, malware developed new distribution

channels like social media, IoT, and cryptocurrency. ZeroAccess, a Microsoft-

specific Trojan horse, used botnets to distribute malware onto PCs. Regin, a

Trojan horse alleged to have been built for espionage and mass surveillance pur-

poses in the US and the UK, was discovered in 2014. Cerber was one of the

most widespread crypto-malware threats in 2016, and Microsoft discovered more

enterprise PCs infected with Cerber than any other in the ransomware sphere.

Thanatos was the first ransomware to take Bitcoin payments in 2018, as cryp-

tocurrency became well known [18].

2.3 Recent Threat Analysis

We have seen a rise in malware attacks in recent years as they are evolving con-

stantly and proving to be a constant threat. We’ll take a look at the top countries

that have been infected with malware attacks and which sectors are most prevalent

for malware attacks. According to MacAfee, there have been 16,436,403 malicious

detections, 8,637 distinct hashes, and 10,008 unique organizations from the 3rd to

4th quarter of 2020. Figure- 7 represents a bar-graph showing the country-wise

malicious software detection rates in comparison.
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Figure 7: Top countries with most malware detections

The USA tops the list with the most malware detections (1,095,361), followed

by Spain (786,021), South Africa (731,985), Colombia (543,754), Italy (403,981),

India (320,443), Estonia (288,155), Israel (216,609), Turkey (134,665) and Brazil

(120,426).

Figure- 8 depicts the top sectors where malicious software is detected the most.

Figure 8: Top sectors with most malicious software detection
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The telecom business has been plagued by malware more than any other sector,

according to a McAfee analysis. Tecom sector tops the list with the most mal-

ware detections (37.6%), followed by Outsourcing (26.4%), Government (11.1%),

Financial (8.7%), Retail (5.8%), Energy (4.0%), Software (3.9%), and Insurance

(2.6%).

The top ten attack vectors are depicted in Figure- 9.

Figure 9: Top 10 attack vectors
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Amongst all the attack vectors malware already topped the list in the 4th quarter

of 2019. It increased in the 1st quarter of 2020 and kept decreasing until the 4th

quarter of 2020, then it increased again vastly and it is expected to rise as the

days go by.

Figures- 10 through 19 depict an overall situation of several malware variants in

recent years.

Figure 10: New ransomware in recent year

Ransomware has taken the world by surprise. Ransomware attacks are continu-

ously increasing and as can be seen from the graph they kept rising throughout

2020 and reached their peak in the last quarter of the same year.

Figure 11: New MacOS malware in recent year
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Mac has been penetrated by new malware at a lower rate than other operating

systems. In the third quarter of 2020, new Mac OS Malware increased dramatically

due to EvilQuest ransomware but quickly came down to the usual normal level in

the last quarter of 2020.

Figure 12: New linux malware in recent year

New Linux malware increased 6% from Q3 to Q4 but compared to the previous

year it is still less. In the 1st quarter of 2019 it was at its peak.

Figure 13: New iOS malware in recent year

iOS Malware exploded in the first quarter of 2020 and then came down quickly in

the second quarter and remained normal throughout the rest of the year.
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Figure 14: New mobile malware in recent year

Figure 15: New coin miner malware in recent year

Mobile malware grew 118% from Q3 to Q4 driven by SMS Reg.

A Coinminer is a malicious program that mines for coins using the victim’s com-

puting resources, such as CPU and RAM, without the consent of the victim.

Monero or Zcash are examples of Coinmimer. Coinminer malware was on the rise

from the 1st quarter till the 3rd quarter of 2020 and then it decreased in quantity

in the 4th quarter of the same year.

IoT malware, as the name suggests, infiltrates an internet of things system. One

of the characteristics of this type of malware is that it is utilized to deploy DDoS

attacks. Mirai is an example of malware that has been used for this purpose. IoT

malware has been through ups and downs throughout 2019 and 2020.

Poweshell is generally used by Fileless malware to carry out an invasion on a

system, leaving behind no signs of it. It can be very difficult to figure out if
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Figure 16: New IoT malware in recent year

Figure 17: New powershell malware in recent year

a system has been infiltrated or not and this is referred to as a ”zero-footprint

attack”. Powershell malware has been on the rise and it reached a new height in

the last quarter of 2020.

New unique malware attacks has been on the rise throughout 2020. It decreased

in the first quarter of 2020 meaning more unique malware came out in the final

quarter of 2019. Then again in the final quarter of 2020, it surpassed the previous

year’s numbers.

There may have been ups and downs in the unique malware number but the total

number of malware attacks kept increasing throughout 2019 and 2020 and it is

expected to increase in the future as well.
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Figure 18: New malware in recent year

Figure 19: Total malware in recent year

2.4 Machine Learning Algorithms

2.4.1 Naive Bayes Algorithm

Naive Bayes is a probability-based algorithm focusing on simple calculations using

the Bayes theorem. However, it is not a single algorithm, but a classification tech-

nique focusing on a group of independent variables compared with other objects

that are not related because of that combination of values from the variables. For

example, a chicken is an animal that has 2 legs one head and is around 27 inches

long. While there can be more animals that match one or more properties with

chicken, not all the properties match altogether. This is how we can differentiate

chicken from all other animals group and find out a probability of an animal being

a chicken using these variables and that’s why it is known as naive.

As we can see, this algorithm simply uses some variables and probability algo-
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rithms to find the decisions. Therefore, it has many limitations. So it is mainly

used on classifying objects for a very long dataset. As it is simple and easy to

calculate, naive bayes can outperform other machine learning algorithms for huge

datasets in terms of time, especially the real-time applications.

2.4.2 K-Nearest Neighbors

K-Nearest Neighbours also known as KNN is a non-parametric algorithm that is

based on Supervised learning techniques. In other words, it is used to measure

the similarities between two objects and determine which is more likely to be the

classifier. For example, if we have a tiger and two existing categories of chicken and

cat, we want to know where should we put the tiger. To solve this issue, first, we

compare the tiger with the chicken and find their similarities and differences. We

applied the same between tiger and cat as well and then by judging the similarity,

we figure out the group that it likely belongs to.

It is also used for the classification problem, the same as naive bayes. However, it

does not make any assumption about the existing datasets, but stores them and

will run when it times for classification.

2.4.3 Decision Tree Algorithm

The decision tree algorithm uses a graph with a root determining the start and

leaves to find out the probability of a particular event occurring among all the

possible solutions. This technique is widely used in both classification and re-

gression problems. For example in weather forecasting, we can use a decision tree

algorithm to find out the probability of the next day’s weather. By considering the

past day’s structure as a root and then growing the tree accordingly, we can find

out a relative probability percentage and use the value to find out future values

using the percentages.

So, the decision tree simply asks a boolean question that can be answered using

yes/no and keep spreading the trees for all possibilities using a graphical repre-

sentation. So when the decision is comparatively easy to take and every path can
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be used as node as its parent, we can use a decision tree. It is fast, simple, and

can make a longer prediction.

2.4.4 Random Forests Algorithm

Similar to the decision tree algorithm, the random forest uses a tree for determining

all the possible solutions. However, it takes a majority vote into consideration for

the decision problems and the average vote for the regression problem. So it is

used both in classification and regression problems. For example, someone has

gone to a local restaurant to eat but he has no idea which dish is good. So he

asks his friends and neighbors who have been there before for recommendations

using several questions. After consulting, he finally makes a decision based on the

report.

However, this algorithm is slower than the decision tree algorithm as it takes time

for observation. However, it does not require a specific formula to calculate and

as a result, can be used to calculate non-boolean questions as well. It is widely

used in for its efficiency because it can calculate the continuous number and also

can calculate with having some missing values. So in real life where some of the

questions are hard to answer with boolean and may exist missing information or

can not be fit into an equation, the random forest algorithm is used.

2.4.5 TensorFlow Decision Forests Algorithm

Decision forest is a family of machine learning models and is easier to use than

neural networks. The tree asks a series of simple boolean questions to classify an

item from a dataset. The decision forest algorithm uses keras, an API for neural

networks to experiment with different kinds of models to figure out which is the

best for a particular data.

The best type of model to use depends on the types of data. Structured data is

where a tree is the best to use. Structured data can be represented as data that

can fit into a CSV file. This concept is explained with an example:
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Example Feather Can Fly? Label

1 yes yes Eagle

2 yes no Chicken

3 no no Cat

Table 1: Structure data table

Here in table- 1, while training a decision forest to classify a data, the features

become the questions in the tree. The features described the understandable con-

cept that can be easily calculated or observed and can be used as an independent

variable to separate different kinds of objects. The last column (in table- 2) rep-

resents the answer. So our objective is to find the label as soon as possible. The

decision forest tree uses labels as the ranking and uses that to separate further

groups necessary. So decision forest is easy to use, interpretable, and powerful.

Example Height Weight Group Label

1 1.7 m 75 kg Mammals 1

2 0.5 m 2 kg Birds 2

3 1.3 m 45 kg Mammals 1

Table 2: Structure data using decision forest
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3 Malware Distribution on Different OS

3.1 Malware Attack on Different OS

3.1.1 Windows

Figure- 20 demonstrates the distribution of malware assaults across different op-

erating systems. The most extensively used computer operating system in the

world is Microsoft’s Windows and because of its wide usage, it is also prone to

various malware invasions. In 2019, 114 million new malicious programs were cre-

ated, according to AV Test’s 2019/2020 Security Report, with Windows systems

accounting for 78.64 percent of all attacks. The COVID-19 epidemic has been the

cause of the rise of millions of new malicious programs. Many hackers have taken

advantage of the uncertainty and instability to propagate malware. As a result,

the percentage of malware targeting Windows computers grew to 83.45 percent in

the first quarter of 2020.

Figure 20: Distribution of malware attacks in different OS

As previously stated, Microsoft systems are the primary target of malware attacks

because the profit margin is much higher due to the large user base, and thus
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cybercriminals have been following the laws of economics.

Figure 21: Distribution of malware under windows

Malware distribution under Windows is seen in Figure- 21.

3.2 Why Linux is Secured

Linux has a small user base compared to other operating systems but has a better

track record compared to windows when it comes to security. For increased relia-

bility, more business corporations are migrating to Linux. We have attempted to

investigate some of the reasons why Linux is more secure.

File Permissions Handling: Running an infected file is one of the most common

issues that users experience. It is simple to run a file that has a negative impact

on a computer. Because this is not a separate and independent process, Linux

normally does not process executable files without specific permission from the

legitimate user. Linux distinguishes between root and non-root users, preventing

excessive file handling risks.
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Virus Removing Mechanism: Because many Linux distributions split the root user

and the usual user, if a problem arises with one of the users, it is simple to remove

that account and create a new one while the root user is largely unaffected. Linux

also comes with an anti-malware platform that protects against viruses, trojans,

rootkits, and other malware.

Open-source: The Linux kernel is free and open-source software, and as such,

the code is created and maintained by a group of dedicated individuals known

as the ”community.” The quality of the code is assured when more people see it

and review or test it. Despite the fact that this notion applies to all open-source

software development, it is strictly adhered to on Linux. Developers will continue

to provide remedies for security vulnerabilities/flaws in the form of ”patches” in

addition to entry-level quality control. Figure- 22 demonstrates the Linux kernel

development cycle.

Figure 22: Linux kernel development

Memory management: User and kernel space are well separated in Linux. Users

will not see the real physical address assigned to any process here. Try printing

the addresses of the parent and child processes generated with the fork() system

function. Both the parent and child processes will have the same virtual address.
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The reason is that any application can access only the virtual address that is

mapped to the physical address. As a result, no harm can be done to the real

physical address space. This method of memory management makes Linux more

secure. The reason is that any application can access only the virtual address

that is mapped to the physical address. When a user application makes a system

call, a “software interrupt” from user space to kernel space is triggered, causing

a delay. When converting a virtual address to a physical address, the translation

procedure will cause some delays as well.

Updated System and Software: The system can also be vulnerable to the old

version of any software. It is mandatory to update the system as well as software to

keep up to date. As bug fixes and updates can fix serious security issues, it is always

recommended that the whole system be updated frequently for better performance

along with security measurement. Linux, on the other hand, makes it simple to

receive updates and security fixes for both the system and the applications with

only a few commands. It’s all because of the package managers.

3.3 Why Android is Vulnerable

Windows may be the most widely attacked Operating system but in terms of se-

curity gaps, Android is the most vulnerable one. According to the AV-TEST 2019

security report, Android was the most insecure operating system. Any smart-

phone is vulnerable to security flaws, but Android phones are far more likely to be

hacked. Unlike Apple’s iOS, the Android operating system is open-source, which

means anybody can make changes to it. If a developer makes a mistake, a hacker

will have an easier time locating and exploiting security flaws. In comparison

to Apple, Android has a bigger market share. This makes it easier and more

profitable for hackers to write and distribute Android malware in order to collect

sensitive information from users.

People in the present era are always linked to the internet. As the use of tech-

nology becomes more widespread, security concerns are becoming more prevalent.
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Malware threats have been estimated to have afflicted Android smartphones more

than any other. The results of that study are summarized in figure- 23.

Figure 23: Most vulnerable operating system

It is said that a total of around eighty percent of malware threats affect Android

OS. Where the percentage for Symbian is just below 20 and the remaining affects

other operating systems.

It is vital to analyze the basic structures of Android, specifically how it is created

and the workflow, in order to point out its flaws. The android architecture and

working procedure of the operating system are explained.

As the overview of the architecture is seen above in figure- 24, there is another

study that provides information about vulnerabilities in different layers of android

architecture.
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Figure 24: Android architecture

It is found that the application framework level of android architecture is the

most vulnerable layer and the Linux kernel layer is the least vulnerable layer. The

vulnerability comparison among different layers can be found in figure- 25
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Figure 25: Android vulnerable in each layer

4 Malware Analysis

4.1 Malware Analysis Techniques

Malware analysis might be static, dynamic, or hybrid: a combination of the two.

4.1.1 Static Analysis

In this analysis, we do not observe the internal structure or get access to the

system. Instead, it looks for the behavior and characteristics of any malicious

content in a file. This process is fast and usually cost-friendly as well. Static

analysis is mainly used to identify if any malware exists in the system or not. The

static analysis uses some technical signs like file names, hashes of data, domains,

and file header data to identify malware. There are also some disassembler tools

and network analyzers that can effectively check malware without executing the
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code. These tools can provide greater knowledge of how malware could operate

[20].

However, this analysis may not always turn up to be optimal. Some of the attacks

may go unnoticed due to the lack of information. A basic static analysis cannot

systemically identify a malicious file if it can create a string and subsequently

downloads based on the string [21].

4.1.2 Dynamic Analysis

Dynamic analysis can provide a wider knowledge, in most cases full knowledge

of the file’s behavior. It works in a ‘sandbox environment’ where it analysis any

suspicious behavior inside a code. This allows security experts to observe the

malicious file without altering the system or interrupting it [22].

Experts can find many benefits from dynamic analysis, especially because it can

see the malware’s nature and type. Also, it saves time by eliminating reverse

engineering a file in order to discover harmful code.

However, dynamic programming has many limitations. The attackers are clever

enough to know about the techniques that the sandbox environment may use.

Usually, the codes are written in a way that can bypass the detection criteria and

remains inactive. Then it executes only when the code is running [21].

Following (Table- 3) are the differences between static and dynamic analysis [32].

Static Analysis Dynamic Analysis

1.Comparatively faster and safer 1.Time-consuming and vulnerable

2.Easy analyze multi-path malware 2.Difficult analyze the multi-path malware

3.Ineffectual for advanced malware 3. Efficient against all malware

4. Low level of false-positive 4. High level of false-positive

5. Accuracy is high 5. Accuracy is low

Table 3: Difference between static and dynamic analysis
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4.1.3 Hybrid Analysis

To deliver the best of both approaches, hybrid analysis combines fundamental

and dynamic techniques [22]. A simple static analysis fails to detect sophisticated

malware and can bypass the sandbox technologies easily. The hybrid analysis

provides better security by combining both static and dynamic techniques. Hybrid

analysis can be used to discover malicious code that may try to hide as well as

check the software where they had gone undetected before. Hybrid analysis helps

in the detection of unknown threats, including those originating from the most

sophisticated malware [23].
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4.2 Malware Detection

Malware detection techniques are broadly classified into three types: signature-

based, heuristic-based, and specification-based [26]. To protect the system from

malware, these techniques both detect the system and take action against the

malicious files.

Figure 26: Malware detection techniques

4.2.1 Signature-based detection

Signature is a sequence of bits that is produced in the code when malware is being

created. It can be used afterward to identify the class or type of malware. This

detection technique is widely used in anti-virus products. The antivirus program

disassembles the code of the infected file and looks for malware family-related

patterns. Signatures generated by the malware are usually stored in a database

and then compare it with the file to check whether malware exists. This detection

technique is also known as ‘string or pattern scanning’ [24]. Static-based detection

can be both static, dynamic, or hybrid.

35



Advantages Disadvantages

Signature-based detection

Easier to execute

Can identify fast

Can access broadly

Find comprehensive malware information

Not being able to identify polymorphic malware

Replicating data in a massive database

Heuristic-based detection

Detecting previously unknown sorts of malware assaults

Detector of data flow dependencies

Polymorphic malware detection

For behavioral patterns, storage complexity is important.

Time complexity

Specification-based detection
Both known and undiscovered malware, as well as novel malware, can be identified.

False-positive rate is low

ineffective in detecting fresh malware

creating specifications takes a long time

False positive rate is high

Table 4: Advantages and disadvantages of various detection techniques

4.2.2 Heuristic-based detection

Heuristic-based detection detects and differentiates unusual system activities. This

allows the system to discover the unfamiliar circumstanced which is very effective

in detecting both known and unknown malware. The heuristic-based detection

approach involves two phases. In the first phase, the system’s behavior is exam-

ined in the absence of an attack, and a log of vital information is kept that will

be confirmed and checked in the event of an attack. In the second phase, the

differences are observed to determine the malware’s family and classification [24].

4.2.3 Specification-based detection

In a specification-based detection technique, applications are monitored and checked

for usual and aberrant behavior based on their specifications. This technique is

similar to heuristic-based detection techniques, but the primary distinction is that

heuristic-based detection techniques use machine learning and AI methods to de-

tect the valid and invalid activity of a legitimate program, whereas specification-

based detection techniques are based on an analysis of the behavior described in

the system specification [25]. This method entails a manual comparison of a sys-

tem’s regular operations. Reducing false positives and raising false negatives, it

overcomes the limitations of heuristic-based approaches.
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4.2.4 Machine learning-based detection

Each machine learning software has a big influence, especially when it comes to

the categorization of Android malware, which is still considered a new study topic

[29]. A machine learning-based malware detector can assess whether or not an app

is harmful [28]. The majority of the machine learning papers evaluated focused

on classification, with only a handful focusing on clustering. Those studies that

focused on categorization assess if applications are malicious or benign, and they

continually monitor distinct patterns and attributes that might indicate a device’s

state, such as its battery level and memory usage. An app is first launched in

these tests before machine learning techniques are used to identify whether the

app is malicious or benign. Research that has concentrated on clustering, on the

other hand, classified distinct forms of malware into families or groups based on

behavioral or characteristic similarities [27].

4.2.5 Cloud-based detection

Cloud-based detection appears to be the way of the future for mobile security that

is quick, efficient, and effective [30]. Having a smart system that only analyzes

malware statically and dynamically will prove to be a formidable opponent for

malware creators.
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4.3 Malware Prevention

Policy, awareness, vulnerability mitigation, and threat mitigation are the four

primary elements of prevention [31].

4.3.1 Policy

Ensuring policies address malware prevention as a foundation for adopting preven-

tative controls. Malware prevention policies should be flexible in policy execution

and decrease the need for frequent policy revisions, while simultaneously being

specific enough to clearly define the policy’s goal and scope. Some of the common

malware policies are:

1. Before external media can be utilized, it must be scanned for infection.

2. E-mail attachments, especially compressed files (such as.zip files), should be

saved to local disks or media and checked before being opened.

3. Users should be restricted from using admin privileges, which helps to reduce

the privileges accessible to malware that is introduced to systems by users.

4. Systems should be kept up-to-date with OS and application upgrades and

patches.

5. Requiring approval of firewall configuration modifications through a formal

process.

4.3.2 Awareness

To reduce the frequency of incidents caused by human error, it is necessary to

establish and maintain general malware awareness programs for all users, as well

as particular awareness training for IT professionals directly involved in malware

prevention-related tasks [31].

1. Suspicious e-mails or e-mail attachments from unknown or known senders

should not be opened.

2. Popup windows in web browsers should not be clicked.

4. Web sites that are at least somewhat likely to contain malicious content should
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be avoided.

5. It is not recommended to open files with file extensions that are known to be

affiliated with malware.

6. Additional security control mechanisms should not be disabled.

4.3.3 Patch Management

Patch management is the technique of proactively hardening software against spe-

cific security flaws before they may be exploited by hackers. Tracking and oversee-

ing software patch releases is part of this procedure. The following are the stages

of patch management:

1. Detecting and identifying a bug

2. Creating a bug-fixing code solution

3. In a sandbox, testing the patch.

4. Approving the patch

5. Documenting the patch code

6. Releasing the patch to end-users

7. Monitoring the patch release

Patch management is critical since it protects your application from cyber-attacks.

When delivering a new patch, developers must exercise caution because it may

disrupt the device’s other programs and functionality. Patches also protect against

software performance concerns and misalignment of platform versions [36].

4.3.4 Least Privilege

Least Privilege is the notion of constraining user and application access to privi-

leged accounts via various restrictions and technologies without affecting produc-

tivity or necessitating IT support. Only the bare minimum of rights should be

granted to a user who asks for access to a resource, and they should be granted for

the shortest time possible. The reason behind this strict limitation is that letting
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users gain access more than absolutely necessary would enable them to modify

data in unwanted ways [35].

4.3.5 Other host hardening measures

Deploying additional host hardening measures can help lower the risk of malware

attacks.

1. Disabling network services that are no longer in use and may contain vulnera-

bilities.

2. Getting rid of file shares that are not secured.

3. Default usernames and passwords for operating systems and applications need

to be removed or changed.

4. Disabling binaries and scripts from auto-execution.

4.3.6 Threat mitigation

Many tools, platforms, and techniques exist to mitigate and limit cyber dangers,

easing part of the strain and empowering businesses to defend themselves against

hackers. Threat mitigation employs a wide spectrum of expertise, but systems

administrators are frequently the ones who put threat management methods into

action. Patch management, intrusion detection, and post-attack cleanup are all

tasks that sysadmins often handle.

4.3.7 Antivirus Software

The most prevalent tool for dealing with malware threats is the antivirus or an-

timalware software. These types of software are widely used for Identifying com-

mon types of malware, disinfecting files, scanning critical system components, and

Monitoring real-time system activity to look for suspicious behavior.
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4.3.8 Spyware detection and removal utilities

Spyware is easier to prevent but difficult to detect. Detection of spyware, there-

fore, should get higher priority.

1. Monitoring the activity of the apps that are most likely to be used to install

spyware on computers, such as Web browsers and email clients.

2. Scanning files, RAM, and configuration files for recognized spyware on a regular

basis.

3. Preventing spyware installation via a variety of methods such as pop-up ads,

tracking cookies, browser plug-in installations, and browser hijacking.

4.3.9 Intrusion prevention systems

IPS stands for intrusion prevention system, and it is a network security solution

that identifies threats and illegal access. It notifies your security staff in order

to assist them in preventing assaults. An IPS can also initiate actions such as

access point closures and firewall configuration changes. An intrusion prevention

system (IPS) is a hybrid of an intrusion detection system (IDS) and a firewall. IPS

and IDS are sometimes included in a network security solution that resembles a

firewall. The arriving network packets are compared to a database of cyberattack

patterns. Both systems flag the packet if they detect a match [33].

4.3.10 TPM and Secure Boot

Secure Boot is an essential security feature deployed with the intention to prevent

malicious software from loading when a computer boots up. Computers that came

out in recent years are capable of secure boot. There could be cases in which a

computer is unable to use secure boot because of settings and these settings can

be modified in the firmware or BIOS of that particular computer.

There are two types of security: software and hardware. When implemented

right, software security is an effective way to keep malware out of a system. Since

software by nature is malleable there is always a possibility that it will be exploited
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to get access to sensitive data. Hardware security is hardcoded, as the term implies

and it is not possible to alter the cryptographic keys. One of the ways to ensure

effective hardware security is through TPM.

TPM is short for Trusted Platform Module and its purpose is to safeguard data

necessary to authenticate the computer. By securely producing and preserving

cryptographic keys, a TPM increases the security of the computers. People were

not that familiar with TPM until Windows 11 came into the picture with a bunch

of requirements and one of them happens to be a TPM 2.0 chip in the computers.

The idea of a trusted platform module is not new though and it goes way back.

There were computers in 2005 that had TPM chips. Because of dire security

threats, it has been made mandatory for computers that want to get upgraded to

Windows 11.

TPM can save any component of the secret needed for decryption, including pass-

words, certificates, and encryption keys. This information is also stored in real

hardware rather than software by the TPM. This means that a software assault

will not be able to divulge the TPM’s secrets. Through secure boot and TPM 2.0

chip requirements, the OS will eradicate an entire set of malware attacks that aim

to take over the computers by getting into the system before it boots up.

4.3.11 Firewall and routers

A router is a device that carries data across networks, whereas a firewall is a device

that filters data before it is delivered over a network. Routers are frequently

connected to at least two networks; a firewall prevents incoming requests from

obtaining private network resources by running on a separate computer from the

network [34].

In short, Organizations should be mindful, however, that no matter how much

effort they put into preventing malware events, incidents will still happen (e.g.,

previously unknown types of threats, human error).
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5 Related Works

Many research attempts have been made to prevent various malware threats, us-

ing multiple ways to detect malware presence. Numerous studies have sought to

provide a summary based on the information gathered. This portion of the paper

will showcase papers that reflect a broad view of malware-related research.

Herron et al. [61] studied and analyzed four machine learning algorithms namely k-

means, random forest algorithm, support vector machine algorithm, gaussian näıve

bayes algorithm, and algorithm, where the features are selected from manifest

file permissions of Android for classification of malware and benign. A total of

5,243 samples were studied and each algorithm was showing accuracy, recall, and

precision rates over 80 percent margin, concluding that Random Forest showed the

best performance with an 82.5 percent of precision rate and 81.5 percent accuracy

rate.

The study conducted by Hahn et al. [62] worked on adding attribute sets on

Android. A total number of 11 attributes were gathered on 10,000 apps. They set

up a comparative analysis that provides a single attribute sets ranking based on

the performance of detection.

Anderson and Roth [63] provide a dataset that can detect malicious files intended

for Windows Operating System. The collection contains information retrieved

from binary files of 1.1 million, including training examples of 900,000 (within

which 300,000 are malicious, 300,000 are benign, and 300,000 unlabeled) and test

samples of 200,000 (within which 100,000 are malicious, 100,000 are benign).

Sewak et al. [64] explored a malware detection system based on Deep Learn-

ing. The researchers improved the previously mentioned work by 99.21 percent

accuracy (previously 98 percent) and with a 0.19 percent False Positive Rate (pre-

viously 1.07 percent).

Joyce et al [65] created a dataset named MOTIF also known as malware open-

source threat intelligence Family which consists of a total number of 3,095 malware
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from a number of 454 families. The researchers claim their work to have the “most

diverse public malware dataset”. The dataset’s antivirus majority voting accuracy

is only 62.10 percent, while their comparative tool’s accuracy is only 46.78 percent.

SIGPID, the detection of malware based on permission usage was developed by

Li et al. [66]. The authors developed pruning of three-level by the permission

data mining. This technique helps specify the significant permissions. A total

of 22 permissions were found as significant. SVM algorithm was used and all

the confusion matrix elements were 90 percent. The software was successful in

noticing 93.62 percent of the trained data set and 91.4 percent of the further

malware representatives.

Mahindru and Singh [67] studied 11,000 Android applications and obtained a total

of 123 dynamic permissions. From these extracted data they evaluated numerous

machine learning algorithms namely random forest, k-star, decision tree, simple

logistic, and naive bayes.

Arslan et al. [68] looked at identifying extract requested permissions. They

claimed that the accuracy of their model is 91.95 percent.

Milosevic et al. [69] presented a couple of machine learning approaches intended

for mobile app static analysis. The foremost way is called source code-based

classification. It performed 95.1 percent on the f-score. Another approach is to

utilize permission names. This only performed 89 percent of the f-score.
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6 Proposed Approach

This section briefly discusses the work done, the methodology used, different en-

vironmental setups, data collection procedures, design, and testing methods.

6.1 Methodology

To conduct malware analysis, two directions were followed in this paper. Firstly,

human factor analysis in malware, where the participation of general people is

measured in being a victim of malware attack. Secondly, study open-source tech-

niques and perceive a suitable one by analyzing the findings in different mediums.

An experiment was done among general real-life users. By following an open-

source code a technique was implemented. This method generated a malicious

link, which provides the project builder (the person who executes that program at

that time) access to different features in a targeted user’s machine. When the user

clicks on the link, they are asked for the camera, microphone, and location access

of the system. After accepting the executors got various information from those

access points. This experiment could be done by sending an APK file (for android

use) or an execution file (for desktop use). In this work, this method is chosen

to send links because of the simplicity for users and researchers. These malicious

links were sent to relatives and friends to test whether they can be manipulated

to click the link. Some people fell into the trap and clicked. After getting the in-

formation, they were told about the work and what they have done by giving that

permission information. This experiment was held to show that people can be ma-

nipulated and fall into such traps. In this experiment, no information was stored

any further after sending it back to the victim. Finally, everyone who clicked the

link was provided a form to fill up and gave useful information. In the next part,

open-source datasets, as well as open-source tools and techniques, were used to

analyze malware from different aspects. This work also helped validate different

open-source techniques developed with older technology with the current system.

The main focus of this work was to look at existing malware detection and possible
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prevention techniques. A lot of currently existing tools are studied that are used

to detect malware efficiently. Another technique was used to extract permission

from applications and create a dataset that is fed into different machine learning

algorithms. Finally, these results are analyzed from various angles.

Figure 27: Workflow of the Paper

6.2 Environment

The main experiments (executing the detection techniques and feature extraction)

were held in the Ubuntu operating system. Genymotion Desktop was used for an-
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droid emulation. It is an Android emulator that provides a comprehensive set of

sensors and functions for interacting with a virtual Android environment. This

software allows testing the Android apps on a variety of virtual devices for devel-

opment, testing, and presentation. While executing and testing many packages

and libraries were adapted to the current system of testing to accomplish desired

results. Furthermore, machine learning-based algorithms are used in Google Col-

laboratory. This platform gives the opportunity to handle big datasets and analyze

the outputs more.

6.3 Data Collection

For android malware analysis, Kharon Malware Dataset [39], CICInvesAndMal2019

[38], MalwareBazaar [40], and various open-source malware present on Github and

other platforms are used. People created most of these samples with bad intentions

as well as some are created for helping researchers to conduct quality works. There-

fore, these samples gave us a good initiative to analyze the latest malware with

previously developed tools and techniques. From the above-mentioned sources,

android executable files (APK) are collected. These applications are used to cre-

ate the dataset. The PACE Project [48][49] was used to extract the features from

the original data. This dataset is fed into various machine-learning algorithms.

A total of 1200 applications are collected. The dataset is created using 1168 apk

files (Among these applications, 602 are malware and 566 are benign applications)

consisting of extracted features and different permissions of those apps. Each

application has 948 features. Every property contains a value of either 0 or 1,

where 1 means that the application uses that specific permission and 0 means the

opposite.

6.4 Design and Testing

It is mentioned that open-source tools and techniques with various data are used

totally in the experiments. To run a particular tool, proper guidelines need to be

followed in order to execute and analyze. Many tools are designed with an older
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system that is currently out of order, and those needed to be validated and run

in the latest system. Various packages are unsupported; thus, the equivalent of

those are used and got started. Otherwise, most of the tools that are used were as

it was. Before starting the analysis of malware detection, an open-source program

was implemented that provided a shareable link. This link was given to different

users in order to see a wider scenario of malware accessibility. If anyone clicks the

link, information (specifically camera, microphone, location access) is bypassed

illegally according to the needs. This software was run in 2 different Debian dis-

tributions (Kali and Ubuntu) to see that these types of programs are accessible.

After clicking the link, the users were given a form about what they faced and

their opinion about the consequences of such attacks in real-life situations. In

the next part of the analysis, a customized ransomware application is created fol-

lowing SARA [37]. When the application file (APK) is installed on the android

devices, the system prompts a window asking for a password to unlock and use

the device. In a real-life scenario, one can only gain this password by sending

money to the application developer. This application is used just for educational

purposes. There was no harm intended while experimenting with this application.

Quark-engine [41] to check the APK file in various aspects. Then a comparison of

that app with recent ransomware was done. This comparison is done to demon-

strate the smallness and simplicity of the customized application that is used to

test different techniques of malware analysis. Droidbot [42][43], Androwarn [44],

APKStat [45], APKiD [46], and DroidLysis [47] are some of the examples that are

used to analyze the edited application. There were three virtual android devices

with various types of software installed. With Check all APK’s [58] and Drozer [56]

[57], these devices and their packages were studied totally and generated a report.

The Kharon Malware Dataset [39] and CICInvesAndMal2019 [38] dataset, Mal-

wareBazaar [40], and various open-source malware (present on Github and other

platforms) were used with the PACE Project [48][49], Drebin [50][51] and CSBD

[52] [53] [54] [55]. The collected apk files are used in the PACE Project [48][49] to

extract the features and put them into a different dataset as a comma-separated
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value list. This dataset is used to analyze malware from machine learning-based

algorithms. Different approaches like Naive-Bayes Algorithms, K-nearest neigh-

bors, Decision Tree Algorithm, Random Forest Algorithm, TensorFlow Decision

Forests Algorithm were the main focuses of this research work. Confusion matrix,

accuracy, differences of various permission analyses between benign and malicious

software, the importance of features, and many more inspections are done and

studied.
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7 Result Analysis

In the first part of the conducted experiment, a demonstration is tried to make that

human can be manipulated to be a victim of malware attack. If a person knows

the sender then he/she is most likely to believe what the sender has sent him/her.

In the work, a total of around 200 people (who are known and communicated with

on a daily basis) were sent the malicious link. Out of the total number, only 46

people clicked the link when they are offered. A form was forwarded to each of

them to get their feedback.
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a. Assuring the Information of the Provided Link

b. Closeness and Manipulative Rating Scenario (Rating vs Number of Response)

Figure 28: Questionnaire from the Experiment
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Figure- 28 shows that people who know each other do not even bother asking

what kind of information they are going to get after clicking the link. More

than one-third of the respondents replied that they did not feel the necessity of

asking for the information beforehand. Figure 28(b) represents the manipulation

of being the victim with the relationship status of the sender. The people who

gave higher ratings are more likely to believe that the sender is not manipulating

them. Whereas the lower relationship rating indicates that people think they are

being manipulated. This human factor experiment can be done in more detail

with various other sets of questions and their feedback.

The customized app (by following SARA [37]) is installed into the virtual

android devices that are set up for the experiments. All of the devices show

similar results of locking out of the devices as pictured in Figure- 29.

Figure 29: A simple ransomware example

This behavior locks out the user from the device and prompts a password win-

dow. The users cannot use that device any further without the password. This

application’s behavior will be analyzed further.
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The edited application is checked thoroughly by Quark-engine [41]. The label-

based report is shown in Figure- 30.

Figure 30: Confidence Measurements of Label

These labels are indicators of various topics of the malware’s aggressiveness. As

this is a simple application that was tested, the values are less significant as the

number of rules is quite smaller.

Then this application is compared with a similar application (ransomware) present

in the Kharon dataset [39]. The behaviors of both applications can be studied

based on the max confidence of rule labels. This is shown in Figure- 31.

Figure 31: Comparison of Malicious Actions Between Two Malwares
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It is clear in Figure- 31 that the confidence level is very low for our application.

Thus, the comparison with live malware is clearly visible in the chart. This also

pictures the wide range of malware activities in the current context of the world.

There are a lot of features that can be analyzed via this technique. The perfor-

mance index of malware can be further documented in order to study and extract

the behavior of malware.
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The Androwarn [44] tool gives a lot of opportunities to explore application details.

After testing the edited app, application information, analysis results, apk files,

and XML information with APIs used are found. Figure- 32 shows the permission

analysis of the app.

Figure 32: Permission Analysis from the Detailed Report

This tool can be used in various other information gatherings, but the purpose of

this work is to look for permission extraction. Here a total of 12 permissions are

found that are used by the app.
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The APKStat [45] tool also gives a summary report gathered from the apk files.

It analyzes the permission request information, activities name, services name,

receivers name, and providers name with a summarized report. Figure- 33 shows

the report outlook.

Figure 33: Summary report of the Application

This report shows the permissions used by the application. Here also it is seen that

12 permissions are requested. Here is a similarity found between the APKStat [45]

and the Androwarn [44] tool. They are both capable of extracting 12 permissions

of the same application.
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APKiD [46] provides information about how an APK was made. It identifies nu-

merous compilers, mystificators, combiners, and many more attributes contribut-

ing to the making of an application. Here the customized application is tested

with Kharon datasets [39] apps to get an idea of what the information will look

like. Figure- 34 demonstrates that information.

Figure 34: Compiler, Manipulator Details of Various Applications

This type of information can be useful to track an unknown application.
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DroidLysis [47] is an extracting tool for Android application properties. It breaks

down the Android program which the user gives automatically and searches the

package or pulls apart data for various features. This tool is used to find the

details of our application. Figure- 35 shows different properties that are extracted

from the application that is used for training.

Figure 35: Properties Analysis Report of Application
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In the next part, the study of the same application was done using the droidbot

[42] [43] tool. Here we tested our app in 3 different android versions and APIs.

Figure- 36 show the outcomes of providing random or pre-identified input events

to an app. It shows test coverage faster and creates a UTG also known as User-

Interface Transition Graph after completing testing.
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a. UTG in Android 4.4 (API 19)

b. UTG in Android 8.1 (API 27)

c. UTG in Android 10 (API 29)

Figure 36: User-Interface Transition Diagram of Customized Application.

60



Package Name SHA 256 Number of Security Vendors Marks This as Malicious

com.test.t000004 00a419a4ffe1819a51207b3140592734 31

com.bckalz.iphone5s 02f3ddaada005263619aebdb2d2a14e0 24

com.android.bluetooth 8b9520ef4054640badcef491213fbefe 1

fr.mildlyusefulsoftware.awesomesportcars 011889b7c5892e514b1c833d6bd4c476 1

com.android.browser 8753cc13bc19e2c36ecbd1ff6dbd26e0 1

com.cyanogenmod.filemanager fb88a628def2cd0c1670aadc20dd5191 1

com.mwr.dz 6e6ba57a704c5a0895ac9a152d4cc399 1

com.genymotion.superuser 7b5d2f0140cd5fb82e23909bfcdf45f1 1

com.android.camera 61fefd546c6a4cd2f15fe50496fd5d54 1

Table 5: Analysis of Packages Reported as Malicious (Android 4.4, API 19)

Check All APK’s [58] is a combination of scripts that use Drozer [56][57] and the

VirusTotal API [60] to determine whether a phone is running malware-infected

apps. This is helpful in violation of security when an analyst must distinguish

between hundreds of valid apps. The test we conducted was among three android

versions with different API levels. The goal is to find the vulnerable application

that may be present in the device as there are a lot of applications running.

Here the Table- 5 indicates the possible malicious packages that were present in

the first device (Android Version - 4.4)

The following Table- 6 shows the malicious packages in the device having android

version - 8.1:
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Package Name SHA 256 Number of Security Vendors Marks This as Malicious

com.android.security a92301c54d8bcd96a9f405a313b375e7 35

com.antivirus.kav c9e3af6a4429197c05c18408f9f287ee 34

com.android.htmlviewer f6a0bf1e4ba649b55cbb475aa4fb76b9 1

com.android.companiondevicemanager 91d894070afc94c31041e818531c06c9 1

com.android.defcontainer 49e0dc8eb85e313e78d8d105d22443b2 1

com.android.egg 54c55eea8760ac7bceb56875717d212b 1

com.android.nfc ee8f59e0c9bd7feb8c96402b254499cd 1

com.android.sharedstoragebackup eb949eafb8740507354d9ef49b3dd386 1

com.android.webview f50a520dd087eaf1c07fcee87644340d 1

com.android.inputmethod.latin f5c164de710eab4058c31de4dd753509 1

com.android.managedprovisioning d030578fefbd0b0456a0f3b399d90539 1

com.android.smspush 2b8656be9320b6b4f1ce215d3c5bf2bc 1

com.amaze.filemanager 9978ce22098cd11af1d02e2b2ddf7f37 1

com.mwr.dz 6e6ba57a704c5a0895ac9a152d4cc399 1

com.android.vpndialogs ede9c632d6d55916f2f89bbeeca74abc 1

com.android.wallpaperbackup abc650dbe2d3789fb90ab4ac00eff821 1

com.android.bluetooth 0b34e36f340681166ed14e2037e1c9c2 1

com.android.captiveportallogin 9c10470b5536b8fc4404ff2ea572e91f 1

Table 6: Analysis of Packages Reported as Malicious (Android 8.1, API 27)

The following Table- 7 shows the malicious packages in the device having android

version - 10:
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Package Name SHA 256 Number of Security Vendors Marks This as Malicious

org.slempo.service: a2603254188da3d67e4da5452e0304a9 30

com.android.bluetooth 759f3530b7455c50d24066f132ab078e 1

com.android.phone 11702d97134124453407d65affdf9bad 1

com.android.email 1866a87f79f9141bccabf00484f95270 1

com.android.permissioncontroller c58c73d3c6928aa1a2d43bd34620b4d8 1

. . . . . . . . .

Table 7: Partial Analysis of Packages Reported as Malicious (Android 10, API

29)

In short, in three different systems we have found interesting behaviors from dif-

ferent packages. Table- 8 shows the percentage of malicious packages found in the

conducted experiment:

Android Version Total Packages

Analyzed

Malicious Pack-

ages Found

Percentage of

Malicious Pack-

age

4.4 (API 19) 97 9 9.3 %

8.1 (API 27) 114 18 15.8 %

10 (API 29) 152 56 36.8 %

Table 8: Comparative Results of Malicious Packages in Different Version

In the PACE project [48] [49], the script will collect permission information from

Malware and Benign software in their respective directories and combine it into

a single Comma Separated Values file. ready to be fed into machine learning

algorithms.

In Figure- 37, the overall picture of the gathered permission is presented. It

can be seen that almost all the applications use a large number of permissions.

From this information, it is very difficult to distinguish the malicious and benign

applications. This dataset is then used in various machine learning algorithms.

These algorithms will be used to create models. The better the training set the

better results will be obtained.
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a. Benign Applications Permission List Sample

b. Malicious Applications Permission List Sample

Figure 37: Pictoral Overview of the Permission List Gathered.
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Before splitting the dataset into a classifier, first, some basic characteristics of both

malware and benign applications are identified. The top 10 permissions extracted

from the data that were used in both malware and benign are shown in figure 38.

Here it is evident that most of the features used are similar in both malware and

benign applications. Thus, to make a differentiation between them the machine

needs to learn intelligently.

Figure 38: Top 10 Permissions Used (Benign vs Malware)

Here are some feature-based differences between benign and malware applications

after considering the wider scenario. In figure- 39, some of the important features

distinction is presented via graph. Some of the images clearly show that malware
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is sending more permission requests for sensitive data than benign applications.

“android.permission.READ SMS”, “android.permission.RECEIVE SMS”,

“android.permission.READ CONTACTS”,

“android.permission.CONTROL LOCATION UPDATES” are some examples of

the extracted sensitive features that have a significantly higher access rate for

malicious applications.

Table- 9 shows different algorithms showing accuracies gathered from the dataset

used.
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Figure 39: Permissions (Malware vs Benign)
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Algorithm Accuracy

Naive Bayes Algorithm 65 %

K-Nearest Neighbors:

kneighbors 3 86 %

kneighbors 6 85 %

kneighbors 9 85 %

kneighbors 12 82 %

Decision Tree Algorithm 84 %

Random Forests Algorithm 89 %

TensorFlow Decision Forests Algorithm 90 %

Table 9: Different machine learning algorithm accuracy

This table shows that the TensorFlow Decision Forests Algorithm outperformed

other existing algorithms while permission-based features are considered for mal-

ware analysis. Figure- 40 shows the model for TensorFlow Serving. This model

indicates the most important feature as its root by considering this as a tree

structure. Other nodes follow their own precedence.

Figure 40: Model for TensorFlow Serving.
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In Figure- 41, two graphs show accuracy rates and data loss rates over the number

of trees. It is seen that as the number of trees grows the accuracy rates become

more mature based on the fed data. Moreover, the loss rate of data tends to zero

as the tree numbers increase.

Figure 41: Accuracy and Data Loss Graph of TensorFlow Decision Forest Algo-

rithm
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8 Limitations and Challenges of The Conducted

Work

8.1 Limitations

This research work is done with a very limited number of data. The result obtained

from these data cannot be generalized to conclude for the whole malware world.

Most of the analysis tools are version dependent. For a non-technical specialist

background person, these are hard to use and understand. Also, the permission

analysis was conducted to produce various types of results. Thus, these techniques

cannot be unified and made as a whole unit to work together. Moreover, the

collected application executables could not be tested one by one. Therefore, there

can be questions about the application being malware or benign. In the work, the

applications were collected from a small number of sources. There are numerous

open-source as well as private (but accessible with permission) present which can

bring significant results to this research work. As the models created were trained

with predefined malware and benign samples, the results can be biased based on

the dataset’s behavior. Furthermore, the number of studied features is limited.

This specific work eyes on the permission-based extraction data of the applications.

It is clear that only permission analysis cannot study the whole characteristics of

malware spreading. There can be many other features for which malware attacks

occur.

8.2 Challenges

The experiment conducted on real users was very time-consuming. Also approach-

ing the users and getting their feedback was difficult. Malware analysis studies

have a lot of fields to cover. Finding a specific path and discovering something is

not easy. As the world is more reliant on the internet, there is a lot of informa-

tion available regarding open-source malware and its analysis techniques. Among

those huge numbers of data, reliable data are quite hard to distinguish. Then

70



the techniques are also very tough to use and analyze. By setting proper envi-

ronments and rules, these techniques can give the desired output. Many tools are

also unmaintained. These tools are developed long ago and are currently unusable

with the latest systems. The dataset gathering and storing is burdensome often-

times. Even the data extraction can be hard to follow if one data is untraceable

and unreadable. There are many occasions when the extraction method stopped

working and started from the beginning as there was an internal error in the par-

ticular application. In addition, extracting the data is done in one go as different

executions will provide different feature sets, which are quite hard to combine.
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9 Conclusion and Future Work

It is still not possible to prevent all sorts of malware. There are many types of

malicious programs or software that have not been identified or detected. There

exists a concept of a zero-day vulnerability. An instance where attackers take

advantage of a software security loophole to carry out an invasion is known as

a ”zero-day exploit.” More dangerously, it is only known to the attackers, which

means the developers have no idea such a loophole even exists. So detecting

malware, preventing cyberattacks, and ensuring security is crucial in this age of

information technology. This paper contains an up-to-date validation of malware

analysis tools. Various aspects of malware analysis have been discussed including

new malware attack patterns and datasets. Only permission extraction is not suffi-

cient for malware detection. This paper contains a new dataset on which the latest

ML algorithms have been run. With an accuracy of 90% TensorFlow decision for-

est algorithm has provided a significantly better performance over other machine

learning algorithms such as the Naive Bayes Algorithm, K-Nearest Neighbor Al-

gorithm, Decision Tree Algorithm, and Random Forest Algorithm after analysis

of 1168 different applications. Taking permission to carry out specific actions

on android devices into consideration, this dissertation concludes the TensorFlow

decision forest tree as the best in classifying data.

There is a lot of work still needs to be done in the field of malware detection and

analysis. The Android malware detection techniques should be updated with every

new update of the system. There are a lot of open-source resources still available to

explore. New and improved methods of data extraction can give a significant result

that can contribute more to the analysis of malware. Additionally, more user-

friendly and usable techniques can be introduced to stop the spread of malicious

software. Machine learning-based algorithms, deep neural networks, and artificial

intelligence can be used to predict malware more effectively and efficiently.
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[52] Allix, K., Bissyandé, T.F., Jérome, Q., Klein, J. and Le Traon, Y., 2016. Em-

pirical assessment of machine learning-based malware detectors for Android.

Empirical Software Engineering, 21(1), pp.183-211.

[53] MLDroid. (n.d.). MLDroid/csbd: The repository contains the python imple-

mentation of the android malware detection paper: ”empirical assessment of

machine learning-based malware detectors for Android: Measuring the gap

between in-the-lab and in-the-wild validation scenarios”. GitHub. Retrieved

April 18, 2022, from https://github.com/MLDroid/csbd

[54] Narayanan, A., Chandramohan, M., Chen, L. and Liu, Y., 2017. Context-

aware, adaptive and scalable android malware detection through online learn-

ing (extended version). arXiv preprint arXiv:1706.00947.

[55] Narayanan, A., Chandramohan, M., Chen, L. and Liu, Y., 2017. Context-

aware, adaptive, and scalable android malware detection through online learn-

ing. IEEE Transactions on Emerging Topics in Computational Intelligence,

1(3), pp.157-175.

[56] FSecureLABS. (n.d.). FSecureLABS/drozer: The leading security assess-

ment framework for Android. GitHub. Retrieved April 18, 2022, from

https://github.com/FSecureLABS/drozer

[57] inf0junki3. (2017, October 6). Checking your Android device for known

malware. Kudelski Security Research. Retrieved April 19, 2022, from

78



https://research.kudelskisecurity.com/2017/08/08/checking-your-android-

device-for-known-malware/

[58] Kudelskisecurity. (n.d.). Kudelskisecurity/check all apks: Check all APK’s –

scripts for checking your phone for malware. GitHub. Retrieved April 19, 2022,

from https://github.com/kudelskisecurity/check all apks

[59] Xaviha. (n.d.). Xaviha/Stormbreaker: Tool Social Engineering

[Access Webcam Microphone OS Password Grabber Loca-

tion Finder] with Ngrok. GitHub. Retrieved April 25, 2022, from

https://github.com/xaviha/stormbreaker

[60] Virustotal. (n.d.). Retrieved April 25, 2022, from

https://www.virustotal.com/gui/home/upload

[61] Herron, N., Glisson, W.B., McDonald, J.T. and Benton, R.K., 2021, January.

Machine learning-based android malware detection using manifest permissions.

Proceedings of the 54th Hawaii International Conference on System Sciences.

[62] Hahn, S., Protsenko, M. and Müller, T., 2016. Comparative evaluation of ma-

chine learning-based malware detection on android. Sicherheit 2016-Sicherheit,

Schutz und Zuverlässigkeit.
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[68] Arslan, R.S., Doğru, İ.A. and Barişçi, N., 2019. Permission-based malware

detection system for android using machine learning techniques. International

journal of software engineering and knowledge engineering, 29(01), pp.43-61.

[69] Milosevic, N., Dehghantanha, A. and Choo, K.K.R., 2017. Machine learning

aided Android malware classification. Computers Electrical Engineering, 61,

pp.266-274.

80


