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Abstract

This thesis presents a novel mechanism for charge sharing in between Electric Vehicles
or EVs. Electric vehicles face some obstacles in the face of adoption over conventional
cars. Electric vehicles (EVs) have a limited driving range due to battery limits. EV
charging stations are also sometimes rather far apart, and they are not widely available
in many areas. Battery depletion entails traveling to remote places or even taking
detours, both of which increase the total driving time of EVs. Under the proposed
network design, an EV that does not have enough energy to finish its route can ask
for energy. Other EVs close to it may respond. It is to be kept in mind that every
EV is selfish about its own charge. The model utilizes Evolutionary Game Theory
(EGT) and replicator equation on graphs. The EV that needs extra energy and makes
the initiative to ask for such is the receiver. The respondents may either be givers or
non-givers. Givers choose to share their energy, whereas non-givers don’t. Givers get
a fixed incentive that topples the potential cost of driving to the receiver, whereas non-

givers neither gain or lose anything. In the model proposed in this thesis, an attempt is
made to control this incentive, thus controlling the total number of givers in the world.
The results show that an equilibrium can be established in a system where givers are
consistently created. This balance is achieved by altering the incentive provided by
EVs with decreased energy levels. Thus, an effective energy sharing system is proved
to be sustainable utilizing a theoretical and numerical approach as well as a simulation
model to substantiate the theoretical model.

x



Chapter 1

Introduction and Background

Traditional vehicles are a major contributor to global warming, greenhouse gas emis-
sions, health risks, and pollution. To address the accompanying disadvantages, many
countries, including China, the European Union, and the United States, have dramati-
cally shifted away from conventional energy and toward renewable energy in the past
decade [4]. A reduction in greenhouse gas emissions by making big changes to the
transportation sector through the use of solar energy and the deployment of electric
vehicles (EV) can have a widespread positive impact on the environment. Batteries
are a low-cost, dependable energy storage medium. Countries that want to transi-
tion to 100% renewable energy are replacing internal combustion engines with green
transports such as e-bikes, e-cars, hybrid automobiles, hyperloops, and so on [5]. To
address the climate crisis, the mass scale adoption and deployment of Electric vehicles
(EVs) is of paramount importance. Among the industries contributing significantly to
global greenhouse gas emissions, the transportation industry stands out. [6]. It is so
significant that road transport by itself accounts for almost 72 percent of this industry’s
emissions [7]. Hence, the mass usage of electric vehicles are likely to play a crucial
part in reducing greenhouse gas emissions. However, there remains significant imped-
iments to the extensive use of EVs in day to day life.

In this chapter, a brief of the problem and the steps for its solution would be pro-
vided. The chapter is structured as such: the problem statement is pondered upon in
Section 1.1, and then the research objectives are elucidated upon in Section 1.2. Sec-
tion 1.3 expands upon what are expected off this research, and Section 1.4 speaks of
how the thesis differs from previously established works. Finally, Section 1.5 offers a
prelude to the proposed model in this research.

1.1 Problem Statement

Energy systems throughout the world are undergoing rapid transformations that will
have a significant impact on how vehicles are fueled, homes are heated, and industries
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are powered. The energy crisis is caused by the insufficient use of alternate energy
sources and fossil fuels. The planet is being harmed by an unbalanced energy mix.
Because of the insatiable reliance on fossil fuels, which will continue for the next two
decades, fossil fuels will soon get depleted. A worldwide energy crisis is impending
as a result of global population expansion, increased consumption, and reliance on
fossil-based fuels for the purpose of generation. It is commonly believed that rises in
greenhouse gas concentration levels, if not reduced, will result in dramatic changes in
global climate, with significant consequences for both the society and the economy [8].

Figure 1.1: Energy Consumption per capita from 1820-2000 in the world. [1].

According to the graph above, the world’s energy consumption is at an all-time high.
To meet this increasing demand, fossil fuel usage has also reached its peak capacity.
This has long-term hazardous effects to both the climate as well as the ecological
balance of our planet. Furthermore, it has been stated that the demand for energy
would only rise in the near future. This can be seen in Figure 1.2.

To combat this reliance on fossil fuels, electric vehicles are viewed as a more en-
vironmentally friendly alternative to traditional fuel-consuming automobiles. Elec-
tric vehicle adoption increased by 11 percent in the United States between 2011 and
2015 [9]. However, some critical obstacles are impeding the growth of EV adoption.

1.1.1 Problem Identification

Consumers have certain obstacles when it comes to EV adoption. Firstly, an EV’s
current battery limits the distance it can drive without stopping. When compared to
regular vehicles, this significantly reduces the distances that an EV can go. A reduced
driving range leads to increased visits to Electric Vehicle Charging Stations (EVCS) in
order to recharge the battery’s low charge levels. This results in higher travel distances,
which disincentivizes people from switching from standard autos to EVs.

2



Figure 1.2: Future energy demand trend upto 2040 [2].

Secondly, infrastructure constraints such as limited EVCSs contribute to the general
public’s reluctance to EVs [7]. These stations are typically sparse and are great dis-
tances apart. The concern of reduced range of driving is worsened by the scarcity of
these EVCSs in the drivers’ immediate proximity. This difficulty is exacerbated when
charging stations go out of service or are not working properly. Consequrntly, EVs are
forced to traverse large distances to reach other charging stations, resulting in longer
trip lengths. Long lines at scarcely available charging stations can also result in longer
charging times.

1.1.2 Research Motivation

The following are the motivation towards our research:

• EVs have relatively high charging costs and waiting times, which decreases con-
sumer satisfaction,

• in developing countries, there is a lack of suitable charging infrastructure,

• providing an incentive to switch from conventional to electric vehicles,

• inadequate management of storage systems, charging stations, and battery sup-
ply management systems.

1.1.3 Scope of the Research

The above-mentioned problems are solved by proposing an effective energy sharing
mechanism to increase the popularity of EVs while also reducing automobile emis-
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sions. The electric vehicles in the system under consideration are assumed to be en-
tirely autonomous or semi-autonomous. The proposed strategy is derived from an ap-
proach which is dependent on evolutionary game theory. The system objectives include
the designing of a system that is stable and perpetual. It has to be such that whenever
an EV requests charge from EVs in its vicnity it can obtain it. When the charge level
drops below a threshold, the EV can transmit requests using standard communication
networks. Henceforth, this EV which is requesting charge is designated as a receiver.

1.2 Research Objective

The research goal of the proposed methods is:

• enhancing EV range, and

• decreasing journey durations.

The goal is to shorten journey durations by not deviating from the intended path to
reach an EVCS. In cases with no EVCSs in the nearby area, this proposed system
can bring even more benefits to the locality. A corollary benefit of this sytem is that
it does not require drastic changes to the infrastructure in the area. Thereby, helping
to bypass the need for increased cost and bureaucracy. A cluster is created around
the receiver EV which forms the environment of the game. There can be cases of
heightened trip times where an EVCS is not in the destination route. If no EVCSs are
located within the cluster, the situation is compounded. This highlights the need for
EVs to share energy. A difficulty is that all vehicles have selfish characteristics and
thus are unlikely to cooperate without an added incentive. To enable cooperation, a
system is presented that a) chooses a giving EV to meet with and share its charge with

the seeking (receiver) EV, and b) takes into account the vehicle’s selfishness. There
must be no human intervention in the system.

1.3 Research Outcome

The anticipated results from above objectives are:

• establishing an automated system where energy sharing takes place spontaneously,

• ensuring that incentives are always greater than cost for an individual EV,

• simulating the mathematical model for further justification.
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Figure 1.3: Proposed Scenario.

1.4 Novelty of the Research

This thesis takes Vehicle-to-Vehicle (V2V) energy-sharing to a new dimension with
the addition of Evolutionary Game Theory (EGT). The way this research differs from
previous works are mentioned below:

• The research uses EGT to make decisions based on the selfishness of the EVs.

• Vehicles can receive energy on multiple occasions throughout their journey.

• The work does not propose any changes to the existing infrastructure.

Previously completed works, as will be described in Chapter 2, have all proposed cer-
tain infrastructures. The problem with this is that, all of this necessitates a long-term
investment, and will take long to implement. The reason for this is that, the infrastruc-
ture first has to be established. We propose a scheme that can work on the existing
infrastructure. We create this with the help of EGT. Furthermore, for the sharing of
charge, we have used a bidirectional DC-DC converter technology [10]. We have con-
sidered each EV to be a node in an EGT model. Because these vehicles are selfish
in nature they are going to want to conserve their own State of Charge (SOC). The
receiver EVs will therefore need to provide an incentive in order to get charged from
another EV. In order to turn the other EVs into givers, EGT is used. This substantiates
that each EV may take part in the game multiple times, thus having the potential to get
charged multiple times.
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Figure 1.4: The three phases EVs must adopt for the game.

1.5 Overview of the Methodology

This research proposes an automated method aimed at enhancing EV trip range and
decreasing journey durations. The goal is to shorten journey durations by not deviating
from the intended path while going to an EVCS. The system benefits the community by
not necessitating changes to public infrastructure. It keeps drivers’ trip times lower by
not having to go to far off EVCSs. This is possible due to EV energy sharing. However,
the difficulty is that all these EVs are greedy and are unlikely to share energy in an act
of selflessness. Therefore, a method is presented that a) finds a giving EV that meets

and distributes its energy with the asking (receiver) EV, and b) takes the vehicle’s

selfishness into account. There should be no human intervention in the system. In
this case, each individual EV in the population develops a plan for itself. Every round
of the game, an EV chooses one of two different strategies: to give or not to give.
This evolution can be seen using replicator dynamics on graphs [?, 11–14]. Replicator
dynamics on graphs is an important tool used in our research and it is a derivation of
the replicator dynamics employed for populations which are finite. The widespread
adoption of a certain strategy by EVs in the system is dependent upon the payoff that
these EVs can obtain by the utilisation of that particular strategy. This forms the basis
of replicator dynamics in this case. In this scenario, the members of the EV population
are the vertices of a regular graph. The EVs from the cluster that choose to give their
charge to the receiver EV are called giver EVs. The two strategies which are allowed
in the population of vehicles in this system are Giving and not giving. The following
three stages must be repeated in order for this modeled game to be adopted:

1. Giver Selection Stage: Individual EVs decide to be a giver or a non-giver based
on contacts with other EVs in the cluster.

2. Receiver Responding Stage: Once all of the EVs in the cluster have been se-
lected, all of the EVs contact the receiver, and the receiver then meets for exchanging
charge with the givers.

3. Energy Sharing Stage: Givers meet with the receiver and share their energy.
The EVs which choose a strategy of non-giving don’t take part in energy sharing.

These three stages encompass one round of the game. The duration of every round
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is assumed to be fixed with every vehicle being aware of it. Every individual round is
determined by the quantity of energy consumed by the receiver due to the last phase
being energy sharing stage. All the EVs are made aware of the round lengths using
their connected communication networks. The model being proposed is inspired from
the self-organised data aggregation technique presented in [15].

The concept that underpins the scheme is that EVs are selfish and requires incen-
tives to prod them into exchaging their charge. In every round, the giver is given a
form of gift to entice them, which plays the role of the incentive. Immediately two
challenges rise up: 1) How is it possible to choose givers among selfish EVs? 2) Is it

possible to limit the number of people who give? In this case, the application of this
type of evolutionary game theory can help in resolving these issues because it takes
into consideration the various effects created by the mutual interactions of the EVs.

This chapter offered a brief introduction of the work done in this thesis. Chapter 2
will delve into the established work, and more into history, future and significance of
EVs, in order to explain the importance of our work.
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Chapter 2

Literature Review

Chapter 1 delved into an idea and procedures of our novel work. The work will further
be explained in upcoming chapters. This chapter will talk more about EVs in general.

Nowadays, a great many research is being conducted in the field of vehicle-to-
vehicle (V2V) energy exchange. One such work concentrates in the domain of V2V
Wireless Power Transfer (WPT) where issues of scheduling, routing and matching ve-
hicles are concentrated upon and various solution strategies are posited [16]. Inductive
power transmission schemes for charge sharing are being proposed as well. Such re-
search works proposed unique schemes to alternative ways inductive charging can be
deployed [17, 18].

Research is ongoing to develop a cost-effective energy exchange framework. There
are studies which take an all-inclusive view of energy management. One such study
integrates wide ranging of issues of administration in a charge sharing model. [19].
Fog computing has also been considered for charge sharing in a V2V scenario. Works
in these areas have dived into assuring security of transactions, utilizing blockchain
techniques in order to create a strong network of EVs [20]. Ideas [21] proposing wire-
less charging of EVs while traveling on the road have also been heavily investigated.
Nonetheless, systems involving charging via roads necessitate replacing existing roads
and other structures thereby posing significant costs.

The chapter is broken down as follows: Section 2.1 talks about the history of EVs,
and Section 2.2 about the future. Finally, Section 2.3 delves into the correlation be-
tween EVs and the power sector.

2.1 History of EVs

Electric vehicles were debuted more than a century ago, and at a point in time, they
comprised a massive one-third of the entire car fleet. Users favoured electric vehi-
cles because they were completely silent and did not burn petrol. However, by 1935,
EVs had vanished from the market, owing in part to improved infrastructure, and an
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increased number of gas stations. Furthermore, EVs constantly suffered from range
anxiety, and their charge would easily be depleted before completing journey. Infras-
tructural advancements enabled longer-distance travel, and for this reason, EVs are
currently unable to compete with gasoline-powered vehicles. When the price of gaso-
line rose in 1970, electric vehicles (EVs) reappeared in the market. However, it was not
until the beginning of 2000 that EVs achieved a tipping point and the actual develop-
ment of EVs began. Previously, the golf range of EVs had been limited. Tesla Motors,
a geographical area startup, announced the creation of an EV with a practice range of
200 miles in 2006. This, along with a variety of other factors including environmental
benefits, helped in the introduction of EVs in existing established automobile manu-
facturing enterprises [22].

2.2 Future of EVs

The EV30@30 initiative offers the opportunity to simplify the transition to a com-
pletely renewable energy grid by electrifying transportation. According to the IAE
2018, a collaborative objective has been established that by 2030, 30 percent of all
global automotive sales must be electric vehicles. In Sweden, a member of the EV30@30
movement established a goal of reducing emissions in the domestic transportation sec-
tor by at least 70% by 2030 compared to 2010. To achieve the stated purpose, Fortum
Charge & Drive collaborated with Swedenergy to create The Almedalen Manifesto
2016. The Manifesto outlines how electric vehicles and charging infrastructure should
be pushed in order to achieve the suggested aim of the Cross-Party Committee on Envi-
ronmental Objects. According to the Manifesto, the technical advancement of electric
vehicles and charging infrastructure has reached a point where an introduction to the
larger market is viable. As a result, the Manifesto proposes a target of two million EVs
in Sweden by 2030 in order to achieve the required decrease.
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2.3 Importance of EVs in Power Sector

Road cars are a major contributor to global warming, greenhouse gas emissions, health
risks, and pollution. To combat the associated disadvantages, many countries, includ-
ing China, the European Union, and the United States, have dramatically shifted gears
from conventional to renewable energy in the last decade [6]. Clean alternative energy
(e.g., solar, wind, biomass, biofuel, etc.) and nuclear power are the dissolute energy
sources, with both growing at a rate of 2.5 percent per year [7]. Reduced greenhouse
gas emissions from substantial changes in the transportation sector, such as the use
of solar energy and the deployment of electric vehicles (EV), can have a widespread
positive impact on the environment.
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Chapter 3

Background Study

In the previous chapter, the pre-existing work on the topic being discussed have been
mentioned. Let us take this opportunity to delve into some new theory that will prove
to be relevant to our topic. Set aside the model, Section 3.2 talks about Evolutionary
Game Theory (EGT). Section 3.3 is an important section, in the sense that it talks about
non-cooperative game theory, a game theoretic model in which individuals are selfish
in nature. Finally, Section 3.4 delves into replicator equation on graphs.

3.1 Peer to Peer Energy Sharing

As more distributed generation is installed on the demand side, a growing number of
consumers become prosumers. Numerous peer-to-peer (P2P) energy sharing models
have been proposed to reduce prosumers’ energy bills by encouraging energy sharing
and demand response [23].

The foundation of energy sharing programs are energy sharing models, which out-
line how prosumers share and barter energy with one another. Many studies have been
conducted in this topic. The studies can be classified into three types: 1) energy sharing

performed by a single centralized authority; 2) energy sharing accomplished through

the interaction of an operator (price-maker) and a group of prosumers (price-takers);

and 3) energy sharing accomplished by the interaction of a group of prosumers, i.e.

P2P energy sharing [24].

3.2 Evolutionary Game Theory

The two fundamental concepts of game theory, strategy and payoff, must be reinter-
preted in the perspective of evolutionary biology. A strategy is an inheritable property,
not a purposeful path of action; the outcome is Darwinian fitness (average reproductive
success). The "players" are individuals of a population who are all striving for a larger
part of the population.

If numerous variants of a trait exist in a population, natural selection causes the
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frequency of those variants with greater fitness to grow. If the success of a charac-
teristic is not determined by its frequency, the best variation will eventually be fixed.
However, if the success of a characteristic is frequency-dependent, its rise may result
in a population composition in which alternative variants perform better; this can be
examined using game theory [25].

3.3 Non cooperative Game Theory

For a precise formulation of a non-cooperative game, we must specify: (i) the number
of players, (ii) the possible actions available to each player, and any constraints that
may be imposed on them, (iii) the objective functions that each player attempts to
optimize (minimize or maximize, as the case may be), (iv) any time ordering of action
execution if the players are allowed to act more than once, and (v) any information
acquisition that takes place.

As a result, we consider an N -player game, where N := 1, . . . , N denotes the
Players set. Player i’s decision or action variable is denoted by xi, where xi represents
player i’s action set. The action set could be finite (such that the player only has a finite
number of actions), infinite but finite-dimensional (such as the unit interval, [0, 1]),
or infinite-dimensional (such as the space of all continuous functions on the interval
[0, 1]). Let x symbolize the N -tuple of all players’ action variables, x := (x1, . . . , xN).
Allowing for possibly coupled constraints, we define x as the game’s constraint set,
where x is the N -product of x1, . . . , xN ; hence, for an N -tuple of action variables to
be feasible, we need x [26].

3.4 Replicator equation on graphs

A vertex of the graph represents each player. Who meets whom is indicated by the
edges. A player can choose from n different strategies. Interaction with all of the
players’ immediate neighbors are taken into consideration for the formulation of the
payoff. We look at three different types of update rules: "birth–death," "death–birth,"
and "imitation." In this model, a fourth update rule called ’pairwise comparison’ is
demonstrated to be comparable to birth–death updating. On regular graphs of degree
k, we use pair approximation to characterize the evolutionary game dynamics. We
can derive a differential equation that captures how the average frequency of each
method on the graph evolves over time in the case of weak selection. This equation is
a replicator equation with an altered payout matrix, which is remarkable [12].
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Chapter 4

Proposed Model

Until this chapter, the study comprised of the prerequisites to our model. Chapter 3
discussed necessary concepts required to understand the model. This chapter delves
deeper into the model. This chapter will only contain the mathematical model. The
simulation analysis will be provided from Chapter 6.

Section 4.1 will provide an overview of the model and Section 4.2 will discuss the
happenings of the game.

4.1 Overview of Model

The system proposed in the model works in and of itself without any external influence.
We are to make each individual EV driver relax on the concern related to the running
out of charge before a journey is completed. When the State of Charge (SOC) goes
down, EVs look for Electric Vehicle Charging Stations (EVCS). Our claims might feel
like we propose complete infrastructural change, but we assure you, that is not the
case. Instead, our game considers the existence of clusters of EVs around the receiver.

As we are soon to find out in Section 4.2, each EV in the cluster can choose one
of two strategies, to give or not to give. Each EV is considered to have chosen a
strategy, or at least be able to choose a strategy. The strategies may or may not change
each round of the game. These changes are modeled through replicator dynamics
on graphs [11–14, 27]. Replicator dynamics on graphs, as found from studies, is a
manipulated version of the actual replicator dynamics.

The three steps for this modeled game are as follows (see Figure 1.4):
1. Giver Selection Stage: Each EV interacts with every other EV in the cluster and

then chooses to either be a giver or a non-giver.
2. Receiver Responding Stage: The givers then communicate with the receivers

and then they travel to the receiver expending credit c (details: Chapter 5).
3. Energy Sharing Stage: The giver EVs get paid back with an incentive b from

the receiver. The non-giver EVs neither gain nor lose anything.
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All these three steps constitute a round. When these three steps finish, a round
commences, and the next round starts, unless the game is stopped and no other EVs are
requesting for energy. The cars are supposed to have the capability of communicating
amongst themselves in order to ensure mutual interaction. The EVs are also cognizant
of the duration of each round, and also the payoff it might derive given the neighbors
choosing their respective strategies from the choice pool. The EVs however, do not
know the strategies their neighbors are likely to play. Each EV knows how far it is
to travel and the energy required to travel that length. The amount of energy required
by the receiver determines the round. The EVs transmit the round’s length, which can
be changed if necessary. This model is based on a self-organized data aggregation
technique described in [15], and it is a variation of EGT.

4.2 Selection of Givers

The cars in the cluster are reliant on the other members of the cluster. Each node is
expected to communicate with its nearby receivers before deciding whether to be a
giver or a non-giver based on the prospective rewards.

We consider a variable c which will be the charge-equivalent credit expended for a
giver traveling to the receiver. This causes the reduction of SOC in the giver. Let b be
the amount of incentive supplied by the receiver, i.e. the improvement in SOC it can
get utilizing the credit gain. This means that, if an EV chooses to be a giver, then it
spends c credits and achieves b credits.

The b amount of credit implies the amount of charge the EV will not need to pay
for at an EVCS. Non-givers spend no energy, however, this strategy may not already
be called a dominant strategy. This is because, non-givers also do not earn b. The gains
and losses of both givers and non-givers can be represented as in the Figure 4.1.

Figure 4.1: Payoff for giver and non-giver EV [3].
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It is to be burnt to the back of our minds that EVs are naturally selfish about their
SOC. This means that the incentive b has to be large enough so that some EVs choose to
be givers despite the potential cost of travel c. This means that, b > c. On the surface,
it appears that the value of b maybe increased without bounds in order to increase the
ratio of givers. However, such is not the case. b will not be increased without bounds
as the incentive gets divided among more givers, causing the impact of b to decrease.
This means that if b is increased without bounds, more givers are formed, causing the
incentive b from the receiver to be divided among more EVs, causing b to not be able
to offset anything, causing the ratio of givers to fall back down. This will be clearer
from Figure 4.2 and the simulation analaysis in Chapter 6.

Figure 4.2: The receiver distributes b among givers. If b is too high, more EVs will want to
be givers. As a result, b will be shared by more EVs. An individual EV can earn a maximum
payoff of b

N , where N is the total number of EVs. The higher the value of N , the lower is
the gain for each individual EV. So, EVs lose incentive to be givers. So, our model is an
autonomous one.

This is not only able to control the ratio of the givers, but also the ratio of the non-

givers. The receiver is only able to offer incentive b, no more, no less. And the incen-
tive cannot be changed mid-round. The selection of this incentive b maybe theorized
as a bargain between two EVs in the language of EGT. Two permissible roles exist
among the population:

• Giver: agrees to share energy, and

• Non-giver: disagrees to share energy.

Amongst all kinds of combinations possible between two players picking either strate-
gies, the payoff matrix can be represented as in the Table 4.1.
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Table 4.1: The payoff matrix in between two EVs.

PPPPPPPPPPP
EV 1

EV 2
Giver Non-Giver

Giver b
2
− c, b

2
− c b− c, 0

Non-Giver 0, b− c 0, 0

Without knowing the specific plans of other players, each EV knows how much it
stands to gain given the other EVs choose different respective strategies. An EV that
results in the maximum possible return is likely to choose a giver strategy. Each EV
is aware of the potential payoff if the competitor EV follows the same or a different
approach. The highest possible payoff is found when one EV chooses to be a giver

and the other chooses to be a non-giver. This means that the Nash Equilibrium persists
along the diagonal of the payoff matrix.

If the only other EV chooses to not give, the receiver offers the whole incentive to
the giver. When neither of the EVs chooses to share their energy, i.e. when they both
opt to be non-givers, they incur no net loss, but they also miss out on the potential profit
that sharing their energy could have brought them. In the event that both neighboring
EVs elect to become givers, the receiver meets with both vehicles to share energy. As
a result, each car’s incentive is cut in half ( b

2
). After that, Table 4.1 can be abstracted

into Table 4.2.

Table 4.2: The abstracted payoff matrix in between two EVs.

PPPPPPPPPPP
EV 1

EV 2
Giver Non-Giver

Giver P , P T , S

Non-Giver S, T R, R

T > R and S > P are the values in the abstracted payoff matrix. Every vehicle
is encouraged to become a giver in this scenario because T > R. The greater the
b, the better. As a result, the receiver EV can regulate the production of givers by
modifying the value of b. Furthermore, if both EVs considered opt to be givers, the
receiver can draw energy from both EVs, resulting in a half-incentive. Furthermore,
the requirement T + S > R + P makes it easier to choose an evolutionary stable
role [28].

Let us now assume, that the Nash Equilibrium has been achieved. Our system,
therefore, will obviously reach a stable state. This means that both givers and non-

givers in this state exist as is, without being influenced to further change their strategies
[27].
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The selections are fully reliant on the mutual interactions among the cars, taking
into consideration each player’s selfishness, which is a distinguishing feature of this
model. During each encounter, the time it takes to charge is believed to remain con-
stant. This is based on the fact that the EVs under consideration are homogeneous, and
hence the giver and the receiver sides’ latency is believed to be consistent across the
system.
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Chapter 5

Analytical Results

The previous chapter dealt with an overview of the analytical model. This section will
deal with the mathematical results that we obtain from our model. The next chapter
will discuss the simulation results.

This section employs replicator dynamics on graphs to establish an analytical re-
lationship between the ratio of givers and the payoff matrix parameters [12, 14]. The
interactions with all of its neighbors generate a payout for each EV. Following that, a
comparison is made between the obtained payment and a randomly picked neighbor.
The replicator equations on graphs are defined, as well as a detailed explanation of the
analytical conclusions achieved.

5.1 Replicator Equation on Graphs

We are to begin the derivation of the replicator equation using graphs [27]. Consider x
to be the ratio of giver EVs to total EVs. The ratio of non-giver EVs to total EVs, on
the other hand, is (1− x). The predicted fitness f1 and f2 are calculated as follows:

f1 = x(
b

2
− c) + (1− x)(b− c),

f2 = 0. (5.1)

Here k denote the number of EV neighbors, often referred to as graph degree [13].
Although the analysis presented is focused on the k-regular graph [13], the method may
also be extended to non-regular graphs such as unit disk graphs [12, 13]. On graphs,
we can observe how the total number of EVs in a cluster influences the percentage of
givers at a certain incentive level. The modified reward matrix for evolutionary game
theory on graphs is the sum of the original payoff matrix and a modifier matrix [27].
Table 5.1 shows the modifier matrix.
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Table 5.1: Modifier matrix between two EVs.

PPPPPPPPPPP
EV 1

EV 2
Giver Non-Giver

Giver 0, 0 m, −m

Non-Giver −m, m 0, 0

m =
(k + 3)( b

2
− c) + 3(b− c)

(k + 3)(k − 2)
, ∀k > 2. (5.2)

m represents the local competition among strategies (as shown in Table 5.1). The gain
of one approach is the loss of another, and local competition between identical methods
delivers nothing. The predicted payoffs for giver and non-giver local competitions g1
and g2 are

g1 = (1− x)m,

g2 = −xm. (5.3)

Consequently, the two strategies’ total average payoff is

ϕ = x(f1 + g1) + (1− x)(f2 + g2). (5.4)

Taking the values from Equations (5.1) and (5.3) and plugging them into Equation (5.4),

ϕ = x[x(
b

2
− c) + (1− x)(b− c)]. (5.5)

The replicator equation on graphs [27] is found to be for k > 2 using Equations (5.1),
(5.3) and (5.5).

ẋ = x(f1 + g1 − ϕ).

From this, we can derive

ẋ = x(1− x)[−xb

2
+ (b− c) +

k( b
2
− c) + 4.5b− 6c

(k + 3)(k − 2)
], ∀k > 2.

The derivative of x is represented by ẋ. As a result, ẋ = 0 is chosen to attain the
maxima of x. As a result, x∗ = 0, 1 and

x∗ =
2

b
[(b− c) +

k(b− c) + 4.5b− 6c

(k + 3)(k − 2)
], ∀k > 2. (5.6)

This works for 0 < x∗ < 1. Applying this condition into Equation (5.6),
c(k2 + 2k)

k2 + 3k+9
2

− 6
< b <

2c(k2 + 2k)

k2 + 2k + 3
, ∀k > 2 (5.7)

If we simplify Equation (5.7), and manipulate it a little, this is what we will be left
with
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0 <
c(k2 + 2k)

(k2 + 3k+9
2

− 6)
<

2c(k2 + 2k)

(k2 + 2k + 3)
, ∀k > 2

in which b > c .The next section uses figures to build on the numerical results. such
that b > c. The following part expands on the numerical results with the use of figures.
The equilibrium found in Equation (5.6) is critical for regulating this model. Finally,
the effects of the various factors and their interrelationships are addressed.

Figure 5.1: The supremum and infimum of b with k. Figure 5.2: Modifier m controlling b.

Figure 5.3: x∗ controlled with b. Figure 5.4: b controlled with x∗.

5.2 Numerical Results

The model is dependent on three variables: b, c, and k. The value of x is affected by
the values of these variables. In this method, c is a very important variable in all of the
graphs generated by replicator dynamics. We assumed that c was equal to 0.25 units
for this analysis, but c can be any value depending on how far a giver needed travel to
maintain this model. The value was maintained low enough to make the calculation
simple. All of the following graphs have been extrapolated keeping this assumption in
mind without losing generality. The units of b and c must be the same. In addition, the
value of c would change depending on the price structure. To put it another way, the

20



value of c in our work is purely speculative. It isn’t applicable to everyone. And this
number, as well as its unit, has an impact on the entire system, which includes b and
x∗.

As seen in Figure 5.1, Equation (5.7) produces the supremum and infimum of b.
Even in the worst-case situation, the value of b cannot be smaller than c, proving that
b > c is a cornerstone of this research. It’s also worth noting that 2c is the largest
value of b. This proves that the givers are not going to lose. This also explains why the
givers cannot demand an exorbitant amount of credit, as the saturation of b for greater
numbers of EV in the radius prevents this. Figure 5.2 displays the local rivalry for
electric vehicles. The modifier equation is represented by Equation (5.2). With large
k values, the modifier graph converges to 0 for a wide range of b values, meaning that
the chances of EVs all using the same approach are slim.

The fluctuation of the value of x∗ for modifying the value of b is also shown in
Figure 5.3. Depending on b, x∗ can be any value between [0, 1] for a fixed amount of
EVs. Because m equals zero for a limiting value of k, it may be concluded that x∗ does
not change as k grows for a given b.

x∗ has various features depending on b for lower values of k, such as less than 15.
As a consequence, our model is valid since altering b affects the system’s x∗ ratio. In
the same way that x∗ can be controlled by b, b can be controlled by x∗. This is seen in
Figure 5.4. In reality, this means that the more givers in a given region, the more the
receiver will have to pay, until the value of b is saturated by an excess of EVs.
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Chapter 6

Simulation

Our work was conducted on the basis of Agent-based Dynamics. Respectively, we
have conducted our work on NetLogo [29], the multi-agent simulation platform. For
a decision criteria, we have used the better possess chance strategy. The entire work
related to the simulation of the world will be discussed in this chapter. The chapter
will be divided into two sections. Section 6.1 will contain the steps that made this
simulation possible. It will therefore contain discussion upon the platform, the world,
chosen strategies and working procedures. Section 6.2 will contain the observations,
and what the conclusions are. It is to be proved that the optimum number of givers x∗

in our world can be controlled based on the incentive b being provided.

6.1 Simulation Setup

This subsection will contain information on the platform used and the steps of sim-
ulation. This is to mention the name of the platform used, its benefits, the strategies
adopted and the course of actions that led to our conclusion.

6.1.1 The Platform

The simulation was conducted on NetLogo, the agent-based modeling platform de-
viced by Uri Wilensky from the Northwestern University in 1999 [30]. The platform
allows the creation of a world for simulation based on parameters selected by the user.
NetLogo operates on the basis of agents. These are of four types, viz. patches, turtles,
links and the observer.

6.1.2 The World

For this work, a (64 × 16) world was considered with the cursour at the center. The
patch size and the font size have both been taken to be 10. Payoff updates were taken
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Figure 6.1: NetLogo 4.1.3.

each tick. Tick is the NetLogo unit for time. It represents the shortest time in which an
update can be recorded.

The world was set up by coloring all patches grey. Then the center of the y-axis
was taken and alternating yellow squares were added to represent a divider. We have
taken only one form of turtle, and that is "car". In the code, we have mentioned that the
giver cars are to be painted red and the non-giver cars are to be painted blue (default
turtle colour). The cars represent EVs traveling along a one-lane highway.

Figure 6.2: The World.

6.1.3 The Parameters

The topology of unit-disk graphs were considered for our purpose. For our range of
view, the setup designed allows the consideration of a maximum of 4 km road. We
considered a 1.6 km one. Furthermore, we have considered each giver and non-giver

EVs to be communicating over a Dedicated Short-Range Communication (DSRC) net-
work [31].

Figure 6.3: Total length of road being considered and the topologies being used.
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Dedicated Short-Range Communication: The EVs are installed with an On-Board Unit
(OBU) into their dashboards. When two such EVs are traveling towards each other at
speeds of 55 mph, they are seen to have a transmission range of 466 m. Again, when
traveling away from each other, the OBU has a lot more obstructions to overcome, like
the length of the vehicle and everything that resides inside it. This is because, the OBU
is stationed in the forefront. So, when traveling away from each other, the cars have
a transmission range of 327 m. We have taken 327 m as our simulation parameter, as
this represents the least possible transmission range with this speed.

Figure 6.4: Transmission range if the EVs are traveling at a speed of 55 mph.

Furthermore, a separate set of simulation results have been derived, considering the
EVs to be traveling at 70 mph. It has been found out that when traveling towards each
other, the EVs have a transmission range of 401 m, which falls down to 170 m when
they are traveling away from each other. Because 170 m represents the worst case
scenario for this case, we consider this as our other simulation parameter.

Figure 6.5: Transmission range if the EVs are traveling at a speed of 70 mph.

In the designed simulation User Interface (UI), we also had the freedom to choose a
maximum of 200 EVs, represented as the variable "num-nodes" in the compiler. For
the simulation, however, only 7 nodes were considered since it is highly unlikely that
there would be any more EVs in our fixed length of 1.5 km. It is to be kept in mind that
the number of nodes cannot be less than 2, as then the network can never be created. We
have initiated the "giver-ratio" at 0.5. This means that the initial x is 50%. This is done
to simulate the probability of a coin toss, so that neither strategy gets an advantage.
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The world will initially have 3 or 4 giver EVs. As mentioned in Section 5.2, the cost
c has been fixed at 25%. The benefit is considered to be variable, and it is changed
according to necessity. The number of rounds was fixed at 100, as it is highly unlikely
that an EV would have to play this game more than that in its lifetime. However, our
immaculate code allows us to vary it till 9000 rounds and consider the results.

Figure 6.6: A few sliders mentioned in discussion.

In the UI, we can fix these parameters and observe how the ratio of giver EVs are
changing with respect to the total number of EVs. The strategy we have chosen for our
nodes to judge their payoffs against each other is "better possess chance". Because of
its significance, this strategy will be elaborated on in the next subsection.

Figure 6.7: The ratio of givers changing in the NetLogo UI.

6.1.4 The Strategy

The strategy used is "better possess chance. It is a strategy where an individual Electric
Vehicle compares its own payoff with its neighbor’s payoff. In order to attain the
probability of a vehicle to switch strategy, the probability would be this divided by
maximum difference between payoffs [32, 33].

H(u, v) =
Qv −Qu

T − P
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Figure 6.8: x∗ with range 327 m and b 0.3. Figure 6.9: x∗ with range 327 m and b 0.333.

Figure 6.10: x∗ with range 170 m and b 0.3. Figure 6.11: x∗ with range 170 m and b 0.333.

6.2 Simulation Results

We have considered unit-disk graphs For this topology, two scenarios were considered:
one in which the EVs have a transmission range of 327 m, and another in which it is
170 m. The world consisted of 7 EVs. Cost c was kept constant at 25%, and only bene-
fit b was varied from 0.3 to 0.333. A description of the topologies and the observations
are discussed below.

Unit disk graphs

Unit disk graphs are basically formed through the mutual intersections of equal-sized
circles on a single plane. Unit disk graphs have already been used in studies [34] in
order to describe the topographical context of broadcast networks.

When we considered the transmission range to be 327 m and b = 0.3, it was
observed that the average degree of the graph, kavg was 3, where as in the case of
b = 0.333, it was 3.25. It was observed that the value of x∗ is more for the higher b
value for respective rounds. This can be observed from Figures 6.8 and 6.9.

Next, the same scenarios were considered for a 170 m long transmission range.
This time at b = 0.3, the obtained kavg was 2.5. This value increased to 3.75 for b =
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0.333 It was observed that the value of x∗ is more for the higher b value for respective
rounds, for this small transmission range as well. This can be seen in Figures 6.10 and
6.11.

The results seem to be converging at a value for the ratio of givers for larger values
of k. This means that the simulation world eventually achieves evolutionary stability.
Upon observation of the results, we can conclude that, by controlling the value of
incentive b, we can control the most optimized ratio of givers x∗.
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Chapter 7

Conclusion

With the use of evolutionary game theory, a design model is proposed in which electric
vehicles share energy among themselves, resulting in an efficient system. As a result,
the title has been justified.

7.1 Achieving Expected Outcomes from the Objectives

The successful energy sharing and incentive transactions among electric vehicles can
be seen in both simulation and analytical findings, and the decisions were made using
evolutionary game theory. The following are the thesis’s objectives and observations
that support its conclusion.

1) Establishing an automated system for spontaneous energy sharing:

The simulation model supports the analytical method by demonstrating that each round
generates a new set of giver and receiver EVs, and energy is shared simultaneously in
each cluster.

2) Ensuring that incentives are always greater than cost for an individual EV:

We would never see a scenario of a giver EV in our simulation model or mathematical
model if incentives are smaller than cost. As a result, it is reasonable that incentives
always outweigh costs.

7.2 Limitations and Future Work Recommendations

The limitation of this work is that it depends heavily on the availability of EVs in the
vicinity. In a scenario where enough EVs do not exist, no incentive would be high
enough to make the EVs participate in the game. This means that in such scenarios,
the SOC of the receiver would be depleted anyway.

There are a few major ideas for further development on this concept. Reinforce-
ment Learning (RL) can be used among the cars so that one player can learn the
techniques of other players more effectively. Where choosing the sharing option is
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extremely rewarding and refusing to share is punishing, resulting in a model for spon-
taneity.

In our mathematical model, the latency of energy exchange between two vehicles
could be examined, with time as a variable. Within the limitations of our existing
technology, the mode of energy sharing can also be investigated.
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APPENDICES

A Replicator Equation in Evolutionary Game Theory

The replicator equations are the cornerstones of EGT. EGT presupposes the existence
of a species, the survival of which depends on the fitness of the strategy of the species.
The fitness is the payoff in this case. All species are mutually dependent, and the
dominance of a strategy is determined by the distribution of strategies [35–38].

The goal is to first formalize a common case for two players with n number of
strategies. All possible pairs of strategies of an n × n is represented as A = [aij].
i, j = 1, 2, 3, . . . . Each entry of the payoff matrix, aij denotes the comparative payoff
that can be obtained from strategy i when player is competing against strategy j.

xi is considered to be the relative frequency of each strategy. From this assumption,
we can make the following conclusion.

n∑
i=1

xi = 1. (A.1)

If fi is the expected payoff, then the following equation can be written, according to
the Equation (A.1).

fi =
n∑

j=1

xjaij. (A.2)

Again, the average payoff of the population is seen to be

ϕ =
n∑

i=1

xifi. (A.3)

From Equations (A.2) and (A.3), the standard replicator equation is determined.

ẋi = xi(fi − ϕ). (A.4)

ẋ represents the derivative of x with respect to time. According to Equation (A.4),
the higher is the difference between the expected payoff of strategy i and the average
payoff, the more strategy i is chosen. This equation applies only when a diverse and
mixed population is available to participate in the game [38].

30



The difference of EGT [11,12,14,27,39,40] from regular game theory is that EGT
assumes a finite population. Each player can be taken as a node on a graph. For the
purpose of this work, the unit-disk graph topology was considered. In this topology,
the the nodes are assumed to remain on the periphery of a circle, and the entire pop-
ulation is considered to create a disk. The average order kavg, in this case, does not
remain in our control. Each player determines a payoff based on its interactions with
its neighbours. Then it randomly chooses a neighbour. This neighbour will be the op-
ponent. If the player’s payoff is better than the opponent’s, the player keeps its strategy.
If not, however, the player imitates/takes up the strategy of the opponent. This rule is
termed as the imitation updating rule.

The n × n payoff matrix A is expected to be sufficiently large if the population n

is large enough. Therefore, in its totality, matrix A is unworthy of being represented
here. Another n × n matrix M = [mij] is considered to be the modifier matrix. The
modified payoff matrix, A′ = [aij] will therefore be the summation of A and M .

a′ij = aij +mij. (A.5)

If the value of k > 2, then from [11],

mij =
(k + 3)aii + 3aij − 3aji − (k + 3)ajj

(k + 3)(k − 2)
. (A.6)

Since the gain of one strategy would mean the loss of another, the expectation is,
mij = −mji. This criteria is satisfied by Equation (A.6). In other words, M should be
a symmetric matrix. Again, local competition with the same strategy should return 0.
For this reason, the diagonal elements, mii would also return 0. Let gi be the expected
payoff for local competition with strategy i. Therefore,

gi =
n∑

j=1

xjmij. (A.7)

Since the sum of the average payoff of the local strategies should be 0, therefore,
n∑

i=1

xigi = 0. (A.8)

Thus, the average payoff ϕ of the population on graph can be determined to be

ϕ =
n∑

i=1

xi(fi + gi) =
n∑

i=1

xifi. (A.9)

This is the same as the Equation (A.3). So, the replicator equation on graphs would
look like the following [11–13]:

ẋi = xi(fi + gi − ϕ), (A.10)

where, the values of fi, gi and ϕ are obtained from Equations (A.2), (A.6) and (A.8).
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Note here that, Equation (A.10) simplifies to Equation (A.4). Remember that in
order to obtain Equation (A.4), we basically substituted [aij] for [aij + mij]. There-
fore, for the case of EGT, this transformed payoff matrix [aij + mij] is important for
analytical purposes. The more the value of k increases, the more the contribution of
gi decreases, and the value of fi dominates the equations. That is to say, for the case
k → ∞, Equation (A.4) boils down to Equation (A.4). So, for a highly connected
graph, the replicator equation converges to a standard replicator equation [12].
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B NetLogo UI and codes

User Interface

Figure B.1: User Interface built over NetLogo 4.1.3.
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Setup

World Setup: Road
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World Setup: Cars

Setting the Payoff Matrix
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Unit Disk Graphs

Small World Networks

Certain user-defined yet self-explanatory functions have not been provided.
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