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Abstract

Ports serve as a focal point for the global economy. Around 80% of global trade
logistics is carried out through ports. As such, port efficiency is an important factor
that has to be maintained properly in order to ensure a maximum economic gain. In
order to boost port efficiency, a smart port system integrates state-of-the-art technology
with a port management system. Predicting a ship’s expected time of arrival (ETA) is a
vital step in the development of a smart port system. This study aims to develop a data-
driven model to estimate the ETA of incoming ships to port Klang of Malaysia based on
past voyage data. An artificial neural network (ANN) based model to predict ETA has
been proposed in the study which uses the remaining distance following the trajectory,
the instantaneous speed and heading of the ship as input parameters. The proposed
model achieves a Mean Absolute Percentage Error (MAPE) value of 36.99% with a
Mean Absolute Error (MAE) value of 4603.1367 seconds and a Root Mean Square
Error (RMSE) value of 14029.6972 seconds. The model’s coefficient of determination
was calculated to be 78.67% indicating a satisfactory fit to the dataset. The trajectory
has been predicted using a Kalman filter and this predicted trajectory has been used
as the input to the neural network model in order to provide a holistic solution to the

problem.
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Chapter 1

Introduction

1.1 The Estimated Time of Arrival

The Estimated Time of Arrival (ETA) is a common phrase in public transportation,
used to describe the time when a transport 1s expected to arrive at a certain destination.
It is often paired with ETD or the Estimated Time of Departure, which expresses the
expected start time of a transport’s journey.

ETA prediction is an essential task of transportation and logistics companies. In
transportation, accurate prediction of bus arrival times lets passengers know if their
ride is running late. They may use this information to choose another bus that aligns
with their schedule. For airports and railways, advance notices of delays can help de-
crease losses due to customer dissatisfaction and hampered corporate image. In supply
chain and delivery management, accurate arrival time predictions are literally a ne-
cessity. Accurate delay predictions enable companies to take pre-emptive measures
to manage production downtime and stock shortages. It allows delivery companies to
manage their schedules so that dispatchers deliver on time, which helps ensure cus-
tomer satisfaction. In shipping, arrival time predictions enable port management to
draw holistic schedules by taking early arrivals, delays, berth availability and available
staff into account. Our research focuses on this field of ETA prediction.

The shipping industry plays a crucial role in trade and commerce as around 80%
of the global trade logistics is carried out by ships [1]. So proper management of port
resources is essential for the economy of a country. Knowing ship arrival times, ports
can minimize vessel turnaround times and predict when vessels will arrive at berths. If
berth mooring time is known, operators can optimize cargo operations such as loading
and unloading goods, and better allocate resources to maximize work efficiency at port
terminals. Mariners may use this information to adjust their vessel’s route so that they
arrive on time. Cargo owners and port logistics use this information to plan product
storage and delivery.



Unexpected ship arrivals cause congestion in the port area. Congestion is the sit-
uation where vessels arriving at a port already at max capacity have to queue outside
the port area for a spot to load/unload. For example, suppose that a container ship is
scheduled to arrive on Sunday at Chittagong port ended up arriving on Monday due
to bad weather. The port was not informed of this delay so it did not have any berths
available at that time. This forced the container ship to anchor outside the port area
for a few hours. Just one ship anchoring outside the port is not that big of an issue but

when multiple ships do this, it causes some major problems.

1.2 Port Congestion and Schedule Unreliability

With the increase in container sizes and their carrying capacity, port congestion is
becoming a bigger problem by the day, and it currently accounts for 93.6% of the port
delays [2]. A study in [3] found that only 52% of the vessels dispatched for liner
services arrived at the planned schedule. This study also elaborates on how schedule
unreliability affects several actors throughout the supply chain. Delays in ports add to
the total duration of a shipping line’s round-trip time. This affects profits by costing
additional daily ship fixed costs. To make up for lost time, the ship will have to sail
at full speed, which will further decrease profits by increasing the ship’s operational
cost. Unreliability of arrival time complicates the process of berth planning and yard
planning for terminal operators, as it is difficult to allocate port space and resources
with large time windows to adjust delays (need better phrase). Low schedule reliability
also affects inland transport operators, causing delays in their operations and reducing
their productivity level. It increases logistical costs of the customers as they have to
invest in higher inventory levels in order to avoid disruptions to production processes.
Unproductive vessel time is also undesirable for the environment. A study in [4] shows
that vessel emission concentration of CO and CO2 peak when vessels are anchored.

It is very easy for ship schedules to be disrupted because of the various uncertainties
at sea. Accurate predictions of the ETAs of shipping lines help port operators handle
unexpected arrivals and thus ensures efficient port management and optimal use of
port facilities. Our research focuses on developing an efficient model for predicting
the ETA of ships using ANNs (Artificial Neural Networks) and Kalman filters.



1.3 Existing ETA prediction methods and problems

The most rudimentary form of ETA calculation, still employed by some shipping lines,
is done by dividing the distance to port by the ship’s speed over ground (SOG). This
form of estimation is often erroneous as it does not take external factors into ac-
count. So recent literatures focusing on ETA prediction propose methodologies based
on pathfinding and Machine Learning (ML) algorithms trained on historic Automatic
Identification System (AIS) data. While they do produce acceptable results, most of
these data-driven methodologies are not suitable for continuous real-time predictions.
Therefore, this study aims to present an accurate data-driven methodology that will be
able to predict ship arrival times in real-time using a Kalman filter and an Artificial
neural network (ANN), as shown in Fig. 1.1. The model implements a Kalman filter
that predicts the ship’s trajectory. From the trajectory, the model derives the remaining
distance to be covered. This feature is used as one of the inputs of the ANN part of
the model, which then predicts the ETA. Port planners may use the predicted ETA to
generate cost-effective port schedules. Such an intricate system will assist smart ports

in facing the challenges of the ongoing 4" Industrial Revolution.
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Figure 1.1: Overview of the proposed system



Chapter 2

Literature Review

In this chapter we will discuss some of the research related to ETA prediction. Method-
ologies for ETA and route prediction using kalman filters and ML techniques will be
explored.

2.1 Kalman Filters in ETA Prediction

Kalman filters are particularly popular in bus arrival time predictions. In [5], Kalman
filters have been used to predict bus arrival times through a data-driven methodology
that exploits the special and temporal correlations in travels times using real world data
taken from Global Positioning System (GPS) fixtures. In [6], a dynamic model is used
to predict bus travel time on roads with multiple bus routes. The study used an SVM
(Support Vector Machine) trained on historical data to estimate the baseline bus travel
time on roads with multiple routes. Then a Kalman-filter based algorithm was used to
adjust the prediction of the first component using the latest travel time information. [7]
uses a similar process to predict bus arrival times, but with an ANN instead of the SVM

used in the previous research.

2.2 Machine Learning in ETA Prediction

As for statistical and ML (Machine Learning) methodologies related to ship ETA pre-
diction, researchers in [8] proposed algorithms that use trajectory mining to deter-
mine the ship’s route to predict the ETA from a point on the map to a port. In [9], a
Markov decision process (MDP) based reinforcement learning (RL) framework is used

for optimal pathfinding and the Metropolis-Hastings algorithm to estimate the SOG.



The ship’s ETA was calculated by dividing the distance of the predicted trajectory by
the estimated SOG. Another study proposed a path-finder that exploits historical ship
tracking data in [10]. Then they extracted the ship’s SOG from its AIS message to
predict ETA. In [11], authors map the entire Mediterranean Sea in a spatial grind. A
seq2seq model predicts the ship trajectory in the form of a sequence of cells. Then
the average acceleration of ships moving from cell to cell is used to predict the arrival
time.

These studies show that both Kalman filtering and ML techniques have strong foun-
dations in travel time prediction. But in terms of performance, Kalman filters lag be-
hind. The same is observed in [6] and [7], where authors chose ML techniques to
predict the baseline ETA, using Kalman filtering techniques for error adjustment in-

stead.

2.3 Kalman Filters in Position and Route Estimation

Kalman filters are popular for their applications in route and position prediction. In
[12], Kalman filtering techniques have been used to predict the position of vehicles
in VANETs (vehicular ad-hoc network). In [13], the trajectory of an ocean vessel is
predicted by using an extend Kalman filter algorithm to estimate the system states of
position, velocity and acceleration of the vessel. [14] uses multiple Kalman filters to
model the different behaviors of a moving vehicle. The paper separates vehicle behav-
ior into four possible states — constant location, constant velocity, constant acceleration
and constant jerk. A comprehensive Kalman filter to correctly identify the state of the
vehicle, then the corresponding Kalman filter model is used to estimate the vehicle’s
trajectory. [15] uses a Kalman filter to model a system to be used by robots to predict
the future position and orientation of moving obstacles from obstacle data collected
via sensors. Kalman filters do not require to be trained using past data. Even with state
variables having zero initial values, Kalman filters are capable of learning system be-
havior from small samples of data. Thus, Kalman filters can be reliably used to predict
the future position and trajectory of a moving object.

The methodologies that have been proposed are multi-step processes that are too
slow for real-time prediction. This research proposes a hybrid ANN and Kalman filter

model that is fast enough to predict ETA of ships in real time.



Chapter 3

Background

This chapter will go over the details of the theories related to our research: AIS,
Kalman filters and ANNS.

3.1 Automatic Identification System (AIS)

Vessel Traffic Services (VTS) tracks ships using transceivers and the Automatic Iden-
tification System (AIS). It enables ships to monitor adjacent water traffic. As a result,
a separate AIS transceiver is required. Because they just need to monitor local traffic
and do not need to send their own position, port authorities and other shore-based fa-
cilities sometimes simply have receivers. All local marine activity equipped with an
AIS transceiver onboard may be viewed this way quite reliably within 20-30 nautical
miles, depending on the range of the transceiver [16].

All vessels above 300GT on international journeys must have a class A type AIS
transmitter, according to the 2002 IMO SOLAS agreement [16]. This was the first AIS
regulation, which impacted over 100,000 vessels. The class B type AIS transceiver
specification was released by the AIS standards committee in 2006. It was intended to
be a less expensive AIS gadget. In the same year, Class B transceivers were commer-
cially accessible, prompting several governments to enact laws. This reduced the cost
of installing AIS systems on boats of various sizes.

The AIS technical standard committees have been expanding the AIS standard and
product types since 2006 to enable a broad range of applications. Simultaneously,
governments and authorities have started a number of programs to equip different types
of boats with AIS devices in order to improve safety and security.

Although the primary goal of AIS was to prevent collisions, it has lately been
expanded to include a wide range of additional uses. Collision avoidance, monitoring

and control of fishing fleet, navigational aid, maritime security, accident investigation,



search and rescue, ocean current estimates, infrastructure protection, fleet and cargo
tracking, statistics and economics, and so on are all examples of where AIS is currently
used.

According to [16], some data are sent by AIS transceivers every 2 to 10 seconds
when the vessel is in motion and every 3 minutes when the vessel is anchored. The
transmissions during motion vary with the speed of the vessel. Some of these informa-

tion are:

* Vessel Maritime Mobile Service Identity (MMSI) number: It is a unique nine-

digit identification number assigned to all vessels.

» Navigation status: Indicates the current condition of a vessel. Some of the key-

words under this field are, "at anchor", "underway using engine(s)", "not under

command", etc.

* Rate of turn: This field provides infomation about the angular velocity of a ship.

A turn can be right or left, with possible values from 0 to 720 degrees per minute

* Speed over ground: Provides information about the linear component of a ves-
sel’s motion. Minimum resolution of the field is 0.1-knot (0.19 km/h). And it
typically ranges from O to 102 knots (189 km/h)

* Positional resolution: Provides the current geographical co-ordinates of a vessel
in longitude and latitude. The minimum resolution for both parameters are typi-

cally 0.0001 arcminutes.

* Course over ground: Provides angular information of the vessel relative to true

north. Minimum resolution is limited to 0.1°

* UTC time

Along with the above mentioned information, some extra data are broadcast every

6 minutes. Some example of these data are as follows:

* International Maritime Organization (IMO) ship identification number: It is a
seven-digit number used to uniquely identify a vessel. Even if the ship’s regis-

tration is transferred to another nation, the IMO number stays the same.

* Radio call sign: The country of registry assigns the vessel an international radio

call sign. The maximum length of this field is 7 characters.

» Name of the vessel: This field can have a maximum of 20 characters.



» Type of vessel: Transmitted as a word. Some common examples are - "Cargo’,

"Container’, ’Oil Tanker’, etc.

* Draught of ship: This is the vertical distance between waterline to the vessel’s
bottom and it generally depends on the amount of weight carried by the vessel.
The typical measurement ranges from 0.1 to 25.5 meters.

* Destination: Destination is expressed by a maximum of 20 characters

* High precision time request: This is an optional information. A ship can request
that some other vessel supply a high-precision UTC time and date stamp, and

only if this request is acknowledged is this information sent.

For information exchange, AIS equipment uses NMEA 0183 phrases. For AIS
data, the NMEA 0183 standard includes two major phrases [17]. The !AIVDM phrase
is used when the received data originates from other vessels and the !AIVDO phrase
is used while transmitting the vessel’s own information.

The AIS data encoded messages are also termed as AIVDM or AIVDO sentences.
A sample of AIS encoded messages is shown in Fig. 3.1. Each coded sentences of
the simplest form have seven commas separated placeholders. More details on AIS
encoding can be found in [18]

IAIVDM, 1, 1, . A, 17tDgD0P00W?rk01f82N47v020RM, 0*51
IAIVDM, 1, 1, | A, 17tKe=hP0077s@; 1hHDRM?v40600, 0*1C

IAIVDM, 1, 1, , B, 1TtNfR7000W?vRf1{B;aa" Tf2L2G, 0*7F

IAIVDM, 1, 1, , B, 1815AF00BMW>=v101RgglUkbh0D2D, 0*5F

7

AlS Encoded Message

AIS Transmitter

Figure 3.1: Examples of encoded AIS message



3.2 Kalman Filter

The ship’s trajectory was predicted using the Kalman filter approach. The method is
iterative. It may operate in real time, with just the current input measurements, the
previously established state, and the uncertainty matrix as inputs; no prior knowledge
is required. A block diagram of a typical Kalman filter is shown in Fig. 3.2.

Measure Initialize
Input: st Input: Input:
Measurement True Megsu‘rement Initial guess of Initial guess of
Uncertainty System State Error Covariance
24 ; -
R Z
E E Predict :
' Y Y ‘\ SEE— -1
Ki X Output: Calculate the X 2
CalculgelKalman » Ugd?te ?tate » System State bl Predicted Statefor b 2
et it Estimate x” the next iteration
T ] Unit delay
", (k to k+1)
U d t Pi Cutput: Pt
p ate Update. Error o Estimated Eror L Extrapotatg the Ercor | | 7% |
Cavariance : 2 Covariance .
Covariance py

3 / S N———

Pk-1"

Figure 3.2: A typical Kalman filter

The Kalman filtering algorithm uses a series of measurements taken over time,
including statistical noise and other inaccuracies, to produce estimates of unknown
variables that are more accurate than those based on a single measurement alone, by
estimating a joint probability distribution over the variables for each timeframe. The
filter is named after Rudolf E. Kdlman, who came up with the concept in 1960 [19].

Originally the Kalman filter was proposed as a recursive solution to the discrete
data linear filtering problem [19]. It gained fame because of how simple it was to
utilize with digital computers. Because understanding the theory underlying the filter’s
construction was not required in order to apply it, it became a hotbed of study and
application. Nowadays, Kalman filtering has a broad variety of technical applications,
particularly in autonomous or aided navigation.

Kalman filters are extensively used in airplanes, spacecraft, and ships for guidance,

navigation, and control [20-22]. Furthermore, Kalman filtering is a widely used time



series analysis approach with applications in signal processing and econometrics [23].
Kalman filtering is one of the key themes in robotic motion planning and control, and
it may be used for trajectory optimization, as discussed in Section 2.3.

There are two steps to the algorithm. For the prediction phase, the Kalman filter
produces estimates of the current state variables in state space format, together with
their uncertainty. Once the results of the next measurement (necessarily tainted with
some error, including random noise) are obtained, these estimates are updated using
a weighted average in the following step, with greater weight given to more definite
guesses.

In the following equations, the hat operator “denotes an estimate of a variable. The
superscript - denotes prior(predicted) and + denotes posterior(updated) estimates from
time k — 1 to k.

3.2.1 Prediction

The following equations are used in the prediction phase of the algorithm:

1. Predicted state estimate,

T, =Fx :—1 + Bup_, (3.1)

Here, z;. is the state vector = at time k, F is the transition state matrix and uy, 1s
the control vector with B being its control-input matrix. This is the first step in

the Kalman filtering algorithm.

2. Predicted error covariance,

P-=FPf F*1+Q (3.2)

P is the state error covariance. The error covariance that the filter believes the
estimate error has is encoded by this term. The summation of the process noise
covariance matrix, () increases the error covariance at this stage, indicating that

the filter is now more doubtful about the state estimate 7.

3.2.2 Update

The steps of the updating process comprise the following equations:

10



1. Measurement residual,
Ur =z — Hxp, (3.3)

Uk, the measurement residual, is calculated first as the difference between z,
the true measurement, and the estimated measurement, F 2z H denotes the

measurement matrix that is multiplied to the predicted state.

2. Kalman gain,
Ki=P;H" (R+HP H")™ (3.4)

Here, K. is the Kalman gain at time K. R is the measurement noise covariance

matrix, generally calculated during the calibration of measuring equipment.

3. State estimate,
.rf =£;+Kk§ (3.5)

Then we multiply the residual y by the gain K, to provide the correction K.y to

the predicted estimate 7 . Then & ;| is the updated estimate.

4. Error covariance,
P; = (I - K:H) P, (3.6)

The final step is to update the error covariance. The updated error covariance
P’ in this step is smaller than the predicted error covariance P, which signifies
that the filter is now more certain of the state estimate.

3.2.3 Initialization of variables

To implement the Kalman filter, we need to initialize the values of the state estimate
# & and error covariance matrix P,". For quicker convergence, a large P;" may be
chosen. These guesses play important roles in obtaining the desired performance and

thus should be chosen carefully.

3.3 Artificial Neural Networks (ANN)

An ANN is modeled based on the biological neuron. Like the biological neural net-
work, artificial neural network is an interconnection of nodes that have a certain weight

and a bias which are trained through backpropagation. In an ANN structure there are

18



three types of layers — the input layer, the output layer and one or multiple hidden lay-

ers. A typical ANN structure can be visualized in Fig. 3.3 and a node structure can be
visualized in Fig. 3.4.

Hidden
Layer
Input o\ Output
Layer \ Layer
A
— —'/;
Figure 3.3: Typical ANN configuration
X1
w1 Neuron
w2
x2 0
w3
X3
Figure 3.4: Typical Neuron Structure of an ANN
The forward function of an ANN is defined by:
O =g(wX +b), (3.7)

Where, w is the weight matrix and b is the bias matrix. X is the input matrix
and g(z) represents the activation function. There are different types of activation

functions. Some of the most common activation functions are:

12



Sigmoid activation function,

1
)= —"— 38
9(z) T (3.8)
Rectified Linear Unit (ReLU) activation function,
g(z) = maz(0,z) (3.9)
and the Hyperbolic tangent (tanh) activation function,
(- 1)
z) = 5=t 3.10

For an ANN backpropagation is mainly done using different forms of gradient de-
scent algorithms. In recent literatures, different metaheuristic algorithms are being
used to get the maximum optimization. In this paper we have limited ourselves to reg-
ular optimization algorithms. The most common gradient descent algorithm 1s given

by the function,

df(X)
dz

X = X — learningrate *

(3.11)

Where X is the weight value to be optimized and f(X) is the output value for the

weight of X and learning rate is a hyperparameter set by the user.

13



Chapter 4

Methodology

In the context of Industry 4.0, the port has to undergo a significant change to accom-
pany the global economic growth. In our ports, ship schedulers are continuously bal-
ancing a multitude of variables to prepare the vessels’ loading and unloading schedule.
Congestion and unreliability of vessel arrival times further complicates the scheduling
process. The schedulers have to adjust loading and unloading windows at port termi-
nals to account for the delays caused by congestion and unexpected arrivals. This is a
trial and error method that makes it difficult for the port authority to make optimal use
of port resources.

The aim of this research is to help port operators draw holistic schedules by remov-
ing the uncertainties in arrival times via ETA prediction. A ship schedule is an essential
part of port management that controls the final port rotation. If the arrival time of ves-
sels are knows, the information may be used to generate optimized port schedules that
minimize terminal idle time and maximize the port’s profits. An efficient schedule will
also allow ports to avoid congestion.

We 1nitially started with a standalone ANN model with the location, speed and
course of a vessel as input features. The model failed to deliver any acceptable re-
sult, having a MAPE over 70%. On further data analysis we found that adding the
remaining distance as an input drastically raises the accuracy of the model. The re-
maining distance attribute we used then was pre-processed from the collected data. It
goes without saying that this model was unusable in real time. So we needed a system
that could predict the distance to be covered by a ship in real time. Through extensive
literature review, we chose a Kalman filter for this task. The prediction model we are
proposing in our thesis is a hybrid Kalman-ANN system. The ANN part of the model
has to be pre-trained using historic AIS data of ships arriving to and departing from the
concerned port. For our thesis, we worked with the port Klang of Malaysia. The ANN
was trained using data containing AIS messages received at port Klang during the first
month of 2019.

The dataset we used contained encoded AIS messages. These were then decoded
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using the pyais Python library. The decoded data was sorted and processed to retain
only useful information related to the voyage of incoming ships. A Kalman filter is
applied to predict the ship’s trajectory from the extracted data. From the predicted
trajectory, the remaining distance on the ship’s route is calculated. This is done for
every data point. The data is then split into training, testing and validation sets. The
training set is used to train the ANN while the testing and validation sets are used for
model evaluation. The overall workflow is depicted in Fig. 4.1 and discussed in detail

in the following chapters.
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Figure 4.1: Workflow for the prediction of ship arrival times

In real time, all required data will be decoded from live AIS transmissions received
by AIS receivers installed at the concerned port. A Kalman filter will estimate the
remaining distance in the ship’s trajectory from the received data. This data along with
the attributes speed and course of the ship will be inputs to the ANN system that will
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predict the ship’s ETA. A simple schematic of the proposed system is shown in Fig.
4.2.
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Figure 4.2: A schematic overview of the proposed system

The proposed system will help port operators plan efficient port schedules. This
will enable shipping companies to improve their shipping operation, manage facilities

optimally, reduce idle time and maximize profits by allowing more ships.
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Chapter 5

Data Collection and Preprocessing

In this chapter we will discuss all steps related to data collection ad preprocessing in
detail.

5.1 Data Collection

The data was collected from Malaysia’s Port Klang’s authority. The dataset was com-
prised of all the voyages to and from the port for one month starting from 1% January,
2019 to 1 February, 2019. The data was recorded by the port’s AIS transceiver which
covered a radial distance of 100 km from the port.

The dataset was obtained in CSV format. Unfortunately, the received dataset
wasn’t exported properly which corrupted the AIS codes. An example of received

code:

|AIV DM|1|1||A|18 K DEplOh6W ?r5J1hD RhGAV60H1£|0[3D|18K D FplOh6
Wr5J1hDRhGAV60H1f|K AZ AK|1|0/565516000|565|1|127|0.6|1|101.342200|
3.067112(9.3|51/03|0]0]0|0[0]6]110

Whereas a properly encoded AIS code looks like:

lAIVDM,2,1,3, B,55P5TLO1V IaALQTW KO@mBplU@ < PDhh000000001S
+ AJ :: 4A8074iQFE53,0 x 3E

It can be clearly observed that multiple delimiters have been changed to a vertical
slash *I’. This caused problem when the data was tried to be decoded. A trial-and-error
method was adopted to recover the data by force changing the delimiters and trying to

17



decode the updated codes. After a few trials most of the codes could be deciphered.
There were two forms of AIVDM sentences in the dataset and this method worked for
one type only which accounted for 80% of the data. The rest of the data was lost and
they were not considered for the study.

The decoded data was validated by plotting them on the map using GeoPandas li-
brary in Python. Only the geographically consistent records were accepted and the rest
were discarded. A further consistency check was done by gathering the physical infor-
mation of each vessel from verified maritime tracking websites [24] and [25] and cross
checking the corresponding SOG and COG reading of the vessels. The inconsistent

vessels were dropped from the study.

5.2 Data Preprocessing

At first the data was separated into ships by their MMSI numbers. The recovered data
had a lot of outliers and noisy readings for example, erroneous longitude and latitude
reading, impossible SOG and COG values, trajectory going over land area. These
apparent outliers were removed firstly. Then the structural data obtained from the
verified website was used to further filter the readings based on SOG and COG values.
It was observed that for some of the vessels, there were only a few readings. These

ship data were deemed unreliable and they were not considered for the study.

Figure 5.1: Before Processing

Before processing, the dataset contained trajectories as clusters of data points sam-
pled at non-uniform intervals, with some parts of the trajectory not recorded at all

as shown in Fig. 5.1. The dataset at this point was not sampled uniformly as AIS
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transceivers don’t transmit data maintaining a fixed delay. But for application in a
model, uniform data would perform better than non-uniformly sampled data. As such,
we resampled the data using a moving average window. This smoothened the trajecto-
ries and helped eliminating small errors.

.‘ ’

a, Missing Points ’

Figure 5.2: Afier Processing

Figure 5.3: After Interpolation

Now the problem that we have to address is that there are certain missing points in
the trajectory as seen in Fig. 5.2. In order to impute these missing points, we apply
a simple linear interpolation which gives us the trajectory in Fig. 5.3. The ship data

available at this point of preprocessing has been provided in the Table 5.1 and a pie
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chart has been provided in Fig. 5.4.

Table 5.1: Ship distribution by type

Type Count
Cargo 87
Carrier 61
Container 355
Fishing 18
Passenger 11
Tanker 94
Tug 46
Other 20
Unspecified 3
Total 695

Ship Distribution

B Cargo

M Carrier

u Container
© Fishing

W Passenger
® Tanker

W Tug

W Other

B Unspecified

Figure 5.4: Ship Distribution Graph

The final step of preprocessing involved dividing the ships into voyages. Since we
are considering data for one month, some ships have had multiple voyages in and out
the port. For this specific study we have considered the ships that haven’t anchored
at any point of their voyages as anchor time falls under the study of port logistics.
Furthermore, we have only considered the international vessels at this point of prepro-
cessing. Ultimately, we extracted 645 voyages from a total of 620 ships.
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Chapter 6

Model Creation and Training

6.1 Estimating the remaining distance

The first part of the proposed model is a Kalman filter that predicts the trajectory of
ships. The filter was developed using Python programming with generic libraries. The
latitude and longitude of the ship’s geographic position are considered as system states.
These values are taken from transmitted AIS messages. The filter is tested using data
sampled at 1, 5, 10 and 15 minute intervals. In each iteration, the states latitude and
longitude of the next sampling point are predicted using the system equations no. 3.1
to 3.6. Using the predicted point, the filter predicts the states at the following sampling
point and so on. In this manner, the entire trajectory is predicted. Following the points
in the predicted trajectory, the remaining distance to the port is estimated. To better
visualize the filter output, a sample predicted trajectory is plotted in Fig. 6.1. White

points represent the predicted positions while blue points are the actual positions.

Teluk Panglima

Garang

Pulau Carey

Banting

Figure 6.1: A plot showing a predicted trajectory
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6.1.1 Estimation results

In the following Tables no. 6.1 to no. 6.4, the mean error in the estimation is tabulated
in the form of mean distance between the predicted ship positions and the actual ship

positions in data:
I. Sampled at 15 minutes

Table 6.1: Sampled at 15 minutes

Minutes ahead of prediction Mean Distance (meters)

15 456.7403
30 1220.115
45 1700.447
60 2172775
75 2652.011
90 3073.621

2. Sampled at 10 minutes

Table 6.2: Sampled at 10 minutes

Minutes ahead of prediction Mean Distance (meters)

10 306.509

20 949.6295
30 1229.683
40 1562.841
50 1861.765
60 2187.302

3. Sampled at 5 minutes

Table 6.3: Sampled at 5 minutes

Minutes ahead of prediction Mean Distance (meters)

15 747.0585
23 1178.977
2. 1579.848
45 1936.38
55 22901.548
60 2487.548
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4. Sampled at 1 minute

Table 6.4: Sampled at 1 minute

Minutes ahead of prediction Mean Distance (meters)

10 605.1668
15 824.6228
20 1122.168
25 1388.096
30 1255.144
35 1843.38

The errors tabulated above are plotted in Fig. 6.2. Here, the performance of the
filter measured with data sampled at 10 minute and 15 minute intervals are quite similar

with the latter being the better alternative.
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Figure 6.2: Comparison of variations in prediction at different sampling rates
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6.2 The ANN model

For the neural network model three parameters are considered as input, the distance
remaining, the speed, and the heading value at any given point whereas the ETA is the
output. To find the remaining distance to be covered by the vessel a kalman filter is
used to predict the path it would follow and from the path the distance to be covered
is calculated. Then this along with the heading and speed of the vessel is fed into the
neural network to predict the ETA.

All the values of training, validation and test set are standardized. For the model,

a sequential ANN is used. The layers and their varying hyper-parameters are listed in
Table 6.5.

Table 6.5: ANN layers of the proposed model

Layer Type No. of Units Regularizer
Fully Connected 2048 -
Fully Connected 1024 L2 Regularizer (0.02)
Fully Connected al2 L2 Regularizer (0.02)
Fully Connected 256 L2 Regularizer (0.02)
Fully Connected 128 L2 Regularizer (0.02)
Batch Normalization - -
Fully Connected 128 L2 Regularizer (0.02)
Fully Connected 64 L2 Regularizer (0.02)
Fully Connected 64 L2 Regularizer (0.02)
Fully Connected 32 L2 Regularizer (0.02)
Fully Connected 16 L2 Regularizer (0.02)
Fully Connected 8 L2 Regularizer (0.02)
Fully Connected 4 L2 Regularizer (0.02)
Fully Connected 2 L2 Regularizer (0.02)
Fully Connected 1 -

For all the fully connected layers, the activation function used was ReLLU activation.
The loss function was chosen to be based on mean absolute error (MAE). For this
model we used the Adam optimization function with a learning rate of 0.001. The
early stop callback was used and the model trained for 2187 epochs before stopping.
The dataset was divided into 60% training, 20% validation and 20% test set for the
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problem. To avoid overfitting L2 regularizer has been extensively used in our model.
The batch normalization layer has been used to speed up the learning process and
combat overfitting of parameters. The early standardization of data also speeds up the
model significantly.
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Chapter 7

Model Evaluation and Results

7.1 Evaluation Metrics

The model was evaluated on four different parameters, mean absolute error (MAE),
mean root squared error (RMSE), mean absolute percentage error (MAPE) and coeffi-
cient of determination (R? score). The mathematical expressions for these metrics are
given as follows:

Mean Absolute Error,

e |
MAFE = Z’“:l £ 1|7 (7.1)
n
Root Mean Square Error,
® |E - AP
RMSE = -\/Z‘=l i | . (7.2)
n
Mean Absolute Percentage Error,
Lom| Ag— B
MAPFE = — 7.3
- ; | (7.3)
Coefficient of Determination,
R:=1-— M (7.4)
> (A — Ar)?

th

Where n is the number of samples, F; is the i jih

forecasted value and A; is the i
actual value. For R? the term A; stands for the mean of the i sample. The lower
the value of MAE and RMSE, the better the model. MAPE restricts the error within
100% and the lower the value is the better the model is. Finally, the coefficient of
determination or R? score has a range of O to 1. The higher the value, the better the

model performs on the given task.
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7.2 Model Performance

During the training, the model didn’t overfit as observed from the training and valida-
tion loss curves provided in Fig. 7.1. The validation loss curve has closely followed
the training loss curve before the training was terminated. The performance results of
the model are tabulated in Table. 7.1

Table 7.1: Error metrics

Train Set (60%) Validation Set (20%) Test Set (20%)
MAE 4082.12 seconds 4606.26 seconds 4603.14 seconds
RMSE 13014.96 seconds 13391.15 seconds 14029.70 seconds

MAPE 31.56% 34.61% 36.99%
R? - - 0.7867
40000 A —
—— Training loss
35000 4 —— val loss
30000 A
25000 A
20000 A
15000 -
10000 -
5000 A
0 500 1000 1500 2000 2500

Figure 7.1: Training and validation loss curve

27



Chapter 8

Result Discussion and Conclusion

This study has proposed a data driven ANN based model to predict the ETA of ship
using information from its AIS transmissions. The model uses only three parameters
- distance remaining to the destination following the trajectory, current speed over
ground and the current heading value to predict the output. Predicting the trajectory
has been treated as a separate problem and has been addressed before applying the
ANN model. As a solution a Kalman filter based trajectory prediction system has been
developed.

The ETA prediction model and the trajectory prediction model both have been
trained using real data obtained from Malaysia’s port of Klang authority recorded over
a month. The real challenge was decoding the encoded data. The data had severe en-
coding corruption. The AIS messages were force decoded by a trial and error method.
The data was validated by plotting them on the map and sifting through the incon-
sistencies. A rigorous preprocessing step was performed including re-sampling and
imputations of missing data points before the data was used in the model.

The final result has shown very good performance by the model, achieving an MAE
of 4603.1367 seconds with an MAPE of 36.99% and an RMSE value of 14029.6972
seconds. The coefficient of determination obtained for the complete model was 78.67%
which indicates a good fit to the dataset. The fact that the model works with only three
parameters gives it an edge over other prediction methods for its fast computation and
its ability to be implemented in real-time operation. This opens up a future scope of
work where the algorithm can be implemented on hardware using embedded technolo-
gies for real-time use. Further development on the ETA prediction can be done by
incorporating a port logistics model with the proposed model which can extend the

domain of application manifold.
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