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Abstract

The fast economic development and population growth in developing countries is one
of the main reasons for the increase in energy consumption worldwide. So, meeting
up to the energy demand is becoming strenuous. This study focuses on the energy
consumption pattern and prediction of an optimal energy usage pattern of an academic
building due to occupant behavior and weather changes. Different energy usage pat-
tern due to occupant behavior and ambient changes is analyzed. An optimal energy
usage pattern due to different occupant behavior and weather changes is predicted.
Three scenarios (All-on Scenario (current scenario), Random Scenario (proposed sce-
nario) and Sequential Scenario (proposed scenario)) have been considered to analyze
different energy usage pattern of appliances in an academic building. Different algo-
rithms such as Exponential Smoothing, Auto-Regressive Moving Average (ARMA)
and Auto-Regressive Integrated Moving Average (ARIMA) are used for the predic-
tion. It has been observed that ARIMA has provided relatively better result than the
other two. Therefore, ARIMA model is used for prediction of the energy demand for
the next six years. The research findings demonstrate that the Sequential Scenario is
the optimal energy usage pattern. Simulation result shows that if an academic build-
ing uses the Sequential Scenario it can save more than 5 lac taka per year. This study
provides a guideline for the university authority as to how they can reduce their power
consumption as well as consumption cost.
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Chapter 1

Introduction

Bangladesh is a country with huge population. The use of electricity is increasing
day by day. Electricity is mostly consumed in the industries, irrigation, households,
shopping malls, educational institutions, government and non-government offices etc.
To meet the demand of electricity for the huge population, Bangladesh government
is trying to increase the capacity to 60,000MW by 2041. Bangladesh government
requires US $40 billion investment to increase electricity generation [1]. But nowadays
the consumers are using electricity carelessly. As a result, a large amount of energy
is wasted. Now it is the top priority to reduce energy consumption and misuse as the
demand for energy is ever increasing.

There is evidence in literature that there is a huge difference between predicted and
actual energy consumption in buildings. The difference is almost 300% [2]. Reduction
in energy consumption means that reduction in operating cost for building owners. It
also means reduction in carbon emissions.

1.1 Problem Statement

Buildings (commercial and residential) alone use up to approximately 40% of the total
energy consumed annually [3]. Buildings are big energy consumers in modern cities
and reducing their energy consumption is essential for sustainable development. If
energy pattern of appliances is predicted perfectly the consumption of energy in the
building can be reduced [4]. Occupant behavior if considered correctly can also de-
crease the energy consumption [5].

Summarizing recommendation for policy makers and industry stakeholders are
done for developing codes, standards and technologies that can leverage the human
dimensions of energy use to reliably predict and achieve energy use reductions in the
residential and commercial sectors [6].
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1.1.1 Research Gap

Energy is being wasted in buildings (e.g., office buildings, academic buildings, resi-
dential buildings, etc.) due to occupant behavior [7]. Besides, analyzing the electrical
demand profiles and user activities for a university building can be performed. Identi-
fying gaps in terms of day to day operation of the building certainly has the potential
to reduce energy consumption along with installing energy efficient equipment [8] [9].

Analyzing the energy usage patterns due to occupant behavior have not been stud-
ied before especially in Bangladesh. Thus this type of study is essential and new in the
context of Bangladesh.

1.1.2 Problem Identification

Institutions/academic buildings consume very high energy due to diverse occupancy
behavior of the students’ movement which can be reflected on the energy consumption
datasheet of the institution’s electricity substation. To predict this occupant behavior
and energy usage pattern this work focuses on how student’s occupant behavior can
reduce the energy consumption of academic buildings. This energy saving potential of
occupant’s behavior can be used as a ‘tailored advice’ for the occupants to help them
decide on better energy efficient utilization.

1.1.3 Research Question

For this work two research question is formulated in connection with the problem
identification. They are as follows:

Is there any technology to predict optimum energy usage pattern due to occupant
behavior?

Is there any analysis for student behavior pattern in the academic building?

1.1.4 Scopes

The research is conducted in buildings, mainly in academic buildings in Bangladesh.
The appliances that consume energy in the classrooms of academic buildings are mainly
lights, fans, Air-conditioners (ACs), etc. Different occupant behavior lead to different
use of appliances and different energy usage pattern can be obtained from the usages
of appliances. In this research, some classrooms of Islamic University of Technology
are modelled in NetLogo simulation software to obtain the energy usage pattern due to
predicted student occupancy (with the help of different class routings) and their usages
of appliances.
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This study also has some scopes in the energy management of the academic build-
ings.

1.2 Objective

In line with the research gap, problem identification, research question, and scope the
objectives of this study with specific aims are:

• To analyze different energy usage pattern of appliances due to different occupant
behavior of students by incorporating students’ attendance, class hours, class
schedules, ambient changes (winter or summer), etc.

• To predict an optimal energy usage pattern based on occupant behavior and am-
bient changes in academic buildings for future efficient energy scheduling and
energy saving.

1.3 Research Outcome

This work is focused in predicting the proper energy usage pattern in institutional
buildings by considering occupant behavior. This study provides two outcome as fol-
lows.

• Amount of energy utilization is predicted from the proper energy usage pattern
of a building.

• Future monthly/annual bills of energy is predicted and suitable management/scheduling
is possible from the proper energy usage pattern of a building.

1.4 Research Significance and Motivation

The study has significance in broadening research and empirical knowledge about the
energy consumption in an academic building. The contribution falls into three cate-
gories.

First, this study contributes to the literature in developing a new model on the basis
of agent-based model by considering, occupant behavior like students attendance, class
hours, class schedules, and ambient changes (winter or summer) to examine the proper
energy usage pattern of a building.

Second, this study provides some guidelines to the university authority on energy
management as to how they can reduce their power consumption in the academic build-
ing as well as consumption cost.
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Third, this study highlights the crucial role that academic buildings can play in
reducing the energy consumption at the academic buildings.

1.5 Research Methodology

The purpose of this study is to find the energy consumption pattern and predict an op-
timal energy expenditure pattern of an academic building. Due to different occupant
behavior energy consumption pattern can differ for the same building. So, this study
finds how occupant behavior can lower the energy consumption of academic buildings.
Moreover, energy consumption prediction is also important for power plants planning
activity. Therefore, a Agent Based Model model is developed to measure the energy
consumption due to occupant behavior in academic buildings. Time Series Analysis
models (Exponential Smoothing, ARMA and ARIMA) are used for prediction of indi-
vidual building energy consumption. Islamic University of Technology (IUT) has been
selected as the context of this research and the behavior of students of IUT is consid-
ered as occupants. Occupancy data is collected from the Department of Electrical and
Electronics Engineering (EEE) of IUT.

1.6 Organization of the thesis

This thesis is developed through seven chapters providing details of the theoretical
background of the research, data source, analysis and interpretation of the findings,
conclusion and implication of the research.

Following this introduction, chapter 2 reviews the literature which covers the study
of energy consumption in buildings, such as, why occupant behavior is important,
influencing factors of energy prediction and prediction methods.

Chapter 3 provides overviews of the proposed model.

Chapter 4 represents the research methodology for the simulation model of this
study and adds the detailed information on agent based simulation model of this re-
search.

Chapter 5 illustrates the data analysis methodology of the research.

Results and discussion are reported in chapter 6 using data analysis methodology
described in chapter 5.

Finally, chapter 7 concludes the work with an overview and implications for man-
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agement. Limitations of the study are also discussed and recommendations for further
research are presented in this chapter.
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Chapter 2

Literature Review and Related Works

This chapter briefly goes through the background and literature review on the energy
consumption in buildings.

2.1 Energy Consumption in Buildings

Energy consumption worldwide is on the increase. This is due to population growth,
rising living standards, urbanization and industrialization of the countries. Among the
different sectors of energy consumption almost 30% to 40% of global energy use is
consumed by buildings (commercial and residential) [10, 11]. During the life cycle
of a building, the building consumes 80% of energy when occupants are present and
using the building [12]. So almost 20% of energy is consumed when the building is
unoccupied.

Buildings use large amounts of energy in modern cities and decreasing their en-
ergy use is absolutely necessary for sustainable development. Also decreasing energy
consumption means a decrease in operating cost for building owners. It also means a
decrease in carbon emissions [7]. As it is evident that carbon emissions lead to global
warming which can be a threat to humankind. Increasing number of droughts, flooding
of low lying lands, food shortages are some of the consequences of global warming.

Moreover, in commercial buildings, approximately 56% of energy is used dur-
ing non-working hours while 44% of energy is used during working hours which is
regarded as being caused by occupancy related actions [12]. As from the previous lit-
erature it can be seen that more energy is being used during the non-working hours of
an office building than during the normal working hours. Whereas this should not be
the case. A study, studied equipment energy usage at non-working hours in the United
States of many commercial buildings and analyzed that the occupants did not turn off
almost 50% of the equipment during the unoccupied hours [12]. This trend can be
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changed in many ways for example, providing campaigns for energy conservation or
incentives that inspire occupants to reduce their energy consumption [12].

2.2 Energy Consumption in Academic buildings

Buildings presents a complex socio-technical system that links society, occupants and
the environment [13]. Institutions/academic buildings consume very high energy due
to diverse occupancy behavior of the students’ movement which can be reflected on the
energy consumption datasheet of the institution’s electricity substation. To predict this
occupant behavior and energy usage pattern this study focus on how student’s occupant
behavior can lower the energy consumption of academic buildings. This energy saving
potential of occupant’s behavior can be used as a ‘tailored advice’ for the occupants to
help them decide on better energy efficient utilization.

A study [8] analyzed the key trends and patterns in energy use in a multi-purpose
academic building. From the analysis it was found that the building was controlled by
a building management system (BMS) and the occupants did not have access to the
controls which lead the building to consume more energy than required.

2.3 Occupant Behavior

Occupant behavior in the literature is defined in many different ways. It is not well
understood due to its vague, varying, compound and multidisciplinary nature [14]. In
simple terms occupant behavior imply to how occupants act in a certain environment
[7].

To measure and quantify occupant behavior physical sensing and non-physical
sensing are used. Physical sensing is obtained by (1) smart metering and building
data, (2) Indoor and Outdoor environmental data, (3) Occupant’s interaction with the
control system [15]. While non-physical sensing is acquired by (1) Occupancy data
and (2) Survey questionnaires [16, 17]. There are some drawbacks of physical sens-
ing method as it uses sensing device having high initial installation costs, maintenance
cost, operation cost, and it is difficult to install. On the other hand non-physical sens-
ing method is easier to obtain without any associated costs. This paper attain occupant
behavior through non-physical sensing method by acquiring occupancy data.

2.3.1 Energy Consumption due to Occupant Behavior

Buildings do not consume energy occupants do because of the behavior to adjust the in-
door environment to their comfort level [18]. Occupant profile leads to different energy
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consumption patterns. In a study of occupancy and behavior patterns in an open-plan
office building it is found that occupants with a “wasteful” work style used double the
energy than the non-wasteful occupants, and the “austere” work style occupants used
half of the energy [19]. So it is important to find the energy-related occupant behavior.

In a previous study it states that human behavior such as age, behavior, and the
number of occupants must be taken into account when performing energy simulations.
Existing occupancy data if used gives misleading results which creates the gap be-
tween actual and simulated consumption rates. The study used DesignBuilder in the
EnergyPlus program to build the geometry of the building [20]. This paper uses agent
based model to build the classrooms.

In the literature lighting loads was modelled in residential buildings using occu-
pancy and total lighting load demand [21]. The data was obtained from sub-meters in
the building and the occupancy data was obtained from a short survey of occupant’s
routine. It was found that occupant behavior is the reason for the change in lighting
demand. In this paper occupancy data is obtained through class routine.

Two distinct categories of energy-related occupant behavior are: (1) adaptive ac-
tions [22], and (2) non-adaptive actions [23]. Adaptive actions refers to the occupants
change in behavior to adapt the environment to their needs e.g. turning lighting on/off,
opening/closing windows etc. Adaptive behavior also refers to occupant changes to
adapt themselves to the environment e.g. clothing adjustment, drinking hot/cold bev-
erage etc. Non-adaptive behaviors is the indirect behavior of occupants to adapt to the
environment e.g. occupant presence, and operation of plug-in and equipment. This re-
search have used the non-adaptive behaviors of occupants by collecting the occupant’s
presence data. Then Agent Based Model (ABM) is developed for modelling occupant
behavior and ultimately finding the energy consumption.

2.4 Importance of Energy Prediction

Energy is an essential element for economic growth and development of a country.
In the literature energy prediction is also widely known as load forecasting. Energy
forecast is created to predict the future energy demand based on previous energy con-
sumption [24].

Forecasting errors causes an increase in operational cost [25]. International Energy
Agency (IEA) [26] shows that developing countries are anticipated to encounter large
energy demand between 2017 and 2040. Energy consumption prediction models are

8



therefore gaining rapid importance for power plants planning activity. As many sectors
use energy, buildings consume almost 36 percent of total energy consumption world-
wide [11]. Load forecasting also provides owners and facility managers targets on the
overall building energy consumption rate [27]. For this reason prediction of individual
building energy consumption is crucial for achieving sustainability.

Load forecasting is divided into three different categories, based on its forecasting
timeframe: short term forecasting, medium term forecasting and long term forecast-
ing. Short-term forecasting is defined as predictions from one hour up to a week [11].
Medium term forecasting ranges from one month up to a year. And long term predic-
tion are more than 1 year. This study focuses on the prediction of an optimum energy
usage pattern in academic buildings. In addition, this work will provide medium term
prediction of energy consumption up to a year, which will provide suitable manage-
ment and scheduling of academic building.

2.5 Energy Prediction and Influencing Factors

Energy consumption load data has different patterns classified as horizontal, seasonal,
trend and cyclic [27]. Horizontal pattern of a load data is that there is no variation with
respect to time which is also called “stationary” data. A seasonal pattern in a load data
is viewed as having a change according to week, month or year and is often the result
of weather. A load data showing a trend is regarded as being “non-stationary” and has
either an increasing or decreasing variation with time. A load having a cyclic pattern is
considered as having seasonal trend but the repeating time span is not congruous with
time and is not predictable.

Energy forecasting is arduous because the future is complex and is subject to
change due to various factors [25]. Factors influencing forecasting are socio-economic
factors, environmental factors, and time-index factors.

2.5.1 Socio-economic Factors

Social economic factors are the socio-economic situation of the region [25,28]. Factors
include local populations or demographics, different feature of the appliance in use,
population activities, and gross domestic products. It is notable that these factors take
a long time to have an effect on load. And as this work is focusing on medium term
load forecasting these factors does not need to be included in this study.
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2.5.2 Environmental Factors

Environmental factors are the factors relating to weather condition. The most impor-
tant weather condition is temperature to have an influence on load forecasting [25].
In hot summer weather the consumption is much higher due to the use of AC’s for
cooling. The influence of temperature changes with zone, climate and occupant be-
havior. Relative humidity is also another part of environmental factor that has an effect
on electricity consumption [29]. There are also other indicators such as wind, solar
irradiance, and thunderstorm but they are less seen in literature. In this study, weather
seasons are taken into account.

2.5.3 Time-Index Factors

As mentioned before, the load consumption data has variations with time. In literature
time factors are seasonal, daily, weekly and occasions (holidays) [29]. Day light hours
also effect energy consumption. The weekly revolution Monday to Friday shows the
working hours of the occupants. This leads power demand to increase on weekdays
than on weekends. Special occasions or on holidays power demand changes. Starting
of weekday or starting of semester can lead to more power consumption.

2.6 Forecasting Methods

The literature contains different categories of prediction methods for different time
horizons. In the related literature for forecasting electricity demand methods used are
moving average, regression, time series methods, artificial neural network, support
vector regression, grey models etc. Each of the models are unique and none of them
outperforms the other [25]. Therefore finding the most appropriate model is meaning-
less. There are also other models named "hybrid dynamic" models these are beyond
the scope of this study

2.6.1 Time Series Analysis

A sequence of values noted over equal periods of time is known as a time series [27].
Among the time series methods autoregressive integrated moving average (ARIMA)
is the most commonly employed forecasting method used to forecast future values of
load consumption. ARIMA model was first proposed by Box and Jenkins in 1970 [30].
In ARIMA model independent variables are not needed. The data uses its past values
to predict the future.

Exponential smoothing was proposed in the late 1950s (Brown, 1959; Holt, 1957;
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Winters, 1960) [24], is one of the successful forecasting methods. Exponentially
smoothed forecasts are weighted averages of previous observations, with the weights
declining exponentially as the measurements get older. In other words, the larger the
related weight, the more recent the observation. This framework produces credible
predictions fast and for a wide range of time series, which is a significant benefit and
critical to applications.

The ARMA model, developed by Box and Jenkins (1970) [36] using the time se-
ries analysis method, ignores the role of explanatory variables related to economic or
financial theory and instead relies on the estimation mechanism, which is based on
the altering law of the time series itself, in the description of the time series. The
development of a time series model was motivated by the fact that the time series is
stationary. A moving average (MA) model and an autoregressive (AR) model com-
prise an ARMA process. ARMA models provide the most powerful linear model of
time series data when compared to pure AR and MA models since they can model the
unknown process with the fewest parameters.

ARIMA is a widely used forecasting method in many domains of work. ARIMA
model was used by Sharmin and Khan [31] to forecast the natural gas production in
Bangladesh. Ohyver and Pudjihastuti (2018) [32] used ARIMA to forecast the price of
medium quality rice in Indonesia. Amini et al. (2015) [33] employed ARIMA model
for forecasting electricity demand in EV parking lots’. This paper uses ARIMA model
to forecast the power consumption of an academic building.

In the literature there are also several different studies that focus on the prediction
for the electricity demand in different regions or countries using time series analysis
such as ARIMA method. Some of the related works are given below.

Kandananond (2011) [28] in the paper utilized several forecasting methods, namely
autoregressive integrated moving average (ARIMA), artificial neural network (ANN)
and multiple linear regression (MLR) to produce model of prediction for the electricity
demand in Thailand. The three model performance of the methods was compared. The
study used historical energy usage data such as population, gross domestic product
(GDP), stock index, revenue from export and electricity consumption from 1986 to
2010. The paired test showed that the methods had no such difference. Both the
ARIMA and MLR are more preferred than the ANN because of its uncomplicated
form and fast execution.

In 2019, Divina et al. wrote a paper [11] which analyzed and compared different
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statistical and ML based forecasting strategies of smart buildings. The methods used
were linear regression (LR), autoregressive integrated moving average (ARIMA), evo-
lutionary algorithms (EAs) for regression trees (EVTree), generalized algorith regres-
sion models (GBM), artificial neural networks (ANN), random forests (RF), ensem-
ble, recursive partitioning and regression trees (RPart), and extreme gradient boosting
(XGBoost). The data used was time series data obtained by sensors installed in 13
academic buildings in the South of Spain. The data used in this work enclose daily
electric energy consumption in KWh which span from 1 March 2012 to 31 October
2017. The data collected contained missing values which was filled by a way of a lin-
ear regression method. ARIMA was found to be the worst performing methods. While
the Random Forests (RF) method gave the best result. Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) values were used to evaluate the performance
of the various strategies used.

Sen et al. (2016) [34] forecasted power consumption and greenhouse gas emis-
sion using ARIMA method of a pig iron manufacturing organization. The raw data
consisted of 144 data points of monthly energy consumption and greenhouse emis-
sion from 2002 to 2013. The paper presented best models for the two data namely
power consumption and greenhouse gas emission. However the residual graphs for
both the data did not show the precise nature of white noise. Which may be the cause
of high unpredictability nature of the original datasets. From the study it was found
that ARIMA is best for short term forecasting.

In another paper [24] in 2016, Hussain et al. aimed at forecasting total and por-
tion wise electricity consumption in Pakistan. The paper employed Holt-Winter and
ARIMA model on time series data ranging from 1980 to 2011. The forecasting is done
in component wise i.e. electricity used in traction, household, commercial, industrial,
agriculture, streetlight etc.

Rallapalli and Ghosh (2012) [35] utilized a new version of ARIMA model named
Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) model
to forecast the electricity demand in India. The MSARIMA model takes care of the
seasonal effect, uncertainty, randomness and non-stationarity. Central Electricity Au-
thority (CEA) performs load forecasting officially in India which is usually condemned
for being overestimated. The trend method for forecasting is used in Central Electric-
ity Authority CEA which is regarded as an inferior method. The results of comparing
the two methods shows that the MSARIMA model is more efficient.

Erdogdu (2007) [36] estimated electricity demand model in Turkey. They have also
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provided forecast for 10 years and the results was compared with official projections.
The data acquired was quarterly time series data of real electricity prices, real GDP per
capita, and net electricity consumption per capita. Cointegration analysis was used to
examine the data properties. The forecasting was carried out by using the Box-Jenkins
autoregressive integrated moving average (ARIMA) model.

2.7 Summary of the Chapter

The literature reviewed in this section leads to some major conclusions regarding re-
duction of energy consumption in the academic buildings.

First, buildings use large amounts of energy in modern cities and decreasing their
energy use is absolutely necessary for sustainable development. Educational insti-
tutes/academic buildings also consume very high energy due to diverse occupancy
behavior of the students (occupants) movements. To measure and quantify occupant
behavior physical sensing and non-physical sensing methods are usually used in the
previous studies. Non-physical sensing method is easier to obtain without any asso-
ciated costs. In literature, another two distinct categories of energy related occupant
behavior are 1. Adaptive actions and 2. Non-adaptive actions. Non-adaptive behavior
is the indirect behavior of occupants to adapt to the environment. It is evident from
the literature that differences in occupant behavior cause the differences in predicted
and actual energy consumption in buildings. So, occupant behavior is a very important
component to consider when finding the overall energy usage pattern.

Second, prediction of individual building energy consumption is crucial for achiev-
ing sustainability. Energy prediction or load forecasting is created to predict the future
energy demand on previous energy consumption. In the literature usually time series
analysis Exponential Smoothing, ARMA and ARIMA have been used extensively in
many fields. Also it is simple and has an efficient performance.

Therefore, this study has been designed to 1) analyze different energy usage pattern
of appliances due to different occupant behavior of students by incorporating students’
attendance, class hours, class schedules, ambient changes (winter or summer), etc.,
and 2) predict an optimal energy usage pattern based on occupant behavior and am-
bient changes in academic buildings for future efficient energy scheduling and energy
saving.

In the next chapters, a model is developed on the basis of agent based model to
measure the energy/power consumption due to occupant behavior and Time Series
Analysis (ARIMA) is used for prediction of individual building energy consumption.
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Chapter 3

Proposed Model

This work is to study the energy usage pattern of academic buildings in Bangladesh.
In Bangladesh academic institutions are on the increase and thus finding the energy
consumption pattern in these buildings is essential. This chapter will talk about the
different attributes of the proposed model.

3.1 Different Attributes of Proposed Model

The different attributes are the conditions for which the model varies. Thus they are
important for the model. The next subsections looks into the attributes.

3.1.1 Different Type of Academic Institution

A total of 92 academic institutions are present in Bangladesh. The academic institu-
tions in Bangladesh are of two types: the public institutions and the private institutions.
The public institutions are funded by the governments. While private universities are
funded by the private sector. Among the universities, 37 are public institutions and the
rest is private.

The main buildings in an institution are the admin buildings, the classroom build-
ings, the cafeteria building, and the library building. All public universities also have
dormitories for the students to stay. Many private and public universities have gym-
nastics. Universities also have an auditorium, boys and girls lounge, mosque, etc.

Universities have different Faculties within which there are different departments.
Examples of different faculties are faculty of science, faculty of arts, faculty of busi-
ness studies, faculty of engineering and technology, etc. The different departments
are Economics, Marketing, Chemistry, Biology, Physics, Mathematics, Sociology, and
Political Science to name a few.
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Academic buildings have different classes such as theory classrooms where the-
ory classes take place. Hardware and software laboratory classrooms are also present.
Academic buildings furthermore consist of big examination halls for student assess-
ments. All these rooms and buildings contain energy consuming appliances that con-
sume power.

3.1.2 Different Type of Energy Consuming Appliances

The energy-consuming appliances in the different buildings of a university are lights,
fans, air-conditioners (ACs), etc. Almost all the buildings use lights. In the library
building, fans or ACs are used for the cooling. Computers are also present. Students
also bring their laptops and thus charging sockets are present. In the cafeteria kitchen,
there is a fridge to store the foods, in kitchens an electric stove is also used. Blender,
oven, coffee, and tea maker is also employed.

The energy-consuming appliances in the classroom are fans and lights. Universities
also have Air-Conditioners (ACs), Computers, projectors, etc. Each of these appliances
consumes some amount of energy. For example, lights consume about 10 to 25 watts
per hour according to the type of light applied. Fans range in size from 36 inches to 56
inches using 55 to 100 Watts, a typical 48-inch ceiling fan uses 75 watts. The power
consumption of ACs range from 3000 to 7000 Watt depending on the amount of ton
used. The Figure 3.1 shows different energy consumption pattern results from using
various energy consuming appliances.

Figure 3.1: Energy consuming appliances lead to different energy consumption patterns.

3.1.3 Occupant Behavior

Human activities and behavior of occupants are the factors that lead to the occupant
behavior of a building. Occupant behavior is a very important component to consider
when finding the overall energy usage pattern. Differences in occupant behavior cause
the differences in predicted and actual energy consumption in buildings.

Occupant behavior is different for different types of buildings e.g. it is different for
residential buildings, commercial buildings, and academic buildings. As this work is
focused on finding the energy consumption of academic buildings, this work considers
the behavior of students and staff.
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The officers that are present in the administrative and departmental buildings usu-
ally have to stay in their offices during office hours from 9 am to 5 pm. Officers have
different behaviors as some of them are very serious about their job and stay in their
rooms. While others are less serious and often have a propensity of going out of the
office.

Different students behave in different ways. Some students incline to come late in
the class while others come on time. Some students sit at the back even though the
front seats are empty. Others like to sit alone in one corner without anyone besides
them. Thus the various sitting arrangements are crucial to consider as this leads to the
change in power consumption as shown in Figure 3.2.

Figure 3.2: Student sitting arrangement resulting varying energy consumption.

3.1.4 Different Type of Weather Seasons

Climate condition is a major aspect to consider when studying the energy consump-
tion pattern of academic buildings. In most regions, the weather is divided into four
seasons: Spring, Summer, Fall, and Winter. Different countries have different temper-
atures in these seasons. For example, spring temperature varies from 21 degree Celsius
in Florida to a low of -4.1 degree Celsius in Alaska. Summer usually has the hottest
temperature in most regions. Autumn marks the transition from summer to winter. The
temperature cools down from the hot summer in autumn. Then the winter comes with
the cold air.

In academic buildings, air-conditioners along with fans are usually used in the
summer periods when the air temperature is high. In the winter period, air-conditioners
and fans are not used. In the fall and spring period, air-conditioners are sometimes
used and sometimes not used. In all the seasons the use of light is usually not changed.
Figure 3.3 shows varying weather seasons result in different energy expenditure.

Figure 3.3: Varying weather seasons result in diverse energy expenditure.
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3.1.5 Different Type of Class Schedules

The class schedule refers to a list of times on a day a specific class is held. It also
shows the classes offered and course description. Room wise class schedules are the
most common. The individual class schedule gives an insight of the times the room is
busy, leading to the use of electrical appliances during that time.

Different rooms have different schedules. Some rooms have a single class, while
others have classes the whole day without any breaks. Also, the class schedule changes
for each day. Some days of the week are also off days or weekends when no class is
scheduled. Between consecutive classes the amount of break is found. Lunch and
prayer break is similarly noted.

In each class the number of students attending is different. Some classes accom-
modate a lesser number of students than others.

3.2 A Case Study for IUT

The academic institution that is selected for the study is Islamic University of Tech-
nology (IUT). Islamic University of Technology (IUT) is an international university
located in the outskirts of Dhaka in Bangladesh. Like most universities, IUT has dor-
mitories for student residence. It also has a cafeteria, a library, a mosque, a lounge etc.

Classrooms of Electrical and Electronics Engineering (EEE) department of IUT
are considered for this study. The attributes that have been discussed in the previous
section have been applied to the classrooms. Each room has different class routines
and different energy consuming appliances. Similarly, each academic year has two
semesters. In the two semesters there are three weather seasons: summer, monsoon
and winter. All of this attributes are incorporated in the model.
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Chapter 4

Methodology: Simulation Model

Analyzing different energy usage patterns of appliances in academic buildings is cru-
cial in order to reduce energy consumption in the buildings. To accomplish this, one
academic building of Bangladesh is considered to gain an overall view of energy con-
sumption in this sector. This chapter discusses the different characteristics of the model
and how data is collected. In the end, what type of scenarios have been considered for
the Agent-Based model simulation has been shown.

4.1 Process

The goal in this study is to find the energy usage pattern of academic institutions. The
steps involved to achieve the goal are as follows:

• Data Collection

• Simulation

• Energy Prediction

Figure 4.1: Prediction process of energy consumption pattern.

This process is discussed in details in this and next methodology: data analysis
chapter.

4.2 Occupant Behavior Characteristics

The occupant behavior considered in this study is the behavior of students in the class-
room. In a classroom there are three different occupant behavior patterns these are
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1. occupant entry pattern 2. sitting choice pattern and 3. occupant switch ON/OFF
pattern.

4.2.1 Occupant Entry Pattern

Occupant entry pattern is how the students enter the classroom or at what times the
students enter. Students can enter at random times which is called randomly or they
can enter sequentially which is at every minute or every few minutes. But in real world
occupant entry time is usually random. So the students actually enter in a random
manner.

4.2.2 Sitting Choice Pattern

The sitting choice pattern is the pattern of how the student sit on a seat. There are two
type of sitting pattern such as students sit in a random manner or they sit in a sequential
manner. Both of the sitting choice pattern has been considered in this study.

4.2.3 Occupant Switching ON/OFF Pattern

The occupant switching pattern is how the occupant turn the appliances on. All the
appliances are turned on from the beginning of the class when the first few student
enters. This is the real world scenario. The occupants’ turn on the appliances when
they enter is another occupant switching pattern. The appliances turn on according to
the sitting pattern and the switching pattern is automated which is another switching
pattern.

4.3 Switching Characteristics

Switching characteristics is explained by the ON/OFF characteristics of the appliances.
This characteristics is very important because it is directly connected to the energy
consumption pattern. The appliances can be switched on from the morning. The ap-
pliances can be switched on when an occupant enters.

4.4 Weather Characteristics

Weather characteristics defines how the outside weather changes and accordingly the
appliances that are used are changed. For example if the outside weather is hot, the use
of ACs will be high. While, if the outside weather is cold ACs and fans might not be
used at all. On the other hand if it rains outside ACs might not be used.
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4.5 Data Collection from IUT

Classrooms of the Electrical and Electronics Engineering (EEE) department of the Is-
lamic University of Technology (IUT) are considered for the study. The class schedule
per day of the rooms are obtained from the department to study the energy usage pat-
tern. There are a total of 6 classrooms, rooms 201, 202, 203, 509, 511, and 604. In
these 6 rooms, the electrical classes take place. The rooms 201,202 and 203 are large
rooms with 60 seats each. Whereas the rooms 509, 511, and 604 are smaller rooms
with 36 seats each.

4.6 Analysis of Class Routine

The class hour and lunch break time is obtained from the class schedule collected from
the department. The time the classes are off is also acquired. The number of students
in each class is also determined, along with the class attendance. Figure 4.2 shows the
class schedule of IUT of room 201 for the summer 2018-2019 semester. Department
class routines from the year 2016 to 2019 are collected. All the other routines are
shown in [Appendix A].

It can be seen that the classes of IUT start from 8 am in the morning and closes
at 5 pm in the afternoon. There is a lunch break of 1.5 hours from 1 pm to 2:30 pm.
Each class time is 1 hour and 15 minutes long. In a day a maximum of 6 classes can
take place. While on some days e.g. Wednesday in the Figure 4.2, two class slots are
empty with no scheduled class. Therefore from the class schedules, the overall class
conductivity hours is found.

In the summer and winter 2018-2019 semesters, rooms 201, 202, 203, 509, 511,
and 604 are considered. Therefore, models of these rooms are built and simulated in
Netlogo. The total hours of class in a day is calculated and is used in the simulation.

Table 4.1: Total class hours for each day in a week of the summer 2018-2019 semester

Day Room 201 Room 202 Room 203 Room 509 Room 604 Room 511
Mon 7.50h 7.50h 6.25h 2.50h 3.75h 0.00h
Tues 7.50h 7.50h 6.25h 6.25h 5.00h 7.50h
Wed 6.25h 6.25h 7.50h 6.25h 6.25h 2.50h

Thurs 7.50h 6.25h 7.50h 6.25h 7.50h 0.00h
Fri 7.50h 3.75h 2.50h 3.75h 3.75h 6.25h

Table 4.1 shows the total hours of class in a day for each classroom of the summer
2018-2019 semester obtained from the class routine. The Table 4.2 shows the total
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Figure 4.2: Class schedule of room 201 for the summer 2018-2019 Semester.

hours of class in a day for each class room of the winter 2018-2019 semester obtained
from the class routine. The Fig 4.3 shows the amount of students attending the class in
the Room 201 in the day in summer 2018-2019 Semester. It is evident from the graph
that in the 6 classes that take place in a day the average students that attend the classes
are about 80% of the total students. Also in the beginning of the day more students
attend the class and then decreases as the day goes along.

Table 4.2: Total class hours for each day in a week of the winter 2018-2019 semester

Day Room 201 Room 202 Room 203 Room 509 Room 604 Room 511
Mon 7.50h 6.25h 6.25h 6.25h 6.25h 6.25h
Tues 5.00h 6.25h 6.25h 5.00h 5.00h 0.00h
Wed 6.25h 7.50h 5.00h 5.00h 6.25h 2.50h

Thurs 6.25h 6.25h 6.25h 6.25h 7.50h 5.00h
Fri 5.00h 2.50h 5.00h 7.50h 5.00h 0.00h

4.7 Simulation Model (NetLogo)

NetLogo is Agent-based modelling (ABM) programming language. NetLogo is a
multi-agent programmable modeling environment. Where the agents can interact with
each other and with the environment. With this modeling environment, occupant be-
haviors can easily be incorporated in the simulations. Thus, NetLogo is used in this
work to incorporate the occupant behavior.
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Figure 4.3: Load curve of total number of students attending class of a day in summer 2018-
2019 Semester.

4.7.1 Energy Consuming Appliances in IUT

As mentioned earlier the electrical appliances that consume energy in a classroom are
fans, lights, and ACs. In IUT these are also the appliances consuming energy in a
classroom. But in each room, there are a different number of appliances. For example
in rooms 201, 202 and 203 there are 20 lights, 20 fans, and 4 two-ton ACs in each.
Whereas in room 509, 511 and 604 there are 8 lights, 8 fans, and 1 two-ton AC. A light
consumes about 25 Watt power per hour. One fan consumes 75 Watt of power. And a
two-ton AC consumes 3kW power.

4.7.2 Classroom model of IUT in NetLogo

NetLogo simulation is used to model the IUT classrooms. Figure 4.4 shows a single
classroom illustration with its tables and appliances. The classrooms are modelled in
Netlogo as in 4.5 with its chairs and tables. In the classroom models of 201, 202 and
203 with 90 seats there are 20 lights, 20 fans and 4 ACs in each. Whereas, rooms 509,
604 and 511 have 36 seats, with 8 lights, 8 fans and an AC each. In the model when the
appliances are turned on the color of the appliance changes to green. In the simulation,
a room is modeled for an entire week of class, which is 5 days a week. From the room
wise class routines obtained from IUT the total hours of class in a day is calculated and
is used in the simulation.

4.8 Scenarios

Following the above characteristics this study have worked with 3 scenarios of how the
students enter, sit and use the appliances. They are students enter randomly, seats ran-
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Figure 4.4: Illustration of a classroom in an academic building.

Figure 4.5: Illustration of a classroom model with tables and chairs.

domly and the appliances are switched ON randomly and stays ON (All-on Scenario).
Students enter randomly, seats randomly and appliance switched ON randomly (Ran-
dom Scenario). Students enter randomly, seats sequentially and appliance switched
ON sequentially (Sequential Scenario). Table 4.3 shows the difference between the
scenarios. With the All-on scenario occupant behavior, weather changes or class sched-
ules are not considered. And with the other 2 scenarios Random and Sequential oc-
cupant behavior is incorporated by taking into account the class routine, class hours,
students attendance and ambient changes (winter or summer).

Table 4.3: Different characteristics between the three scenarios.

Scenario Entry Pattern Sitting Pattern Switching Pattern
All-on Random Random Random and

stays On
Random Random Random Random

Sequential Random Random or Se-
quential

Sequential
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4.8.1 All Appliances Switched ON within first 10 to 15 mins of the Class Scenario
(All-on Scenario)

The All-on scenario is the current situation in the classrooms. All electrical appliances
are turned ON randomly and stays ON the whole class. Most of the students enter the
class in the first 10 to 15 minutes of the class start, therefore the first 15 minutes the
appliances are switched ON randomly. And after this time all the appliances turn ON.
After the class finishes all the appliances are not turned OFF some may stay turned ON
until the next class starts. Figure 4.6 shows this procedure. In this case we have not
considered any occupant behavior. The total time of the university open hours which
is 9 hours a day is inserted. The flowchart of the algorithm for the All-on Scenario is
shown in Figure 4.7.

Figure 4.6: All-on Scenario Procedure.

As seen from the flow diagram no matter how or where the students sit, all the
appliances will be turned ON within the first 10 to 15 minutes of the class start. The
power consumed by the total lights in a day for a room is calculated by multiplying
the total number of lights (Lt) with power consumption of one light (Lp) and hours
ON (Hours). Equation 4.1 shows the formula. Similarly total power consumption
for fans and ACs is shown in Equations 4.2 and 4.3. Then all the appliances power
consumption is added to get the total power consumption which is shown in equation
4.4. The power consumption is obtained in Kilo-Watt-hour (KWh).

Total power consumption of Light (KWh):

Pl = Lt × Lp ×
Hours

1000
(4.1)

Total power consumption of Fan (KWh):

Pf = Ft × Fp ×
Hours

1000
(4.2)

Total power consumption of AC (KWh):

PAC = ACt × ACp ×
Hours

1000
(4.3)
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Figure 4.7: Flowchart of All-on Scenario.

Total Power consumed in a room (KWh):

Pt = Pl + Pf + PAC (4.4)

From NetLogo simulation, the total data from 2016 to 2019 is generated. Table
4.4 shows the main columns of all the three scenarios. The columns of the dataset are
Year, Month, Semester, Season, Day, Power of all rooms such as P201, P202, P203,
P509, P604 and P511. All-on Scenario data set for the January 2019 can be found in
[Appendix B].

Table 4.4: Main columns in all the dataset.

Year Month Semester Season Day Power of all Rooms

2016 to
2019

Jan to Oct
Winter or
Summer

Winter or
Summer or
Moonsoon

5 weekdays In KWh

25



4.8.2 Random Entry, Random Sitting and Switching Scenario (Random Sce-
nario)

In this Scenario, occupant behavior is considered by taking into account class routines,
class hours, students’ attendance, and ambient changes (winter or summer).

In the Random Scenario, each student has an entry-time which is randomly chosen
from the given time range, and when students enter they sit randomly on the seats.
Each of the appliances is turned ON randomly. The ON time for each appliance is
stored and the total power consumed is calculated.

The flow diagram of the Random Scenario is shown in Figure 4.8. First students
are generated having random entry-time from a range of time. The time in minutes pro-
ceeds by a timer. Then the algorithm checks whether the entry-time matches the timer.
If it doesn’t match, the timer value increases, if it matches the student with that entry-
time enters and chooses a seat from a range of unoccupied seats. Next, the student is
seated. The occupied seat is then removed from the list of unoccupied seats. Conse-
quently, appliances such as light, fan, and air-conditioner are turned ON randomly and
the duration ON time for each appliance is stored. This procedure continues until all
the students are seated. Before the simulation ends, the power consumed is calculated.

The ON time of all the appliances are different because that depends on the entry
time of the students. Thus for example if a student enters after 10 minutes of class start
time and sits on a seat, the light, fan or AC that are near which are off will turn ON
and for that light, fan or AC on-time will be 10 mins and the duration-on-time will be
(75mins−10mins = 65mins). Likewise, if a student enters after 15 minutes of class
start time and sits on a seat, the light, fan or AC that are near which are OFF will turn
ON and for that light, fan or AC on-time will be 15 mins and the duration-on-time will
be (75mins− 15mins = 60mins).

Once all the students are seated, the duration-on-time of lights are summed in
a variable called light-on-duration (Lod), consequently, duration-on-time of fans are
summed in a variable called fan-on-duration (Fod), and duration-on-time of ACs are
summed in a variable called ac-on-duration (ACod). The total power for lights is cal-
culated by multiplying the light-on-duration (Lod) (in minutes) with power consump-
tion of one light (Lp). This formula is shown in equation 4.5. Similarly total power
consumption for fans and ACs is shown in Equations 4.6 and 4.7. All the times are
considered in minutes. One timer tick in the simulation refers to 1 minute. The total
power consumed in a room is given by equation 4.8. Random Scenario data set of
January 2019 can be found in [Appendix B].
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Figure 4.8: Flowchart of Random Scenario.

Total power consumption of Light (KWh):

Pl =
Lod × Lp

1000× 60
(4.5)

Total power consumption of Fan (KWh):

Pf =
Fod × Fp

1000× 60
(4.6)

Total power consumption of AC (KWh):

PAC =
ACod × ACp

1000× 60
(4.7)

Total Power consumed in a room (KWh):

Pt = Pl + Pf + PAC (4.8)
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4.8.3 Random Entry, Sequential Sitting and Switching Scenario (Sequential Sce-
nario)

In this Scenario, occupant behavior is considered by taking into account class routines,
class hours, students’ attendance, and ambient changes (winter or summer).

In the Sequential Scenario, each student has a random entry-time from the given
time range and after entering they sit either randomly or sequentially. But the switch-
ing of the appliances are sequential from the front one after another. From the ON
time of each appliance total power consumed is calculated. The Sequential Scenario
flowchart is shown in Figure 4.9. Therefore the appliances in the Sequential Scenario
are automated to turn ON from the front.

Figure 4.9: Flowchart of Sequential Scenario.

The only difference between the Sequential Scenario from the Random Scenario is
the switching arrangement of the appliances. The difference between the Random and
Sequential Scenario can be seen in the flowchart of Figure 4.8 and 4.9 with the blocks
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that are colored. In the Sequential Scenario, the appliances turn ON from the front
consecutively without a break. Whereas appliances turn ON randomly in the Random
Scenario. The total power consumption of lights, fans and ACs are same as equations
4.5, 4.6 and 4.7. The total power consumed in a room is given in equation 4.8.

From NetLogo simulation, the total data from 2016 to 2019 is generated. January
2019 data set for the Sequential Scenario is in [Appendix B].

4.9 Incorporation of Occupant Behavior in Scenarios

Occupant behavior in a classroom is how the students behave in terms of how late the
students enter the classroom. Also how the students take seats. Class attendance is
also a part of occupant behavior. The overall class hour can be included as a part of
occupant behavior. Thus in this study, occupant behavior is incorporated in Random
and Sequential scenarios. In the Random and Sequential cases, the class attendance
and the class entry times by obtaining the attendance list from various faculties is taken
into account. The class time and hours are obtained from the class schedules. When
considering occupant behavior in the Random and Sequential scenarios it is seen that
the energy consumption is reduced significantly.

4.10 Incorporation of Weather Seasons in Scenarios

The weather conditions in Bangladesh is considered as this study focuses on the energy
consumption pattern of academic buildings in Bangladesh. The weather in Bangladesh
is separated into three different seasons. The seasons are hot summer, cool monsoon,
and cold winter. In the summer season, the temperature is the highest with around 30
to 40 degrees celsius. The highest temperature is between April to May. In the summer
air-conditioners (ACs) are normally used. The monsoon climate has an intermediate
temperature. In the cold winter, the temperature varies from 9 to 15 degrees. The
coldest month is December. Winter - starts from November to February. Summer -
starts from March to June. Monsoon - starts from July to October.

In this work air-conditioners (ACs) along with fans are usually used in the summer
periods when the air temperature is high. In the winter periods, air-conditioners (ACs)
and fans are not used. In the monsoon period, air-conditioners (ACs) are usually not
used. In all the seasons the use of light is not changed.
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Chapter 5

Methodology: Data Analysis

To predict energy usage patterns based on occupant behavior and ambient changes in
academic buildings, machine learning data analysis tools and algorithms have been
used. The steps below are used to predict the energy usage patterns.

• Data Collection from IUT
• Data Collection from Simulation
• Data Preprocessing.
• Data Visualization.
• Energy Prediction.

The first two steps have already been discussed in the previous chapter. The next
steps is discussed in the next sections in detail.

5.1 Data Preprocessing

After collecting the data from simulation, preprocessing the data is required. The
simulation data contains many values and is a big data set. Thus it is very important
to be clear about the data. Data preprocessing is the process of cleaning the data and
preparing the data for analysis and future use. For the data, data preprocessing have
been performed in the following ways.

• Data Cleaning.
• Data Transformation.
• Data Reduction.

5.1.1 Data Cleaning

Data cleaning is the process of detecting and correcting/deleting missing entries in a
data set. It also goes into recognizing incomplete or irrelevant parts of the data and
altering or deleting them.
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The data obtained from simulation is cleaned with the help of pandas which is a
library of python. The function used to detect missing values is (.isnull()) and then
the missing values are replaced with (.nan) function. The number of missing values
is also checked with the (.isnull.sum()) function. So for all the 3 scenario dataset
Random, Sequential and All-on the above functions are applied and checked.

5.1.2 Data Transformation

Data Transformation is the process of formatting and scaling the data. The data is
transformed into a pandas dataframe format. Statistics of the different columns are
observed. The function (describe()) is used to see the statistics. The data type of each
data is checked for integer or float values.

Table 5.1 represents the data statistics values such as total number of data values
(count), mean of the data values (mean), standard deviation of the data values (std),
minimum of the values (min), 25% of the values (25%), 50% of the values (50%),
25% of the values (25%), 75% of the values (75%) and maximum of the values (max).
From Table 5.1 it can be seen that the data count is 1215, the mean of the data values
is 15, the standard deviation (std) is 23 and the Maximum (max) is 97.

Table 5.1: Data Statistics.

count 1215
mean 15
std 23
min 0
25% 0
50% 6
75% 15
max 97

5.1.3 Data Reduction

Data Reduction refers to reducing the number of independent variables and filtering
the data for the most important parameters. Data in this study is checked for repeated
rows and the repeated rows are removed and the most important attributes are kept.

The data also experienced timestamps in other forms. So the data of each scenario
is converted to a time-series using Python in Jupyter Notebook. Time-series is the data
which has an index as the (DatetimeIndex).
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Data filtering is also applied to the different data sets to remove unwanted parts of
the data and to keep the or select the different parameters.

5.2 Data Visualization

Data Visualization technique involves plotting graphs and patterns to visualize the re-
lationship between different parameters of the data set. In this section, the data visual-
ization techniques that have been used will be discussed.

5.2.1 Power Consumption and Energy Distribution

The displot function is used which is a function of seaborn library. The function is
used to obtain the range of power consumption occurring in the different days of the 3
scenarios. Displot function can be used to show a histogram.

The linear view of the power usage pattern is a great way to see the overall yearly
power consumption. The linear view of power consumption is obtained for the scenar-
ios to detect the variations in consumption.

5.2.2 Histogram Representations

Histogram representations is used to discover the power consumption in the two semester
of IUT. IUT has two semesters in a year: winter and summer. The winter semester is
from January to May, while the summer semester is from June to October. Meanwhile
the two months November and December is semester break and no class is scheduled.
The data is seen with histogram representation to see the power consumption in the
two semesters.

5.2.3 Pairplot Visualization

Pair plot is a great way to see relationships between two variables where one variable
in the data row is matched with another variable. Numerical data can be plotted and
categorical data can be used for coloring. Pair plots can easily be plotted with seaborn
library in Jupyter Notebook.

5.3 Energy Prediction

After visualizing the data with different attributes, the energy prediction is carried out
using time series analysis.
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A time series is a group of data points composed in a temporal order. The in-
dexed column is the datetime column. The goal of time series analysis is to predict
future forecasts. In this study Exponential Smoothing, Auto-Regressive Moving Av-
erage (ARMA) and Auto-Regressive Integrated Moving Average(ARIMA) model are
used for both the Random and Sequential Scenarios. The models are compared using
the error metrics Root Mean Square Error (RMSE) and Akaike Information Criterion
(AIC).

5.3.1 Exponential Smoothing Model

Exponential smoothing forecasting methods develop a model where the prediction is
a weighted sum of past observations, but the model explicitly uses an exponentially
decreasing weight for past observations. Exponential smoothing methods may be con-
sidered as peers and an alternative to the popular Box-Jenkins ARIMA class of meth-
ods for time series forecasting.

There are three main types of exponential smoothing time series forecasting meth-
ods. A simple method that assumes no systematic structure, an extension that explic-
itly handles trends, and the most advanced approach that add support for seasonality.
The advanced approach that support for seasonality is used on both the Random and
Sequential Scenario. Figure 5.1 shows the flow diagram of the process. After prepro-
cessing the data, the data is split into train and test sets. Then exponential smoothing is
applied to the train set and the predictions are generated. The predictions and the test
data is then plotted and the error metrics are found.

5.3.2 ARMA Model

An ARMA model, or Autoregressive Moving Average model, is used to describe
weakly stationary stochastic time series in terms of two polynomials. The first of
these polynomials is for autoregression, the second for the moving average. Often this
model is referred to as the ARMA(p,q) model, where: p is the order of the autore-
gressive polynomial, q is the order of the moving average polynomial. Equations 5.1
shows the model equation.

Xt = c+ ϵt +

p∑
i=1

φiXt−i +

q∑
i=1

θiϵt−i (5.1)

Where:

• φ the autoregressive model’s parameters,

• θ the moving average model’s parameters,

33



Figure 5.1: Exponential Smoothing Flowchart.

• ϵ error terms (white noise).

ARMA model is applied for both the Random and Sequential Scenarios. Figure
5.2 depicts the ARMA flowchart. First after data preprocessing the data is split into
train and test sets. Then the best p and q values are found for the ARMA model by trial
and error method. The ARMA model is then applied to the train set and predictions
are made. Predictions and the test data are plotted and the error metrics are found.

5.3.3 ARIMA Model

An ARIMA model is a class of statistical models for analyzing and forecasting time
series data. ARIMA is an acronym that stands for AutoRegressive Integrated Moving
Average. It is a generalization of the simpler AutoRegressive Moving Average and
adds the notion of integration. This acronym is descriptive, capturing the key aspects
of the model itself. Briefly, they are:

• AR: Autoregression. A model that uses the dependent relationship between an
observation and some number of lagged observations.

• I: Integrated. The use of differencing of raw observations (e.g. subtracting an
observation from an observation at the previous time step) in order to make the
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Figure 5.2: ARMA Flowchart.

time series stationary.

• MA: Moving Average. A model that uses the dependency between an observa-
tion and a residual error from a moving average model applied to lagged obser-
vations.

Each of these components are explicitly specified in the model as a parameter.
A standard notation is used of ARIMA(p,d,q) where the parameters are substituted
with integer values to quickly indicate the specific ARIMA model being used. The
parameters of the ARIMA model are defined as follows:

• p: The number of lag observations included in the model, also called the lag
order.

• d: The number of times that the raw observations are differenced, also called the
degree of differencing.

• q: The size of the moving average window, also called the order of moving
average.
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A linear regression model is constructed including the specified number and type of
terms, and the data is prepared by a degree of differencing in order to make it stationary,
i.e. to remove trend and seasonal structures that negatively affect the regression model.

Figure 5.3 shows the ARIMA flowchart. In order for the ARIMA model to work the
data must be stationary. The preprocessed time series data is checked to be stationary
by plotting rolling statistics. After checking the data for stationarity the best ARIMA
model is found by using the hyperparameter tuning function. This hyperparameter
tuning function code can be found in [Appendix C]. The ARIMA model is then applied
to the stationary data of the Random and Sequential Scenarios. ARIMA model is not
used on the All-on Scenario data because the All-on Scenario is the current scenario
that IUT is using. The Akaike Information Criterion (AIC) score and Root Mean
Square Error (RMSE) scores are obtained for both the scenarios. Also to get more
accurate results the data transformation techniques is used on the data set. At last
one year prediction is found for both the Random Scenario and Sequential Scenario
respectively.

Figure 5.3: ARIMA Flowchart.

The next chapter will discuss the results found for the different scenario data set.
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Chapter 6

Results and Discussion

To predict energy usage patterns based on occupant behavior and ambient changes in
academic buildings we use machine learning data analysis tools and algorithms. The
software tools and library used for the prediction are outlined below. Then the rest of
the chapter looks into the results obtained from the methodologies used in chapter 4
and chapter 5.

6.1 Machine Learning Libraries

Different libraries of Python is used in this work. These are listed below.

• Scikit-learn: Scikit-learn is a machine learning library for the Python program-
ming language. It supports machine learning algorithms e.g. Linear Regression,
Support Vector Machine, K-means algorithm, ARIMA models etc. It is also
used for validation purposes.

• Pandas: Pandas is a Python library for data analysis and manipulation. Data can
be easily organized and changed by putting the data in tabular form.

• Numpy: Numpy is a Python based library used for multi-dimensional array and
matrix handling. Mathematical operations and formulas can easily be operated
in the large matrices.

6.2 All-on Scenario Results

The power consumed by each appliance is different in a day in the rooms 201, 202,
203, 509, 511, and 604 for the All-on Scenario is shown in Table 6.1 and Table 6.2
respectively.

It is seen in Table 6.1 that the total power consumed in a day in room 201 is not
constant in the All-on Scenario.

It is also evident from the Table 6.2 that the total power consumed in a day in
smaller room of 509 is not constant in the All-on Scenario.
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Table 6.1: Power consumed in a day in room 201 of All-on Scenario.

Type of
Appliances

Total No.of
Appliance

Hours ON
Power
Appli-

ance(Watt)

Total
Power of
Appliance

(KWh)

Total Power Consumed in a room(KWh)

Light 20 8.5 25 4.5 100
Fan 20 9 75 13.5
AC 4 8.5 3000 108

Table 6.2: Power consumed in a day in room 509 of All-on Scenario.

Type of
Appliances

Total No.of
Appliance

Hours ON
Power
Appli-

ance(Watt)

Total
Power of
Appliance

(KWh)

Total Power Consumed in a room(KWh)

Light 8 8.75 25 1.8 30
Fan 20 8 75 13.5
AC 4 8.5 3000 108

6.3 Random Scenario Results

In the Random Scenario the power consumption is different for different days in each
room. An example of the power consumed by each appliance in a day in the larger
room 201 and smaller room 509 of the Random Scenario is shown in Table 6.3 and
Table 6.4 respectively.

Table 6.3: Power consumed in a day in room 201 of Random Scenario.

Type of
Appliances

Total No.of
Appliance

Hours ON
No.of

Appliances
ON

Power per
Appli-

ance(Watt)

Total
Power of
Appliance

(KWh)

Total Power Consumed in a room(KWh)

Light 20 9 16 25 13.6 84.475
Fan 20 7 15 75 7.875
AC 4 7 3 3000 63

It is observed from Table 6.3 that the power consumed in room 201 in a day in
Random Scenario can be different depending on the hours ON time of the appliances
and also on the number of appliances that are switched ON. Because the appliances
turn ON only when a student enters and sits on a seat nearby which results in some of
the appliances to stay turned OFF for some time and thus reduces power consumption.

Similarly, it is seen from Table 6.4 that the power consumed in room 509 in a day
of Random Scenario can vary depending on the hours ON time of the appliances and
also on the number of appliances that are switched ON.
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Table 6.4: Power consumed in a day in room 509 of Random Scenario.

Type of
Appliances

Total No.of
Appliance

Hours ON
No.of

Appliances
ON

Power per
Appli-

ance(Watt)

Total
Power of
Appliance

(KWh)

Total Power Consumed in a room(KWh)

Light 8 9 8 25 1.8 27
Fan 8 8 7 75 4.2
AC 1 7 1 3000 21

6.4 Sequential Scenario Results

The power consumed by each appliance in a day of Sequential Scenario in the larger
room 201 and smaller room 509 is shown in Table 6.5 and 6.6 respectively.

Table 6.5: Power consumed in room 201 of Sequential Scenario.

Type of
Appliances

Total No.of
Appliance

Hours ON
No.of

Appliances
on

Power per
Appli-

ance(Watt)

Total
Power of
Appliance

(KWh)

Total Power Consumed in a room(KWh)

Light 20 9 16 25 3.6 74.475
Fan 20 7 15 75 7.875
AC 4 7 3 3000 63

It is observed in Table 6.5 that the power consumed for room 201 in a day in
Sequential Scenario can vary depending on the hours ON time of the appliances and
also on the number of appliances that are switched ON. Because the appliances turn
ON only when a student enters and sits on a seat nearby which results in some of the
appliances to stay turned OFF for some time and thus reduces power consumption.

Table 6.6: Power consumed in room 509 of Sequential Scenario.

Type of
Appliances

Total No.of
Appliance

Hours ON
No.of

Appliances
ON

Power per
Appli-

ance(Watt)

Total
Power of
Appliance

(KWh)

Total Power Consumed in a room(KWh)

Light 8 9 8 25 1 26.2
Fan 8 8 7 75 4.2
AC 1 7 1 3000 21

It is found from Table 6.6 that the energy consumed for room 509 in a day of
Sequential Scenario can differ depending on the hours ON time of the appliances and
also on the number of appliances that are switched ON.

6.5 Data Visualization Results

As discussed in Section 5.2 the displot function is used to see the distribution plot for
the three scenarios. Figure 6.1 shows the 4 year power distribution in the room 201
of the All-on Scenario. It is a histogram which conveys the number of days a certain
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range of power is consumed. There are only 5 bars present in the Figure 6.1 where
in the smallest bar 75KWh to 88KWh of power is consumed in about 25 days in the
4 years from 2016 to 2019. Similarly, in the larger bar 99KWh to 112KWh of power
is consumed in about 450 days in the 4 years from 2016 to 2019. This shows that the
power consumption in the All-on Scenario does not have much variation. The highest
power consumption is about 126KWh.

Whereas Figure 6.2 and 6.3 show the power distribution of the Random and Se-
quential Scenario respectively of classroom 201. In Figure 6.2 most of the days around
750 days in the 4 years the power consumption is within the range of 0KWh to 10KWh.
Then about 200 days the power consumption is between 10KWh to 20KWh. Higher
power consumption occurred in less number of days. The highest power consumption
range is between 88KWh to 98KWh occurring in 10 days. Thus it is evident that the
highest consumption is 98KWh in the Random Scenario which is less than the highest
power consumption of 120KWh occurring in the All-on Scenario.

In Figure 6.3, 0KWh to 8KWh power is consumed in 790 days. Between 8KWh to
18KWh power is consumed in 190 days. The highest power consumption range is be-
tween 81KWh to 88KWh occurring in 10 days. The maximum power consumption is
88KWh in the Sequential Scenario which is less than both the maximum consumption
of the All-on and Random Scenarios.

Figure 6.1: 4 year power consumption of room 201 of All-On Scenario.

The linear view of energy usage for Random and Sequential Scenario is shown in
Figure 6.4 and 6.5 respectively. As can be observed from both the figures the power
consumed in rooms 201, 202, and 203 is more than the power consumed in rooms 509,
604, and 511 due to the difference in the size of rooms, different number of appliances
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Figure 6.2: 4 year power consumption of room 201 of Random Scenario.

Figure 6.3: 4 year power consumption of room 201 of Sequential Scenario.

and occupant behavior.

Figure 6.4 shows that in the 4 years from 2016 to 2019 there are variations in power
consumption. In room 201 power consumption is less in the year 2016 but increases
in the year 2017, 2018 and 2019. Power consumption in all of the six rooms show that
there is a seasonal trend and there is a part of year when consumption is high and a
part when consumption is low. In the three rooms 201, 202 and 203 the highest power
consumption is 90KWh occurring in year 2019. Similarly in the rooms 509, 604 and
511 the highest power consumed is 48KWh occurring in year 2019. Room 511 shows
0KWh power consumption in the years 2017 and 2018. This happened because no
class are scheduled in those years.
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In the Sequential Scenario of Figure 6.5, it is noticed that in the 4 years from 2016
to 2019 there are variations in power consumption. Power consumption in all of the six
rooms show that there is a seasonal trend and there is a part of year when consumption
is high and a part when consumption is low. The highest power consumption occurred
in the three larger rooms 201, 202 and 203 is 48KWh. Whereas in the smaller rooms
509, 604 and 511 highest power consumption is 25KWh. Power consumption is 0KWh
in year 2018 for the room 511 due to classes not being scheduled.

Figure 6.4: Energy usage of each room throughout the 4 years of Random Scenario.

Figure 6.5: Energy usage of each room throughout the 4 years of Sequential Scenario.
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6.5.1 Histogram Representation Results

As discussed in chapter 5, IUT has two semesters in an academic year they are winter
and summer. Figures 6.6, 6.7 and 6.8 bar graphs are plotted to observe the energy
consumption in these two semesters in each of the four years from 2016 to 2019 for
the three scenarios All-on, Random and Sequential respectively.

In Figure 6.6 the power consumption in the rooms 201, 202 and 203 are about
80KWh to 70KWh. Power consumption in rooms 509, 604 and 511(except in year
2017 and 2018) is consistent which is about 35KWh. In both the winter and summer
semesters power consumption is found to be almost equal.

Both in Figure 6.7 and 6.8 it is seen that power consumption in the winter semester
is more than the summer semester each year. This can be the result of the fact that
the winter semester of IUT runs through the summer months of March to May and
this results in the use higher quantity of air conditioning (AC) and occupant behavior
shows their tendency to use power even during winter semester. Likewise, the summer
semester runs through the monsoon months of July to October when the use of ACs by
the students is less. But there is an exception to this in Figure 6.8 for the rooms 201,
202 and 203 of the year 2017 suggesting change in occupant behavior.

In Figure 6.7 the power consumption in rooms 201, 202 and 203 show an increasing
trend from 2016 to 2019. While room 604 show a decreasing trend in power consump-
tion from 2016 up till 2018.
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Figure 6.6: Semester wise energy consumption of all rooms of the All-on Scenario.

Figure 6.7: Semester wise energy consumption of all rooms of the Random Scenario.

6.5.2 Pairplot Visualization Results

In the pairplot plot power components of each room are matched with the power com-
ponent of another room. In the pairplot of all rooms in All-on Scenario in Figure 6.9,
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Figure 6.8: Semester wise energy consumption of all rooms of the Sequential Scenario.

there are only a few scattered points. Showing the data is not that much scattered and
is consistent.

Both the Random and Sequential Scenario pair plots in Figure 6.10 and 6.11 are
scattered. In the Random Scenario pairplot of Figure 6.10, the power consumption data
points are more scattered than in the Sequential Scenario pairplot of Figure 6.11. The
Random Scenario paiplot in Figure 6.10 shows the power consumption data is very
much scattered this is due to variation in the occupant behavior. Whereas, Sequential
Scenario paiplot in Figure 6.11 shows the power consumption data is less scattered
which is also due to another set of occupant behavior.
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Figure 6.9: Pairplot plot of power consumption of all rooms of All-On Scenario.

6.5.3 Energy Consumption due to number of students and entry time variation

The factors such as the change in the number of students in the class and the change
in the entry time of students in the class room vary power consumption pattern. Figure
6.12 and 6.13 shows the power consumption of a single class of room 201 for both
the Sequential and Random Scenarios respectively. In the Sequential Scenario, it is
seen that as the number of students increases the consumption of power also increases
continuously. Whereas in the Random Scenario the power consumption increase but
not in a continuous manner.

Figure 6.14 and 6.15 shows the power usage as the time of entry of students in-
creases for both the Sequential and Random Scenario respectively. In both the figures
there is a gradual decrease in the power consumption as the entry-time increases.
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Figure 6.10: Pairplot plot of power consumption of all rooms of Random Scenario.

6.6 Power Consumed in the Three Scenarios

The following Table 6.7 represent the calculated power consumption in the three sce-
narios. The Table 6.7 shows that among the three scenarios (All-on Scenario, Random
Scenario and Sequential Scenario), Sequential Scenario is more energy efficient as less
energy is consumed in the Sequential Scenario in the 4 years. So this Sequential Sce-
nario is the optimal energy usage pattern.

Currently IUT uses the "All-on" Scenario as an energy usage pattern of appliances
in the classrooms. Since the Sequential Scenario is the best, if IUT used Sequential
Scenario in the previous four years then the following amount of energy and cost would
have been saved, which is shown in Table 6.8. Thus it is evident from the table that IUT
could have saved more than 5 lac taka per year for these classrooms by using Sequential
Scenario as a power consumption pattern. But this saving is not an absolute value and
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Figure 6.11: Pairplot plot of power consumption of all rooms of Sequential Scenario.

Figure 6.12: Power consumption of a class of room 201 for varying number of students of
Sequential Scenario.
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Figure 6.13: Power consumption of a class of room 201 for varying number of students of
Random Scenario.

Figure 6.14: Power consumption of a class of room 201 for different maximum entry-time
of Sequential Scenario.

this value does not include the costing of the sensors. This is the first outcome of the
research.

6.7 Energy Prediction Results

This section provides the results obtained from the energy prediction procedures dis-
cussed in chapter 5.
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Figure 6.15: Power consumption of a class of room 201 for different maximum entry-time
of Random Scenario.

Table 6.7: Comparison of power consumed in the three scenarios.

Year Power consumed
in All-on Sce-
nario (KWh)

Power consumed
in Random Sce-
nario (KWh)

Power consumed
in Sequential
Scenario (KWh)

2016 98955.00 15906.42 14207.40
2017 108531.00 18516.03 12286.13
2018 109087.20 22097.99 20922.60
2019 122367.60 29622.63 26693.13

6.7.1 Exponential Smoothing Analysis of Random Scenario

As has been explained in chapter 5, the Random Scenario dataset is first split into train
and test set. For the test set one year of data has been split. Then the exponential model
is fitted. To account for the trend and seasonality an additive model is considered.
After fitting the model the predictions are plotted. Figure 6.16 show the plot of the
predictions with test and train dataset. As can be seen from the plot the predictions are
somewhat matching to the test data but the peak of the test data is not being touched
by the predictions. The RMSE score is found to be 50 and the AIC score is 992.

6.7.2 Exponential Smoothing Analysis of Sequential Scenario

The Random Scenario dataset is first split into train and test set. For the test set one year
of data has been split. Then the exponential model is fitted. To account for the trend
and seasonality an additive model is considered. After fitting the model the predictions
are plotted. Figure 6.16 show the plot of the predictions with test and train dataset. As
can be seen from the plot the predictions are somewhat matching to the test data but
the peak of the test data is not being touched by the predictions. The RMSE score is
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Table 6.8: Power and electricity cost savings in each year.

Year Power consumed
in All-on Sce-
nario (KWh)

Power consumed
in Sequential
Scenario (KWh)

Energy Saved
(KWh)

Total Electricity
Cost Saved (per
unit Tk.6)

2016 98955.00 14207.40 84787.00 508482.00
2017 108531.00 12286.13 96244.87 577469.00
2018 109087.20 20922.60 106994.60 641967.60
2019 122367.60 26693.13 95674.47 574046.80

Figure 6.16: predictions, test data and train data plot of Random Scenario.

found to be 45 and the AIC score is 918.

6.7.3 ARMA Analysis of Random Scenario

For the ARMA model the best p and q values is found to be 2 and 1 respectively. The
data is split into train and test data. The ARMA model is fitted to the train data and the
predictions are plotted. Figure 6.18 shows the test data and predictions plot. From the
plot it is evident that the ARMA predictions is a horizontal straight line and the ARMA
model does not take into account the trend of the data. The RMSE score is found to be
129 and the AIC score is 800.

6.7.4 ARMA Analysis of Sequential Scenario

The ARMA model p and q values is found to be 2 and 1 respectively. The data is split
into train and test data. The ARMA model is fitted to the train data and the predictions
are plotted. Figure 6.19 shows the test data and predictions plot. From the plot it is
evident that the ARMA predictions is a horizontal straight line and the ARMA model
does not take into account the trend of the data. The RMSE score is found to be 117
and the AIC score is 771.
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Figure 6.17: predictions, test data and train data plot of Sequential Scenario.

Figure 6.18: predictions and test data plot of Random Scenario.

6.7.5 Time Series Analysis of Random Scenario

Time Series Analysis is applied to the Random Scenario data. The Random Scenario
data must be stationary for the analysis to work. The data is checked to be stationary by
plotting rolling statistics. The rolling statistics code is shown in [Appendix C]. From
the rolling statistics in Figure 6.20, it is seen that both the rolling mean and rolling
standard deviation are not constant and thus the data is not stationary. The time series
data showed both trend and seasonality.

To eliminate trends, log transformation is used. The constant rolling mean in Figure
6.21 for the Random Scenario represents that the time series is now stationary after the
log transformation.
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Figure 6.19: predictions and test data plot of Sequential Scenario.

Figure 6.20: Stationarity test of Random Scenario time series dataset.

Figure 6.21: Stationarity test of log transformed Random time series data set.
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The best ARIMA model is found by changing the order of (p, d, q). Hyperparam-
eter tuning function is used [Appendix C]. The order with the lowest mean squared
error (MSE) is taken from the hyperparameter tuning function for the ARIMA model.

From the hyperparameter tuning function the order of (p, d, q) is chosen to be
(1,1,2). The Akaike Information Criterion (AIC) score is found to be 1299 while the
RMSE is 0.29.

To get more accurate results the Random Scenario data is then transformed using
data transformation techniques. The transformation technique used is standardizing
the data. The function used is the (standardscalar()) function from the scikit-learn
library.

The data set was then split into train and test data to be used for the ARIMA algo-
rithm. Then the ARIMA model is applied. The AIC score is then lowered to 792 and
the RMSE value is 0.25.

The forecast for the next six years is then found which is shown in Figure 6.22. The
forecast for six years for the Random Scenario data shows that there will be a gradual
increase in the power consumption in the next years.

Figure 6.22: Power forecast of six years for Random Scenario.

6.7.6 Time Series Analysis of Sequential Scenario

Sequential Scenario power consumption data is also found to be not stationary. For the
Sequential Scenario power consumption data, log transformation is applied to remove
the trend and to make it stationary. The stationarity is checked by plotting rolling
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statistics found in [Appendix C]. From the plot result in Figure 6.23, it is seen that
the rolling mean and rolling standard deviation is constant indicates the time series is
stationary.

Figure 6.23: Stationarity test of log transformed Sequential time series data set.

The best ARIMA model order is chosen from running the hyperparameter tuning
function [Appendix C]. The order of (p,d,q) chosen is (1,1,1).

After log transformation of the data we looked at data transformation techniques
that can be applied to our data before supplying to the algorithm to get more accurate
or desired results. The Transformation technique that is used is standardizing the data.
The function used from scikit-learn is (StandardScaler()).

The data set was then split into train and test data to be used for the ARIMA algo-
rithm. Then the ARIMA model is applied. The AIC score is 617 and the RMSE value
is 0.18. The forecast for the next one year is then found which is shown in Figure 6.24.
The forecast for next six years for the Sequential Scenario data shows that there will
be a gradual increase in the power consumption in the next years.

6.8 Discussion of Results

This study is focused on finding the energy consumption pattern of academic buildings
of Islamic University of Technology (IUT), Gazipur. The classrooms of Electrical and
Electronics Engineering (EEE) department of IUT have been selected for collecting
the data. There are a total of six classrooms, rooms 201, 202, 203, 509, 511 and 604.
In this six rooms, the electrical engineering classes take place. The rooms, 201, 202
and 203 are larger rooms with 90 seats each. Whereas the rooms 509, 511 and 604
are smaller rooms with 36 seats each. The electric appliances that consume energy in
theses classrooms are fans, lights and ACs. In the larger rooms 201, 202 and 203, there
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Figure 6.24: Power forecast of six years for Sequential Scenario.

are 20 lights, 20 fans and 4 two-ton ACs in each room. And in the smaller rooms 509,
511 and 604, each room has 8 lights, 8 fans and 1 two-ton AC. 1 light, 1 fan and 1 two-
ton AC consume 25 Watt, 75 Watt and 3000 Watt power respectively. The behavior of
students of IUT is considered as occupant behavior.

To analyze different energy usage pattern of appliances in the above mentioned
rooms, three scenarios (All-on Scenario, Random Scenario and Sequential Scenario)
have been considered for the Netlogo simulation. The power consumption data have
been calculated for the year 2016, 2017, 2018 and 2019 through the Netlogo simula-
tion. The Table 6.7 represent the calculated power consumption in the three scenarios.

The result shows that among the three scenarios, Sequential Scenario is more en-
ergy efficient. So this Sequential Scenario is the optimal energy usage pattern. Cur-
rently IUT uses “All-on” Scenario as an energy usage pattern of appliances in the
classrooms. Since the Sequential Scenario is the best, if IUT used this scenario in the
previous four years then the following amount of energy and cost would have been
saved, which is shown in Table 6.8. Thus it is evident from the table that IUT could
have saved more than 5 lac taka per year for these classrooms by using Sequential Sce-
nario as a power consumption pattern. But this is an absolute value and this value does
not include the cost of sensor. This is the first outcome of the research.

Further this study is also focused on the prediction of an optimum energy usage
pattern in the said academic building using the Exponential Smoothing, ARMA and
ARIMA method and the error metrics. The forecasting simulations is done in Python
library jupyter notebook. Exponential Smoothing, ARMA and ARIMA method is
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applied to both the Random and Sequential Scenarios. Error metrics such as RMSE
and AIC scores are found to find the best model. The Table 6.9 shows the comparison
of the error metrics for the Exponential Smoothing, ARMA and ARIMA models for the
Ransom Scenario. It is evident that among the three models the RMSE and AIC scores
of the ARIMA model is the lowest. Thus the ARIMA model is the best performing
model for the Random Scenario.

Table 6.9: Comparison of the models for the Random Scenario.

Methods RMSE AIC
Exponential Smoothing 50 992

ARMA 129 800
ARIMA 0.25 792

Table 6.10: Comparison of the models for the Sequential Scenario.

Methods RMSE AIC
Exponential Smoothing 45 918

ARMA 117 771
ARIMA 0.18 617

Table 6.10 shows the comparison of the Exponential Smoothing, ARMA and ARIMA
models for the Sequential Scenario. It can be seen that the error metrics RMSE and
AIC scores are lower for the ARIMA model. Therefore, ARIMA is the best perform-
ing model for the Sequential Scenario.

As ARIMA is the best performing model for both the Random and Sequential Sce-
nario it is applied to both the Random and Sequential Scenarios to predict the energy
demand for the next six years from 2020 to 2025. The plots of the forecast for both the
scenarios is shown in Figure 6.22 and 6.24. From both the plots it is visually evident
that the forecast for both the scenario is same. There is not much difference in the
scenarios. This is the second outcome of the research. Other than the All-on Scenario
which is the current scenario in IUT both the Random and Sequential Scenario forecast
show somewhat same result.

The Root Mean Square Error (RMSE) and Akaike Information Criterion (AIC)
are used further to measure the performance of the models of Random and Sequential
Scenario. Table 6.11 shows the values. It is seen that the RMSE for the Sequential
Scenario is 0.18 which is less than the RMSE value of the Random Scenario which
is 0.25. The AIC score is 617 for the Sequential Scenario and 792 for the Random
Scenario. It is found that Sequential Scenario is more effective and accurate. Such
a difference can be explained by the fact that when students are sitting in a random
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manner in the Random Scenario more of the appliances are getting turned on and
energy consumption is increasing. The Sequential Scenario is the optimum scenario
because the appliances are automated to turn on from the front. So even though some
students have tendencies to sit in the back they will be forced to sit in the front and
reduce unnecessary appliances to turn on which eventually reduce power consumption.

Table 6.11: Comparison of the scenarios using ARIMA Methods.

Scenarios RMSE AIC
Random Scenario 0.25 792

Sequential Scenario 0.18 617

6.9 Fulfillment of the Objective and Expected Outcome

This study is focused on finding the energy usage pattern of academic buildings of
International University of Technology (IUT), Gazipur. The classrooms of Electrical
and Electronics Engineering (EEE) department of IUT have been selected for collect-
ing the data.

The first objective is the analysis of different energy usage pattern of applainces
due to different occupant behavior which is conducted by adding students’ attendance,
class hours, class schedules and weather changes when analyzing overall power con-
sumption. From the data visualization results Figures 6.4, 6.5, 6.7, 6.8, 6.10, 6.11,
6.12, 6.13, 6.14 and 6.15 and Table 6.7 it is evident that as the occupant behavior
changes the energy usage pattern also differs this proves the first objective.

Three scenarios (All-on, Random and Sequential) is considered and power con-
sumption data is exported from the Netlogo agent based model. The power consump-
tion data have been calculated for the year 2016, 2017, 2018 and 2019 through Netlogo
simulation. It is found that the difference in behavior make a large change in consump-
tion data. Among the three scenarios, the Sequential Scenario is the optimal energy
usage pattern. This fulfills the second outcome of predicting the optimal energy usage
pattern based on occupant behavior and ambient changes.

The first outcome is in line with the second objective. Amount of energy utilization
is predicted from the proper energy usage pattern of a building which is evident from
Table 6.7. The second outcome is predicting future monthly/annual bills based on
occupant behavior and ambient changes in academic buildings for future scheduling
and energy saving. From Fig 6.8, 6.22 and 6.24 the second outcome is found.
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Chapter 7

Conclusion and Future Work

There is always a big difference between the estimated and current energy consump-
tion in buildings. This is because occupant behavior is not being considered properly
when estimating energy consumption. Energy simulation software rely on assumed
behavioral patterns from which the predictions obtained are different from current en-
ergy usage levels in buildings. Whereas occupants have different energy usage pat-
terns. Therefore, occupant behavior if considered correctly can decrease the energy
consumption in buildings [5]. Occupant behavior refers to how occupants behave in
certain environment [7].

This work is focused in predicting the proper energy usage pattern in institutional
buildings by considering occupant behavior. Educational institutions in developing
countries is increasing due to increase in the population. The objective in this work
is to analyze the different energy usage patterns of appliances in academic buildings
considering different occupancy, occupant behavior and weather condition. Real occu-
pancy data is collected from the department of Electrical and Electronics Engineering
of IUT. Three scenarios (All-on, Random and Sequential) are considered and energy
consumption data is exported from the agent based model. The power consumption
data have been obtained for the years 2016, 2017, 2018 and 2019 through Netlogo sim-
ulation. It is found that the difference in behavior make a large change in consumption
data. Among the three scenarios, the Sequential Scenario is the optimal energy usage
pattern.

At last, the prediction of energy consumption is modelled. The models used are
Exponential Smoothing, ARMA and ARIMA. When comparing the three models with
Random and Sequential Scenarios, the ARIMA model was found to be more effective.
Therefore, the ARIMA model is used for forecasting both the Random Scenario and
Sequential Scenario. The plots of the forecast for both the scenarios is same. There
is no much difference in the scenarios. However, while Root Mean Square (RMSE)
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and Akaike Information Criterion (AIC) are used to measure the performance of the
models of Random and Sequential Scenario, it is found that Sequential Scenario is
more effective and accurate.

7.1 Limitations of the Research

Even though the outcomes of the study are expected to be useful, this research has
some limitations which must be taken into consideration in evaluating the results and
their implications. First, the most serious of these involves the derivation of a sample
of power consumption pattern from a single academic building of IUT, Bangladesh.
A study in several academic buildings of other institutes would have been ideal to in-
crease the generalizability of findings. Secondly, the data were collected in the context
of Bangladesh. Therefore the findings might not be directly applied to other countries.

7.2 Future Research Direction

Study results and limitations provide the basis for future research. Two general areas
of future research are highlighted here for future researches. First, the future research
can be directed at the limitations of this study. Second, the present research represents
to develop a model to find energy consumption pattern in only the classrooms of an
academic building. The energy consumption of the whole campus can be considered
and energy prediction can be modeled.
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APPENDICES

A Classroom Schedules

Figure A.1: Class schedule of room 202 for the summer 2018-2019 Semester.

65



Figure A.2: Class schedule of room 203 for the summer 2018-2019 Semester.

Figure A.3: Class schedule of room 509 for the summer 2018-2019 Semester.
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Figure A.4: Class schedule of room 511 for the summer 2018-2019 Semester.

Figure A.5: Class schedule of room 604 for the summer 2018-2019 Semester.
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B Dataset of the Different Scenarios
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C Codes

Figure C.1: function to check stationarity of the time series data.

Figure C.2: Hyperparameter tuning function.
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