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Abstract

To ensure global food security and the overall profit of stakeholders, the importance
of correctly detecting and classifying plant diseases is paramount. In this regard,
the emergence of Deep Learning-based architectures has provided remarkable perfor-
mance in plant disease classification in recent times. However, these solutions often
require large-scale datasets and high computation resources to learn generalization and
achieve state-of-the-art performance. The unavailability of large public datasets in the
domain of plant disease classification and low resource constraints of the end-level
devices makes the problem even harder. In this regard, we have proposed two solu-
tions to tackle these existing limitations of the Deep Learning-based systems. At first,
to ensure the applicability of these solutions in low-end devices we have proposed a
lightweight transfer learning-based approach for detecting diseases from tomato leave
images. The proposed pipeline utilizes an effective preprocessing method to enhance
the leaf images with illumination correction for improved classification. The system
extracts features using a combined model consisting of a pretrained MobileNetV2 ar-
chitecture and a classifier network for effective prediction. Traditional augmentation
approaches are replaced by runtime augmentation to avoid data leakage and address the
class imbalance issue. Evaluation on tomato leaf images from the PlantVillage dataset
shows that the proposed architecture achieves 99.30% accuracy with a model size of
9.60MB and 4.87M floating-point operations, making it a suitable choice for low-end
devices. Afterward, to alleviate the dependency on large publicly available datasets,
we proposed a pipeline incorporating the concept of Few-shot learning which can pre-
dict leaf diseases with only a few samples. The proposed pipeline produces highly
general feature embeddings exploiting nine different state-of-the-art CNN-based fea-
ture extractors, which are concatenated and passed to a classifier block consisting of a
Bi-LSTM layer for effective prediction. We have shown how the concept of ‘Domain
Adaptation’ can be utilized in this regard to enhance the representation capability of the
feature extractors on unseen classes. The model has been evaluated on the tomato leaf
images from the PlantVillage dataset where it achieved promising accuracies of 89.06,
92.46, and 94.07 respectively for 5-shot, 10-shot, and 15-shot classification. Further-
more, an accuracy of 98.09 ± 0.77 has been achieved 80-shot classification, which is
only 1.2% less than state-of-the-art providing 94.5% reduction in the requirement of
training data. Experimental findings show that the proposed pipeline has outperformed
all the existing works under single-domain, mixed-domain and cross-domain scenar-
ios.

x



Chapter 1

Introduction

1.1 Motivation and Scope

The advent of smart systems in the Agricultural domain has been a demand of time
to achieve the expected harvest since the overall production is on the decline due to
the crops being prone to various diseases [1]. Traditional disease detection approaches
require manual inspection of diseased leaves through visual cues or chemical analysis
of infected areas, which can be susceptible to low detection efficiency and poor relia-
bility due to human error. Adding to the problem, the lack of professional knowledge
of the farmers and the unavailability of agricultural experts who can detect the diseases
also hamper the overall harvest production. Negligence in this regard poses a signifi-
cant threat to food security worldwide while causing great losses for the stakeholders.
Early detection and classification of diseases implemented using tools and technolo-
gies available to the farmers can go a long way to alleviate all the issues discussed [2].

Several solutions have been proposed using the traditional machine learning ap-
proaches for plant disease classification [3]. However, these works are dependent of
handcrafted feature extraction techniques, which have failed to generalize on larger
datasets. The emergence of deep learning-based methods in the agricultural domain
has opened a new door for researchers with outstanding generalization capability re-
moving the dependencies extreme feature engineering [4]. Recently, Convolutional
Neural Network (CNN) has become a powerful tool for any classification task as it
automatically extracts important features from images without human supervision and
has been adapted in different leaf disease classification problems. Moreover, the recent
variations of CNN architectures such as AlexNet [5], DenseNets [6], EfficientNets [7],
GoogLeNet [8], MobileNets [9,10], NASNets [11], Residual Networks (ResNets) [12],
SqueezeNet [13], Visual Geometric Group (VGG) Networks [14], etc, have enabled
the machines to understand complex patterns enabling even better performance than
humans in many classification problems.
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With the introduction of transfer learning where the reuse of a model efficient in
solving one problem as the starting point of another problem in a relevant domain
has significantly reduced the requirement of vast computational resources [15]. Con-
sequently, the utilization of pretrained AlexNet and GoogLeNet architectures on the
publicly available PlantVillage Dataset [16] has been one of the pioneer works of leaf
disease classification using transfer learning and paved the way for numerous solutions
in the existing literature [17]. These deep neural architectures have been found to be
extremely helpful for leaf disease classification tasks for several plants such as, ap-
ple [18] , cassava [19], corn [20], cucumber [21], grape [22], maize [23], mango [24],
rice [25], etc. However, most of these solutions propose deep and complex networks
focusing on increasing the accuracy of detection; posing the requirement of a huge
number of training images along with high computational resources. The task is made
even more difficult by the lack of significant public datasets in the categorization of
plant diseases and the resource limitations of end-level devices.

Real-life applications, such as agriculture, often require small and low latency mod-
els tailored explicitly for devices with small memory and low computational power
while also having comparable, if not better, accuracy. Most of the systems focusing
on lightweight models had to sacrifice accuracy and/or worked with a limited number
of diseases/samples. On the other hand, the highly data-driven approaches obstruct
the applicability of disease detection for many staple crops due to the unavailability
of sufficient affected leaf images. Hence introducing efficient algorithms to accurately
detect diseases from limited data can significantly improve the scenario. In this regard,
Few-Shot Learning (FSL) is a branch of DL algorithms that have been recently intro-
duced in the literature and aims to work with less amount of data. Despite a handful
of FSL-based solutions that have been proposed for leaf disease classification, most of
them are yet to achieve satisfactory performance and perform poorly in cross-domain
applications.

1.2 Problem Statement

Based on the discussion above, this work aims to propose solutions to reduce the data
and resource dependencies of Deep Learning-based solutions for leaf disease classifi-
cation.

The specific objectives of this research are:

1. Proposing a lightweight model for detecting leaf diseases ensuring high perfor-
mance along with applicability in low-end devices.

2



2. Create a robust pipeline with the ability to produce highly general feature em-
bedding from a given sample.

3. Design an effective model to predict the appropriate diseases utilizing the feature
representations with very few samples per class.

1.3 Research Challenges

The first research challenge to build any leaf disease classification system is to tackle
the scarcity of publicly available datasets. Even if they are available, often the dataset
carries a huge amount of class imbalance, which can be a difficult challenge for the
model to overcome. Moreover, the samples may contain several challenges like il-
lumination inconsistency, occlusion, deformation, etc. The high inter-class similarity
within different leaf disease is hard to distinguish, and sometimes leaves gets highly
affected by the disease which makes it almost impossible to correctly identify. To
develop lightweight models for leaf disease classification, the system has to ensure
that it is maintaining the low-resource constraints of the end-level devices. Satisfying
this hardware constraint often makes it really hard to ensure state-of-the-art perfor-
mance. On the other hand, to develop learning systems aimed to work with limited
data, proposing a robust feature extractor with the ability to generate highly meaning-
ful features is a difficult research challenge to consider. The task gets even harder when
the model has to satisfy a cross-domain scenario which includes the additional chal-
lenge of generalizing features learned from one domain into another unseen domain.

1.4 Research Contributions

The key contributions of this work can be described in two folds:

1. We have proposed a lightweight and fast deep neural architecture for leaf disease
classification for real-life applications in low-end devices ensuring state-of-the-
art level accuracy. The system exploits a pretrained MobileNetV2 architecture as
a feature extractor followed by a classifier network. The effect of poor lighting
conditions has been tackled by utilizing Contrast Limited Adaptive Histogram
Equalization Technique (CLAHE). Dataset imbalance, overfitting, and data leak-
age issues have been tackled using the runtime augmentation technique. Ex-
perimental results show that the proposed pipeline has achieved an accuracy of
99.30% on the tomato leaf disease subset of the PlantVillage dataset, which is a
2% performance improvement to the baseline MobileNetV2 architecture. Fur-
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thermore, the nearest model producing a similar level of performance required
2.4× heavier model size and 2.45× additional FLOPs count requirements.

2. We have proposed a Few-shot learning-based pipeline that can effectively predict
leaf diseases with only a few samples. The system can produce highly general
feature representation exploiting nine different state-of-the-art CNN-based fea-
ture extractors. The concept of feature concatenation has been introduced along
with a Bi-LSTM based classifier block to produce high performance with very
limited samples. We introduced the idea of Domain Adaptation to improve the
representation capability of the feature extractors. Experimental findings show
the proposed pipeline has achieved state-of-the-art accuracy for several single-
domain, mixed-domain and cross-domain classification tasks.

1.5 Organization

The rest of the dissertation is organized as follows. Chapter 2 discusses the background
works related to leaf disease classification. It also identifies the problems persistent in
the existing literature. Chapter 3 presents a lightweight deep neural architecture for
tomato leaf disease classification. Chapter 4 introduces a few-shot learning approach
for classifying leaf diseases with a very limited amount of samples. Chapter 5 con-
cludes highlights the contributions and provides direction for future research scopes.
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Chapter 2

Background Study

Earlier approaches in leaf disease classification involved different image-based hand-
crafted feature extraction techniques that were fed into machine learning-based clas-
sifiers. These works mainly focused on only a few diseases with extreme feature en-
gineering and were often limited to constrained environments. To extract features,
researchers focused on utilizing different image-level feature extraction techniques
like Gray-Level Co-occurrence Matrices (GLCM) [26], Geometric and histogram-
based features [27], Gabor Wavelet Transformation [28], Moth-Flame Optimization
and Rough Set (MFORS) [29], and similar techniques. To segment the diseased por-
tion of the leaves, several works have extracted the Region of Interest (RoI) using
k-means clustering [27], Otsu’s method [30], etc. To predict the class labels from the
extracted features, Support Vector Machine (SVM) [26, 28], Decision Trees [30], and
other classifiers were used. Due to their sensitivity to the surroundings of leaf im-
ages, machine learning approaches relied on rigorous preprocessing steps like manual
cropping of RoI, color space transformation, resizing, background removal, and image
filtering for successful feature extraction. This increased complexity due to prepro-
cessing limited the traditional machine learning approaches to classify a handful of
diseases from a small dataset, thus failing to generalize on larger ones.

With the remarkable ability to automatically learn features, Deep Learning (DL)
techniques have been widely used in recent times in almost all branches of mod-
ern computer science. With no exception, these techniques have become a research
hotspot in the agricultural domain as well. The emergence of DL in recognizing plant
diseases can ensure global crop protection along with removing manual monitoring
saving a significant amount of human labor and effort. In this chapter, we have thor-
oughly discussed the background literature under two major categories, which are, the
lightweight models for leaf disease classification and Few-shot learning algorithms in
agriculture.
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2.1 Lightweight Models for Leaf Disease Classification

Current research trends on leaf disease classification tend to focus on developing so-
lutions using Deep Neural Architectures, simplifying networks for faster computation
targeting embedded systems, real-time disease detection, etc. The introduction of intel-
ligent systems incorporating these solutions could go a long way to reduce crop yield
loss, remove tedious manual monitoring tasks, and minimize human efforts.

The performances of a significant portion of the prior works were not compara-
ble as they were mostly done on self-curated small datasets. This issue was allevi-
ated to a great extent when the PlantVillage dataset was introduced containing 54,309
images of 14 different crop species and 26 diseases [16]. A subset of this dataset
contains nine tomato leaf diseases and one healthy class which has been utilized by
most of the recent deep learning-based works on tomato leaf disease classification.
Several works on tomato leaf diseases also focused on segmenting leaves from com-
plex backgrounds [31], real-time localization of diseases [32–34], detection of leaf
disease in early-stage [35], visualizing the learned features of different layers of CNN
model [36, 37], combining leaf segmentation and classification [38], and so on. These
works mostly targeted removing the restrictions of lighting conditions and uniformity
of complex backgrounds.

To alleviate the dependency on hand-crafted features along with achieving better
classification accuracy with large datasets, recent transfer learning-based approaches
to leaf disease classification have investigated the performance of different pretrained
models using various hyperparameters. Based on their results, they recommended the
use of GoogleNet [36, 39, 40], AlexNet [41], ResNet [42], DenseNet121 [43] in creat-
ing tomato leaf disease detection systems due to their superior performance compared
to other models. Some of these works have also investigated the effect of different
hyperparameter choices like optimizers, batch sizes, the number of epochs, and fine-
tuning the model from different depths to see how they impact its performance [39,41].
These models were pretrained on massive datasets, making them the perfect choice for
extracting relevant features outperforming shallow machine learning-based models.
Although these systems achieved high accuracy going up to 99.39% [39], the models
were huge and computationally expensive, often making them infeasible for low-end
devices.

Several attempts were made to reduce the computational cost and model size.
Durmucş et al. [44] utilized SqueezeNet to detect tomato leaf diseases. The base
SqueezeNet architecture reduces the computational cost by minimizing the number
of 3× 3 filters, late downsampling, and deep compression. The authors conducted the
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experiments on an Nvidia Jetson Tx1 device targeting real-time disease detection us-
ing robots. Tm et al. [45] proposed a variation LeNet, one of the earliest and smallest
deep-learning architectures. The authors introduced an additional convolutional and
pooling layer to the base architecture and increased the number of filters in different
layers to extract complex features. However, the accuracies achieved by these two
systems were not on par with the performance of the deeper models. Bir et al. [46]
utilized pretrained EfficientNet-B0 to achieve a comparable accuracy with the state-
of-the-art while keeping the model size and computation low. This architecture applies
grid search to find coefficients for width, depth, and resolution scaling to reduce the
size of the baseline model with a minimal impact on accuracy. However, when clas-
sifying the tomato leaves, the authors had to discard a significant number of samples
to gain a comparable accuracy. Reduction of dataset size in this manner, even if bal-
anced with augmentation, might result in discarding complex samples restricting the
generalization capability of the models. All these issues impose the requirement of
lightweight models that can achieve state-of-the-art performance with high generaliza-
tion capability.

2.2 Few-Shot Learning in Agriculture

Deep learning is progressively being used in agriculture and plant science as artificial
intelligence advances. However, the remarkable performance of these approaches re-
quires a huge amount of data, which is always a difficult constraint to satisfy in this
domain. The recent advancement of few-shot learning algorithms has shown promis-
ing results to solve this limitation. It mimics the human capacity to learn quickly
with just a few labeled examples. There have been several branches of few-shot learn-
ing introduced in the literature such as methods based on data augmentation, parame-
ter optimization, metric-learning approaches, etc [47]. The metric-learning approach
classifies the unseen samples by learning the similarity between different categorizes,
the method based on data augmentation expands the number of samples by reusing
the originals, and the method based on parameter optimization solves the problem by
learning how to optimize parameters.

The training strategy of few-shot learning algorithms is different from the tradi-
tional approaches of machine learning and deep learning methods. It is generally re-
garded as an N -way k-shot problem, where N refers to the number of categories and
k refers to the number of samples available for each of them. For a particular classi-
fication task with N classes, where each class has only a small amount of samples to
train the models, the goal is to learn a function f which will be able to produce highly
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general feature representation for effective classification. To assist the task, often an
auxiliary dataset is provided which has non-overlapping classes with target ones. The
few-shot algorithm will utilize the knowledge from the auxiliary dataset and use the
few samples of the target dataset to slightly fine-tune the weights.

The overall training process can be divided into two phases, meta-training and
meta-testing. Both of the stages have their own Support set (S) and Query set Q. In
the meta-training phase, the model is usually trained with the auxiliary dataset to learn
the feature space. On the other hand, during meta-testing, the k-shots are picked from
the Support set to fine-tune the model and the performance is evaluated on the Query
set.

2.2.1 Metric-learning based methods

The few-shot learning algorithms that are designed based on metric-learning work with
the aim of learning a distance function to measure the similarity and dissimilarity be-
tween the sample of support set and query set. As illustrated in Figure 2.1, these al-
gorithms learn to compare data samples and classify the query samples based on their
similarity to the support samples. In the case of plant leaf disease classification, the
model takes the input image to produce an embedding vector which is compared with
the embeddings of other classes for prediction. Hence an effective similarity measure-
ment method can remove the overfitting issues caused by the limited samples.

Among numerous variants of metric learning approaches, the Siamese network is
one of the earliest one [48], which uses a weight-sharing network model to extract
features of two different images, and predicts class labels based on the distance be-
tween obtained features. Another similar approach to this network is followed in the
MatchingNet architecture [49], which adopts Long short-term memory (LSTM) [50]
based approach in the network to improve the quality of extracted features and utilizes
a cosine distance-based similarity function. There has been several architectures pro-
posed in the literature with the idea of metric-learning based tasks such as Prototype
network [51], RelationNet [52], RelationNetV2 [53], etc.

In the domain of agriculture, Argüeso et al. [54] proposed one of the most pioneer-
ing works introducing the concept of Few-shot learning algorithms in plant disease
classification. The authors utilized the PlantVillage dataset and divided it into two
subsections. At first, 32 classes were used to train an InceptionV3 architecture to
learn general leaf characteristics. Then this fine-tuned architecture was used to build a
Siamese Network with Triplet loss, which was further trained with the few samples of
the target classes. Experimental findings showed how the proposed pipeline achieved
high performance with almost 90% reduction in training data and outperformed the
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Figure 2.1: Metric-Learning based methods

classical approaches for small training sets.
Wang et al. [55] proposed an FSL-based method for plant leaf classification based

on Siamese Networks [48] to achieve high accuracy with a limited number of samples.
The network extracts features by passing two randomly picked images in the parallel
branches of the baseline CNN architecture with weight sharing. Then the metric space
is learned utilizing a loss function that focuses on minimizing the distance of images
within similar classes and maximizing the distance of samples of different classes. Fi-
nally, the leaves are classified using the K-Nearest Neighbour classifier exploiting the
learned metric space. Experiments were conducted on the open Flavia dataset [56],
Swedish dataset [57] and Leafsnap dataset [58]. However, the datasets used by the
authors are fairly simple with white/gray background and work only with plant clas-
sification. The inter-class similarity is very less, so the classification task becomes
simpler. This method can be validated in plant leaf disease detection, where an ad-
ditional challenge will be, that the model has to learn the disease patterns along with
learning the structure of the leaf.

Egusquiza et al. [59] demonstrated a FSL-based approach where the latent space
representation was learned using a model based on Siamese networks and metric learn-
ing. The work was evaluated on a dataset containing samples of 5 crops and 17
diseases, collected from real-life field images under challenging conditions. The au-
thors showed, how a FSL-based method can outperform traditional CNN-based works
trained with even less than 200 samples per class. On the other hand, to address the
problem of leaf disease classification with limited data, Jadon et al. [60] proposed a
metric-based Few-shot learning architecture named ‘SSM-Net’ consisting of stacked
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Siamese [48] and Matching Network [49] components. Experiments showed that the
proposed pipeline achieved 92.7% on the mini-leaves dataset [61] and 94.3% on their
self-curated sugarcane dataset in a 5-way 5-shot setup, which was found to be signifi-
cantly better than using a pretrained CNN-based pipeline with VGG16 backbone.

Li et al. [62] introduced the first task-driven meta-learning approach in the agri-
cultural domain and provided baselines for different types of Few-shot crop and pest
classification tasks. The authors curated a comprehensive dataset exploiting different
publicly available resources, containing samples of both pests and plants to evaluate
the few-shot algorithms under single-domain, mixed-domain, and cross-domain sce-
narios. Tassis et al. [63] evaluated the performance of different FSL algorithms such
as Prototypical Networks [51], Triplet Networks [64], etc, in classification and sever-
ity estimation task. A dataset of biotic stress in coffee leaves was utilized where the
authors achieved 96.03% and 96.72% accuracies respectively on the biotic stress clas-
sification in the leaf dataset and symptoms dataset. More importantly, in the severity
estimation task, an accuracy of 93.25% was achieved which was 6.74% higher than the
baseline. This signifies the promise in the use of FSL approaches in plant biotic stress
recognition. Applying these architectures with the context of domain shift will be an
interesting arena to explore.

In another work, Li et al. [65] proposed a method for cotton pest recognition using
metric-based FSL, which generates feature vectors utilizing a CNN-based backbone
with Triplet Loss. To verify the effectiveness and feasibility of the model, experiments
were conducted on two datasets where high performance was achieved reflecting the
generalization ability of the model. Furthermore, the model was transplanted into an
embedded terminal and found to run smoothly with a FPGA-based circuit module and
ARM-based control program, achieving a processing speed of 2 frames/second.

2.2.2 Data Augmentation based approaches

Since the main challenge of FSL tasks is the lack of labeled samples, the simplest way
to tackle this issue is to expand the number of samples (Figure 2.2). If the number of
samples can be expanded close to the amount required by traditional approaches, the
overfitting issues faced by few-shot learning can be solved to some extent.

Hu et al. [66] presented a low-shot learning approach for tea leaf disease identifica-
tion using Support Vector Machine (SVM) and Deep learning networks. At first, color
and texture features were extracted to segment the disease spots using a SVM-based
method. An improved Conditional Deep Convolutional Generative Adversarial Net-
work (C-DCGAN) [67] is utilized to generate augmented samples using the extracted
regions and used to train a deep VGG16 model [68] for tea leaf disease prediction with
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an accuracy reaching up to 90% on a self-curated dataset containing three tea leaf dis-
eases.

Nesteruk et al. [69] proposed an image augmentation-based method for solving the
FSL task for multitask application in agricultural use-cases. Given only a few exam-
ples, the proposed augmentation framework can enlarge the number of training sam-
ples while providing enough information for tasks like object detection, segmentation,
classification, contouring, and denoising. The authors used the DeepLabV3 model
for the semantic segmentation task, where around 9% performance improvement was
achieved compared to applying the basic augmentation techniques.

2.2.3 Parameter optimization based methods

Traditional deep learning optimizes the network model’s parameters using a vast num-
ber of samples as shown in Figure 2.3. The parameters are fitted to the best value by the
network’s gradient backpropagation. However, since the number of samples is small in
FSL tasks, following the same procedure often results in overfitting. In this regard, the
parameter optimization-based methods entail learning how to tune parameters using an
optimizer.

Finn et al. [70] proposed on of the pioneering optimization-based method named
‘Model-agnostic meta-learning (MAML)’, which solves the few-shot task by learning
an initialization parameter θ. Once the proper initialization can be learned, the new
tasks can be solved with only a few gradient updates. The main benefit of this method
is that it is designed to be independent of the meta-learner algorithm used. Therefore,
a lot of machine learning algorithms that demand quick adaptation employ the MAML
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technique. There has been several improvements over this approach such as ‘Task-
agnostic meta-learning (TAML)’ [71], Reptile [72], etc.

Wang et al. [73] exploited the Model-agnostinc meta-learning approach [70] name
‘IMAL’ for plant leaf disease classification. The authors utilized the ‘soft-center loss’
function [74] to enhance the capability of the model to distinguish features information
of different classes and Parametric Rectified Linear Unit (PReLU) [75] activation func-
tion was used to enhance the learning capability of the model with negligible additional
impact on the overall computational cost along with reducing chances of overfitting.
Experimental results showed that the proposed method achieved a higher result than
some other FSL approaches such as fine-tuning approach, Siamese Network with con-
trastive loss, triplet loss, baseline model-agnostic model, etc. The proposed pipeline
achieved 63.8%, 91.35%, and 96.0% accuracy respectively for 1-shot, 15-shot, and
80-shot classification. However, the IMAL approach requires to be trained on a huge
number of tasks and consumes high computational resources. Future attempts can be
made to further optimized to increase speed and reduce the computational overhead.

2.2.4 Pretrained Feature Extractors for Few-shot classification tasks

Most of the research works on few-shot learning have developed advanced meta-
learning-based methods [76–78]. However, recent works show that transfer learning-
based approaches using pretrained architectures can be utilized to produce highly gen-
eral feature representations for FSL tasks.

Chen et al. [79] proposed one of the first research works to point out that a sim-
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ple transfer-based approach consisting of a pretrained deep CNN and a simple linear
classifier can outperform traditional few-shot learners. Authors in [80] argued that the
best way to solve the FSL task is to use a high-quality feature extractor rather than
focusing on meta-learning based methods. They proposed an approach which trains
a huge model on a massive dataset to learn the feature space. In another work, the
authors showed how a simple transfer-based approach can outperform advanced meta-
learners [81]. Reference [82] utilized a set of feature extractors each trained on a
different type of dataset to introduce diversity in the extracted features. On the other
hand, [83] proposed an idea of ensembling to solve few-shot classification tasks. The
authors simultaneously trained a series of deep CNN networks during the meta-training
phase and added a penalty term to encourage diversity in the learned representations.

Nuthalapati et al. [84] proposed a method utilizing pretrained feature extractors to
automatically classify plant, pests, and their diseases using FSL. The pipeline gener-
ates feature embeddings using a feature extractor exploiting a ResNet18 based back-
bone [85] pretrained on the ImageNet dataset [86]. Then it is passed to a Transformer
block [87] to enrich the features embeddings of all samples of the support set in a given
task even more. The similarity between the transformed embeddings (from the train-
ing phase) and embedding of the image to be classified was calculated using Maha-
lanobis distance [88]. The effectiveness of the model was shown using mixed-domain
and cross-domain experiments using ‘Plant and Pest’ [62] and Tomato leaf subset of
Plantvillage dataset [16]; where the proposed model achieved up to 14% and 24% per-
formance gain compared to the earlier benchmarks. Moreover, to validate the perfor-
mance of the model in real-world images, the authors curated a dataset named ‘Plants
in Wild’ and provided a baseline.

Being inspired by the above-mentioned ideas, we proposed a transfer learning
based solution to solve the FSL task utilizing a library of feature extractors pretrained
on a large-scale dataset and combined the extracted features with a Bi-LSTM based
classifier network to provide high performance with very limited data.
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Chapter 3

Leaf Disease Classification with Lightweight Model

The amazing ability of Deep Neural Networks to automatically learn features have
resulting into their wide usage in leaf disease classification tasks. However, the most of
these architectures comes with huge computational requirements, which is not feasible
to be deployed in agricultural low-end devices. With the goal to tackle this limitation,
we have proposed a lightweight deep neural architecture which ensures state-of-the-art
level performance along with applicability in low-end devices. In this chapter, we have
discussed the proposed lightweight pipeline for lead disease identification. At first, we
have discussed the overview of the entire architecture. Then we justified our intuition
behind choosing each of the individual components of the proposed pipeline.

3.1 Overview

The proposed architecture takes tomato leaf images as input and outputs the class la-
bels. At first, the input image is passed through a preprocessing step where it is en-
hanced using Adaptive Histogram Equalization. Then, the enhanced image is fed to
a transfer learning block, where we utilize a pretrained deep CNN model for effi-
cient feature extraction. To determine a suitable feature extractor, we experimented

Transfer Learning-
based Feature  

Extractor

Data  
Preprocessing

Bacterial Spot

Early Blight

Late Blight

Healthy
Input Image

Predicted Label
Classifier Network

Softmax

Figure 3.1: Overview of the tomato leaf disease classification architecture

14



with nine different pretrained architectures which are DenseNet121, DenseNet201,
EfficientNet-B0, VGG19, MobileNet, MobileNetV2, NASNet-Mobile, ResNet50, and
ResNet152V2. Based on the results, we have chosen MobileNetV2 due to its smaller
size and faster inference while maintaining comparable accuracy. Then the features
extracted by the pretrained model are fed through a shallow densely connected classi-
fier network to get the Softmax probabilities for every class using which we predict the
final label. The general pipeline of the proposed approach is depicted in Figure 3.1.

3.2 Materials and Methods

In this section, we have discussed each of the components of the proposed pipeline in
details. We started the discussion by describing the dataset, followed by the prepro-
cessing and augmentation techniques that have been incorporated. Then we provided
the detailed analysis on the architectural detail of the CNN-based feature extractor and
classifier network. Afterwards, we discussed the different policies adopted throughout
the experiment along with the evaluation metrics.

3.2.1 Dataset

As of today, the PlantVillage Dataset is the largest open-access repository of expertly
curated leaf images for disease diagnosis. The dataset comprises 54,309 images of
healthy and infected leaves belonging to 14 crops, labeled by plant pathology experts.
Among them, 18,160 images are of tomato leaves, divided into one healthy and nine
disease classes. This dataset offers a wide variety of diseases and contains samples of
leaves being infected by various diseases to different extents. One sample image from
each class can be seen in Figure 3.2.

From the distribution of the number of samples in different classes shown in Ta-
ble 3.1, it is evident that the dataset contains imbalance as different classes have a
significantly varying number of samples. The maximum number of samples is 5357,
belonging to Yellow Leaf Curl Virus disease, whereas the number of samples corre-
sponding to Mosaic Virus disease is as low as 373. Few problems arise because of this
class imbalance. First, the model does not get a good look at the images of classes with
a lower number of samples, leading to less generalization [89]. Moreover, the overall
accuracy might still be high even if the model is ignoring these small-sized classes, as
they do not contribute much to the overall accuracy [90]. Different techniques involv-
ing undersampling and oversampling can be employed to tackle this issue, ensuring
that the model is equally capable of identifying all diseases.
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(a) Bacterial Spot (b) Early Blight (c) Late Blight (d) Leaf Mold (e) Septorial Leaf
Spot

(f) Two-spotted
Spider Mites

(g) Target Spot (h) Yellow Leaf
Curl Virus

(i) Tomato Mo-
saic Virus

(j) Healthy

Figure 3.2: Sample tomato leaf images of the 10 classes from the PlantVillage dataset

3.2.2 Data Preprocessing

Disease spots often have close intensity values with the surroundings due to the poor
lighting condition of the images provided in the dataset. Moreover, in real-world appli-
cations, images captured by the end-users might not always be adequately illuminated,
and this might fail to provide the model with enough details to identify the disease,
and hence affect the classification result [91]. Contrast enhancement techniques like
histogram equalization can be applied to enhance the details and correct the illumi-
nation problem. Generally, histogram-based approaches work globally throughout the
image. However, the intensity distribution of the leaf regions can be different from
that of the background. So, the same transformation function cannot be applied to the
entire image. To tackle the illumination problem addressing the uneven distribution of
intensity, we opted for Contrast Limited Adaptive Histogram Equalization [92].

Furthermore, as mentioned earlier, there exists a class imbalance in the original
dataset. This issue has been tackled in various ways in the existing literature. The most
common way of dealing with this has been to undersample and/or oversample certain
classes [40,42,43,46]. Although it makes the dataset balanced to some extent, it has its
own drawbacks. Undersampling may drop some of the challenging images for certain
classes that can contain important information for the model to learn, which eventually
hinders the generalizing capability of the model. Oversampling utilizes different data
augmentation techniques to produce multiple copies of the original images, each hav-
ing slight variations. But if we perform augmentation before splitting the dataset into
train, validation, and test sets, it might inject slight variations of the training set into the
test set. As the model learns to classify one variation of the image while training, it is
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Table 3.1: Distribution of samples in the dataset

Class Label Sample Count

Bacterial Spot 2127
Early Blight 1000
Late Blight 1909
Leaf Mold 952
Septoria Leaf Spot 1771
Two-spotted Spider Mites 1676
Target Spot 1404
Yellow Leaf Curl Virus 5357
Tomato Mosaic Virus 373
Healthy 1591

Total 18160

(a) Original Image (b) Enhanced Image

Figure 3.3: Illumination correction using Contrast Limited Adaptive Histogram Equalization.

highly likely to correctly classify the other variations in the test set, overestimating the
accuracy of the system. This problem is known as data leakage [93]. As each choice
has its pros and cons, we decided to perform data augmentation during runtime.

Contrast Limited Adaptive Histogram Equalization (CLAHE)

CLAHE increases the contrast between diseased spots and the leaf by dividing the
image into multiple small regions and applying a transformation function that is pro-
portional to the cumulative distribution function. This function is calculated based on
the histogram of the intensity distribution of the pixels inside each region. CLAHE
also limits the amplification of the noise, which is prevalent in low light images, near
regions with constant intensity by clipping the histogram value beyond a threshold.
Figure 3.3 shows the sample output after applying CLAHE on an original image.

Before applying CLAHE, the leaf image was converted from RGB color space to
Hunter Lab color space. Here, L denotes the channel with the intensity value of the
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image, a and b denotes the color components. CLAHE was applied on the L channel.
The image was then divided into P × Q regions, where P denotes the number of
contextual regions in the x-axis, and Q denotes the number of contextual regions in the
y-axis. Our empirical results demonstrated that a value of 7 for both P and Q provided
the best results.

Suppose each of the divided regions contains M pixels having intensity value rang-
ing from 0 to (N − 1). That means, there were N discrete intensity levels in the leaf
image. Then for each region, the histogram Hi,j was calculated, where 0 ≤ i < P and
0 ≤ j < Q. Each of the N histogram bins Hi,j(k) contained the number of pixels in
the region (i, j) with intensity k. Here, 0 ≤ k ≤ N − 1. Then each histogram was
clipped based on a threshold β, which was set to be 3 upon experimentation. To do
that, the total number of excess pixels per histogram bin E was calculated.

E =
N−1∑
k=0

(Hi,j(k)− β), if Hi,j(k) > β

0, otherwise
(3.1)

Then the average pixel increment per bin, A was calculated:

A =
E

N
(3.2)

Then for each histogram bin, pixels were redistributed.

Hi,j(k) =


β, if Hi,j(k) > β

β, if Hi,j(k) + A > β

Hi,j(k) + A, otherwise

(3.3)

At the same time, each increment was subtracted from E to keep track of the total
number of remaining excess pixels. After the initial distribution, if there were any
other remaining excess pixels, they were distributed equally to all the bins.

From the clipped histogram, the Cumulative Distribution Function Ci,j was calcu-
lated.

Ci,j(k) =
k∑

j=0

nj

M
(3.4)

Here, nj is the number of pixels with intensity value j, M is the number of pixels in
the region (i, j), and 0 ≤ k < N . Ci,j is used to calculated the mapping function F (k),
where 0 ≤ k < N is calculated.
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(a) Enhanced Image (b) Height Shift (c) Width Shift

(d) Rotation (e) Shearing (f) Horizontal Flip

Figure 3.4: Data augmentations. A combination of these augmentations were applied ran-
domly during run-time.

The mapping function was used to calculate the desired intensity by performing
Bilinear Interpolation of the four nearby regions to reduce the blocking effect. The
output intensity values were scaled within the range [0, N − 1]. Then using F (k), the
intensity of the L channel was mapped to the desired intensity value. Finally, the image
was converted from Hunter Lab color space to RGB color space.

To maintain consistency, we have preprocessed all the tomato leaf images of the
dataset using CLAHE before feeding them to the model.

Data Augmentation

To reflect real-life scenarios, we have picked height and width shifting, clockwise and
counterclockwise rotation, shearing, and horizontal flipping to augment the leaf images
during runtime.

Height and Width Shifting is performed by translating each pixel of the image
respectively in the horizontal and vertical direction by a constant factor. Height shift is
performed using:

ynew = yold + αny (3.5)
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where,
ynew = The new y-coordinate of the shifted pixel
yold = The old y-coordinate of the shifted pixel
α = Constant factor
ny = Number of pixels in the y-axis of the image

In our case, the constant factor, α was chosen randomly within the range [0, 0.2].
While shifting, the pixels going outside the boundary (ynew ≥ ny) are discarded, and
the empty regions (yold < αny) are filled with the RGB values of the nearest pixels.
During height shift, the values of the x-coordinate remain unchanged.

Width shift is performed using:

xnew = xold + βnx (3.6)

where,
xnew = The new x-coordinate of the shifted pixel
xold = The old x-coordinate of the shifted pixel
β = Constant factor
nx = Number of pixels in the x-axis of the image

In our case, the constant factor, β was chosen randomly within the range [0, 0.2].
While shifting, the pixels going outside the boundary (xnew ≥ nx) are discarded, and
the empty regions (xold < βnx) are filled with the RGB values of the nearest pixels.

Figure 3.4b and 3.4c shows the effect of performing height and width shift, respec-
tively.

Rotation is performed with respect to the centre pixel of the image. It is performed
using:

xnew = cos(θ)× (xold − xc)− sin(θ)× (yold − yc) + xc (3.7)

ynew = sin(θ)× (xold − xc)− cos(θ)× (yold − yc) + yc (3.8)

where,
xnew = The new x-coordinate of the rotated pixel
ynew = The new y-coordinate of the rotated pixel
xold = The old x-coordinate of the rotated pixel
yold = The old y-coordinate of the rotated pixel
xc = The x-coordinate of the center pixel
yc = The y-coordinate of the center pixel
θ = The rotation angle

For our case, the rotation angle, θ was chosen randomly within the range [-20, 20]
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(a) (b) (c)

Figure 3.5: Sample augmentations performed on the images during training, validation, and
testing phase

degrees. Figure 3.4d shows the effect of performing rotation.
Shearing is performed by moving each pixel towards a fixed direction by an amount

proportional to the pixel’s distance from the bottom-most pixels of the image based on
a shearing factor. [

xnew

ynew

]
=

[
1 m

0 1

]
×

[
xold

yold

]
(3.9)

where,
xnew = The new x-coordinate of the sheared pixel
ynew = The new y-coordinate of the sheared pixel
xold = The old x-coordinate of the sheared pixel
yold = The old y-coordinate of the sheared pixel
m = Shearing factor

We randomly picked the shearing factor, m within the range [0, 0.2]. Figure 3.4e
shows the effect of performing shearing.

Flipping an image horizontally requires mirroring the pixels with respect to the
centerline parallel to the x-axis.

xnew = xold × (−1) + nx (3.10)

where,
xnew = The new x-coordinate of the mirrored pixel
xold = The old x-coordinate of the mirrored pixel
nx = Number of pixels in the x-axis of the image

Figure 3.4f shows the effect of performing horizontal flipping.
Multiple random augmentations are applied to the same image to ensure that the
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Figure 3.6: MobileNetV2 architecture adopted from [10] and modified for extracting features
from 256× 256× 3 tomato leaf images. Each box represents the feature maps (not to scale)
after going through different layers. Here, f denotes the expansion factor of each Bottleneck
Layer. The first layer of each sequence has a stride value of s, and the remaining use stride 1.
r denotes the number of times a layer is repeated to produce the next feature map.

model sees a new variation on every epoch and thus learns to recognize a variety of
images. Figure 3.5 shows the effect of combining different augmentations that are used
during the training, validation, and testing phase.

Unlike traditional approaches in the existing literature of tomato leaf disease clas-
sification, we decided not to use data augmentations to increase the number of samples
before training. Instead, these augmentations were performed randomly on different
images during runtime in different splits, ensuring that the model sees different varia-
tions of the same image separately in different epochs. This reduces the possibility of
overfitting, as it cannot see the same image in every epoch. On the other hand, this en-
sures that the different variations of the same image do not appear in both training and
test set, thus eliminating the data leaking problem persistent in the existing literature.

3.2.3 Transfer Learning-based Feature Extractor

Earlier machine learning approaches assumed that the training and test data must be
in the same feature space. However, recent advances in deep learning approaches
have facilitated the use of an architecture trained to extract features on the training
data of one domain to be used as a feature extractor for another domain. As the fea-
ture extractors in deep learning-based tasks became more and more generalized, this
method of knowledge transfer, also known as Transfer Learning, has significantly im-
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Figure 3.7: Bottleneck Residual Block. Here, each block represents the feature map output
by different layers.

proved the performance of learning, reducing a considerable amount of computational
complexity. In this connection, the MobileNetV2 architecture has enabled real-time
applications across multiple tasks and benchmarks using low computational resources.
As shown in Figure 3.6, MobileNetV2 consists of a regular 3× 3 convolution with 32
filters, followed by 17 Bottleneck Residual Blocks, a Pointwise convolution layer, a
global average pooling layer, and a classification layer. The classification layer usually
corresponds to the number of classes of the original dataset. For our system, the clas-
sification layer was replaced with a classifier network to classify tomato diseases.

At the heart of the MobileNetV2 architecture resides Bottleneck Residual Block
containing three convolutional layers (Figure 3.7a). The Expansion Layer increases
the number of channels in the input data by performing Pointwise convolution based
on an expansion factor. The feature map output by this layer is then fed to a 3 ×
3 Depthwise Convolution layer which works as a filter by applying convolution per
channel. The Projection Layer takes these filtered values to generate salient features.
Besides, this layer projects the higher dimensional data into a much lower number
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of dimensions, reducing the number of channels. The Depthwise Convolution layer
combined with the Pointwise Convolution performs Depthwise Separable Convolution,
reducing the computation by a factor of O(k2) compared to regular convolutions. Here,
k is the size of the Depthwise convolution kernel. Like most modern architectures,
each of the three convolution layers is followed by batch normalization to stabilize the
learning process. The activation function used by these layers is ReLU6. It bounds the
activation within [0, 6], making it more robust than the well-known ReLU function in
fixed-point arithmetic. However, the Projection Layer does not contain any activation
function due to the low dimensionality of the data produced by this layer. The non-
linearity of the ReLU activation function can destroy valuable features. In addition, to
reduce the effect of diminishing gradients, inverted residual connections are introduced
through the network, which connects the bottleneck blocks with the same number of
channels (Figure 3.7b).

In this work, to compare the performance of MobileNetV2, other transfer-learning
architectures that are popular in leaf disease detection: DenseNet121, DenseNet201,
EfficientNet-B0, MobileNet, NASNet-Mobile, ResNet50, ResNet152V2, and VGG19
were used.

3.2.4 Classifier Network

Instead of directly using the extracted features from pretrained models for final predic-
tion, we employed a combination of dense, dropout, and batch normalization blocks to
fine-tune the extracted traits further. As shown in Figure 3.8, dense blocks were added
before the final output layer. The pretrained MobileNetV2 architecture we used was
trained on a large and generalized dataset, making it perfect for feature extraction. The
features extracted from the leaf images by MobileNetV2 architecture are then fed into
the dense blocks trained from scratch to extract further the relevant features required
to classify the diseases. Upon experimentation with different numbers of layers con-
sisting of a varying number of nodes, two dense blocks with 128 and 64 nodes helped
us achieve global minima in terms of loss.

A Batch Normalization [94] block was added between the output of the Mobile-
NetV2 and the first densely connected block and one between the second densely
connected block and the output layer. A batch normalization block is used to stan-
dardize the inputs for the final layer for each mini-batch and stabilize the whole learn-
ing process, reducing the epochs needed to train the network. Rectified Linear Unit
(ReLU) [95] was used as the activation function of the two densely connected blocks.
This activation function makes the models easier to optimize and more generalizable.
A dropout layer [96] in-between these two dense blocks work as a regularizer, ensuring
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Figure 3.8: Classifier network

that the model does not overfit. The final output layer of the classifier network is also
a densely connected block with a Softmax activation function [97]. The output layer
of the classifier network contains ten nodes corresponding to each class label. The
value of each node represents the probability of the input sample being in that class.
Applying Argmax on this layer provides us with the predicted class label.

3.2.5 Experimental Setup

The proposed architecture was trained under a Python environment with TensorFlow,
Keras, and other necessary libraries in Google Colab1. All experiments were conducted
using an Intel Xeon CPU with a base clock speed of 2.3 GHz and an NVIDIA Tesla T4
GPU with a VRAM of 15 GB. The total usable memory of the machine was 13 GB.

From each class, the sample images were randomly split into 60% for training,
20% for validation, and 20% for the test set. Following the mini-batch gradient descent
technique [98], the batch size was selected as 16. Since smaller batch sizes are often
noisy, they help create a regularization effect and reduce the generalization error. They
also help fit training data into memory.

While working with mini-batches, there is always a possibility of choosing batches
that are not representative of the entire dataset, resulting in an inaccurate estimate of
the gradient. Thus the training images were shuffled after each epoch throughout the

1https://colab.research.google.com/
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experiments. This increases the probability that the model will converge and not be
trapped with too many inferior batches. For experimenting with mini-batches, it is
crucial to shuffle the data after each epoch. The goal of shuffling data is to reduce
variance and ensure that models generalize well and do not overfit.

The model was trained for at most 1000 epochs with early stopping. Early stopping
helps reduce overfitting and improves the generalization of neural networks. Validation
accuracy was selected as the scheme for evaluating the model so that early stopping
can be triggered. In our proposed approach, a change in validation accuracy between
epochs was considered significant if it was greater than 10-4. Otherwise, it was con-
sidered a patient epoch. The training was stopped early if there are ten consecutive
patient epochs. Consequently, it was observed that our proposed architecture was able
to converge after 70 epochs on average.

To ensure the rapid learning of salient features, we have used Adam optimizer
[99] for training our model. Compared to other optimizers, Adam can help multilayer
deep learning networks converge faster for computer vision problems. Since this is a
multiclass classification task, we have used categorical cross-entropy loss. The initial
learning rate was set to 10-5. For every four consecutive patient epochs, the learning
rate was decreased by a factor of 0.1 to help the model learn a set of globally optimal
weights that leads to better optimization of the loss function.

The models can be initialized with different weights during the training phase, e.g.,
0, random values, or pretrained weight values. In our work, we initialized the feature
extractor part of the network with the respective pretrained weights from ImageNet
Dataset [100] for the models and the classifier network with random weights. Model
Checkpoints were used to save the model with the best validation accuracy so that they
can be loaded later to continue the training from the saved state if required.

3.2.6 Evaluation Metrics

Accuracy

Accuracy is the ratio between the total number of predictions that were correct and the
total number of predictions. To get a better estimation of the generalization capability
of a model, the accuracy is calculated using the samples from the test set, which is
unseen to the model during training.

Accuracy =
M

N
× 100% (3.11)

Here, N is the number of samples in the test set and M is the number of samples for
which the class labels were correctly predicted by the model.
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Parameter Count

Parameters are the model’s learnable weights, which are changed during the backward
propagation phase based on the chosen optimization algorithm. The number of param-
eters can not only provide us with an idea regarding the training time of the model but
also helps determine the model size and inference time.

Parameter Count =
L∑
i=1

pi (3.12)

Here, pi is the number of parameters in the ith layer and L is the total number of layers
in the model.

Model Size

Trained models can be stored as a Hierarchical Data Format version 5 (HDF5) file.
The saved model contains the model’s configuration, trained weights, and optimizer
state. The model, along with its saved weights, can be loaded again to run inference.
The size of the saved model is called the model size. Model size can be measured in
MB (Megabyte) or GB (Gigabyte).

FLOPs Count

FLOPs Count is the theoretical maximum number of floating-point operations that a
model requires to perform inference. Since the time taken for inference can vary from
device to device, FLOPs Count is a better measurement to compare the relative infer-
ence time of deep learning models. It is usually measured in megaFLOPs (MFLOPs),
gigaFLOPs (GFLOPs), or teraFLOPs (TFLOPs). The higher the value, the larger the
number of computations required for a model to perform inference.

Precision

Precision is the ratio of the sum of the number of true positive predictions among
all classes and the sum of the number of true positive predictions and false positive
predictions among all classes. In a multiclass problem, for each class, precision is
used to evaluate the correctly classified samples of that class among all the samples
that were classified as of that class. Precision is also called Positive Predictive Value
(PPV).

Precision for each class c can be calculated considering the one-vs-all strategy.
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Precisionc =
TPc

TPc + FPc

(3.13)

Here, TPc is the number of samples correctly classified as c, and FPc is the number of
samples wrongly classified as c.

For imbalanced classes, macro-average precision is calculated where the precision
for each class is calculated separately, and their average is taken. This ensures that the
model gets equally penalized for each false positive instance of any class.

For a set of classes C,

Macro Average Precision =

∑
c∈C

Precisionc

|C|
(3.14)

Here, Precisionc is the precision value for class c, and |C| is the total number of classes.

Recall

Recall is the ratio of the sum of the number of true positive predictions among all
classes and the sum of the number of true positive predictions and false negative pre-
dictions among all classes. In a multiclass problem, recall is used to evaluate how
many samples are correctly classified among all the samples that should have been
classified as of that class. Recall is also called Sensitivity.

Recall for each class c can be calculated considering the one-vs-all strategy.

Recallc =
TPc

TPc + FNc

(3.15)

Here, TPc is the number of samples correctly classified as c, and FNc is the number
of samples of c that are wrongly classified as other classes.

For imbalanced classes, macro average recall is calculated where the recall for each
class is calculated separately and their average is taken. This ensures that the model
gets equally penalized for each false negative instances of any class.

For a set of classes C,

Macro Average Recall =

∑
c∈C

Recallc

|C|
(3.16)
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Here, Recallc is the Recall value for class c, and N = Total number classes.

F1-Score

F1-Score is the weighted average of precision and recall that considers both the num-
ber of false positive predictions and false negative predictions. While working on an
imbalanced dataset, having a high F1-Score is crucial to reduce the number of false
positive and false negative predictions.

F1-Score for each class c can be calculated using the following formula:

F1-Scorec =
2× Pc ×Rc

Pc +Rc

(3.17)

Here, Pc is the precision value for class c, and Rc is the recall value for class c.
For imbalanced classes, macro average F1-score is calculated where the F1-score

for each class is calculated separately and their average is taken. This ensures that each
class gets equal priority in classification.

For a set of classes C,

Macro Average F1-Score =

∑
c∈C

Fc

|C|
(3.18)

Here, Fc is the F1-Score for class c, and |C| is the total number of classes.

AUC-ROC Score

Precision, recall, and the majority of the commonly utilized metrics have their indi-
vidual set of restrictions. Precision is a measurement that determines how accurate a
classification task is and it is only based on true positive and false positive predictions;
a score of 1.0 for precision can be achieved with just one true positive prediction. On
the other hand, recall is all about the completeness and is solely based on true posi-
tive and false negative responses. As a result, predicting all the samples as positive
will result in a recall of 1.0, but the precision will be very low. The Receiver Operating
Characteristic (ROC) curve and the area under the ROC curve (AUC-ROC) are utilized
as evaluation methods in this regard by combining the True Positive Rate (TPR) and
False Positive Rate (FPR).

These methods allow models to be evaluated according to how well they separate
classes from one another. The FPR and TPR for a series of predictions generated by
the model at various thresholds are calculated to summarize the behavior of the model
and can also be used to examine its ability to differentiate classes. Each probability
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threshold is represented by a point, linked to form a curve in the ROC graph. A model
with no discriminating power is depicted by a diagonal line from FPR 0 and TPR
0 (coordinates: 0,0) to FPR 1 and TPR 1. (co-ordinate: 1,1). A perfect model is
represented as a point in the upper-left corner of the plot.

3.3 Result and Discussion

For our experiments, we first investigated the performance of different baseline Deep
CNN architectures to choose the best fit for our requirements. After that, an abla-
tion study was conducted to justify how the different considerations in our proposed
pipeline and modifications over the baseline contributed to improving our model’s per-
formance. Next, we inspected per-class precision, recall, and F1-score to evaluate how
the proposed architecture addresses the class imbalance issue. Then, we compared the
performance of our model with the existing state-of-the-artwork of tomato leaf disease
classifications to establish its superiority. Finally, an error analysis was conducted to
figure out where to invest the future improvement efforts.

3.3.1 Performance of Different Baseline Architectures

To choose the baseline model, several state-of-the-art Deep CNN architectures were
implemented to perform tomato leaf disease classification. A comparison of their per-
formance is shown in Table 3.2.

The models were initialized with their pretrained weights on the ImageNet dataset
and fine-tuned using the original tomato leaf samples from the PlantVillage dataset.
The benefit of this initialization was that the models were already capable of learning
complex patterns leading to faster convergence. Since our goal was to pick the best-
suited baseline for the proposed system, we only changed the final softmax layer with
the number of classes of our dataset and trained without any enhancement or augmen-
tations.

While choosing the appropriate architecture, we have considered the accuracy,
number of trainable parameters, estimation of the number of floating-point operations
(FLOPs), and the model’s size. The VGG19 and DenseNet201 architectures achieved
an accuracy higher than 99% percent, and the performance of the ResNets also came
close. These models are superior in terms of accuracy but have a significant disad-
vantage considering the other metrics. For example, the VGG19 model has achieved
99.48% accuracy, which is 2.2% higher than the accuracy of MobileNetV2 architec-
ture. However, this improvement is costly in terms of memory and inference time.
The model consumed 8.5 times the storage space and 8.8 times higher FLOPs count
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Table 3.2: Comparison of the performance and characteristics among the baseline architectures
on the original dataset

Architecture Accuracy
(%)

Parameters
Count

(Millions)

Model
Size

(MB)

FLOPs
Count

(MFLOPs)

DenseNet121 97.96 7.1 27.58 14.1
DenseNet201 99.36 18.35 71.11 36.69
EfficientNet-B0 96.94 4.1 15.89 8.1
MobileNet 96.53 3.2 12.51 6.5
MobileNetV2 97.27 2.28 8.98 4.54
NASNet-Mobile 97.21 4.3 17.53 8.6
ResNet50 98.70 23.62 98.29 51.11
ResNet152V2 98.62 58.36 223.52 116.61
VGG19 99.48 20.02 76.48 40.05

than MobileNetV2. Similar can be said for DenseNet201 as well. On the other hand,
the relatively lighter models such as EfficientNet-B0, MobileNet, and NASNet-Mobile
had lower accuracy than MobileNetV2 despite having higher values in terms of other
metrics.

The MobileNetV2 architecture has the smallest model size and the lowest FLOPs
count, making it ideal for real-time disease detection in devices with memory con-
straints. In addition to that, the fewer parameters of MobileNetV2 architecture result
in faster training and inference. For these reasons, we chose MobileNetV2 as our base
transfer learning architecture. We further aimed to improve the baseline performance
by utilizing preprocessing techniques and an additional classifier network.

3.3.2 Ablation Study

An ablation study was conducted to understand the contribution of different compo-
nents of the proposed pipeline to the overall performance. We considered several com-
binations of the design choices like the preprocessing steps, such as CLAHE, data
augmentation, and the introduction of a classifier network to analyze their effects. A
summary of the result in different settings can be found in Table 3.3.

A positive impact can be seen on the results when the images are preprocessed us-
ing CLAHE. This can be attributed to CLAHE for enhancing the leaf images’ disease
spots, making them more prominent and easier to identify for the models. For exam-
ple, the baseline performance of 97.27% was improved to 97.71% after we introduced
CLAHE. We noticed a further improvement in the results when data augmentation was
introduced. The runtime augmentations allow the model to learn from different repre-
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Table 3.3: Ablation study of different components of the proposed pipeline

CLAHE Augmentation Classifier
Network

Accuracy

× × × 97.27
× × 98.29
× × 98.46
× 99.03

× × 97.71
× 98.60

× 98.84
99.30

sentations of the images in every epoch, allowing the model to focus on the features
highlighted by CLAHE.

Experiments were performed to find out how data augmentation in different splits
affects the overall performance. We found that performing data augmentation on all
three splits resulted in the best accuracy. As a result of the augmentation, the model
learns to recognize different variations of the original image during the training phase.
However, without augmenting the test set, no such variations are to be found. This
violates the key assumption in dataset splitting for general classification tasks, that the
distribution of images found in the training and validation set should be similar to the
distribution in the test set.

One key factor here is that, as all our samples are being augmented with random
probability during run-time, the model never sees the same version of an image twice.
Augmentation in training and validation splits ensures that the model hardly gets any
chance to overfit and learns generic feature representations. In addition, augmenta-
tions performed on the test set ensure that those samples represent real-life scenarios,
making the classification task even more challenging. However, this begets a prob-
lem. Since the augmentation is performed randomly, the model sees different images
in each test run. As a result, the accuracy for each run might not be the same; in-
stead, it gives us a value within a range. To resolve this issue, we tested the trained
model 100 times whenever we used augmentation and reported the average accuracy.
The benefits of doing this are two-fold. First, as the test set is randomly augmented,
the average accuracy is a better descriptor of the model’s performance, preventing any
chance of getting lucky. Moreover, these trials are testing the model with a variety of
samples, more than what could be done using a static test set. So a model being able
to do well in this setup will be robust and can be expected to achieve similar accuracy
in real-life scenarios. It is worth mentioning that the maximum accuracy achieved by
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our best model was 99.53%.
Our hypothesis of introducing the classifier network was that the model would be

able to consider further combinations of the extracted features from the MobileNetV2
network, leading to improved overall performance. Since this network was trained
from scratch on the provided information from the feature extractor network, it ex-
tracted even more meaningful features for leaf disease classification. Thus we found
an improvement in the overall accuracy every time the classifier network was intro-
duced in different setups.

Initially, the performance of the baseline MobileNetV2 model was only 97.27%.
The combination of the preprocessing techniques increased it up to 98.84% show-
ing how these choices improve the generalizing capability of the model. Finally,
the model’s competence was further enhanced with the classifier network leading to
a mean accuracy of 99.30% (Standard Deviation: 0.00095) over 100 runs.

3.3.3 Addressing the Class Imbalance

As mentioned earlier, there exists a class imbalance in the PlantVillage dataset. Thus
drawing a conclusion on a model’s performance solely based on the accuracy metric
might be unwise as the accuracy might still be in the 90th percentile even if the model
is incapable of classifying half of the samples of the least populated classes. To tackle
this issue, macro-averaged precision, recall, and F1-score values were taken under
consideration, which gives equal importance to all the classes regardless of the number
of samples. Our proposed model achieves 99.18 precision, 99.07 recall, and 99.12 F1-
score. The high values of precision and recall signify that our model does a great
job identifying the True Positives. At the same time, it penalizes the accidental False
Positive and False Negative cases. Taking a harmonic mean of these two metrics, the
99.12 value of the F1-score proves the robustness of the proposed architecture even in
imbalanced datasets.

Furthermore, Table 3.4 shows the precision, recall, and F1-score for each class.
From the table, it is evident that our data augmentation technique solved the class
imbalance problem as these values are high even for the classes with a low number of
samples.

3.3.4 Class Separability

The AUC-ROC curve can assess the performance of a predictive model by describing
the trade-off between the True Positive Rate and False Positive Rate by employing
multiple probability thresholds. A perfect classifier will have a ROC where the graph
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Table 3.4: Per class precision, recall, F1-Score for the test set

Class Label Sample
Count

Precision Recall F1-
Score

Bacterial Spot 425 0.9976 0.9953 0.9965
Early Blight 200 0.9745 0.9550 0.9646
Late Blight 381 0.9794 0.9974 0.9883
Leaf Mold 190 1.000 0.9895 0.9947
Septoria Leaf Spot 354 0.9915 0.9915 0.9915
Two-spotted Spider Mite 335 0.9852 0.9940 0.9896
Target Spot 281 0.9928 0.9858 0.9893
Yellow Leaf Curl Virus 1071 1.0000 0.9981 0.9991
Tomato Mosaic Virus 74 1.0000 1.0000 1.0000
Healthy 318 0.9969 1.0000 0.9984

reaches 100% true positives and zero false positives. We generally measure the number
of positive classifications with an increment in the rate of false positives.
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Figure 3.9: ROC curve for the tomato leaf diseases

As shown in Figure 3.9, the ROC curves overall each other at the top-left corner.
That means, our proposed architecture achieves a commendable performance for all
10 classes. Among the classes, our model achieved AUC score of 1 for Leaf Mold,
Yellow Leaf Curl Virus, and Mosaic Virus. Scores for the other classes are also fairly
high, indicating a satisfactory class separability.
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3.3.5 Comparison with State-of-the-art Methods

Table 3.5 presents a comparison of our proposed architecture with the state-of-the-art
models of tomato leaf disease classification. Our model achieves a commendable ac-
curacy of 99.30% while keeping the model size and the number of operations low.
Comparing it to the state-of-the-art models, we can notice that only [39] achieved a
mere 0.09% increase in accuracy, having 2.4 times the model size and 59.27% increase
in FLOPs count. Our model’s smaller size and low computational cost without sacri-
ficing performance make it suitable for low-end devices.

Table 3.5: Performance comparison with the State-of-the-Art models for tomato leaf disease
classification

Reference Class
Count

Image
Count

Accuracy
(%)

Model
Size

(MB)

FLOPs
Count

(MFLOPS)

Durmuş et al. [44] 10 N/A 94.30 2.94 1.44
Brahimi et al. [36] 9 14828 99.18 23.06 11.95
Tm et al. [45] 10 18160 94.85 156.78 82.18
Rangarajan et al. [41] 7 13262 97.49 350.25 183.53
Zhang et al. [42] 9 5550 97.28 98.29 51.1
Bir et al. [46] 10 15000 98.60 15.59 8.11
Maeda-Gutierrez et al. [39] 10 18160 99.39 23.06 11.95
Wu et al. [40] 5 5300 94.33 23.06 11.95
Abbas et al. [43] 10 16012 97.11 27.58 28.09

Proposed Method 10 18160 99.30 9.60 4.87

Some of the works mentioned in the table did not utilize all the samples from the
subset of the PlantVillage dataset, which leaves a possibility of accidentally missing
some critical samples [40, 42, 43, 46]. Additionally, some of the models did not con-
sider all the classes, which might lead to the misclassification of unseen samples. For
example, [36] achieved an accuracy of 99.18%, but the experiment did not include any
healthy samples of tomato leaves. This results in labeling a healthy leaf sample to any
of the disease classes.

Further analysis shows that the space requirement of our proposed architecture
is only 9.6MB. In contrast, different works in the existing literature required at least
twice of this storage space, if not more, to produce similar accuracy (Figure 3.10a).
Although [44] has a smaller model size than that of ours, the accuracy is far less. Fig-
ure 3.10b shows that our model significantly reduced the FLOPs requirement without
compromising the accuracy. Hence it removes the requirement for high-performance
hardware along with reducing the inference time of the model. It can be observed that
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Figure 3.10: Performance comparison with state-of-the-art tomato leaf disease classification
architectures based on model size and FLOPs count

despite using deeper models, some works could not achieve comparable performance
to the state-of-the-art. This further justifies the usefulness of the different components
of our proposed architecture.

3.3.6 Qualitative Analysis

Focusing on the Diseased Portion

To get an intuitive understanding of whether our model is learning to correctly predict
considering the relevant features or not, we examine the Gradient-weighted Class Ac-
tivation Mapping (GradCAM) output for the correctly classified samples [101]. (Fig-
ure 3.11). This visualization can show us how our model classifies a diseased or healthy
sample by highlighting the region in which our model focuses while making the class
label decision.

As shown in Figure 3.11a and 3.11b, our model focused on the diseased portion
of the leaf image to provide the class decision. Conversely, in the case of healthy
leaf (Figure 3.11c), the model focuses on the entire leaf image only find no diseased
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(a) GradCam output for Bacterial Spot (b) GradCam output for Late Blight

(c) GradCam output for Healthy Leaf

Figure 3.11: Qualitative results showing GradCam output for correctly classified samples

portion, and then classifies the image as healthy. This goes to show the capability of
our model in understanding what to look for in a leaf image to make the correct class
decision.

Error Analysis

According to the confusion matrix of our best performing model (Figure 3.12), for
half of the classes, our model was able to predict all the unseen test samples correctly.
For the rest, the accuracy is comparable to other state-of-the-art methods. However,
the most misclassified samples were from the ‘Early Blight’ class. A few of the mis-
classified samples from this class were predicted as ‘Late Blight’. Upon reviewing the
misclassified samples, we identified visually similar leaves from both classes. For ex-
ample, in the original dataset, the class label for Figure 3.13a is ‘Early Blight’, which
was misclassified to ‘Late Blight’ class during inference. The GradCAM output for
the sample shows that our model correctly focuses on the diseased region of the leaf
image (Figure 3.13a).

However, in the training set of the Late Blight class, there are several images (e.g.
Figure 3.13b) that are similar to Figure 3.13a. Since during training, the model learns
to classify these images as of the class ‘Late Blight’, it is expected that similar images
from the test set will also be classified in the same class.

To conclude, after analyzing the misclassified samples, we found some inter-class
similarities in the infected regions among some of the diseases. A few of the leaves
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Figure 3.12: Confusion matrix. Here, 0 = Bacterial spot, 1 = Early blight, 2 = Late Blight,
3 = Leaf Mold, 4 = Septoria Leaf Spot, 5 = Two-spotted Spider Mite, 6 = Target Spot, 7 =
Yellow Leaf Curl Virus, 8 = Tomato Mosaic Virus, 9 = Healthy

were severely damaged by the virus, which eventually restricted the model from ex-
tracting meaningful features leading to misclassification.
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(a) Misclassified Early Blight Sample and its GradCAM
output

(b) Similar Late Blight Samples

Figure 3.13: Misclassified sample with visually similar samples of the predicted class
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Chapter 4

Leaf Disease Classification with Limited Data

Deep learning based architectures have achieved state-of-the-art performance in differ-
ent leaf disease classification tasks. However, this high performance poses the require-
ment of huge amount of training data, which is a very difficult constraint to satisfy.
With the goal of alleviating this limitation, we have proposed a pipeline which can
produce high performance even with very limited samples. In this chapter, we have
discussed the proposed pipeline for plant disease classification using Few-shot learn-
ing. First, we have provided an overview of the overall architecture. Then we have
discussed each of the individual components and the justifications behind our choice.

4.1 Overview

The pipeline is built with the objective of classifying leaf diseases with very limited
samples. It consists of two major components, the CNN-based feature extractor, and
the classifier network. At first, the image is passed to the feature extractor block, which
consists of nine state-of-the-art Deep CNN architectures. The image is passed through
each of the individual CNN blocks and a feature vector is extracted from each of them.
In this way, for each image, the feature extraction block produces nine ‘observations’
describing the different characteristics. Then all the nine features are concatenated to
produce a combined feature vector which is then passed through a Classifier block for
the final prediction. We have explored a variety of choices for the classifier block and
found the best result by implementing a Bi-LSTM layer with 1024 nodes. Finally,
the classifier block is densely connected with a softmax layer which provides the final
prediction. A pictorial view of the proposed pipeline is shown in Figure 4.1.
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Figure 4.1: Overview of the Few-Shot Learning Pipeline

4.2 Materials and Methods

In the proposed pipeline, the CNN-based feature extractor produces a concatenated
feature vector for each input. It is then passed to the classifier block to find deeper
meaning and produce class predictions. To enhance the feature learning ability of the
extractors, we have introduced the concept of domain adaptation. In the following
discussions, we have explained each of these components and provided justification
behind each design choice.

4.2.1 Few-shot Learning Tasks Formulation

Few-shot learning experiments usually have two phases; meta-training and meta-testing.
The datasets used in these two phases have non-overlapping classes. Each of them is
divided into Support set (S) and Query sets (Q) similar to the train-test splits of the
traditional Deep Learning experiments.

The meta-training dataset is used to train the feature extractors to learn to produce
good feature embedding from limited samples. The number of classes and samples in
this portion is not limited as long as it does not overlap with the meta-testing portion.
On the other hand, the meta-testing phase consists of the classes to be used for the
Few-shot Classification problem. The number of classes in this portion is termed as
N . The Support set of the meta-testing dataset consists of very ‘few’ samples, from
which, k samples are taken for training the classifiers to effectively predict the labels N

41



Meta-training

Support set, Query set, Query set, Support set, 

Meta-testing

Training Strategy

Figure 4.2: Training Strategy for Few-Shot Learning Experiment

classes. Hence, the Few-shot experiments are termed as N -way K-shot problems. The
classification task can be termed as 1-shot, 5-shot, 10-shot, etc, respectively based on
the values of k = 1, 5, 10.... Once the classifier is trained with the k-shots, Q-samples
are taken from the Query set of the meta-testing dataset and the overall performance
is calculated. This is termed a Few-shot Learning ‘Task’. The models are usually
tested for multiple such tasks with randomly chosen Support and Query samples for
statistical significance.

4.2.2 Dataset for Single-Domain & Cross-Domain Experiments

The proposed pipeline has been tested under single-domain, mixed-domain and cross-
domain conditions. In the single-domain experiments, the meta-training and meta-
testing come from a similar types of domains with non-overlapping classes. On the
contrary, for the cross-domain experiments, the datasets of meta-training and meta-
testing phases come from two different domains. This task is even more challenging
since it is very difficult to produce feature distribution by tackling the high amount of
dissimilarity of the domains of interest. In mixed-domain FSL, both of the sets contain
classes from multiple domains.

Single-Domain Experiment

For this experiment, we have used the PlantVillage Dataset, which is at present the
largest open-access repository of expertly curated samples for leaf disease classifica-
tion tasks. The dataset consists of 38 classes belonging to 14 crops. Out of these
classes, we have picked the 10 classes of tomato leaf images for meta-testing phase
and used the rest of the 28 classes during meta-training. Figure 4.3 shows the split of
the PlantVillage Dataset used in our experiment.

In the meta-training phase, the 28 classes have been used to fine-tune the feature
extractors to enhance their capabilities specially for leaf disease identification. On
the contrary, the 10 classes of tomato leaf samples have been divided into Support
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Figure 4.3: Split of the PlantVillage Dataset for Few-Shot Learning Experiment

and Query sets with an 80:20 ratio. Hence, out of the 18160 samples of tomato leaf
images, 3629 samples have been considered as the available samples for the Query set,
from which Q number of samples will be picked to test the model. The rest of the
tomato leaf images will be available for the Support set, out of which k-shots will be
randomly picked for training the classifier. For each task, k Support samples and Q

query samples are randomly picked from the available images. To remove biases, this
process has been repeated 100 times and the average performance has been reported.

Mixed-domain & Cross-Domain Experiment

For the Mixed-domain and Cross-domain experiments, we have utilized the ‘Plants &
Pest’ dataset proposed by Li et al. [62]. The dataset consists of 20 classes in total,
out of which, 10 classes belong to different kinds of plants such as apple, blueberry,
cherry, grape, etc; and the other 10 classes contain images of different kinds of pests
such as cydia pomonella, fruit fly, gryllotalpa, snail, etc. Each of the classes contains
300 images.

We have followed the recommended splits by the original authors for the mixed and
cross-domain experiments. In the mixed-domain tasks, we have taken five plants and
five pest classes for meta-training and the rest of the classes for meta-testing. For the
Cross-domain experiments, we have conducted two kinds of experiments. In the first
one, the meta-training set consists of the 10 pest classes and in another cross-domain
scenario, we have considered all the plant classes for meta-training and the remaining
classes for meta-testing.

4.2.3 CNN Based Feature Extractor

The general objective of any Few-shot Learning (FSL) pipeline is to produce very good
feature embeddings from the provided ‘few’ samples. The different variants of the FSL
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Figure 4.4: Dataset for Cross-Domain Experiment (courtesy to [62])

algorithm have evolved keeping this goal in mind. One of the possible solutions to this
problem can be to use a pretrained CNN-based network to extract features and then
pass them through a classifier block. Since the CNN architecture for feature extraction
is usually pretrained with a very large dataset with a wide variety of classes under
challenging conditions, it is supposed to be able to extract meaningful features from
the provided samples. Usually, such features are passed to the softmax layer for final
prediction. But in the FSL applications, the extracted features are expected to be passed
through a classifier block. The classifier block is trained with the ‘Support samples’ of
the ‘meta-testing’ set.

Although this idea has worked tremendously in many applications, the process is
data hungry. Since the number of samples per class is very less here, so it is not enough
to train the CNN architectures, which results in poor performance. As a solution to this
issue, we have thought about the problem in a different manner.

Each of the CNN architecture produces a feature vector utilizing the spatial infor-
mation of the images. It can be thought as, the feature extractor is the ‘critic’ and the
provided features can be compared to its ‘observation’ on the image. In traditional
Deep Learning approaches, each model is fed with many samples, so it can be trained
with the goal of improving its ability to produce highly general observations from the
given samples. However, in Few-shot learning problems, the models cannot be fed
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with such a huge amount of data. So our hypothesis says, combining the observation
of multiple Deep CNN architectures can be a possible solution to tackle this scenario.
Each of the variants of the state-of-the-art CNN architecture has its ability to generate
features in a different manner. So, as we are unable to provide enough samples to the
model for getting expert observation, we aim to show the ‘few samples’ to multiple
observers, take their observations, and combine them to produce a highly general ob-
servation for each sample.

The CNN-based feature extractor block consists of nine state-of-the-art CNN archi-
tectures, which are, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, Dense-
Net121, DenseNet161, DenseNet169, DenseNet201. These models have been cho-
sen considering their remarkable performance in large-scale image classification tasks
[102]. Each of the individual models is pretrained on the ILSVRC2012 dataset. We
discarded the last layer and took only the feature embeddings. In the following discus-
sions, we have discussed the characteristics of the pretrained CNN architectures under
two categories; Residual CNN Architectures and Densely-Connected CNN architec-
tures.

Residual CNN Architectures

Residual Network (ResNet) [12] is one of the most popular deep learning architec-
tures. The architecture improves upon the status quo set by previous architectures by
helping to train a large number of stacked layers. Traditionally, increasing the num-
ber of layers in a deep learning architecture improves the performance by a significant
margin [8, 14, 94]. It is expected that deeper architectures are able to combine activa-
tion maps of many layers resulting in a deeper understanding of the inherent features
of the input. However, even when the number of layers of architectures is increased,
the performance of the networks gets saturated, and even degrades rapidly [103, 104].
This problem is caused by the notorious vanishing/exploding gradients problem. With
the increase in the number of layers, the flow of gradients which are used to optimize
the network is reduced by a constant factor in each layer, reducing the improvement of
performance.

ResNets solve the vanishing gradient problem by introducing residual connections
in-between layers. This connection facilitates the flow of information from shallow
layers to deeper layers. At the same time, it enables gradients to flow back skipping a
few layers. For this reason, these residual connections are also known as skip connec-
tions.

As seen in Figure 4.5, generally, the network takes x as input and produces F(x)

as output. In the case of ResNets, the output is changed to F(x) + x. That means the
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Figure 4.5: Residual Connection Block [Adapted from [12]]

features are combined via summation operation. Considering the change in dimensions
due to convolution and/or pooling layers, one of the following two approaches can be
adopted:

• Padding zeros with x in the skip connection to increase the dimension

• Adding 1× 1 convolution layers to match the output dimension

These residual connections help solve the vanishing gradient problem by introduc-
ing ‘shortcut’ paths for gradient flow throughout the network. Again, due to regular-
ization, any layer hurting the performance of the model can be skipped.

The authors proposed 5 variants of ResNets, namely ResNet-18, ResNet-34, ResNet-
50, ResNet-101, and ResNet-152. A ResNet-X architecture consists of X layers. But
all of them contain the same residual connection in-between layers. The layer config-
urations are shown in Table 4.1.
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Table 4.1: Layer configurations of the variants of ResNet architectures for input size 224× 224. The input and output of the blocks in square brackets are
connected with residual connections.

Layers Output ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152
conv1 112× 112 7× 7, 64, stride 2

conv2_x 56× 56
3× 3 max pool, stride 2[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3_x 28× 28

[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 8

conv4_x 14× 14

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 36

conv5_x 7× 7

[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1× 1 average pool, 1000-d fc, softmax
Model Size (MB) 23 35 103 155 219

FLOPs 2× 109 4× 109 4× 109 8× 109 11× 109
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Densely Connected CNN Architectures

Expanding on the ideas of ResNet’s skip connections, Dense Convolutional Network
(DenseNet) [6] connects all layers with matching feature-map sizes directly with each
other. Here, each layer receives input from all the previous layers and sends its output
to all the subsequent layers. Additionally, instead of combining features through sum-
mation like ResNets, DenseNet architectures concatenate features. This alleviates the
problem of dimension matching. That means the layer l of an L layer network receives
l inputs combining the activation maps of all the previous layers. Again, the activation
map produced by layer l is passed on to all L− l subsequent layers. This creates L(L+1)

2

connections between different layers. Creating a dense connection between all the lay-
ers ensures the maximum flow of information and gradient between layers. In addition
to that, it reduces the number of parameters compared to that of ResNets, since the
layers in the DenseNets are narrow.

concat

concat

Figure 4.6: Dense Convolutional Block [Adapted from [6]]

As seen in Figure 4.6, the layer l receives the activation maps of all the previous
layers as input:

xl = F([x0, x1, . . . , xl−1]) (4.1)

where, [x0, x1, . . . , xl−1] refers to concatenation operation.
Based on the number of layers, the authors proposed 4 variants of the DenseNet ar-

chitecture, namely DenseNet-121, DenseNet-161, DenseNet-169, and DenseNet-201.
The layer configurations are shown in Table 4.2.
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Table 4.2: Layer configurations of the variants of ResNet architectures for input size 224× 224

Layers Output DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201
conv1 112× 112 7× conv, stride 2
pooling 56× 56 3× 3 max pool, stride 2

dense1 56× 56

[
1× 1
3× 3

]
× 6

[
1× 1
3× 3

]
× 6

[
1× 1
3× 3

]
× 6

[
1× 1
3× 3

]
× 6

trans.1
56× 56 1× 1 conv
28× 28 2× 2 average pool, stride 2

dense2 28× 28

[
1× 1
3× 3

]
× 12

[
1× 1
3× 3

]
× 12

[
1× 1
3× 3

]
× 12

[
1× 1
3× 3

]
× 12

trans.2
28× 28 1× 1 conv
14× 14 2× 2 average pool, stride 2

dense3 14× 14

[
1× 1
3× 3

]
× 24

[
1× 1
3× 3

]
× 36

[
1× 1
3× 3

]
× 48

[
1× 1
3× 3

]
× 64

trans.3
14× 14 1× 1 conv
7× 7 2× 2 average pool, stride 2

dense4 7× 7

[
1× 1
3× 3

]
× 16

[
1× 1
3× 3

]
× 24

[
1× 1
3× 3

]
× 32

[
1× 1
3× 3

]
× 32

classi. 1× 1
7× 7 global average pool
1000− d fc, softmax

Model Size (MB) 31 110 55 77
FLOPs 3× 109 8× 109 3× 109 4× 109
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4.2.4 Combining the Extracted Features

In the feature extraction block, we utilized nine state-of-the-art CNN-based networks
from which we get nine features for each input image. These features can also be
termed as the ‘observations’ from the ‘critics’ i.e. the models. Since each critic has its
unique characteristics, each observation carries some unique description of the sample.
Hence, we combine the features before passing them to the classifier and expect it to
find out even more meaningful features. We explored different ways to utilize the
extracted observations and empirically found that concatenating all the observations to
produce a single feature vector is the best way to pass the information to the classifier
network.

4.2.5 Classifier Network

The classifier network takes the output obtained from the pretrained features extractors
and uses a bidirectional LSTM-based [105] architecture to classify the features. As
an addition to standard LSTMs, bidirectional LSTMs can improve the model’s perfor-
mance on a variety of classification tasks. Instead of training just one LSTM on the
input features, Bi-LSTMs train two LSTMs. The first one is on the input features as-is
and the other on a reversed copy of the input features. A basic Bi-LSTM network ar-
chitecture is depicted in Figure 4.7. The basic building block of a Bi-LSTM network
is a simple LSTM block which is represented in Figure 4.8.

Intentionally, LSTMs are created to prevent the long-term dependency issue. They
do not strain to learn; rather, remembering knowledge for extended periods is their
default habit. All recurrent neural networks have the form of a series of neural network
modules that repeat. This recurring module in typical RNNs will be made up of just
one tanh layer, for example. Although the repeating module of LSTMs also has a
chain-like topology, it is structured differently. There are four neural network layers
instead of just one, and they interact in a very unique way.

The horizontal line that runs across the top of the Figure 4.8 represents the cell state
and is the key to LSTMs. The cell state resembles a conveyor belt in certain ways.
With only a few tiny linear interactions, it proceeds directly down the whole chain.
Information can very easily continue to travel along it unmodified. The LSTM may
modify the cell state by removing or adding information, which is carefully controlled
via gates. Information can pass via gates on a purely voluntary basis. They consist of
a pointwise multiplication process and a layer of sigmoid neural networks. Indicating
how much of each component should be allowed through, the sigmoid layer generates
integers between zero and one.

Choosing whatever information from the cell state to discard is the first stage in
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Figure 4.7: Bidirectional LSTM Architecture

our LSTM. The “forget gate layer,” a sigmoid layer, decides on this. It examines ht−1

and xt, and for each number in the cell state Ct−1, it produces a number between 0
and 1. The next step is to choose the new data that will be kept in the cell state. Two
parts make up this. The "input gate layer", a sigmoid layer, first determines which
values will be updated. The state is then updated with a vector of potential new values,
Ct, created by a tanh layer. These two will be combined in the subsequent phase to
provide an update on the state.

Finally, we have to choose what we will produce as output. This output, however
filtered, will be based on the status of our cell. We first run a sigmoid layer to determine
which portions of the cell state will be output. Then, in order to output just the portions
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we chose to, we multiply the cell state by the output of the sigmoid gate after passing
the cell state through tanh (to push the values to be between -1 and 1).

In the case of Bi-LSTM, two separate LSTM network is run concurrently one from
the left to right and the other one from the right to left. In each step. output from both
networks are concatenated and passed through a sigmoid layer to produce the output
which will, in turn, be used for calculating the loss and backpropagation. In traditional
LSTM architectures, features that come before the current feature are only responsible
for the current output. The latter features actually could affect the present output being
generated. Because of this, taking into account the features from both sides tends to
significantly increase the classification performance.

O
ut

pu
t G

at
e

Cell State

Forget 
Gate

Input Gate

Figure 4.8: The Repeating Module in a Basic LSTM Network

4.2.6 Domain Adaptation

The feature extractor block consists of a total of nine variants of the ResNet and Dense-
Net architectures pretrained on the large-scale ImageNet dataset containing a wide va-
riety of samples from diversified classes. Hence they are capable to extract very highly
sophisticated features that can be utilized for any classification problem. When these
networks are used for any classification task, a common practice is to fine-tune the
architectures based on the available training images. However, in the few-shot clas-
sification problems, it is not possible to fine-tune such deep models with very limited
samples. An alternative solution to this problem is to provide knowledge of a similar
domain so that, despite the model having never seen the target classes, it has some
idea about their general characteristics. In this work, we have named this approach
‘Domain Adaptation’.
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To apply domain adaptation in the proposed pipeline, we have trained the CNN-
based architectures with a good amount of leaf images containing healthy and diseased
samples. For this, we used the 28 classes of the PlantVillage dataset except for the sam-
ples of the tomato leaves. Our intuition behind this experiment was that as the models
were already capable of extracting useful features, this knowledge base can be further
enriched by showing them a lot of leaf samples. Although at this point, the model has
never seen any ‘tomato leaf samples’, it knows what a healthy or diseased leaf looks
like, what are the features to look for in a leaf image, and how to differentiate the dif-
ferent classes of leaves, etc. Thus when the limited samples are provided, the ‘domain
adapted models’ can extract even better features compared to their ‘pretrained’ states.

4.3 Results & Discussions

In this section, we have evaluated and discussed the performance of the model under
different circumstances. At first, we explained the experimental setup for the experi-
ments. Then we thoroughly investigated the design choices of the proposed pipeline
such as the appropriate way to combine features, the choice of classifier, and the im-
portance of domain adaptation. Then we tested the pipeline in single-domain, mixed-
domain and cross-domain scenarios.

4.3.1 Experimental Setup

The proposed pipeline has been trained under a python environment with PyTorch
and other necessary libraries in Google Colab. We conducted the experiments on the
provided Intex Xeon CPU with a base clock speed of 2,3 GHz. The available GPU was
the NVIDIA Tesla T4 with a Virtual RAM of 15 gigabytes.

For the single-domain experiments, the meta-testing phase was conducted with 10
classes of tomato leaf images, which were divided into Support and Query sets with
a split ratio of 80:20. The remaining 28 classes of the PlantVillage dataset were used
for the meta-training phase. For each evaluation task, k training samples and Q testing
samples were randomly picked respectively from the support and query set of the meta-
testing portion of the dataset. Hence, it was a N -way k-shot problem, with the value of
N fixed to 10, and the value of k was taken as 1, 5, 10, 15, 20, 40, 80, etc. in different
experiments.

The batch size was selected as 32 following the mini-batch gradient descent tech-
nique [98]. This was chosen first to fit the data into the available memory. Moreover,
the smaller batch size is often noisy, and thus they help to create a regularization effect
in the overall training process. Since there were many samples available for the support
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and query set, each time the k and Q samples were randomly chosen and the process
was evaluated for 100 tasks to incorporate statistical significance. Since the samples
are randomly picked, the average accuracy is shown for each experiment along with
the 95% confidence interval score to show the deviation.

While fine-tuning the CNN-based feature extractor with the meta-training set, we
allowed the individual networks to be trained till convergence and used early stopping.
It helps to reduce the overfitting issue and improves generalization. For each task, the
classifier network, was trained with the k-shots for 100 epochs with L2 regularization.
The learning rate used to train the classifier was 0.0005.

4.3.2 Selection of Feature Combination

Our first hypothesis is that as the number of samples per class is very less, the capability
of pretrained architectures can be utilized to build the feature space. For this reason,
we used the extracted features of nine pretrained architectures and concatenated them
to produce a combined ‘observation’ of the image, and provide it to the classifier.

Single vs Ensembled Feature Extractor

At first, the performance of each of the feature extractors was analyzed thoroughly for
different values of k. We explored five variants of ResNet and four variants of the
DenseNet architectures since they have been proven to provide state-of-the-art perfor-
mance in different large-scale image classification tasks. Along with finding the per-
formance of the individual networks, we also considered the ensemble of the ResNets,
an ensemble of DenseNets, and finally the ensemble of all nine architectures. Since we
focused on finding the best combination of feature extractors, we used only a Dense
layer of 1024 hidden units followed by a softmax layer. The findings of this experiment
are shown in Table 4.3.

We conducted the experiment for four combinations of k = 1, 5, 10,&15. For the
test samples, Q = 50 images per class were taken at random. To remove any kind of
bias, this random sampling of k, Q was conducted 100 times and the average value
was reported. The objective was to find the feature extractor which works best with the
provided ‘few-shots’. Among the residual architectures, ResNet18 was found to be the
best performing one. The deeper versions of the residual architectures are designed for
classifying large datasets, so due to the very limited number of samples, the shallower
layer performed better. The DenseNet architectures performed similar to or better than
the ResNets in general. Among the single feature extractors, the DenseNet201 was
the best. Compared to the ResNet18 architecture, it provided a similar performance
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Table 4.3: Single vs Ensembled Feature Extractor

Feature
Extractor

K = 1 K = 5 K = 10 K = 15

ResNet18 34.36±
0.82

55.42±
0.77

62.56±
0.67

66.76±
0.62

ResNet34 29.65±
0.91

49.93±
0.81

57.93±
0.56

63.69±
0.54

ResNet50 30.62±
0.88

54.24±
0.92

61.79±
0.65

65.99±
0.64

ResNet101 29.64±
0.93

52.73±
0.79

61.61±
0.74

65.79±
0.68

ResNet152 29.75±
0.84

52.61±
0.86

61.39±
0.74

66.44±
0.68

DenseNet121 32.48±
0.99

54.93±
0.89

64.09±
0.72

68.21±
0.56

DenseNet161 32.29±
1.07

56.58±
0.88

65.59±
0.71

70.56±
0.66

DenseNet169 32.89±
0.97

55.39±
0.78

64.09±
0.72

69.39±
0.7

DenseNet201 33.51±
0.94

57.21±
0.87

65.71±
0.86

70.77±
0.73

Ensemble of
ResNets

36.34±
1.01

60.04±
0.91

68.74±
0.71

73.84±
0.68

Ensemble of
DenseNets

35.94±
1.03

61.47±
0.96

70.26±
0.79

75.42±
0.65

Ensemble of Nine
Extractors

37.89±
0.99

62.07±
0.98

72.33 ±
0.81

76.93 ±
0.66

for one-shot classification and provided 2− 3% improvement for 5-shot, 10-shot, and
15-shot classification.

Since the performance of the network was close to each other, our intuition said that
ensembling them can provide better results because each of them might have unique
strengths in extracting certain types of features useful for detecting specific types of
diseases. We applied three types of ensembles of the CNN-based feature extractors.
By ensembling similar types of networks, we achieved better performance than the
individual ones. The best performance was achieved by combining all the nine feature
extractors. This justifies our hypothesis; ‘combined observation of expert critics are
few-shot learners’.
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Table 4.4: Finding the Best Way to Combine Features

Observation
Type

Classifier Domain
Adopt

k = 1 k = 5 k = 10 k = 15

Parallel Dense × 40.2±
1.46

72.95±
0.97

82.6±
0.97

85.71±
0.78

Parallel Dense 50.38±
1.68

83.78±
1.16

89.07±
0.91

92.79±
0.69

Parallel Bi-LSTM × 39.84±
1.65

48.27±
2.20

52.66±
1.75

63.42±
1.78

Parallel Bi-LSTM 53.4±
1.74

74.75±
1.68

79.3±
1.90

81.99±
1.81

Concatenated Dense × 37.89±
0.99

62.07±
0.98

72.33±
0.81

76.93±
0.66

Concatenated Dense 46.56±
1.07

72.17±
1.04

81.18±
0.68

85.12±
1.02

Concatenated Bi-LSTM × 42.53±
1.25

81.9±
1.37

87.80±
1.23

89.06±
1.22

Concatenated Bi-LSTM 51.36±
1.54

89.19±
1.20

90.75±
1.09

94.02±
0.86

Combining the Extracted Features

Once the leaf images are given into the proposed pipeline, the feature extraction block
provides nine unique observations. These features are then combined and sent to the
classifier block to find out deeper meanings. To combine the features, we have at-
tempted two approaches; which we have named, ‘Parallel Observation’ and ‘Concate-
nated Observation’.

In the Parallel Observation approach, the nine observations, i.e, the nine different
features provided by the CNN-based extractors are passed to the classifier network
separately. This can be interpreted as if, nine observers are describing the image to
the classifier network. Since the inherent architecture of each of the feature extractors
has a difference, each of the observations carries some ‘unique’ information about the
sample. It provides the model with an opportunity to create an effect of nine times
more samples than what is provided.

On the other hand, the Concatenated Observation approach combines the nine fea-
tures into one observation by concatenating with one another, resulting in a 13, 984

dimensional feature vector per sample. The objective of the classifier is to pick the
most important information from the different observations of the feature extractors
and combine them to produce even more meaningful one.

To compare both of the approaches, we conducted a thorough ablation of the dif-
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ferent design choices. For each approach, two types of classifiers have been used.
The first classifier is a simple densely connected layer of 1024 nodes, which has been
termed as ‘Dense Classifier’. The other classifier consists of a Bi-directional LSTM
layer of 1024 nodes, termed as ‘Bi-LSTM Classifier’. We have also checked the im-
pact of domain adaptation for each of the combinations. For this experiment, we have
considered the values of k as 1, 5, 10&15 and Q = 50 applied for 100 tasks. The find-
ings are mentioned in Table 4.4.

For each combination, the domain adapted state has always provided 5 − 10%

performance improvement compared to the feature extractors which have only been
trained on the ImageNet dataset. The Dense classifier has been found to be a better fit
for the parallel observation approach. On the contrary, the Bi-LSTM classifier is more
suitable for the feature concatenation approach. Out of all the experiments, the Domain
Adapted Concatenated feature extraction approach with Bi-LSTM classifier is the best
performing one, having an accuracy as high as 90.97% and 94.02% respectively for
10-shot and 15-shot classification.

4.3.3 Selection of Classifier Network

After finding the appropriate way to combine the feature, we explored different choices
of classifiers intending to extract even deeper meanings. For this, we considered the
Dense, LSTM, GRU, Bi-GRU, and Bi-LSTM classifiers. Each of the classifiers con-
sisted of 1024 nodes followed by a softmax layer of 10 nodes. Experiments have been
conducted on the base feature extractors without applying domain adaptation, with
k = 1, 5, 10&15. For this analysis, we took the entire test set into account with a total
of 3629 images. To check the statistical significance of the results, we investigated
them 100 times. The experimental findings have been reported in Table 4.5.

In dense classifier networks, the current output is based on the current input features
which have no impact on the future or the past feature representations. Incorporating
both past and future features help the classifier to generalize on the current input thus,
obtaining a better classification result. In general, recurrent layers performed better
than dense layers. One intuition might be that the dense layers are forced to have at
least some weight on each of the connections, whereas, the recurrent layer has the
opportunity to completely forget some of the components of the observations.

To incorporate left-to-right and right-to-left features in the current input, we have
used RNN-based classifiers namely, LSTM [106] and GRU [107]. From the obtained
results, it can be observed that the performance difference between GRU and LSTM
is minimal. The reason behind this is, LSTM was proposed to eradicate the vanishing
gradient problem of traditional RNN-based architectures. LSTM-based architectures
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successfully do so, with the help of 4 gates in every LSTM unit that is repeated through-
out the network. The increased number of gates in each block increased the training
time as well as the required resources. To optimize the training and inference, Gated
Recurrent Unit (GRU) was proposed which comprised of a reset gate and an update
gate. Our experiments show that LSTM performs better with less training data due to
its more powerful unit block whereas GRU performs better with more training sam-
ples.

The input features obtained from our pre-trained feature extractors are significant
to the final output or the classification results. The features are fed to the classifier net-
work in the form of a one-dimensional vector in a sequential manner. Considering the
features that only the network has seen before might not be sufficient for the current
output prediction and that is why the features that will come after it are also consid-
ered. Our experimental results also prove this hypothesis as the bidirectional classi-
fiers, both LSTM and GRU, performs better than their unidirectional counterpart. The
performance of Bi-LSTM [105] is significantly better than Bi-GRU for lower values
of K and the performance, the gap minimizes as the value of K increases. In our ex-
periments, the Bi-LSTM-based network provides the best performance for each value
of K while taking slightly more training time than Bi-GRU.

Table 4.5: Different Choices of Classifier Network

Classifier K = 1 k = 5 K = 10 K = 15
Dense 37.89±

0.99
62.07±
0.98

72.33±
0.81

76.93±
0.66

LSTM 43.24±
1.72

69.16±
1.75

74.15±
1.52

72.84±
1.02

GRU 40.21±
1.55

68.15±
1.54

78.97±
1.54

81.08±
1.56

Bi-GRU 43.03±
0.51

72.69±
1.28

85.53±
1.26

90.94±
1.03

Bi-LSTM 48.02 ±
1.63

84.36 ±
1.62

88.97 ±
1.80

91.22 ±
1.67

4.3.4 Impact of Domain Adaptation

The baseline CNN-based feature extractors are pretrained on larges scale ImageNet
datasets with the capability of extracting useful feature features from any input sam-
ples. However, to make the feature extractors even more specialized in finding ap-
propriate leaf features, we applied the domain adaptation concept. This significantly
improved the overall performance of the pipeline. We have used the Bi-LSTM clas-
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sifier since it has been found to be the most useful one on the feature concatenation
approach. The experimental findings are available in Table 4.6.

Table 4.6: Impact of Domain Adaptation

k-shot Domain Adapt Q = Full

k = 1
× 48.02± 1.63

56.19± 1.72

k = 5
× 84.36± 1.62

89.06± 1.30

k = 10
× 88.97± 1.80

92.46± 1.75

k = 15
× 91.22± 1.67

94.07± 1.40

k = 20
× 92.66± 1.87

95.68± 1.20

k = 40
× 93.7± 1.66

97.04± 0.98

k = 80
× 97.38± 1.48

98.09± 0.77

In this experiment, we have also considered larger values of k such as 20, 40, and
80. The trained models have been tested using all the samples from the meta-testing
set. After the domain adaptation, the models were already capable of distinguishing
different kinds of leaf diseases. Hence, even though it never saw any tomato leaf
samples, it could achieve high accuracy like 89.06%, 92.46%, 94.07% respectively
for the 5-shot, 10-shot, and 15-shot classification task. The results were even more
promising as the number of samples increased. We achieved 98.09% accuracy with
only 80 samples per class which is almost 20× less data dependency compared to
the other works. One obvious observation was that, as the value of k goes higher,
the significance of Domain adaptation becomes lower. Finally, to find the maximum
capacity of the pipeline, we provided the model with all the 14531 training samples and
evaluated it with the full test set; which achieved a remarkable accuracy of 99.31±0.12.
Our conclusion from this experiment is that domain adaptation is such a powerful
tool that it has enabled the model to allow 20× less data compromising only 1.22%
accuracy.

4.3.5 Single Domain vs Cross Domain Experiments

To conduct the robustness of our proposed pipeline in different circumstances, we
conducted several experiments in single-domain and cross-domain environments. In
the first experiment, we used the dataset of the few-shot task proposed by Argueso et
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Table 4.7: Performance Comparison on PlantVillage Dataset

Approach k = 1 k = 10 k = 15 k = 80
Argüeso et al. [54] 55.5 77 80 90
Wang et al. [73] 63.8 × 91.3 96
Ours 74.7 ±

3.12
99.73 ±
0.24

99.92 ±
0.09

99.9 ±
0.07

Table 4.8: Single-Domain and Cross-Domain Experiments

k-shot Approach Single-Mixed
Domain

Cross-Domain
1

Cross-Domain
2

K = 1
Li et al. [62] 81.1 72.1 44.1
Nuthalapati et
al. [84]

84.1 79.2 52

Ours 95.56± 0.91 90.29± 0.91 90.05± 1.06

K = 5
Li et al. [62] 87 84.9 53.1
Nuthalapati et
al. [84]

91.2 93.7 66.5

Ours 99.97± 0.03 99.8 ± 0.1 99.51± 0.14

K = 10
Li et al. [62] 90.4 87.1 55.8
Nuthalapati et
al. [84]

92.9 95.5 71.6

Ours 99.97± 0.03 99.89± 0.05 99.41± 0.28

al. [54]. In this task, the target classes contained samples from apple, blueberry, and
cherry leaves. The experiments were conducted on Q = 50 for 20 randomly sampled
tasks. We applied the model under similar experimental setups and it significantly
outperformed the state-of-the-art. The results are mentioned in Table 4.7.

Afterward, the robustness of the pipeline was shown with the single-domain and
cross-domain tasks as proposed in [62]. For this task, the Plants & Pest dataset has
been utilized. This experiment has been conducted keeping three tasks in mind named
as, single-mixed domain, cross-domain1, and cross-domain2. In the single-mixed do-
main experiment, the source class contained samples of both leaves and pests. Hence,
although the target classes contained other kinds of leaves or pests, the classification
task was simpler. In the cross-domain1 experiment, the pest classes were chosen as the
source class and the plant classes as the target class. The cross-domain 2 experiment
was the other way around. The merit of these experiments is that, if the model can
learn leaves after only being trained on pest samples, it signifies that it has learned
very good feature representation. Regardless of the single or cross-domain tasks, the
pipeline has outperformed the works of [62, 73] by a good margin. This shows the
generalizing ability of the model under different circumstances with just a few shots.
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Chapter 5

Conclusion

5.1 Summary

Fast and accurate recognition of leaf diseases can go a long way to meeting the ever-
increasing demand in food production. In this regard, we have proposed a lightweight
deep neural network by combining a fine-tuned pretrained model and a classifier net-
work. The utilization of the adaptive contrast enhancement technique has eliminated
the illumination problem persistent in the dataset. Runtime data augmentation tech-
niques have been applied to address the class imbalance issue while avoiding data leak-
age. All these components of the pipeline enabled the model to focus on the disease
spots and extract high-level features leading to an accuracy of 99.30%. We achieved
this performance with significantly smaller model size and FLOPs count compared to
the state-of-the-art models. The nearest model producing a similar level performance
required 2.4× heavier model size and 2.45× additional FLOPs count requirements.
This makes the proposed pipeline a suitable choice for building applications for low-
end devices.

Furthermore, the scarcity of quality datasets has brought the interest of the re-
searchers to propose systems that can produce high accuracy even with a limited num-
ber of samples. In this regard, we incorporated the concept of few-shot learning to pro-
pose a pipeline for classifying leaf diseases with very limited data. The challenge of
building a good feature representation has been tackled by utilizing a CNN-based fea-
ture extraction block consisting of different state-of-the-art architectures. Each com-
ponent of the feature extractor has provided its observation on the provided sample
which has been then combined and passed to a classifier block for effective predic-
tion. The concept of domain adaptation has improved the feature extractors by pro-
viding domain-specific knowledge so that it performs well for unseen classes. After
thoroughly analyzing the pipeline, we have achieved promising accuracy of 89.06%,
92.46%, and 94.07% respectively for 5, 10, and 15-shot classification, which is excep-
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tionally higher than using other types of FSL algorithms. We achieved an accuracy
of 98.09% providing only 80 samples per class, which is a 94.5% reduction in the
requirement of training data. We also investigated the robustness of the model under
mixed-domain and cross-domain tasks, where it produced state-of-the-art performance
compared to the existing methods.

5.2 Future Works

Despite that, there are several scopes for improvement. One of the limitations of the
PlantVillage dataset is that the samples are taken in laboratory conditions. Further ex-
periments can be performed with leaf images having varying backgrounds taken from
the field. Such images might contain occlusion and background clutter. Advanced seg-
mentation techniques can be taken into account to locate the infected regions before
classification. Moreover, only a single disease can be found in each of the samples
used in our experiment. Identifying multiple diseases within a single leaf will be an-
other challenging task to solve. The classification goal can also include detection of
the severity of infection on leaves, which intelligent systems can utilize to decide the
amount of pesticide to be used. In the few-shot learning task, an attention mecha-
nism could have been employed on the concatenated features. The effectiveness of the
proposed pipelines can also be explored in other domains. Finally, we have proposed
separate solutions to tackle the data and resource constraints. Proposing lightweight
few-shot learning algorithms along with ensuring state-of-the-art performance can be
an interesting research challenge to consider in future endeavors.
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