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       Abstract 

Globally, cancer is becoming a major health issue as advances in modern medicine 

continue to extend the human life span. In the U.S., cancer is the second most-common 

cause of death, exceeded only by heart disease and accounting for nearly one of every four 

deaths. Breast cancer ranks second as a cause of cancer death in women (after lung cancer).  

Thus, early detection and treatment are critical in reducing breast cancer related mortality. 

Working with Breast ultrasound (BUS) data or image is regarded as a challenging task due 

to the inherent nature of ultrasound imaging. Ultrasound imaging is characterized by 

speckle patterns, anisotropy and signal drop-out. Moreover, proper image acquisition 

techniques by the clinicians and their level of expertise also play a dominant role in 

determining the image quality. The fuzziness in the shape and boundaries of the breast 

lesions make it very difficult to automate the segmentation of BUS images. In order to 

improve the issues prevalent in the existing approaches, a complete qualitative and 

quantitative analysis of Breast ultrasound (BUS) images is proposed in this thesis.  The 

method involves three steps – (a) Finding out strain image by means of strain estimation, 

(b) Final Segmentation of the detected lesion and (c) Quantitative analysis of the lesion.   
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1 Introduction  

1.1 Breast Cancer Scenario 

Breast cancer is the most common and the second-most lethal cancer among females 

worldwide [1]. Among the women only in USA, breast cancer alone is expected to account 

for 29% of all the new cancer diagnoses with an estimate of 246,660 cases in 2016 [2]. 

Breast cancer survival rates vary greatly worldwide,  ranging  from  80%  or  over  in  North  

America,  Sweden  and  Japan  to  around 60% in middle-income countries and below 40% 

in low-income countries [3]. Statistics reveals that if breast cancer is diagnosed at a 

localized stage then the 5-year relative survival rate approaches to 99% [4]. Since the 

causes of breast cancer still remain unknown, early detection and treatment of breast cancer 

is the top most priority in reducing breast cancer related mortality. 

1.2 Medical Imaging in Breast Cancer Detection 

Current methods for detecting and diagnosing breast cancer includes mammography, 

ultrasound imaging and magnetic resonance imaging (MRI). In this section, the standard 

imaging modalities for early detection of breast cancer is discussed. 

1.2.1 Mammography 

Mammography is considered as the standard imaging method for earlier detection and 

diagnosis of breast cancer [5, 6]. It is specialized medical imaging that uses a low-dose x-

ray system to see inside the breasts. Two schemes of mammography is used in breast cancer 

detection and diagnosis namely Screening Mammography and Diagnostic Mammography. 

Typically, the first step in breast cancer detection is screening mammography which is a 
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low-dose X-ray examination on asymptomatic women. Diagnostic mammography is an X-

ray examination done to evaluate a breast complaint or to investigate an abnormality found 

during a physical examination or during screening mammography. A typical breast 

mammogram is shown in Figure 1-1.  

 

Figure 1-1 A typical breast mammogram (Image courtesy: Radiological Society of North America) 

 

However, mammography suffers from different limitations such as low specificity of in 

case of adolescent women with dense breast [5] and potential risk towards patients’ health 

due to ionizing radiation [7]. Many unnecessary (65–85%) biopsy operations are due to the 

low specificity of mammography. The unnecessary biopsies not only increase the cost, but 

also cause emotional suffering for the patients.   
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1.2.2 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging is a medical imaging technique used in radiology to 

investigate the anatomy and physiology of the body during both health and disease states. 

MRI scanners employ magnetic fields and radio waves to form images of the body. The 

technique is widely used in hospitals for medical diagnosis and, the staging of diseases and 

to perform follow-ups without causing exposure to ionizing radiation. A real MRI scanner 

is shown Figure 1-2. 

 

Figure 1-2 An illustration of a real MRI scanner 

 

Breast MRI has a number of different uses for breast cancer, including: 

 Screening high-risk women (women known to be at higher than average risk for 

breast cancer, either because of a strong family history or a gene abnormality) 

 Gathering more information about an area of suspicion found on a mammogram or 

ultrasound 
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 Monitoring for recurrence after treatment 

Although breast MRI is a more sensitive test than mammography in many ways, this 

increased sensitivity may cause areas of the breast that do not have cancer to appear 

abnormal, producing an increased number of false-positive test results. False-positive test 

results indicate cancer when no cancer is actually present. A breast MRI with false positive 

nodule is illustrated in Figure 1-3.  This false-positive results may lead to unnecessary 

biopsies (removal of breast tissue for further study) and increased anxiety for many women. 

At the same time, breast MRI cannot visualize the calcium deposits, known as 

calcifications or microcalcifications, which typically surround DCIS lesions (the 

suspicious area). Mammography, on the other hand, can detect these calcium deposits 

accurately. Finally, breast MRI is more expensive than mammography.  

 

Figure 1-3 A Breast MRI with False Positive Nodule (Image courtesy: Radiological Society of 
North America) 
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1.2.3 Ultrasound Imaging  

Ultrasound imaging also known as ultrasonography or simply sonography, uses high-

frequency sound waves to view the internal regions of the body. It is the most economical 

and widely available medical imaging modality. Because ultrasound images are captured 

in real-time, they can also show the movements of the body's internal organs as well as the 

blood's passage through the blood vessels. Unlike X-ray imaging, no ionizing radiation 

exposure is associated with ultrasound imaging. Nowadays  it  is  extensively  used  in  fetal  

imaging,  carding  imaging,  breast  cancer detection,  and  detection  of  benign  and  

malignant  tissue  in  the  human  body. 

1.2.3.1 Basic Principle of B-Mode Ultrasound 

Modern  medical  US  is  performed  primarily  using  a  pulse-echo  approach  with  a 

brightness-mode (B-mode) display. The basic principles of B-mode imaging are much the 

same today as they were several decades ago. This involves transmitting small pulses of 

ultrasound echo from a transducer into the body. As the ultrasound waves penetrate body 

tissues of different acoustic impedances along the path of transmission, some are reflected 

back to the transducer (echo signals) and some continue to penetrate deeper. The echo 

signals  returned  from  many  sequential  coplanar  pulses  are  processed (generating the 

envelope from echo signal)  and  combined  to generate an image. Thus, an ultrasound 

transducer works both as a speaker (generating sound waves) and a microphone (receiving 

sound waves). An overview of the image acquisition using ultrasound is presented in 

Figure 1-4 and Figure 1-5. The ultrasound pulse is in fact quite short, but since it traverses 

in a straight path, it is often referred to as an ultrasound beam. The direction of ultrasound 

propagation along the beam line is called the axial direction, and the direction in the image 
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plane perpendicular to axial is called the lateral direction. Usually only a small fraction of 

the ultrasound pulse returns as a reflected echo after reaching a body tissue interface, while 

the remainder of the pulse continues along the beam line to greater tissue depths. 

 

Figure 1-4 Basic Pulse-Echo Ultrasound System (Image Courtesy: Dr. S. Kaisar Alam, Rutgers 

University, NJ, USA) 

             

Figure 1-5 B-mode image formation (Image Courtesy: Dr. S. Kaisar Alam, Rutgers University, 

NJ, USA) 
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1.2.3.2 Challenges in Ultrasound Image Interpretation 

Image artifacts are commonly encountered in clinical ultrasonography (US) and may be a 

source of confusion for the interpreting physician and for computer based systems. Some 

artifacts may be avoidable and arise secondary to improper scanning technique. Other 

artifacts are generated by the physical limitations of the modality. US artifacts can be 

understood with a basic appreciation of the physical properties of the ultrasound beam, the 

propagation of sound in matter, and the assumptions of image processing. US artifacts arise 

secondary to errors inherent to the ultrasound beam characteristics, the presence of multiple 

echo paths, velocity errors, and attenuation errors. The beam width, side lobe, 

reverberation, comet tail, ring-down, mirror image, speed displacement, refraction, 

attenuation, shadowing, and increased through transmission artifacts are encountered 

routinely in clinical practice. Recognition of these artifacts is important because they may 

be clues to tissue composition and aid in diagnosis. The ability to recognize and remedy 

potentially correctable US artifacts is important for image quality improvement and 

optimal patient care. 

1.2.3.3 Ultrasound imaging in Breast Cancer Detection 

To address the issues of mammography and breast MRI,  ultrasound imaging is considered 

to be one of the most effective tools as an adjunct to it [7]. Statistics show that more than 

one out of every four study on breast cancer detection is based on ultrasound images, and 

the proportion is rapidly increasing [8, 9]. Studies have demonstrated that using US images 

can discriminate benign and malignant masses with a high accuracy [10]. Use of ultrasound 

can increase over all cancer detection by 17% [11] and reduce the number of unnecessary 

biopsies by 40% which can save as much as $1 billion per year in the United States alone. 
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Breast ultrasound (BUS) imaging is superior to mammography in the following ways. (1) 

Since it requires no radiation, ultrasound examination is more convenient and safer than 

mammography for patients and radiologists in daily clinical practice [12]. It is also cheaper 

and faster than mammography. Thus, ultrasound is especially suitable for the low-resource 

countries indifferent continents. (2) Ultrasound techniques are more sensitive than 

mammography for detecting abnormalities in dense breasts; hence, it is more valuable for 

women younger than 35 years of age [11]. (3) There is a high rate of false positives in 

mammography which causes a lot of unnecessary biopsies. In contrast, the accuracy rate 

of  BUS imaging in the diagnosis of simple cysts is much higher [10]. Thus, US imaging 

has become one of the most important diagnostic tools for breast cancer detection. 

 

1.3 Thesis Objectives 

The context of this thesis work is a complete A Complete Breast Cancer Detection 

Approach via Quantitative and Qualitative Analysis of Breast Ultrasound (BUS) Images 

This includes qualitative analysis by strain estimation method, then accurate breast lesion 

segmentation in US images and lastly quantitative analysis of those images. Therefore, the 

objective of this thesis work was to develop more robust, accurate and automatic breast 

lesion depiction, segmentation, quantitative analysis and then diagnosis method for 

ultrasound images. 

The outcome of this thesis will facilitate the complete diagnosis of breast cancer. 
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1.4 Thesis Organization  

The thesis is organized in the following way –  

Chapter 2 (Background) presents the literature review and state-of-art situation of problem. 

Chapter 3 Strain Estimation from Breast Ultrasound (BUS) data. 

Chapter 4 Breast Lesion Segmentation 

Chapter 5 Quantitative Ultrasound 

Chapter 6 (Conclusion and Future Directions for Research) summarizes the whole thesis 

work and presents the future scope of research in BUS image segmentation problem.  

 

 

 

 

2 Background 

2.1 Related Work 

Several articles are found to address the problem of strain estimation using Breast 

Ultrasound (BUS) Images. Over the past several years, methods based on tissue elasticity 

have gained significance for diagnosis of disease [18]–[26]. These methods fall into two 

main groups: methods where a low frequency vibration is applied to the tissue and the 

resulting behavior is inspected [18]–[21], [24], and methods where a compression is 
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applied to the tissue and the resulting strain is estimated [22], [23]. Among the first group 

of techniques, in sonoelasticity imaging [19], [20], the vibration amplitude pattern of the 

shear waves in the tissue under investigation is detected and a corresponding color image 

(similar to color Doppler display) is superimposed on the conventional grayscale image. A 

theory of sonoelasticity imaging was developed [25] and in vitro results on excised human 

prostate were promising [26]. Among the techniques based on the estimation of tissue 

strain, elastography [22] is based on estimating the tissue strain using a correlation 

algorithm, whereas another elasticity imaging technique is based on estimating such strain 

using the phase information [23]. In elastography, the local tissue displacements are 

estimated from the time delays between gated pre- and postcompression echo signals, 

whose axial gradient is then computed to estimate the local strain. 

For QAS many sources were used fpr Classification of Ultrasonic B-Mode Images of 

Breast Masses[38]. Review of Envelope Statistics Models for Quantitative Ultrasound 

Imaging and Tissue Characterization and review of Quantitative Ultrasound: Envelope 

Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound 

for mathematical model of the distributions[39][40] .  

 

2.2 Overview of the proposed method 

. Overview of the proposed method can be broken into three steps. Firstly, strain estimation 

and finding out the lesion, then segmentation and lastly qualitative analysis.  

The flow chart of the proposed method is presented in Figure 2-1. 
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                                           Figure 2-1 Overview of the proposed method 
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3 STRAIN ESTIMATION from Breast Ultrasound 

(BUS) data: 

In this chapter, we discuss our proposed framework of strain estimation.  

Several strain estimation techniques in elastography have been developed over the last 10 

years. Time-domain methods typically estimate the axial strain as the gradient of the 

displacement (time-delay) estimates obtained using crosscorrelation of precompression 

and temporally stretched postcompression radiofrequency (RF) A-line segments 

(Cespedes and Ophir 1993; Varghese and Ophir 1997a; Ophir et al. 1999). Some of the 

alternative strain estimation methods include 2-D companding and sum-absolute-

difference estimators (Chaturvedi et al. 1998), lateral strain estimation (Konofagou and 

Ophir 1998), Fourier-based speckle phase-tracking (O’Donnell et al. 1991), wavelet-based 

strain estimation (Bilgen 1999), adaptive strain estimation (Alam et al. 1998; Brusseau et 

al. 2001; Srinivasan et al.2002b), strain estimation using staggered windows (Srini vasan 

et al. 2002b), zero-crossing tracking (Srinivasan and Ophir 2003) and incoherent estimators 

based on the power spectrum, such as centroid tracking (Konofagou et al. 1999; Varghese 

et al. 2000), spectral cross-correlation (Varghese et al. 2000), spectral scaling (Alam et al. 

2001) and optical flow-based techniques (Bertrand et al. 1984) 

Changes in biological tissues change their elasticity. Elasticity imaging enjoys an ever 

increasing role in disease diagnosis. In elastography, tissue strain is estimated using signal 

processing. Strain is conventionally calculated from estimated displacements between the 

pre- and post-compression ultrasonic echo signals. In this paper, we introduce a novel 1.5D 
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strain estimator. The proposed algorithm uses 1D windows for fast computation, but 

searches in the lateral direction to account for non-axial motion.  

 

3.1.1 Segmentation of signal columns 

Pre and post-compression signals were segmented into overlapping 1D windows.  
 
 
                                      

 

Figure 3-1: Segmentation of Signal columns 
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3.1.2 Lateral movement of tissue  

When pressure is applied, different part of tissues deform differently. This happens more 

when high pressure or stress is applied. As a result, different tissue part may move laterally in 

different directions and the segments of the pre compression signal won’t correspond to post 

compression signal in the exact Position. 

 

Pre-compression echo signals were segmented into overlapping 1D windows. A segment 

from pre-compression ith column was correlated with the corresponding segments of (in)th to 

(i+n)th post-compression column. For each postcompression column, the maximum 

correlation was calculated, yielding 2n+1 maximum correlation values. Then, we calculated 

which of these 2n+1 correlation values is the highest; in other words, which lateral segment 

of the postcompression data had the highest correlation with the precompression data 

segment. If the pre-compression data segment (ith) had the highest correlation with the 

(i+k)th postcompression data line segment, it meant that tissue deformed in such a way that 

the corresponding post-compression segment had shifted +k columns. 

 

 
 

Figure 3-2: Lateral Movement of Tissue 
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Figure 3-3: Finding out the lateral shift of data stream 

 

 

 

3.1.3 Finding displacement and then strain from displacement: 

In the time domain, the lags (displacements) between the segments of pre- and 

corresponding segments of postcompression signal was determined [8 from my paper]. 

First difference between two consecutive displacements gives strain [9]. 

Strain= (i,j)th displacement – (i+1,j)th displacement, 

where, i=row and j=column. 

The displacement map is computed by sliding the pre and post-compression windows and 

computing the displacement for each pre-compression window. The strain map is 

computed using the above equation [10] 
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3.2 BUS Dataset: 

We have tested the proposed strain estimation method with the similar data used in [11], 

generated using 2-D finite element analysis. We used the software named Algor to simulate 

the phantom of 40 X 40 mm. The FEM model did not show out-of-plane motion as it was 

a 2D model. Total 30372 scatterers were used for the simulation. The phantom background 

was homogeneous and had 60 kPa stiffness. There were four circular inclusions, each 

having 7.5 mm diameter. The inclusions at the left bottom, top, bottom right and middle 

were respectively 10 dB, 20dB, 30dB and 40 dB stiffer than the background. A planar 

compressor compressed the phantom from the top. The phantom was scanned from the top 

using a transducer having 4 MHz center frequency and 60% bandwidth. There were total 

128 scan lines. We added zeromean white noise to simulate sonographic SNR of 40 DB. 

There was also interaction between lesions which was responsible for the strain variations 

in the background, even though the phantom's background was a uniformly stiff 

background. 

       3.3Experimental Results 

We applied the proposed 1.5D strain estimation method on the conventional strain 

estimator, which calculates gradient of estimated displacements (no stretching) and on the 

adaptive stretching estimator. For both estimators, our approach significantly improved 

estimator performance.  
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Figure 3-4 Processed data at low applied strain (2 %): (a)Gradient 

(b) 1.5D applied to gradient method (c) Adaptive stretching 

 (d)Adaptive stretching with 1.5D 

For applied strain of less than 4 percent, the result of our method is not very different from 

that of the conventional one. In Fig.3-3, we observe that the result for our method is better, 

or at worst, same. In these cases, we can assume that there was no significant shift of the 

post compression signal. 
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Figure 3-5 Processed data at 4% applied strain : (a)Gradient 

(b) 1.5D applied to gradient method (c) Adaptive stretching 

 (d)Adaptive stretching with 1.5D 

 

The 1.5D estimators show significantly better results when we use it on the FEM 

simulation data with applied strains of more than 4 percent, i.e. 6% or 8% applied strain.  
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Figure 3-6 Processed data at 6% applied strain : (a)Gradient 

(b) 1.5D applied to gradient method (c) Adaptive stretching 

 (d)Adaptive stretching with 1.5D 
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Figure 3-7 Processed data at 8% applied strain : (a)Gradient 

(b) 1.5D applied to gradient method (c) Adaptive stretching 

 (d)Adaptive stretching with 1.5D 
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Figure 3-8 Processed data at 12% applied strain : (a)Gradient 

(b) 1.5D applied to gradient method (c) Adaptive stretching 

 (d)Adaptive stretching with 1.5D 

 

Fig. 3-5,3-6,3-7 and 3-8 shows elastograms for the same simulation for different applied 

strain levels. In the figure, we compared the original adaptive stretching and gradient 

methods with 1.5D processing applied to the same methods. It is quite evident from the 

figures that the proposed method improves performance. Especially for 6% and 8% 
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applied strain, homogeneous regions are not clear for the original methods, while our 

method successfully shows it. 

The reason for our improvement is obvious, because post-compression signal is more 

likely to undergo lateral shifts when applied strain is higher. Our method takes this shift 

into account, ultimately producing a better strain image. 

However, with higher applied strain, i.e. around 12 percent, the result becomes unusable 

for any original method. But for these cases, the proposed 1.5D method is able to provide 

comparatively better performance. In Figure 3-8, 1.5D with gradient method is somewhat 

better than its 1D counterpart. Adaptive stretching with 1.5D can depict all four 

inclusions, where original adaptive stretching method depicts only one. 
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4 Breast Lesion Segmentation 

In this chapter, we describe the image map improvement techniques and final segmentation 

framework proposed for segmentation of breast lesion. Using histogram breakdown and 

simple image processing tools we improve the edge-map of the image in the initial case. 

Using the detected seed point, a coarse initial segmentation is achieved through a modified 

“Metamorph” image [27] segmentation. The result of the metamorphs is used as a guide 

for the training of segmentation tools. Finally, fine segmentation is achieved through 

“GraphCut” [28] and “GrowCut” [29] segmentation. To show the improvement in the 

method, we also show the results with the famous snake model as well. Overview of the 

segmentation framework is presented in Figure 4-1. 
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Figure 4-1 Overview of Segmentation Framework 
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4.1 Image Pre-processing for Segmentation 

The main aim for image pre-processing is to increase homogeneity inside the tumor lesion 

and enhance the tumor boundary by using standard image processing techniques. The 

proposed image pre-processing scheme for our segmentation framework is illustrated in 

Figure 4-2 and discussed in details in next subsequent subsections.  

 

 

Figure 4-2 Flowchart of image pre-processing for final segmentation 
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4.1.1 Speckle Reduction  

Speckle is a particular kind of noise which affects ultrasound images, and can significantly 

reduce their quality and diagnostic usefulness [30]. The main aim of ultrasound de-noising 

methods is both to produce of image of standard appearance with reduced level of speckle 

for improving the appearance of images but importantly for image analysis, both intensity 

inhomogeneity and speckle can challenge intensity-based segmentation methods [31]. The 

speckle reduction algorithm should focus reducing speckle while preserving anatomic 

information is necessary to delineate reliably and accurately the regions of interest and to 

carry on important diagnostic image analysis [32]. In our framework, we have used a recent 

approach for speckle reduction proposed in [32]. In [32], authors proposed an adaptation 

of the Non Local means (NL-means) method to a dedicated US noise model [33] using a 

Bayesian motivation for the NL-means filter [34]. Figure 4-3 presents the result of speckle 

reduction step. It is to be noted that the major anatomical details are preserved in the filtered 

image with a reduced level of speckle noise. The output image of the filter has less granular 

appearance than the original image but structure of lesion of the lesion is well preserved 

with increased homogeneity inside the lesion.  
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Figure 4-3 (a) Original Image. (b) Speckle Reduced Image 

 

4.1.2 Potential Energy Image formation 

In order to enhance the edges and introduce a level of smoothing so that spurious edges get 

suppressed, we generate a potential energy image described in [35]. This potential energy 

image is formed by using the energy functional used in Snakes [35] to produce a force that 

can be used to drive snakes towards features of interest inside the image such as lines, 

edges and terminations. The potential energy image can be expressed as a weighted 

combination of three functional -    

 
image line line edge edge term termE w E w E w E     [1] 

where, 
imageE  is the potential energy image, lineE  is region functional, 

edgeE  is the edge 

functional and termE  is the termination functional. In our implementation, main goal was to 

introduce a slight smoothing to suppress the local and to enhance the enhance edges. 

Therefore, in our case, the potential energy functional contained only the region and energy 

(a) (b) 
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functional terms by giving zero weightage to the termination functional. The region and 

edge energy functional are defined [45] as – 

 ( , )* ( , )lineE G x y I x y   [2] 

 
2| [ ( , )* ( , )] |edgeE G x y I x y    [3] 

In equation (13) and (14), ( , )I x y  is the speckle reduced image, ( , )G x y  is a Gaussian 

blur function,   is the standard deviation and   is the gradient operator. The appropriate 

balance between the blurring and edge enhancement is achieved by carefully determining 

the value of weighting parameter linew  and 
edgew  respectively. In our work, the values of 

 , linew  and 
edgew  are chosen (empirically determined) as 1.5, 2.0 and 3.5 respectively.  

4.1.3 Phase in Maximum Orientation (PMO) Image Formation 

The local phase has been suggested to be a more robust model for acoustic boundary 

detection and for characterizing edges. In order to enhance the edges and reduce 

inhomogeneity within the hypoechoic and anechoic regions of BUS image, we have used 

the energy-based phase feature PMO proposed in [36]. For generating PMO image, the 

original image is transferred to the frequency domain and filtered along six orientations 

according to the following angle filter –  

 

20

0

2

( ( ) )

( , )
2( /1.2 )

n

n

u u
atan

v v
F u v exp

N






 


    [4] 

where ( 1,..,6)n n   corresponds to six orientations, 0 0( , )u v  is the origin of the frequency 

domain and N is the number of the orientations. Then the image is transferred back to 

spatial domain through inverse Fourier transform. The phase matrix kPH  and energy 
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matrix kE  is then saved along each orientation. For every pixel ( , )i j  , PMO is obtained 

by following formulation –  

 
1,...6( , ) ( , ), ( , )k l lPMO i j PH i j k argmaxE i j     [5] 

PMO image is then processed with three 5 5  median filter to suppress the edge responses 

inside the lesion in order to achieve more homogeneity in those regions. Finally, image 

brightness and contrast is enhanced using two brightening and intensification function 

proposed in [36]. Figure 4-4 shows the enhanced PMO image. The advantage of PMO is 

evident from the result in Figure 4-4. It is seen that the local contrast between foreground 

and background is enhanced, and the texture of the image becomes smoother and clearer.  

 

Figure 4-4 (a) De-noised Image. (b) PMO image. 

 

 

(a) (b) 
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4.1.4 Final Processed Image Formation 

An intermediate image is formed by the combination of speckle reduced image,
filtI ; 

potential energy image,
imageE  and phase in maximum orientation, ( , )PMO i j  in the 

following formulation –  

 
int [ ( , )]image filtI E PMO i j I     [6] 

Then log compression is applied on the intermediate image to get the final pre-processed 

image for the segmentation. Figure 4-5 illustrates final image obtained as the result of the 

image pre-processing for segmentation. This image is termed as pre-processed image, 
pI

in our work.  

 

Figure 4-5 (a) Original Image. (b) Pre-processed Image 

 

   

(a) (b) 
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4.2 Edge Map improvement by Two-Pointers 

4.2.1 Initialization region near the seed point 

 To solidify the results in the section, we initialize a simple region on the image, where 

there is a probability of the seed. The region may be a simple circle or any simple square 

around the region of the circle. This plot will have the segments and mostly will contain 

parts of the lesion area. After that we plot the histogram of the plotted area. This will help 

us understand what the pixel density inside the lesion region is in this specific image. The 

better the initialization, the histogram will prove to be more useful to use for the next step 

of two pointers. 

 

4.2.2 Breaking the histogram of the total image 

After the histogram reading of the lesion region, we break the histogram with two threshold 

values such that the most contributing values of pixels get separated from the least 

contributing ones. This processing is going to be done on the whole image. As the 

histogram can be random in shape, so we use two separation factors as of two-pointers. 

This two pointers separate and the new image, named the intermediate image will provide 

a better edge map of the image. To fill up close call edges we used the image processing 

tool of dilation and erosion on the image map before applying segmentation algorithm. The 

results of the edge map on these images are illustrated on Figure 4-6 where to show the 

output results simple snake segmentation method is used. 
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Figure 4-6 - Two Pointers processing step to obtain intermediate image with snake 

segmentation model 
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4.3 Initial Segmentation using Region Growing 

Region growing is a popular segmentation method which starts from a selected seed point 

and adds pixels into the region by comparing their intensities with the global or local 

thresholds. The growing procedure stops until there are no more pixels can be added into 

the region. The method works well for noise-free images. However, for BUS images it 

cannot guarantee a good performance. In our framework, we are using region growing as 

a means to obtain a coarse initial segmentation based on the automatically selected seed 

point from the algorithm.  

Many reports are found in the literature regarding the region growing for BUS images. In 

[14], authors used region growing as an initial guess for next subsequent processing steps. 

They have generated joint probability image (discussed in detail in section 3.1.4.1.1) and 

applied region growing on it. However, their method suffers from the problem of non-

robust constraints. The stopping criterion includes two hard threshold values 1  and 2  

which needs to be given by user. In case of BUS images due to wide range of variation of 

intensity, it is difficult of extract a uniform set of parameter values for larger database.  This 

issue is evident from the images shown in Figure 4-6 obtained by region growing following 

the method in [14]. For all the images, the values of 1  and 2  are chosen as 0.4 and 2.9. 

It is seen in Figure 4-7 (b), using this parameter setting we are getting good initial 

segmentation while images in Figure 4-7 (c) and 4-7 (e) are suffering from over-

segmentation with the same set of parameter. 
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Figure 4-7 Column 1 - Original Image with manual delineation. Column 2- Region Growing 

using Madabhusi’s method [14] 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Juan Shan in [9] proposed another region growing criterion specifically for BUS images. 

She proposed a growing criterion which is related with both the intensity mean of the 

current region and the intensity mean of the entire image. The threshold was set as a 

dynamic value and changed from image to image. Her method produced reasonable result 

in comparison with Madabhusi’s method [14]. However, the method suffers from over-

segmentation issues in case of lesion containing leaked or weak edges. One such case is 

presented is Figure 4-8.  

 

Figure 4-8 (a) Original Image with leaked edge indicated with a yellow arrow. (b) Region 
Growing result by Shan’s method [9] 

 

The Bus image shown in Figure 4-8 (a) has a very clear boundary except one leaked edge 

indicated by the yellow arrow. It is found that the Shan’s region growing performs well in 

the area where clear boundary exists but fails if a leaked edge is present. To overcome the 

inconvenience of the Shan’s method, in this these we are proposing a new stopping 

criterion for region growing.  

(a) (b) 
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Let R represent the set containing all the pixels in the region, and p be a pixel in R. At the 

beginning of region growing, set R contains only the seed point 0S . A pixel v is included 

in R, if ∃p∈R and it satisfies the following condition: 

 
1

2

( ) {max( ,min( , )}  { ( ) ( ) }  { ( ) min_ }
M

G v b m M and N p N v and G v grad
b

        [7] 

where, ( )G v  is the intensity value of pixel v,  m is the intensity mean of region R, M is the 

intensity mean of the entire image, and 1b  and 2b  are the parameters tuning the relationship 

between the stop criterion and the intensity means of the current region and the entire 

image, N denotes the type of connectivity of the neighborhood pixels around the pixel 

under consideration,   is the gradient operator and min_ grad  is a gradient threshold used 

for tackling the case of leaked edges. First term of equation (18) ensures the pixels included 

have the similarity with the ones already included in the region while min_ grad threshold 

introduces an additional criterion to stop region growing at the boundary of the edges 

regardless its strength. The equation (18) is a generalized representation of the stopping 

criterion used in [9]. When min_ grad is set as 1, the proposed method behaves like Shan’s 

method.  

Using this modified region growing, we were able to tackle the cases the suffering from 

over-segmentation due to leaked edges. In our work, region growing is applied on the pre-

processed image, 
pI  not on the original image. Figure 4-9 shows the result of growing on 

the image shown in Figure 4-8 (a) using the modified criterion proposed in this thesis. It is 

seen in Figure 4-9 (b) that the new method has the capability of reliably segment BUS 

images containing leaked or weak edges.  
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Throughout our experimentation, 1b = 1.2 and 2b =1.4 was used which were determined 

empirically. We have used two different values for min_ grad ; images with leaked edges 

(four cases) min_ grad was set to 0.5 while for rest of the cases it was 0.9.  

 

Figure 4-9 (a) Original Image. (b) Result of Region Growing proposed in this thesis 

 

The result of the region growing, Ir will be used as a guide for generating a set of object 

pixels and a set of background pixels for the training of segmentation tools in next steps. 

 

4.4 Final Segmentation 

In this work, final segmentation is achieved is achieved through “GraphCut” [18] and 

“GrowCut” [19] segmentation. Both of the methods are interactive i.e. they require user 

interaction for training the algorithm with the understanding of object and background 

pixels. The novelty of our work is that we aim to achieve complete automation for both 

GraphCut and GrowCut and apply them in BUS image segmentation.  

(a) (b) 
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4.4.1 Graph Cuts Segmentation 

In this section, the theoretical background of Graph Cuts segmentation [18] is presented. 

Let P denote the set of pixels of an input image and N denote the set of adjacent pixels. Let 

A = (A1, . . . , Ap, . . . , A|P|), be a segmentation result of the image. Ap belongs to either 

object (Ap= OBJ) or background (Ap= BKG), where OBJ and BKG are labels for an object 

pixel and a background pixel, respectively. In the training phase, object and background 

labels are assigned to some pixels by the user. Let E(A), R(A), and B(A) denote the energy 

function, region energy, and boundary energy, respectively. 

 ( ) . ( ) ( )E A R A B A    [8] 

where, 

 ( ) ( )p P

p P

R A R A


   [9] 

 { , }

{ , }

( ) . ( , )p q p q

p q N

B A B A A


    [10] 

and 

 
1 if  

( , )
0 if  

p q

p q

p q

A A
A A

A A



 



  [11] 

The parameter   reflects the weight of the region energy R(A). R(A) represents the 

individual penalties for assigning the pixel p to OBJ and BKG, that is, Rp(OBJ) and 

Rp(BKG). Rp(OBJ) is large when p is similar to the user-specified object, and Rp(BKG) is 

large when p is similar to the user-specified background. The coefficient 
{ , }p qB serves as a 

penalty for a discontinuity between p and q. 
{ , }p qB  is large when p and q are similar. 

In this setting, the goal of the segmentation is to solve the following optimization problem: 
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 min  ( ) . ( ) ( )E A R A B A    [12] 

 
OBJ  if  

. .  
BKG if  

p

p O
s t A

p B


 


  [13] 

In [18], Graph cuts is proposed to as a good solution to the optimization problem. A 

weighted graph, ,G V E  is defined where the vertex set, { , }V P S T  , S is the OBJ 

terminal and T is the BKG terminal and E is the set of edges connecting these vertices. The 

weight of the edges are determined by regional energy, boundary energy and hard 

constraints from the user. It can be proven that minimum cost cut Ĉ  on graph G 

corresponds to the optimal segmentation of the image [18]. 

4.4.2 GrowCut Segmentation 

GrowCut is an algorithm for interactive multilabel segmentation of N-dimensional images. 

Given a small number of user-labelled pixels, the rest of the image is segmented 

automatically by a Cellular Automaton [47]. The method details are presented below. 

A (bi-directional, deterministic) cellular automaton is a triplet A = (S; N; δ), where S is an 

non-empty state set, N is the neighborhood system, and : NS S   is the local transition 

function (rule). This function defines the rule of calculating the cell’s state at t + 1 time 

step, given the states of the neighborhood cells at previous time step t . 

The cell state Sp in our case is actually a triplet ( , , )p p pl C   – the label 
pl  of the current 

cell, ‘strength’ of the current cell 
p  , and cell feature vector 

pC  , defined by the image. 

A digital image is a two-dimensional array of k m  pixels. An unlabelled image may be 

then considered as a particular configuration state of a cellular automaton, where cellular 
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space P is defined by the k m  array set by the image, and initial states for p P   are set 

to:  

 0, 0,p p p pl C RGB     [14] 

where RGBp is the three dimensional vector of pixel’s p color in RGB space. In our case, 

RGBp is replaced with a one dimensional vector containing the grey level of the pre-

processed image, Ip. The final goal of the segmentation is to assign each pixel one of the K 

possible labels.  

When user starts the segmentation by specifying the segmentation seeds, the seeded cells 

labels are set accordingly, while their strength is set to the seed strength value. This sets 

the initial state of the cellular automaton. At iteration t + 1 cell labels 
1t

pl


 and strengths 

1t

p


 are updated automata evolution rule which is discussed in details in [19].  

In this algorithm, pixel labelling process is considered as growth and struggle for 

domination of K types of bacteria. The bacteria start to spread (grow) from the seed pixels 

and try to occupy all the image. That is why we called the method ‘GrowCut’. In our case, 

the value of K is two. 

 

4.4.3 Metamorphs and Deforming Segmentation 

Metamorphs model shape is embedded implicitly in a higher dimensional space of distance 

transforms. The Euclidean distance transform is used to embed an evolving model as the 

zero level set of a higher dimensional distance function. In order to facilitate notation, we 

consider the 2D case. Let Φ : Ω → R+ be a Lipschitz function that refers to the distance 
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transform for the model shape M. By definition Ω is bounded since it refers to the image 

domain. The shape defines a partition of the domain: the region that is enclosed by M, 

[RM], the background [Ω−RM], and on the model, [∂RM] (In practice, we consider a 

narrow band around the modelMin the image domain as ∂RM). Given these definitions the 

following implicit shape representation is considered: ΦM(x) = 0, when x∈∂RM; + 

ED(x,M) > 0, when x∈RM; and −ED(x,M) < 0,when x∈[Ω−RM], where ED(x,M) refers 

to the min Euclidean distance between the image pixel location x = (x,y) and the model M. 

Such treatment makes the model shape representation an “image”, which greatly facilitates 

the integration of boundary and region information. It also provides a feature space in 

which objective functions that are optimized using a gradient descent method can be 

conveniently used. A sufficient condition for convergence of the gradient descent methods 

requires continuous first derivatives. The considered implicit representation satisfies such 

a condition. One can prove that the gradient of the distance function is a unit vector in the 

normal direction of the shape. This property will make our model evolution fast. Examples 

of this implicit representation can be found in [Fig. (1).2]. This shape representation in 3D 

is similarly defined in a volumetric embedding space. 

 

4.4.4 Automatic Training Pixel Generation for Segmentation 

From the discussion presented in section 4.3.1 and 4.3.2, it is clear that both GraphCut and 

GrowCut requires manual interaction for initial labeling of object and background pixels. 

This initially labeled pixels are termed as training pixels in this thesis. In this section, we 

present our novel approach for generating training pixels for GraphCut and GrowCut 

segmentation.  
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For generating the training pixels, we use the result the initial segmentation result from 

region growing step. The following steps are followed for generating the training pixels:  

1) The region grown result, Ir is a binary image containing one connected region 

corresponding to the coarse segmentation of lesion. Morphological erosion is 

applied on this binary image to erode away eight pixels from the boundary of the 

lesion region. This shrunken lesion region is termed as foreground region, FR and 

used to generate object pixels for the segmentation algorithms. We randomly select 

800 pixels from the foreground region, FR and use them as the object training pixels. 

2) Two regions enlarging the foreground region are formed; one being twice of the 

area of the foreground region termed as B2 while other being 1.5 times of the area 

of the foreground region termed as B1.5. The background region, BR is defined as: 

 2 1.5RB B B    [15] 

If the lesion is very small then the all pixels of foreground and background regions are 

chosen as object and background pixels respectively. Figure 4-10 shows the training pixel 

generation process with intermediate results.  

 

Figure 4-10 (a) Original Image. (b) Region Growing. (c) Foreground Region. (d) Background 

Region 

 

(a) (b) (c) (d) 
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4.5 Final Segmentation using GraphCut and GrowCut 

In the final step of our segmentation framework, segmentation with fine detail of lesion 

boundary is obtained by employing GraphCut and GrowCut and also the help of 

metamorph segmentation on the pre-processed image, Ip. Both of the method is now 

completely automated as user interaction for selecting the object and background seed 

pixels is replaced by our proposed automatic training pixel generation. Finally, holes in the 

segmentation results are filled using morphological reconstruction [48], which can also be 

identical to the two pointers structural element as well as of the metamorphs. Figure 4-10 

shows the segmentation result obtained using GraphCut as the segmentation tool while 

Figure 4-11 illustrates the result obtained using GrowCut as the segmentation tool.  

 

 

Figure 4-11 (a) Original Image with seed point and manual delineation (b) Segmentation Result 

using GraphCut. 

 

(a) (b) 
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Figure 4-12 (a) Original Image with seed point and manual delineation (b) Segmentation Result 

using GrowCut. 

 

 

5 Quantitative Ultrasound 

5.1.1 Introduction 

    Conventional medical imaging technologies, including ultrasound, have continued to 

improve over the years, but the ability to classify these tissue features from images often 

lacks specificity. As a result, a large number of biopsies of tissues with suspicious image 

findings are performed each year with a vast majority of these biopsies resulting in a 

negative finding. To improve specificity of cancer imaging, quantitative imaging 

techniques can play an important role. Conventional ultrasound B-mode imaging is mainly 

qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific 

numbers related to tissue features that can increase the specificity of image findings leading 

(a) (b) 
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to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of 

techniques. Two very promising techniques are looked into to find possibility of improved 

method of tissue characterization. They are homodyne k distribution parameters and 

Nakagami   distribution parameters. 

5.1.2  Basic Functionalities  

     Both the method uses different approach to characterize the propagation media, in this 

case the propagation media is live tissue. The characterization of the propagation media is 

done with parametric values from this two distribution. Homodyne k provides us with 

information about scattered density per resolution cell and energy ratio. Nakagami 

distribution gives us information about effective number of scatterer  and effective cross 

section area of scatterer. Computing these parameters for inside and outside of the region 

of interest (ROI) provides us with different numerical values. These values might help to 

distinguish between types of tissues. 

5.1.3 Background and Motivation 

Imaging has fundamentally transformed the practice of medicine since the first X-

rays were produced more than a 100 years ago. Since that time, medical imaging techniques 

have continued to evolve in their capabilities, expanded in their applications and have 

grown in their importance to medical practice. X-ray, X-ray CT, magnetic resonance 

imaging (MRI), ultrasound, nuclear imaging, and optical imaging techniques have all been 

adapted for specific applications in medicine. Each of these imaging modalities has 

associated tradeoffs in terms of spatial resolution, frame rate, contrast, imaging depth, cost, 

safety, and portability. The improvements in biomedical imaging have, for the most part, 

been beneficial to the practice of medicine. For example, in recent years, the high quality 

of imaging has resulted in higher sensitivity to suspicious tissue features for cancer imaging 

and detection, although gains in sensitivity remain an important medical problem. 

Unfortunately, in the case of cancer, these improvements in sensitivity have not always 

been paralleled by improvements in specificity, i.e., the ability to determine if a suspicious 
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image finding is benign or malignant. As a result, a cancer “overdiagnosis” problem has 

occurred in which many biopsies are being conducted because of suspicious image findings 

with the vast majority of these biopsies having negative findings. Therefore, currently, 

there is a need to improve cancer imaging by improving the specificity as well as the 

sensitivity of imaging techniques. This in turn would reduce the number of biopsies, which 

would thereby reduce the cost of medical care, reduce the anxiety of, and additional risks 

posed to, patients undergoing these procedures, and reduce the time burden of physicians 

and pathologists. In order to improve the specificity of biomedical imaging, quantitative 

imaging techniques have been developed. A mapping of physical quantities in the image 

space generated from the signals can provide new sources of image contrast. In ultrasound, 

quantitative ultrasound (QUS) techniques include spectral-based parameterization of 

ultrasound signals, flow estimation through Doppler, tissue elastography techniques, shear 

wave imaging, and envelope statistics. Some of these techniques have already been adopted 

on clinical devices while some of these techniques are still under development. Our 

motivation is to contribute in this process. Ultrasound signals from tissues are based on the 

scattering of ultrasound from changes in the mechanical properties of tissue structures. 

Scattering from interfaces between two different kinds of tissues or large structures (on the 

order of a wavelength or larger) can result in large specular echoes. However, within certain 

tissue structures and organs, regions of uniform scattering may occur giving rise to 

scattering from many sub resolution structures. In B-mode, this scattering appears as 

speckle. Many image-processing techniques aim to reduce the presence of speckle. 

However, the signals giving rise to speckle are associated with the underlying tissue 

microstructure. Currently, the gold standard for disease classification is based on optical 

histology, which is able to characterize the microstructure of tissue. Therefore, if the 

ultrasound signals depend on tissue microstructure, then it is hypothesized that 

characterization of these signals could noninvasively provide information about tissue 

microstructure to assist in classifying disease without the need for optical histology in all 

cases. To properly characterize these signals, it is mandatory to model the signals 

associated with ultrasonic backscatter from tissues. Two methods of analyzing these 
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signals have gained prominence: spectral based parameterization of the signals and 

characterization of the envelope statistics. 

 

5.2.1 Overview  

      We propose using two quantitative parameters to determine tumor characteristics. 

 The Homodyne K distribution  

 The Nakagami Distribution 

 

       5.2.1.1  Homodyne K: 

Statistic  of ultrasound signal can be used to characterize the scattering media.Scatter 

density  and scatter type tells us that its appropriate to use the homodyne K distribution.[38] 

 

                               Fig: 5-1 backscattering of signal  

A parameter introduced by the K distribution is the number of scatterers per resolution cell μ 

.The derived parameter k = s/σ is the ratio of the coherent to diffuse signal energy and can be 

used to describe periodicity in scatterer locations. 
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5.2.1.2 Nakagami Distribution:  

Nakagmai distribution describes propagation condition .We intend to use “m” (effective 

number) and “Ω”(effective cross section), associated with the Nakagami distribution for 

the classification of breast masses(PM Shankar - 2001)When an acoustic pulse travels 

through tissue, the backscattered echo may be modeled as the algebraic sum of the 

contributions from the individual scatterers. If there are N scatterers, backscattered echo is 

 

S(t) = ∑𝑎𝑐𝑜𝑠(𝑤𝚥 − Ɵ)

𝑛

𝑛=1

 

divided into components- 

                                                      

                                                     S(t) =Xcos(𝑤𝚥𝑡)+Ysin(𝑤𝚥𝑡) 

 

                                                     R=√(X2 +Y2) 

 

The Nakagami probability density function f(r), is given as: 

 

                                         F(r)=
2𝑚𝑚𝑟2𝑚−1

𝛤(𝑚)Ω𝑚
exp(−

𝑚

Ω
𝑟2)𝑈(𝑟) 

 

Where, m and Ω is the nakagami parametres ,Γ( ) is the Gamma function ,U( ) is the unit 

step function. m and Ω can be found by statistical moving average . 
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5.3.1   Theory: 

   5.3.1.1 Homodyne K: 

The Rayleigh Distribution: The (2-dimensional) Rayleigh distribution  is defined by                                                  

                                               PRa(A|σ2)=
𝐴

σ2
exp(-

𝐴

σ2
)2 

where A represents the amplitude of the signal. the distribution is expressed, in the context 

of n-dimensional random walks, in terms of the variable a2= n σ2. The case σ2 corresponds 

to distribution. Equivalently, the intensity I, the square of the amplitude A, is distributed 

according to an exponential distribution[47]. 

 

The Rice Distribution :The (2-dimensional) Rice distribution is expressed as 

                           

Where σ>0 and  ɛ >0 are real numbers and I0 denotes the modified Bessel function of the 

first kind of order 0 . The special case where ɛ goes to 0 yields the Rayleigh distribution. 

The case n = 2 corresponds to Nakagami . 

The  Homodyned K-distribution  is defined by – 

                                      

where σ>0, α>0  and  ɛ >0  and J0 denotes the Bessel function of the first kind of order 0. 

the Homodyned K-distribution is expressed in terms of the parameters a, a2=nσn α, and a0= 

ɛ. 

 The compound representation of the Homodyned K-distribution is- 
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where PRi denotes the Rice distribution and G(w| α,1) is the gamma distribution with mean 

and variance equal to a. 

 

 

          

                         Fig: 5-2 Typical examples of the homodyned K-distribution  
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5.3.1.2   Nakagami Distribution: 

When an acoustic pulse travels through tissue, the backscattered echo may be modeled as 

the algebraic sum of the contributions from the individual scatterers. 

If there are N scatterers in the range cell, and an and θn represent the amplitude and the 

phase of the nth scatterer, respectively, the backscattered echo may be written as: 

                                                                                                  s(t) = Xan cos(ω0t − θn) 

 

where ω0 = 2πf0, f0 is the center frequency of insonation. The backscattered echo s(t) also 

can be written in terms of the inphase and quadrature components, X and Y, respectively, 

as: 

                                                            s(t) = X cos(ω0t) + Y sin(ω0t) 

X = Xan cos(θn) and Y = Xan sin(θn).  

 

The envelope of the backscattered echo, R, is given by: 

  

The number density of scatterers N and the location of the scatterers play an important role 

in describing the statistics of the envelope of the backscattered echo. If the range cell 

contains a large number of randomly located scatterers, the central limit theorem can be 

invoked, due to which X and Y would be Gaussian distributed with zero mean and equal 

variance. The envelope R under this condition will obey Rayleigh statistics. The phase 
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arctan will be uniform in the range 0 to 2π. If the range cell contains scatterers that have 

randomly varying scattering cross sections with a comparatively high degree of variance, 

it was shown [39]–[40] that the Rayleigh statistics might not hold. In such cases, the 

inphase and quadrature components of the backscattered echo from tissue do not follow 

Gaussian statistics. The envelope statistics are pre-Rayleigh [41], [39]. However, if the 

range cell contains periodically located scatterers at spacings corresponding to integral 

multiples of the wavelength at the frequency of demodulation or integral multiples of half 

the wavelength corresponding to the demodulation frequency in addition to randomly 

located scatterers, the in phase and quadrature components of the backscattered echo are 

Gaussian with equal variance but unequal mean. The envelope statistics under these 

conditions are Rician or postRayleigh [42]. 

All these scattering conditions exist in radar and the Nakagami distribution [43] can 

encompass all these scattering conditions. The Nakagami probability density function f(r), 

is given as: 

 

In (4) Γ() is the Gamma function and U() is the unit step function. The cumulative 

distribution of the Nakagami distributed envelope F(r) is given by: 

 

where P(.,.) is the incomplete Gamma function. This distribution has two paramaters, 

namely, m and Ω. They are estimated as: 
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and 

Ω = E(R2)  

where E() stand for statistical average. The parameter m is referred to as the Nakagami 

parameter and is constrained [43] such that 

                                                                                                                                    m ≥ 0.5. 

The quantity m is a shape parameter and conveys information about the envelope statistics. 

The parameter Ω is a scaling parameter. By substituting m = 1 in (4), one can observe that 

the density function is no different from that of a Rayleigh distribution. Thus, the case of 

m = 1 , corresponds to Rayleigh scattering conditions in the range cell. If the scatterers are 

randomly located but have random scattering cross sections, the envelope is likely to be 

pre-Rayleigh [39]. In such cases, the parameter m takes values in the range of 0.5 to 1 [43], 

[44]. 

In addition to randomly located scatterers, if the range cell contains periodic scatterers 

separated by a spacing of an integral multiple of the wavelength (or half wavelength) 

corresponding to the frequency of demodulation, the backscattered echo is Rician or post-

Rayleigh. The phase statistics under these conditions are essentially nonuniform. In such 
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cases, the value of m was shown through computer simulation to be greater than 1 [44]. In 

addition to the randomly located scatterers, if the range cell contains periodic scatterers 

spaced by an integral multiple of a quarter wavelength corresponding to the frequency of  

demodulation, the backscattered echo is generalized Rician [42], [44]. It was shown [44] 

that the value of m lies between 0.5 and 1. This situation can be separated from the pre-

Rayleigh case by examining the phase statistics. The phase in the pre-Rayleigh case is 

uniformly distributed between 0 and 2π. However, the phase in the generalized Rician case 

is no uniform. 

From these three cases, it is clear that the Nakagami distribution is able to encompass all 

these scattering conditions. However, through the preliminary studies [44], it was shown 

that the value of m could be less than 0.5 for scattering conditions that reflect either a low 

number density of scatterers or a high degree of variation in the scattering cross sections 

of the scatterers in the range cell. The degree of variation in the cross sections can be 

quantified through the signal-to-noise ratio, SNRa, of the scattering amplitudes a, given by: 

    

A low value of SNRa refers to a high degree of variation of scattering cross sections, and a 

high value refers to reasonably uniform cross sections. 

These values of the parameter m less than 0.5 referred to earlier apparently seem to violate 

the condition [43] that m must be greater than 0.5, given in [45]. However, a closer 

examination of the Nakagami distribution shows that there is a direct relationship between 

Nakagami and Gamma density functions [43], [45]. It is possible to see that the Nakagami 

distribution can be identified as belonging to the class of density functions such as Gamma 
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distributions. If we define a new random variable Z = R2, the probability density function 

of Z,f(z) can be shown to be [46]: 

 

The Gamma density function in  with a parameter m that takes values in the range 0 < m < 

∞ instead of the limitation on m that m ≥ 0.5. If we use the term Gamma density function 

in place of the Nakagami distribution, the lower limit of the value of m can be below 0.5. 

This dichotomy also was discussed by Nakagami in his original work [43]. Thus it is 

possible to have values of m lying between 0 and 0.5. These values were shown to belong 

to pre-Rayleigh statistics and under conditions of m being less than 0.5; the density function 

for m < 0.5 was designated to be “Nakagami-Gamma” density function [44]. In ultrasound, 

therefore, m can take any positive values, including values less than 0.5. 

The value of m larger than 1 corresponds to Rician statistics, and other values correspond 

to pre-Rayleigh or generalized Rician. As described earlier, the two cases of pre-Rayleigh 

and generalized Rician when m lies between 0.5 and 1, can be separated by conducting a 

test to explore whether the phase statistics are uniform in {0,2π} or not. The phases and the 

envelope values are obtained after the quadrature demodulation. Table I shows the 

characteristic features of the Nakagami distribution in terms of the values of m, the phase 

statistics, and the envelope statistics designations. 

Computer simulation showed that, in the absence of any periodic alignment of scatterers, 

the values of m were in the range of 0 to 1. As the value of m approaches unity, the statistics 

of the envelope approaches Rayleigh. Thus, it is possible to conclude that, when significant 
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variation in the scattering cross sections exist in the range cell, the envelope will be pre-

Rayleigh and m will be much less than 1. In other words, m is a measure of the degree of 

heterogeneity (or the lack of homogeneity existing in the range cell). The greater the degree 

of homogeneity in tissue, the closer is the value of m to unity and vice versa. There also 

appears to be considerable similarity between the Nakagami parameter m and the effective 

number M of the K distribution [39], [40]. It was also shown [43] that the K distribution 

resulted from the product of two Nakagami-distributed random variables. This means that 

the relationship between the parameters of the K distribution (pre-Rayleigh to Rayleigh) 

namely, M and b [39]–[40] and the parameters of the Nakagami distribution may be 

obtained. Comparing the moments, we get: 

   

Thus m may be regarded as a measure of the effective number of scatterers in the range 

cell similar to M with a compressed dynamic range in the following sense—when m → 

1,M → ∞, and the statistics become Rayleigh. If we define α = (1/b), α will be a measure 

of the effective cross section of the scatterers in a range cell [40]. The effective cross 

section α, is given by: 

  

α can provide information about the scattering characteristics within the range cell through 

the parameter Ω of the Nakagami distribution. Note that this definition holds only in the 

pre-Rayleigh-to-Rayleigh regime (m < 1). 
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The term effective cross section is used because of the dependence of α on the number 

density of scatterers, signal-to-noise ratio of the cross sections (both through m), and the 

intonation level as well as attenuation ( through both Ω or α) .As a result, we may conclude 

that the parameter α cannot only provide information about the degree of variation in the 

amplitude cross sections but also on the level of attenuation present in the range cell. Thus, 

we expect the Nakagami distribution to be useful in tissue characterization, because these 

parameters, m and α, implicitly provide information on the number density of scatterers, 

the level of attenuation present, and the degree of homogeneity (represented by SNRa) in 

the scattering cross sections. 

5.4.1         Process and results: 

5.4.1.1      Homodyne K : 

Statistic model of ultrasound signal can be used to characterize the scattering media. The 

character of the scattered scatters the signal in different ways. Scatter density and scatter 

type tells us that it is appropriate to use the homodyne K distribution. Our body is the media 

in this case to be specific its soft tissue[47]. When a RF signal is send it propagates inside 

the tissue depends on the scatterer present in the tissue. 
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                                             Fig : 5-3  scattering process  

Only in case of a scatterer the signal will get scattered in multipath. The multipath signal 

when received gives value able information about the media. In homodyne k method A 

parameter introduced by the K distribution is the number of 

scatterers per resolution cell μ .The derived parameter k = s/σ is the ratio of the coherent to 

diffuse signal energy and can be used to describe periodicity in scatterer locations. For 

homodyne k there is two types of method for implementation and we are going to use RHK 

method for our purpose. 

 

5.4.1.1.1 RSK method:  

            In this method we try to find the correlation between RSK values. From our back scatter      

            Signal we will calculate the RSK values (slew rate, kurtosis, signal to noise ratio).finding 

            the correlation from the precompiled values of RSK , homodyne k values are found. 
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From the back 
scattered signal we 
will calculate the  
estimated RSK 
value.

Find the points that  
minimizes total 
squared distance to 
precompiled RSK 
values

The corresponding μ 
and K parameters  are 
our desired value.
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μ vs K curve (result): 

  

 

  

  

                         Fig : 5-4 μ vs K curve for different part of the tissue  
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5.4.1.2 Nakagami Distribution:  

Nakagmai distribution describes propagation condition. We intend to use “m” (effective 

number) and “Ω” (effective cross section), associated with the Nakagami distribution for the 

classification of breast masses. Back scattered signal will be fitted to a signal pattern for 

calculation Nakagami distribution parameters.  

The signal is collected from ATL data set and windowing was done inside and outside of the 

ROI to get value of Nakagami parameters. It was done by fitting the distribution values. 

 

                                 Fig : 5-5  Nakagami distribution 

We can see that for different values of μ and  Ω is for different type of  PDF of a signal. We 

calculate the PDF of our signal window and correlate and from the highest correlation we 

calculate the value of μ and  Ω. 

After calculating all the value of μ and  Ω  we can see difference between the value of  inside 

and outside of the ROI. 
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For ATL dataset the ROI was provided to us by professionals and we calculated the border line 

and area was defined from that with help of region growing method. Inside and outside of the 

ROI was treated completely differently for better results . 

5.4.1.1.2  method: 

 

                                   Fig :  5-6 boundary points  
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                               Fig :5-7 Boundary detection  
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                                         Fig :5-8 Reason of interest  
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                              Fig : 5-9 effective number of scatterer comparison   
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The values inside and outside of ROI is different. Which can be a valuable information 

when characterizing a tissue. 
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6 Conclusion and Future Directions for Research 

In the recent years, elastography has been widely used by the clinicians. Many clinical 

areas rapidly adopted the method, including prostate, liver, breast, thyroid, etc. Many new 

strain estimation methods have been proposed. Both 1D and 2D estimators have 

limitations. We have proposed a novel 1.5D method that offers a tradeoff between the two. 

The proposed method works well at higher strains when non-axial motion is significant. 

Homogeneous regions and lesions are clearly depicted, which we believe will assist 

radiologists in clinical situations. However, significant improvements are possible. Future 

work may include adaptive measurement of the lateral shift of the post-compression signal 

with increased efficiency and reduced complexity. We will also refine the method for 

optimal performance with in vivo clinical data. 

The two pointer is a pre-processing step for any algorithm that depends on edges or lesion 

or both. Automatic segmentation is important in breast imaging. This pre-processing step 

has been found to improve segmentation results in BUS images if used with regular image 

segmentation algorithms. Using it on BUS images will improve its quality for any 

segmentation algorithms that depends on edge map images.  

If provided with seed point, the numerical values from inside and outside of the ROI are 

very different .which can be used as additional information for diagnosis of  tissue 

characteristics.  
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