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u1, u2 Outputs of the controllers of Area 1 and Area 2, respectively 

Tsg1, Tsg2 Time-constants for speed governor in seconds of Area 1 and Area 2, respectively 

    𝑇𝑠𝑔 Time-constant for governor block 

x3, x6 Per-unit set position changes of governor valves of Area 1 and Area 2, 
respectively 

Tt1, Tt2 Time-constants for the turbine in seconds of Area 1 and Area 2, respectively 

   𝑇𝑡 Time-constant for turbine block 

x2, x5 Per-unit change in output powers of the turbines of Area 1 and Area 2, 
respectively 

Tps1, Tps2 Time-constants for the generator-load model in seconds of Area 1 and Area 2, 
respectively 
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Kps1, Kps2  Gains of the generator-load model of Area 1 and Area 2, respectively 
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Appendix D. 

Parametric values used in the optimizers 

Optimizer Values of the control parameters 

EGBO 
(FOPID) 

Popsize = 30, MaxIt = 250, dim = 10, x_min=[-18 -35 0.75 -20 0.75 -18 -35 0.75 -
18 0.75], x_max=[-6 -12 1 -5 1 -7 -12 1 -5 1] 

ChOA SearchAgents_no = 100, Max_iteration = 500, dim = 6 

EGBO nP = 100,  MaxIt = 500, dim = 6, LC = 0.7 

GBO nP = 100,  MaxIt = 500, dim = 6, pr = 0.5 

GWO SearchAgents_no = 100, Max_iteration = 500, dim = 6 

PSO noP = 100, maxIter = 500, nVar = 6, wMax = 0.9, wMin = 0.2. c1 = 2, c2 = 2 

SCA SearchAgents_no = 100, Max_iteration = 500, dim = 6, a = 2 
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Abstract: 
This paper describes how to tune Proportional Integral Derivative (PID) and Fractional Order PID 

(FOPID) controllers for Load Frequency Control (LFC) of two area linked thermal power systems 

using an optimization technique and Neural Network (NN) prediction-based approaches. 

Generator speed fluctuates due to frequent variations in load demand. As a result, frequency 

deviates from the specified value. That is why it is critical to employ a correctly tuned controller 

to change the generator's speed in order to keep the frequency as near to its rated value as 

feasible. The Enhanced Gradient Based Optimizer (EGBO) is utilized in this study to adjust a PID 

controller by optimizing an Integral Time multiplied by Absolute Error (ITAE) based fitness 

function. The EGBO algorithm's results were compared to the Gradient Based Optimizer (GBO), 

Chimp Optimization Algorithm (ChOA), Sine Cosine Algorithm (SCA), Grey Wolf Optimization 

(GWO), and Particle Swarm Optimization algorithms (PSO). When compared to alternative 

optimization approaches, the relevant data reveal that the EGBO algorithm is competitively 

superior in terms of robustness, accuracy, and latency. The ITAE-based fitness function of the 

FOPID controller is also optimized using EGBO. In general, the FOPID controller outperforms the 

PID controller in terms of ITAE since it has a few more configurable parameters. In order to 

optimize the ITAE, optimization methods require some time. As a result, Artificial Neural 

Networks (ANNs) are used for tuning with nearly little latency. Datasets are created using the 

previously described PID controller optimization procedures, which are then utilized to train 

different hyperparameters.
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Chapter 1: Introduction 

 

1.1 General Overview 

For a power generation system, the load demand is always changing. As a result, the power 

generation system is needed to be modified with existing power generation system to fulfill the 

load demand. But here arises another severe problem: as most of the loads are dynamic in 

nature, frequent change in electrical power drawn is happening. As a result, speed of the 

generator is changing. The generator speed changes due to the frequent change in electrical 

power drawn because, when load increases, the electrical torque becomes higher than the 

mechanical torque of the generator. As a result, speed of the generator decreases. On the other 

hand, when load decreases, the electrical torque becomes lower than the mechanical torque of 

the generator. As a result, speed of the generator increases. Now the relation between generator 

speed and frequency can be established from the equation below, 

𝑓𝑠 = 𝑁𝑠 ∗
𝑃

120
              (1) 

Where, 𝑓𝑠  is the frequency, 𝑁𝑠 is the speed of the generator and 𝑃 is the number of poles of the 

generator. Basically, in equation (1), 𝑃 is constant because number of poles is fixed in a generator. 

So, 𝑓𝑠  is directly proportional to 𝑁𝑠. That means, when 𝑁𝑠 increases, 𝑓𝑠  also increases and vice-

versa. 

So, in this situation, Automatic Generation Control (AGC) can be used to get rid of this problem. 

Basically, AGC will control the speed of the generator by using some control mechanism or 

controller to ensure the frequency value within acceptable limits. 

Generally, mechanical torque of the generator is controlled by turbine or engine. The speed of 

the turbine or engine is basically controlled by fuel injection. And the fuel injection is controlled 

by the governor. So, actually generator speed is controlled by the governor indirectly. The 

following figure neatly shows these relations:  

 

 

 

Fig.  1: Generator-governor relationship 



2 
 

1.1.1 System Model: 
 

In this work, a two area AGC is considered for an interconnected non-reheat thermal 

power system. The system model is as follows: 

 

Both areas in the AGC system are equipped with identical non-reheat thermal power 

stations. The in-depth discussion for different components of the adopted thermal 

power station are displayed in the following subsections.  

 

I. Governor Model: 

When the generator electrical load is suddenly increased, the electrical power 
exceeds the mechanical power input [1]. This power deficiency is supplied by the 
kinetic energy stored in the rotating system [1]. The reduction in kinetic energy 
causes the turbine speed and, consequently, the generator frequency to fall [1]. 
The change in speed is sensed by the turbine governor which acts to adjust the 
turbine input valve to change the mechanical power output to bring the speed to 
a new steady-state [1]. The earliest governors were the Watt governors which 
sense the speed by means of rotating flyballs and provides mechanical motion in 
response to speed changes [1]. However, most modern governors use electronic 
means to sense speed changes [1]. Operating a steam turbine with an outdated 
or obsolete governor can result in reduced efficiency and lost profits [2]. 
Mechanical systems are sensitive to ambient conditions, have components that 
wear, and can experience fatigue and failure, increasing downtime and 
maintenance costs [2]. An electronic governor is virtually maintenance free, 
provides more precise speed control, and has fewer wearing parts than 

Fig.  2: Two area thermal power system model 
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mechanical systems [2]. So, governor is responsible for operating valves to control 
steam flow into the turbine according to the feedback and controller output of the 
system. The transfer function of the governor is as follows [3]: 

 

1
( )

1
sg

sg

G s
sT

=
+

  (2) 

 

II. Turbine Model: 

Turbine is basically working as a prime mover in this model. The source of 

mechanical power, commonly known as the prime mover, may be hydraulic 

turbine at waterfalls, steam turbines whose energy comes from the burning of 

coal, gas, nuclear fuel and gas turbines [1].   The steam turbine is driven by highly 

pressurized steam which is responsible for driving the generator shaft. The first-

order transfer function of steam turbine is as follows [3]: 

 

1
( )

1
t

t

G s
sT

=
+

  (3) 

 

III. Generator-Load Model: 

The load on a power system consists of a variety of electrical devices. For resistive 

loads, electrical power is independent of frequency [1]. However, for inductive 

load such as motor is very sensitive to frequency as the speed of the motor is 

directly proportional to the frequency. When the steam turbine rotates, the shaft 

of the generator also rotates, resulting in the generator output. The simplified 

transfer function of the generator-load model is as follows [3]: 

 

( )
1

ps

ps

ps

K
G s

sT
=

+
  (4) 

 

IV. Tie-Line: 

Tie-lines are the transmission links that connect one area to its neighboring 

regions. As the name implies, LFC manages power flow between different 

interconnected areas while maintaining a constant frequency. To achieve 0% 

steady-state error in tie-line power flow, an integral controller is used in this work 

[3].  

 

Detail of the nomenclatures used in the system under study can be found in appendix A. 

The nominal parametric values of the system, which are selected for simulations, are 

provided in appendix B. 



4 
 

1.1.2 Controller overview: 

When load fluctuates, the mechanical input to the generator that means the steam 

turbine speed is controlled by the governor accordingly. But this process cannot be 100% 

accurate as the mechanical system cannot be adjusted instantaneously. So, some errors 

are generated in this process. That’s why controller is used to minimize this error. In this 

work two types of controllers are used: 

a. Proportional Integral Derivative (PID) controller 

b. Fractional Order PID (FOPID) controller [4] [5] 

 

a. Proportional Integral Derivative (PID) controller: 

 

A Proportional Integral Derivative (PID) controller is a control loop mechanism 

employing feedback that is widely used in industrial control systems and a variety of 

other applications requiring continuously modulated control [6]. A PID controller 

continuously calculates an error value, e(t) as the difference between a desired Set 

Point (SP) and a measured Process Value (PV) and applies a correction based on 

proportional, integral and derivative terms (denoted P, I, and D respectively), hence 

the name [6].  

 

Actually, Proportional controller is responsible for decreasing Rise time and Steady-

state error. On the other hand, Integral controller is responsible for eliminating the 

Steady-state error. However, due to both Proportional and Integral controller, 

Overshoot increases. As a result, Settling time also increases. That’s why Derivative 

controller is used in order to reduce the Overshoot and Settling time. 

 

There are some terms of PID controller that are defined below: 

 

o Set Point (SP): 

Set Point (SP) is normally a user entered value [7]. In this work, it is the rated steam 

turbine speed which is basically responsible for rotating the generator shaft to 

ultimately control the frequency. 

 

o Process Value (PV): 

The Process Value (PV) is the value that is being actually controlled [7]. In this 

work, the actual steam turbine speed that is practically measured is the PV. 
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o Output: 

Output is the controlled value of the PID controller [7]. In case of load frequency 

control, output is the signal to the governor of how much steam should be fed into 

the steam turbine by controlling the valve. 

 

 

o Error (e(t)): 

The error (e(t)) is the value used by the PID controller in order to determine how 

to adjust the Output to bring the PV to SP. 

 

e(t) = SP – PV           (5) 

 

The gains of the PID controller are explained below: 

The gains of the PID controller are nothing but user input values which are P-gain, I-

gain and D-gain that are denoted as 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑 , respectively. Actually, gain is the 

term used for “multiplication factor”. By adjusting the gain settings (or multiplication 

factor) of the proportional, the integral and the derivative, the user can control how 

much effect the PID controller has on the output, and how the controller will react to 

the changes in the PV [7]. 

 

Now the PID controller is explained below in details: 

❖ Proportional (P): 

 

The Proportional (P) is calculated by multiplying the P-gain by the error. The 

purpose of the proportional is to have a large immediate reaction on the output 

to bring the process value close to the set point. As the error becomes less, the 

influence of the proportional value on the output becomes less [7]. 

 

The following equation denotes the P controller: 

 

P = 𝐾𝑝 * e(t)       (6) 
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❖ Integral (I): 

 

The Integral is calculated by multiplying the I-gain by the error, then multiplying 

this by the cycle time of the controller (how often the controller performs the PID 

calculation) and continuously accumulating this value as the “total integral” [7]. 

 

Every time the controller performs the PID calculation, the new calculated integral 

value is added to the total integral [7]. The integral will normally not have as much 

immediate influence on the output as the proportional [7]. But as the integral is 

continuously accumulating over time, the longer it takes for the PV to reach the 

SP, the more effective the integral becomes over the output [7]. 

 

The following equations denote the I controller: 

 

I = 𝐾𝑖 * e(t) * dt         (7) 

 

𝐼𝑡 =  𝐼𝑡  + I                  (8)   

 

Where, dt = Controller cycle time or loop time, 𝐼𝑡 = Total integral. 

 

 

❖ Derivative (D): 

 

The derivative is calculated by multiplying the D-gain by the ramp rate of the PV 

[7]. The purpose of the derivative is to “predict” where the PV is going and bias 

the output in the opposite direction of the proportional and integral controller in 

order to hopefully prevent the controller from overshooting the SP if the ramp 

rate is too fast [7]. 

 

Explained a bit simpler, if the PV is approaching the SP too fast, the derivative will 

limit the output to prevent the PV from overshooting the SP [7]. 

 

The following equation denotes the D controller: 

 

D = 𝐾𝑑 * {| e(t) - 𝑒𝑝(𝑡) |} / dt        (9) 

 

Where, 𝑒𝑝(𝑡) = Previous error. 
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❖ Output: 

 

Actually, summing up the P, I and D controller outputs together give the overall 

PID controller output value. The gain of each of the controller sets up how much 

authority that particular controller has over the output. 

 

So, PID controller output = P + 𝐼𝑡 + D          (10) 

 

Considering equation (6-9), PID controller output can be written as, 

 

Output = 𝐾𝑝 * e(t) + 𝐼𝑡  + 𝐾𝑖 * e(t) * dt + 𝐾𝑑 * {| e(t) - 𝑒𝑝(𝑡) |} / dt      (11) 

 

 

b. Fractional Order PID (FOPID) controller [6][7]: 

 

Fractional Order PID (FOPID) controller [4] [5] is exactly similar to the PID controller in 

terms of 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 gains where the individual controller works as similar fashion 

as the PID controller. The only difference is unlike PID controller, the FOPID controller 

[6][7] has couple of extra tunable parameters which are the order of the integral and 

derivative controller transfer function denoted as λ and µ, respectively. Basically, the 

PID controller has integer order transfer function that means the power of s is always 

1 in Laplace domain. On the other hand, the FOPID controller [4] [5] has the power of 

s equal to -λ for integral controller, µ for derivative controller in Laplace domain and 

these λ and µ values are fractional. The values of λ and µ always remain in between 0 

and 1. That’s why it is called Fractional Order PID controller. 

 

So, FOPID controller [4] [5] has total 5 tunable parameters. Because of these extra two 

tunable parameters, FOPID controller has much higher flexibility compared to PID 

controller for controlling a device precisely. 

 

The PID controller is very much familiar in industries and any other control 

applications because it is quite simple, it is widely available and it is quite easy to 

implement in a system. On the other hand, FOPID controller [4] [5] is not that much 

popular like PID controller in industrial application. Because it is more complex in 

structure and it uses higher order integer approximation in order to be operational. 

However, in case of tunable parameters, PID controller has lesser flexibility and 
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robustness compared to the FOPID controller [4] [5]. So, FOPID controller [4] [5] is 

capable of giving far better result than the PID controller if it is tuned properly. 

 

Transfer function of FOPID controller is as follows [4] [5]: 

 

C(s) = 𝐾𝑝𝑠 + 𝐾𝑖𝑠
−λ + 𝐾𝑑𝑠µ                   (12) 

 

                                                              Or, 

 

C(s) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
λ + 𝑇𝑑𝑠µ)                      (13) 

 

                      Where,  

               𝑇𝑖 =
𝐾𝑝

𝐾𝑖
                        (14) 

              𝑇𝑑 =
𝐾𝑑

𝐾𝑝
                        (15) 

 

Although the order of integral and derivative controller is fractional, the transfer 

function is converted into equivalent higher order (integer) transfer function for ease 

of calculation. The converted higher order transfer function is basically an 

approximated integer order transfer function which is equivalent to the main 

fractional order transfer function. Also, computer program such as Matlab [8]  cannot 

work with the fractional order transfer function. Actually, Matlab [8] needs the 

approximated integer order transfer function of the fractional order transfer function 

in order to execute any program. That’s why accurate approximation is important in 

order to get accurate result. 

 

Actually, to get the approximated integer order transfer function, frequency range (ωl 

and ωh) and approximation order (N) are needed to be calculated. Then Oustaloup 

approximation [4] [9] method can be applied using Fomcon Toolbox [4] in order to get 

the approximated integer order transfer function. However, FOPID block [4] in 

Simulink [8] by default approximates the integer order transfer function of the 

fractional order transfer function when the frequency range and the approximation 

order is provided. 

 

In [10], the rules for calculating the frequency range and the approximation order are 

explained quite nicely. The formulas for calculating frequency range and the 

approximation order are as follows, 
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ωl <= ((|
𝐾𝑝𝑃(0)

𝑇𝑖
| 𝜖)

1

λ
          (16) 

 

ωh >= 103ωb                   (17) 

 

N ≈ 
(1−𝑣) log(

𝜔ℎ
𝜔𝑙

)

log(
1+𝑐𝑜𝑠(0.5𝜋𝑣)

1−𝑐𝑜𝑠(0.5𝜋𝑣)
)
           (18) 

 

Where,  

             P(0) = Plant model at s = 0, 𝐾𝑝 = Proportional gain, 𝜖 = upper bound of the 

steady-state value of the simulation error, ωb = Bandwidth of the feedback 

system, v = Values of λ and 𝜇 .  

 

 

 

 

1.1.3 Tuning of the controllers: 

 

Controllers will be completely useless if it is not tuned properly. There are a lot of ways 

to tune the controllers. The controllers can be tuned manually in trial-and-error method. 

But it is not easy to tune the controllers in this method manually and it is very much time 

consuming considering the complex system in this work. Basically, in this work, the 

following two techniques are adopted in order to tune the controllers: 

 

i. Optimization algorithms 

ii. Neural Network prediction-based approaches 

 

i. Optimization algorithm: 

 

Optimization algorithms are mainly designed to optimize a specific objective or fitness 

function by setting up the system parameters within the given range. The optimization 

of objective function can be minimization or maximization based; it depends on the 

system requirements.  

 

Optimization algorithms are really helpful in solving real world problems in real time 

within a short amount of time where solving those problems manually is an extremely 

time consuming and difficult task. To deal with the real-world problems with 

optimization algorithm, the whole system is needed to be converted into 

mathematical model. Then the optimization algorithm does the analysis using that 



10 
 

mathematical model to find out the optimum solution for the problem. Optimization 

algorithms are generally divided into two categories which are Deterministic 

algorithms and Stochastic algorithms [11]. Deterministic algorithms are sub-divided 

into Linear programming, Non-linear programming, Gradient based and Gradient free 

algorithms. On the other hand, Stochastic algorithms are categorized into two parts: 

Heuristic and Meta-heuristic algorithms. Where, Meta-heuristic algorithms are sub 

categorized into Population based and Trajectory based algorithms. The following 

figure shows the classifications of optimization algorithms [11]: 

 

 

 

 

A wide variety of objective functions are available to be set in an optimization 

algorithm. the mostly used time domain objective functions are: Integral of Time 

multiplied by Squared Error (ITSE) [12], Integral of Squared Error (ISE) [12], Integral of 

Absolute Error (IAE) [12], Integral of Time multiplied by Absolute Error (ITAE) [12] [13]. 

In this work, ITAE [12] [13] based objective function is chosen for optimization. 

 

For tuning PID controller [13] [14] [15], the following optimization algorithms are used 

in this work: 

 

• Particle Swarm Optimization (PSO) [14] 

• Sine Cosine Algorithm (SCA) [16] 

• Grey Wolf Optimizer (GWO) [17] [12]  

• Chimp Optimization Algorithm (ChOA) [18] 

Fig.  3: Classification of optimization algorithm [11] 
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• Gradient Based Optimizer (GBO) [19] 

• Enhanced Gradient Based Optimizer (EGBO) [20] 

• Marine Predators Algorithm (MPA) [21] 

• Multi Trial vector based Differential Evolution (MTDE) [22] 

 

In this work, GBO [19], EGBO [20], MPA [21] and MTDE [22] are used for generating 

datasets which are used to train the Neural Network. Some novel algorithms are also 

investigated by hybridizing two algorithms together. Those are following: 

 

• Enhanced Gradient Based Golden Eagle Optimizer (EGBGEO) 

• Gradient Based Golden Eagle Optimizer (GBGEO) 

• Gradient Based Sine Cosine Algorithm (GBSCA) 

 

As the novel algorithms could not yield convincing results, the endeavor for 

hybridizing newer algorithms is not further explored.  

 

 

For tuning FOPID controller [23], the following algorithms are tried so far: 

 

• Particle Swarm Optimization (PSO) [14] 

• Enhanced Gradient Based Optimizer (EGBO) [20] 

 

 

ii. Neural Network prediction-based approach: 

 

Neural Networks (NN) are neuronal networks that might be biological or artificial [24]. 

In reality, a neural network is a set of algorithms that attempts to detect underlying 

links in a piece of data using a technique that is similar to how the human brain works 

[24].  

 

The human brain is made up of many linked neurons. Neurons are the basic and 

primary components of the human brain and nervous system. Neurons are in charge 

of receiving external inputs, which are nothing more than data from human body 

sensor organs, and then commanding output to the motor nerves based on that data. 

The motor nerves are in charge of moving any portion of the human body. Artificial 

Neural Network (ANN) is the foundation of Artificial Intelligence and is inspired by this 

extraordinary notion of human brain neural network (AI). 
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Computers or machines do not understand physical things and lack the ability to 

recognize objects or foresee events in the same way that humans do. Those gadgets 

only recognize discrete data. That is why those gadgets require some sort of algorithm 

in their software to run the system in the manner of a human brain. In this example, 

an ANN duplicates the features of human brain neural networks, giving robots the 

capacity to recognize and anticipate things. 

 

The base form of ANN consists of 3 layers: 

 

• Input layer 

• Hidden layer 

• Output layer 

 

In fig. 4, the basic ANN structure for a Multiple Input and Multiple Output (MIMO) 

system is displayed. Here, x1, x2 and x3 are the 3 inputs which can be compared with 

the sensor input of the human body. The weights of the inputs are represented by 

w1, w2 and w3. The hidden layer is basically the neuron which has an activation 

function. Basically, the neuron processes the inputs based on their weights and 

afterwards generates outputs. The outputs are y1, y2 and y3. 

 

 

The activation function can be of different types according to the application. The 

most popular functions are: 

Fig.  4: Basic ANN diagram 
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• Sigmoid function: It is basically used for decision making application. The 

output of this function is either 0 or 1. 

 

• Linear Unit (LU): 

o Rectified LU (ReLU): It is used to solve forecasting problem. That means for 

predicting something, this function can be used. 

 

o Leaky ReLU (LReLU): It is used when a lot of negative activation values are there 

or when ReLU stops learning. As ReLU only considers values greater than 0, for a 

lot of negative activation values, ReLU starts to stop learning which is known as 

“Dying ReLU” problem. To solve this problem LReLU is used. 

 

o Exponential LU (ELU): ELUs, like ReLUs and LReLUs, reduce the vanishing gradient 

effect. Because the positive portion of these functions is the identity, their 

derivative is one and not contractive, which solves the vanishing gradient 

problem. ELUs have negative values, bringing the activation mean closer to zero. 

Faster learning is enabled by mean activations that are closer to zero because they 

bring the gradient closer to the natural gradient [25]. 

The classifications of NNs are as follows: 

• Feedforward NN or Multi-Layer Perceptron (MLP) 

• Convolutional NN (CNN) 

• Recurrent NN (RNN) 

• Deep NN 

Basic ANN is a feedforward NN. MLPs are basically consists of multiple layers such as input 

layer, output layer and hidden layer. There can be multiple hidden layers. NN with more 

than one hidden layer is known as Deep NN. Fig. 5 is an example of Deep NN. On the other 

Fig.  5: ANN with multiple hidden layers 
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hand, CNN is basically used in computer vision and object recognition-based image 

processing. RNN is very handy in modeling data sequence. Again, RNN has feedback loops 

which can produce predictive results in sequential data.  

In this work, mostly ReLU based ANN algorithm is used in order to predict PID parameters. 

ANNs are known for their flexibility to changes in parameter values. Furthermore, their 

most significant trait is their ability to learn and improve their accuracy over time. The 

application of ANN controllers in this study is motivated by their short calculation time, 

ease of implementation, and ability to be used under a variety of Step-Load Perturbation 

(SLP) circumstances. ANNs have been widely used solving nonlinearities and uncertainties 

in complex systems as universal approximators [14]. 

 

 

 

 

1.2 Literature Survey: 

 

1.2.1 PID Controller Incorporated AGC: 

 

Load Frequency Control (LFC) is the frequency control mechanism of an AGC system, 

integrating feedback loops of several systems connected through a tie-line. For a 

stable system response, incorporation of an efficient controller is vital considering the 

sensitivity and flexibility of the systems. Till date, Proportional Integral Derivative 

(PID) controllers are one of the vastly adopted techniques due to its simplicity of 

operation and cost-effectiveness. However, tuning a PID controller manually or in a 

trial & error method is a difficult and meticulous task. Optimization algorithms are 

ideal for such cases as they search for optimal parametric values for a certain objective 

function within specified system constraints.  

 

In [26], a self-tuning Particle Swarm Optimization (PSO) based PID controller for a two-

area system is proposed and compared with controllers tuned with the Ziegler-Nichols 

technique. In [14], a neural network approach has been taken for the LFC problem 

using PSO and Artificial Neural Network (ANN). 

 

A detailed study of LFC of 4 different test systems is presented in [17], employing Grey 

Wolf Optimization (GWO), Comprehensive Learning Particle Swarm Optimization 

(CLPSO), and Ensemble of Mutation and Crossover Strategies and Parameters in 

Differential Evolution (EPSDE) algorithms in both Proportional-Integral (PI) and PID 
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controllers, while observing the transients of the frequency fluctuations and keeping 

track of the ITAE values, settling times and overshoots.  

 

In [26], Sine Cosine Algorithm (SCA) and Non-dominated Sorting Genetic Algorithm 

(NSGA II) are used for the tuning of a PID with a derivative filter gain (PIDN) controller. 

Elephant Herding Optimization (EHO), Teacher-Learner-Based Optimization (TLBO), 

and Whale Optimization Algorithm (WOA) are utilized for a similar type of PID 

controller in [27]. In [28], [29] respectively, Seeker Optimization Algorithm (SOA) and 

Quasi-Oppositional Dragonfly Algorithm (QODA) based PID controllers are used for 

solving the LFC problem of two area systems. 

 

In [14] and [28] ITAE values are not explicitly presented. In [28], [29], [30], [27], PID 

gains of only one area are optimized by the proposed controllers. In [27], [28], [29], 

[30] and [17], Step Load Perturbation (SLP) of only one area at a time are studied, 

ranging from 1 to 10 percent.  

 

In this work, an ITAE based objective function is adopted to minimize the Area Control 

Error (ACE) of a two-area all thermal system. The overall system model is developed 

using the state –space approach. Later, generic PID controller blocks are incorporated 

to enhance the system time-domain characteristics, such as, steady-state error 

settling time and overshoot.  

 

 Different step load perturbations (SLP) ranging from 10% to 25% is applied to both 

areas as well as separate individual areas to study the robustness and flexibility of the 

controller. The resulting frequency deviation (FD) and tie-line power deviation (TPD) 

are tracked to formulate the ITAE based objective function. 

 

For the optimization of the generic PID controller, an Enhanced Gradient-Based 

Optimizer (EGBO) is adopted in this work, which utilizes Newton’s method to search 

the solution space [16]. It is an update of the Gradient-Based Optimizer (GBO) [19], 

incorporating new operators and new updating mechanisms [20]. To the best of the 

authors’ knowledge, the usage of EGBO in the LFC problem of multi-area systems is 

still unexplored. For a comprehensive analysis, widely applied nature-inspired 

algorithms such as GWO and PSO tested on [17] and [26] respectively, a population-

based SCA tested on [30] are used, along with recently developed meta-heuristic 

Chimp Optimization Algorithm (ChOA) and GBO. 
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1.2.2 FOPID Controller Incorporated AGC: 

 

According to logical study, FOPID controller should give better result as it has two 

extra tunable parameters compared to PID controller. A comparative study is done in 

[51] among different controllers for the same system. It is clearly visible in [31] that 

FOPID controller gives quite better result than PID controller. That’s why it is decided 

to implement FOPID controller in this work so that more convincing result can be 

obtained. 

 

Basically, in [31], a two area interconnected Hybrid Power System (HPS) is taken under 

study where the HPS consists of Renewable Energy (RE) such as Solar and Wind based 

power generation units, Plug-in Electric Vehicle (PEV) along with thermal power 

station.  

 

Actually, the large-scale penetration of intermittent RE sources such as wind and solar 

power generation may cause a problem of frequency aberration of HPS [31]. This 

occurs when the load frequency control of interconnected system is unable to 

compensate the power balance between generation and load demand [31]. Also 

owing to the enhancement of future transport, the PEV plays a significant role to 

customer at demand side [31]. Thus, the PEV can act as a power control to 

compensate the power balance in RE integrated power system [31]. 

 

Actually, in [31], FOPID controller is used in order to deal with the error. To tune this 

controller, Atom Search Optimization (ASO) algorithm is implemented. ITAE is used as 

objective function in order to find out the optimum gains and other parameters of the 

controller. 

 

The model in [31] is tested for different scenario such including the PEV and excluding 

the PEV. When the results for those two scenarios are compared, it is clearly noticed 

that including PEV gives better ITAE. It’s because, PEV responds much faster than the 

governor-generator system of the thermal power system and due to this, less error is 

generated. 

 

The above-mentioned testing is done for 2.5% Step Load Perturbation (SLP) in area 1 

and 1.5% SLP in area 2. The result for including PEV is better and the result for 

excluding PEV is worse compared to the result of this work. Including PEV scenario 

gives better result compared to the model of this work because less error is generated 

due to the incorporation of PEV. However, in both scenarios, the result should be 

better than the result of this work as the model of this work is simulated with 10% 

SLPs in both areas which are much higher than the above mentioned SLPs. And it is 

quite natural that lesser ITAE should be got due to lesser SLPs. 
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In [32], a three area interconnected power system is studied which is FOPID based 

AGC and Genetic Algorithm (GA) is used in order to tune the FOPID controller. 

Basically, among the three area, area 1 is non reheat thermal power system, area 2 is 

reheat thermal power system and area 3 is hydro power generation system. 

 

Actually, in [32], an extensive analysis on the frequencies of different areas is 

highlighted. Also, those results are compared with the results of other optimizer 

(Imperialist Competitive Algorithm (ICA) in this case) and other controller (PID 

controller in this case) in order to establish superiority of their work.  

 

However, in [32], nothing is mentioned clearly regarding which objective function is 

used and how much disturbance or SLP is added in each area to get the results. 

Actually, it is quite unprofessional not to mention the objective function in this kind 

of optimization-based work. Because objective function is the prime parameter in 

case of optimizing anything. 

 

In, a hybrid controller design is proposed which is nothing but Fuzzy FOPID controller 

for both single and two area non reheat thermal power system. Basically, Fuzzy FOPID 

controller is the integration of Fuzzy controller and FOPID controller where the output 

of the Fuzzy controller is fed into as the input of the FOPID controller.  

 

ITAE is used as objective function in [33] for optimization. However, nothing is clearly 

mentioned regarding the optimization algorithm. In order to confirm the effectiveness 

of the proposed control design approach in [33], numerous simulation tests are 

performed on the single-area power system [33]. 

 

It is mentioned in [33] that the obtained results reveal the superiority of the suggested 

controller as compared to the recently developed controllers with regard to time 

response specifications and quantifiable indicators. Additionally, the potential of the 

suggested controller is also observed by improving the load disturbance rejections 

under plant parametric uncertainty [33].  

 

However, the optimized result of [33] is not even close to the result of this work in 

terms of ITAE. In [33], 1% SLP is used where in this work 10% SLP is used in both areas. 

So, considering the ITAE according to SLP, the result of [33] can not be said superior 

compared to this work. 

 

In [34], a two area AGC is studied which is equipped with FOPID controller in both 

areas. Here, two different chaotic maps along with the Uniform Random Number 
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Generator (RNG) are manifested in the popular Multi Objective Optimization (MOO) 

algorithm - the Non-dominated Sorting Genetic Algorithm-II (NSGA-II).  

 

Actually, in [34], two FOPID controllers are designed for load frequency control (LFC) 

of two interconnected power systems. Conflicting time domain design objectives are 

considered in a MOO based design framework to design the gains and the fractional 

differential-integral orders of the FOPID controllers in the two area AGC [34]. Different 

measures of quality for MOO e.g., hypervolume indicator, moment of inertia-based 

diversity metric, total Pareto spread, spacing metric are adopted to select the best set 

of controller parameters from multiple runs of all the NSGA-II variants (i.e., nominal 

and chaotic versions) [34]. The chaotic versions of the NSGA-II algorithm are 

compared with the standard NSGA-II in terms of solution quality and computational 

time [34]. In addition, the Pareto optimal fronts showing the trade-off between the 

two conflicting time domain design objectives are compared to show the advantage 

of using the FOPID controller over that with simple PID controller [34]. The nature of 

fast/slow and high/low noise amplification effects of the FOPID structure or the four-

quadrant operation in the two inter-connected areas of the power system is also 

explored [34]. A fuzzy logic-based method has been adopted next to select the best 

compromise solution from the best Pareto fronts corresponding to each MOO 

comparison criteria [54]. 

 

However, the system design in [34] looks extremely complex and nothing is 

mentioned regarding the execution time of the system program. Again there is no 

information of how much SLPs are considered for recording data. 

 

 

1.2.3 Neural Network Approach for AGC with PID Controller: 

 

Researchers have developed a variety of control strategies for load frequency control 

(LFC) like classical control strategies where Bode and Nyquist diagrams as well as root 

locus are used. These techniques show poor dynamic performance, especially in the 

presence of other destabilizing influences such as parameter fluctuations [35] and 

nonlinearities [36]. In [37], LFC techniques based on modern optimal control theory 

have been used. 

 

More advanced techniques were later developed such as variable structure load 

frequency controllers (VSLFC) [38], combined adaptive control and fuzzy control [39], 

[40], control principles employing neural networks [41]. In [42], The proportional 

integral (PI) LFC was created in order to improve frequency management. To enable 

robust frequency control, the proportional integral differentiation (PID) approach for 
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LFC is proposed in [43]. In [44], robust control techniques were implemented despite 

the fact that there are transmission delays. The objectives in the robust control 

techniques are to develop load frequency controllers that not only satisfy nominal 

stability and performance requirements, but also ensure robust stability and 

performance [45]. The linear matrix inequality approach is investigated in [46], in 

order to fix the characteristic of LFC under various uncertainties and specific time-

varying conditions. The use of artificial neural networks (ANNs) was presented in [47] 

to solve the problem of human inability to govern complex plants. 

 

The use of a Genetic algorithm (GA) to tune the gain of controllers ushered in a new 

age, which was then extended to a proportional integral controller in an LFC scenario. 

Particle Swarm Optimization (PSO) [26], Grey Wolf Optimization (GWO) [17], Sine 

Cosine Algorithm (SCA) [30], Elephant Herding Optimization (EHO) [27], Seeker 

Optimization Algorithm (SOA) [28], and Quasi-Oppositional Dragonfly Algorithm 

(QODA) [29] are among the many other metaheuristic algorithms used in the field of 

power system LFC. PSO and Artificial Neural Network (ANN) were combinedly used in 

[14] to solve the LFC problem. 

 

In the recent past, new metaheuristic optimization algorithms have been reported, 

including Newton's method inspired Gradient-Based Optimizer (GBO) [19] and GBO’s 

updated algorithm Enhanced Gradient-Based Optimizer (EGBO) [20], adaptive 

movement step design inspired Multi-Trial Vector-Based Differential Evolution 

(MTDE) [22], and nature-based Marine Predators Algorithm (MPA) [21].  

 

The adaptive PI controller provided in [48], [49], [50], [51] is designed utilizing an 

artificial intelligent method of fuzzy and neural based control system using area-

control error and its change. In [52], evolutionary methods like as the genetic 

algorithm were also utilized to develop and improve the controller's performance. 

However, because these strategies are fundamentally stochastic procedures, it is 

difficult to ensure their success in a theoretical sense. The study in [53] built and 

analysed a novel adaptive feed forward neural network-based PI–derivative (PID) 

controller for a multi-area linked power system with a hybrid energy storage system. 

The construction of a non-linear neural network controller utilizing a Generalized 

Neural Network (GNN) was demonstrated in [54] to solve several problems of Simple 

neural networks, such as long training times, the need for a high number of neurons, 

and so on. The GNN controller has also been proven to be particularly effective at 

controlling plant dynamics in a short amount of time. In [55], The artificial neural 

network technique is used to control a three-area interconnected power system with 

tie lines connecting them, and the transient behaviour of each area's frequency and 

tie-line power deviations in the three-area power system showed that the ANN 

controller outperformed the conventional integral controller.  
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The current work presents a comparative study of implementation of different 

optimization algorithms in the ANN based LFC problem. Basically here, ANN is trained 

according to the datasets generated using different optimizers for PID controller 

based AGC. ANN learns from the trends of the datasets and apply its learning 

capabilities to predict the optimum PID parameters. 

 

 

 

 

1.2.4 Outcomes from Literature Survey: 

 

From the above discussions, it is quite obvious that PID controller is the most tested 

controller in the field of LFC because of its simplicity and availability. On the other 

hand, FOPID controller is getting famous nowadays because of its couple of extra 

tunable parameters. And ANN based prediction approach is not that much common 

in this LFC field.  

 

Basically, after getting quite satisfactory result from PID controller based AGC model, 

expecting more satisfactory result is a natural thing. According to [31], FOPID 

controller is capable of producing much better result than PID controller for the same 

model. That’s why FOPID controller is incorporated into the system. These controllers 

are not the fastest thing to control the AGC, specially FOPID controller-based system 

takes a lot of time to find out the optimum tunable parameters. In case of reducing 

execution time model predictive methods are the most feasible solution [34]. That’s 

why ANN based predictive model is developed in order to reduce the execution time. 

 

According to the aforementioned literature review, several optimization techniques 

with different goal functions may be employed to tune PID controller based AGC. ITAE, 

on the other hand, is the most commonly utilized time domain objective function. As 

a result, ITAE is employed as the objective function in this study for all three scenarios. 

GBO and EGBO are primarily employed in this study to optimize ITAE-based goal 

functions in PID controller-based AGC. Actually, those two algorithms are quite new, 

and they are mostly unexplored in the field of LFC. The MPA and MTDE methods are 

also utilized to create datasets for the NN model in the same system. 

 

Also, for the FOPID controller based LFC field, EGBO is completely unexplored. That’s 

why this optimization algorithm is used in the FOPID based AGC system in order to 

optimize the ITAE based objective function. 
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Although the goal of this project is to reduce ITAE, the execution time is critical in the 

event of a sensitive system. As a result, this work uses an ANN-based predictive 

strategy to minimize execution time. In fact, RNN is commonly employed in data 

prediction. However, there is no convincing proof that RNN can be used in the LFC 

industry and there is no time-series element on the studied datasets. On the other 

hand, the literature review shows that ANN-based hybrid algorithms, such as PSO plus 

ANN, are applied in the LFC sector in some cases. That is why ANN has been chosen 

for this project.  

 

1.3 Objective of this Work: 

 

From the previous sections and sub-sections, it is quite obvious that: the main objective of 

this work is to maintain a consistent frequency in the two area non-reheat thermal power 

system. Consistent frequency is important for a power generation system because most of 

the household and industrial connected loads are inductive in nature and the performance 

of these inductive loads directly depends on the frequency. 

 

In order to achieve consistent frequency, the proper controller design is very important 

which helps to reduce or eliminate the errors. Again, controllers without proper tune is 

completely useless. That’s why appropriate optimization algorithms with appropriate 

objective function are needed to be chosen in order to tune the controllers. 
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Chapter 2:  Methodology 

 

2.1 Overview of Different Optimization Algorithms: 

 

The following subsections are dedicated for extensive overview of some of the 

optimization algorithms that are used in this work.  

 

 

2.1.1 Gradient Based Optimizer (GBO): 

 

GBO is a novel meta-heuristic optimization algorithm [19] that searches the solution 

space using Newton's method logic [20]. GBO operates with the assistance of two 

preeminent operators, namely Gradient Search Rule (GSR) and Local Escaping 

Operator (LEO). 

 

The gradient search rule regulates the movement of vectors to better search in the 

feasible domain and get better locations using the following equations: 

 

𝐺𝑆𝑅 = 𝑟𝑎𝑛𝑑𝑛 ∗
2∆𝑥∗𝑥𝑖

(𝑦1𝑖−𝑦2𝑖+ 𝜖)
              (19)     

 

Where, 

 

            𝑦1𝑖 = 𝑟𝑎𝑛𝑑 ∗ (
𝑢𝑖+1+𝑥𝑖

2
+ 𝑟𝑎𝑛𝑑 ∗ ∆𝑥)                      (20) 

 

            𝑦2𝑖 = 𝑟𝑎𝑛𝑑 ∗ (
𝑢𝑖+1+𝑥𝑖

2
+ 𝑟𝑎𝑛𝑑 ∗ ∆𝑥)                      (21) 

 

            𝑢𝑖+1 = 𝑥𝑖 − 𝑟𝑎𝑛𝑑𝑛 ∗
2∆𝑥∗𝑥𝑖

𝑥𝑤𝑜𝑟𝑠𝑡−𝑥𝑏𝑒𝑠𝑡 + 𝜀
+ 𝐷𝑀              (22) 

 

Here, 𝑢𝑖+1 is the new GBO solution, 𝑟𝑎𝑛𝑑𝑛 is a random integer with a normal 

distribution, 𝑥𝑤𝑜𝑟𝑠𝑡 and 𝑥𝑏𝑒𝑠𝑡 are the worst and best solutions acquired during the 

optimization process and ε represents a small-scale number in the range [0, 0.1], 

which helps the equations to escape from getting zero values in the denominators. 

 

A Direction Movement is denoted by DM, which is written as, 

 

𝐷𝑀 = 𝑟𝑎𝑛𝑑 ∗ 𝐹2 ∗ (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑖𝑡)           (23) 
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Here, 𝐹2 is an adaptive parameter and 𝑖𝑡 is the iteration number. 

 

Δx is defined as the difference between two vectors, which is formulated as, 

 

∆𝑥 = 𝑟𝑎𝑛𝑑 ∗ |𝜒|                                                          (24) 

 

𝜒 =
𝑥𝑏𝑒𝑠𝑡−𝑥𝑖

𝑖𝑡+ 𝜂

2
                                                             (25) 

 

𝜂 = 2 ∗ 𝑟𝑎𝑛𝑑 ∗ (|
𝑥𝑎1

𝑖𝑡 + 𝑥𝑎2
𝑖𝑡 + 𝑥𝑎3

𝑖𝑡  + 𝑥𝑎4
𝑖𝑡

4
− 𝑥𝑖

𝑖𝑡|)                (26) 

 

Here, a1, a2, a3, and a4 denote four random numbers in the range of [1, N], in which, 

N is the pre-defined population number. 

 

In each iteration of the optimization process, GBO uses the GSR and DM to generate 

a new solution. As a result, the new solution may be computed as follows: 

 

𝑋𝑛𝑒𝑤1𝑖
𝑖𝑡 = 𝑥𝑖

𝑖𝑡 − 𝐺𝑆𝑅 + 𝐷𝑀                                           (27) 

 

𝑋𝑛𝑒𝑤1𝑖
𝑖𝑡 = 𝑥𝑖

𝑖𝑡 − 𝑟𝑎𝑛𝑑𝑛 ∗ 𝐹1 ∗
2∆𝑥∗𝑥𝑖

(𝑦1𝑖−𝑦2𝑖+ 𝜖)
+ 𝐷𝑀           (28) 

 

To improve its local search, GBO generates another new solution vector using the 

following relation, 

 

𝑋𝑛𝑒𝑤2𝑖
𝑖𝑡 = 𝑥𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑𝑛 ∗ 𝐹1 ∗

2∆𝑥∗𝑥𝑚
𝑖𝑡

(𝑦1𝑖
𝑖𝑡−𝑦2𝑖

𝑖𝑡+ 𝜖)
+ 𝑟𝑎𝑛𝑑 ∗ 𝐹2 ∗ (𝑥𝑎1

𝑖𝑡 − 𝑥𝑎2
𝑖𝑡 )        (29) 

 

𝐹1 and 𝐹2 are defined as adaptive scale factors which are used to strike a balance 

between exploration and exploitation, as well as to discover auspicious regions in the 

search space. 

 

Combining these two new solution vectors of Eq. (28-29), the solution vector for a 

certain iteration is obtained as, 

 

𝑥𝑖
𝑖𝑡+1 = 𝑟1 ∗  (𝑟2 ∗  𝑋𝑛𝑒𝑤1𝑖

𝑖𝑡 + (1 − 𝑟2) ∗  𝑋𝑛𝑒𝑤2𝑖
𝑖𝑡 ) + (1 − 𝑟1) ∗  𝑋𝑛𝑒𝑤3𝑖

𝑖𝑡             (30) 

 

Here, 𝑟1 and 𝑟2 denote integers that are randomly chosen from the range [0, 1] and, 

 

𝑋𝑛𝑒𝑤3𝑖
𝑖𝑡 = 𝑥𝑖

𝑖𝑡 − 𝐹1 ∗ (𝑋𝑛𝑒𝑤1𝑖
𝑖𝑡 − 𝑋𝑛𝑒𝑤2𝑖

𝑖𝑡 )                          (31) 
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In the GBO, LEO is employed to boost the capacity to escape local solutions. A 

suitable solution can be constructed with the help of the following pseudo-code, 

 

if 0.5rand   

 if 0.5rand   

  
1it it

LEO iX X XL+= +
 

 else         (32) 

  
it

LEO bestX x XL= +
 

 end 

 
1it it

i LEOX X+ =
 

         end 

 

      where, 

                  1 1 2 2 1 3 2 1 2( ) ( ( 2 1 ) ( )) / 2 it it it it it

best r m m a aXL x x F Xnew Xnew x x          −− +  +−=
 

                                                                                                                                                  (33) 

 

The μ1 and μ2 are two randomly generated integers that resides in the range of [−1, 1]. 

ϑ1, ϑ2, and ϑ3 are also three random values which are formulated under the condition that 

a randomly generated number in the range of [0, 1], rand1 is less than 0.5, otherwise, their 

designated value is 1. So, they can be written as, 

 

𝜃1 = {
2 ∗ 𝑟𝑎𝑛𝑑 ;  𝑖𝑓 𝑟𝑎𝑛𝑑1 < 0.5

1        ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                (34) 

 

𝜃2 = {
𝑟𝑎𝑛𝑑 ;  𝑖𝑓 𝑟𝑎𝑛𝑑1 < 0.5

1  ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                       (35) 

 

𝜃3 = {
𝑟𝑎𝑛𝑑 ;  𝑖𝑓 𝑟𝑎𝑛𝑑1 < 0.5

1  ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                        (36) 

 

Here, 𝑟𝑎𝑛𝑑1 is a number in the range of [0, 1]. 

 

The following figure represents the flowchart of GBO algorithm: 
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2.1.2 Enhanced Gradient Based Optimizer (EGBO): 

 

Properly setting two parameters F1 and F2 in the GBO is critical for improving 

precision and convergence speed. To increase the efficiency of the process in EGBO, 

small control parameter values are disproportionately assigned to superior solutions, 

whereas high values are disproportionately given to worse solutions [20]. A rank-

based process is employed to accomplish this, in which all particular entity are sorted 

in ascending order depending on the values of their objective functions. Then, these 

parameters are constructed using the following technique, 

 

if 0.5rand   

 1   1/   0.1        F a N randn= + 
 

 2   2 /   0.1   F a N randn= + 
 

else         (37) 

Fig.  6: GBO flowchart 
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 1   /   0.1    F i N randn= + 
 

 2   /   0.1  F i N randn= + 
 

end 

 

The crossover operator is used to increase population variety by merging the GBO's 

solution vectors with the existing solution in the following way, 

 
for j = 1 to d 

 if rrand pc
 or randj j=

 

  if 0.5rand   

   
1j jXnew Xnew=
 

  else 

   
2j jXnew Xnew=
     (38) 

  end 

 else 

   ,j i jXnew x=
 

 end 

end 

 

Here, pcr is defined as the crossover probability rate. In this work, pcr is defined 

based on the following equation, 

 

𝑝𝑐𝑟 = (
𝑖

𝑁
) + 0.1 ∗ 𝑟𝑎𝑛𝑑𝑛                        (39) 

 

A modified version of the LEO, named MLEO is created to improve the performance 

of the original LEO. The enhanced MLEO is presented in the pseudo-code below, 

 

if rand LC  

 if 

0.5 (1 )
it

rand
MaxIt

  −
 

  3 1 2 2 1 2( ) ( - )it it it

best best r a aXnew x F x x F x x= +  − + 
 

 else         (40) 

  1 2 2 1 2( ) ( - )it it it

best best r a aXnew x F x x F x x= +  − + 
 

  end 

end 
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In this work, LC denotes a chaotic logistic map, initiated with a value of 0.7. LC is 

updated in each iteration following the equation below, 

 

LC = 4 * LC * (1− LC)                                                                                           (41) 

 

The following figure depicts the working flowchart of the EGBO algorithm where the 

main differences between EGBO and GBO are highlighted: 

 

 

 

 

Fig.  7: EGBO flowchart 



28 
 

2.1.3 Chimp Optimization Algorithm (ChOA): 

 

Chimp Optimization Algorithm (ChOA) is a meta-heuristic algorithm which is inspired 

from the individual intelligence and sexual motivation of chimps during their group 

hunting [18].  

Chimp colony consists of four types of chimps for hunting [18]: 

1. Driver 

2. Barrier 

3. Chaser 

4. Attacker 

These four individual types are considered as four individual groups and each group 

follows their own patterns to search local and global problem space [18]. The 

hunting process of chimps is divided into two main phases: Exploration, which 

consists of driving, blocking and chasing the prey and exploitation, which consists of 

attacking the prey [18].  

a) Driving and chasing (exploration phase):  Mathematical model for driving and 

chasing the prey is as follows, 

 

( ). . ( )prey chimpd c x t m x t= −        (42) 

  ( ) ( )1 .chimp preyx t x t a d+ = −         (43) 

  

Where, 

  
12. .a f r f= −           (44)                                                                                       

  22.c r=                (45)                                                                                              

 

Here, d  is the distance vector between chimp and prey, t is the number of 

current iterations, , &a m c are the coefficient vectors, preyx is the prey position 

vector,  chimpx is the chimp position vector,  m  holds a chaotic value based on 

various chaotic map, 1 2&r r  are random vectors in [0,1] range and f  is reduced 

non-linearly from 2.5 to 0 through the iteration process (in both exploitation and 

exploration phase). 

 

b) Attacking method (exploitation phase): To mathematically model the attacking 

behavior of chimps, two approaches are designed [18]. The chimps are capable 

of exploring the prey’s location (by driving, blocking and chasing) and then 

encircling it. The hunting process is usually conducted by attacker chimps [18]. 
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In order to mathematically simulate the behavior of the chimps, it is assumed 

that the first attacker (best solution available), driver, barrier and chaser are 

informed about the location of potential prey and other chimps are forced to 

update their positions according to the best chimps’ location [18]. The 

mathematical model is as follows: 

1 1 2 2

3 3 4 4

. . , . .

. . , . .
Attacker Attacker Barrier Barrier

Chaser Chaser Driver Driver

d c x m x d c x m x

d c x m x d c x m x

= − = −

= − = −
              (46)                       

( ) ( )
( ) ( )

1 1 2 2

3 3 4 4

,

,

Attacker Attacker Barrier Barrier

Chaser Chaser Driver Driver

x x a d x x a d

x x a d x x a d

= − = −

= − = −
                    (47)                                                    

       ( ) 1 2 3 41
4

x x x x
x t

+ + +
+ =           (48)                                                                         

Here, 1 2 3 4, , &x x x x are the best position vectors of attacker, barrier, chaser and 

driver, respectively. 

 

 

2.1.4 Marine Predators Algorithm (MPA): 

 

Background: 

 

Brownian motion: 

 

Before going into the steps of the proposed algorithm, it's important to understand 

the mathematical models for two different types of random walks: 

 

(i) Brownian and 

(ii) Lévy motions. 

 

Brownian motion is a stochastic process whose step duration is determined by a 

probability function defined by a Normal (Gaussian) distribution with zero mean ( 

=0) and unit variance (
2 =1). For this motion, the controlling Probably Density 

Function (PDF) is as follows [17]: 

 
2

22

1 ( ) 1
( ; , ) exp exp( )

2 222
B

x x
f x


 

 

 −
= − = − 

                                 (49) 
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Lévy flight: 

 

The step sizes of a Lévy flight are governed by a probability function given by the Lévy 

distribution (power-law tail) [21]: 

 
1

( )j jL x x
−


                                                                                           (50) 

 

where 1 2   is the power-law exponent and jx
 is the flight length. In integral 

form, the probability density of a Lévy stable process is defined as [21]: 

 

0

1
( ; , ) exp( ) cos( )Lf x q qx dq  





= −
                                               (51) 

 

Where  determines the distribution index and regulates the process's scale 

parameters, and  determines the scale unit. When x owns a large value, the integral 

solution usually involves utilizing the series expansion method as follows [21]: 

 

(1 )

 (1 )sin
2

( ; , ) ,Lf x x
x 


 

 
 +

 
 +  

  →
                                              (52) 

 

Where   is the Gamma function, in which for  integers, (1 ) + equals  . For 

generating random numbers based on Lévy distribution the following method is used 

[17]: 

                                    

                                                                          (53) 

 

Here, x and y are two normal distribution variables with x
 and y

 standard 

deviations, x and y are defined as [21]:  

 
2(0, )xx Normal =

                                                                                     (54) 

 
2(0, )yy Normal =

  (55) 

 

Where x
 , y

and  is defined as,  

1
( ) 0.05



 = 
x

Levy

y
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                                                       (56) 

 

 

1y =
 and 1.5 =     (57) 

 

While the Lévy flight can efficiently and thoroughly search a close neighbourhood 

because to its short step lengths and explore other portions of the domain due to its 

large steps, it cannot cover all areas of a domain. Brownian motion walks, on the 

other hand, can trace and investigate distant portions of the neighbourhood but 

cannot search as precisely and deeply as the Lévy approach. Thus, The Marine 

Predators Algorithm (MPA) takes advantage of the unique qualities of the Lévy 

strategy, as well as elements of Brownian motion, to optimize exploration and 

exploitation of a region. 

 

MPA Formulation: 

 

MPA is a population-based approach in which the initial answer is uniformly allocated 

over the search space as the first trial: 

 

                                                (58) 

 

Here, the lower and upper bounds for variables are minX
 and maxX

respectively, and 

rand is a uniform random vector in the range of 0 to 1. 

 

According to the survival of the fittest theory, apex predators in nature are more 

skilled foragers. As a result, the fittest solution is designated as a top predator in 

order to construct the Elite matrix. This matrix's arrays are in charge of looking for 

and discovering prey based on information about the prey's location. 

 

 

                           (59) 

 

( 1)

2

(1 )sin
2

(1 )
2

2










−

  
 +  

  =
+  

  
  

x

0 min max min( )= + −X X rand X X

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 , 

 
 
 
 

=  
 
 
 
  

I I I

d

I I I

d

I I I

n n n d n d

X X X

X X X

Elite

X X X
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Where 
IX  the top predator vector, which is multiplied by n to get the Elite matrix. 

The number of search agents is n and the number of dimensions is d. 

 

Prey is another matrix with the same dimension as Elite, and it is used by predators 

to update their positions. In a nutshell, initialization creates the initial Prey, from 

which the fittest predator builds the Elite. The following is a representation of the 

Prey matrix: 

 

 

 

 

                                            (60) 

 

The j-th dimension of the i-th prey is represented by ,i jX
. It should be noted that 

these two matrices play a crucial role in the entire optimization process. 

 

MPA Optimization Scenarios: 

 

The MPA optimization method is separated into three primary phases, each of which 

takes into account a particular velocity ratio while simulating the whole life of a 

predator and prey: (1) when the predator is going faster than the prey or in high 

velocity ratio, (2) when the predator and prey are moving at nearly the same speed 

or in unit velocity ratio, and (3) when the predator is moving faster than the prey or 

in low velocity ratio. 

 

Phase 1: When the predator is going faster than the prey in a high-velocity ratio, this 

condition occurs during the earliest optimization stages, when exploration is 

important. The optimum strategy for a predator in a high-velocity ratio (v ≥ 10) is to 

not move at all. The mathematical model of this rule is as follows: 

 

 

                (61) 

 

Where BR  represents Brownian motion and is a vector containing random values 

based on the Normal distribution. Entry-by-entry multiplications are shown in the

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 , 

 
 
 
 

=  
 
 
 
  

d

d

n n n d n d

X X X

X X X

Prey

X X X

1
 _

3

( )          1,.........,

.



=  −  =

= + 

i B i B i

i i i

While Iter Max Iter

stepsize R Elite R Prey i n

Prey Prey P R stepsize
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notation. By multiplying BR  by Prey, prey movement is simulated. R  is a vector of 

uniform random numbers in the range [0,1], and P=0.5 is a constant value. 

 

Phase 2: When both the predator and the prey are moving at the same speed, this is 

known as a unit velocity ratio. According to the rule, if prey moves in Lévy at unit 

velocity ratio (v   1), the ideal predator approach is Brownian. As a result, prey 

movements are considered in Lévy, while predator movements are considered in 

Brownian. 

 

 

 

 

                (62) 

 

 

Where LR  denotes Lévy movement and is a vector of random numbers based on the 

Lévy distribution. The addition of the step size to the prey position simulates prey 

movement, while the multiplication of LR  and Prey simulates prey movement in a 

Lévy manner. 

 

 

 

                    (63) 

 

 

Where, 

 

 

                                          (64) 

 

 

While CF is used as an adaptive parameter to adjust predator movement step size.  

Multiplication of BR  and Elite replicates predator movement in Brownian motion, 

while prey updates its position in response to predator movement in Brownian 

motion.  

1 2
  _ _

3 3

For the first half of the population

( )       1,........., / 2

.

 

=  −  =

= + 

i L i L i

i i i

While Max Iter Iter Max Iter

stepsize R Elite R Prey i n

Prey Prey P R stepsize

For the second half of the population

( )      1,........., / 2

.

=   − =

= + 

i B B i i

i i i

stepsize R R Elite Prey i n

Prey Elite P CF stepsize

2
_

1
_

 
 
  

= − 
 

Iter

Max IterIter
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Max Iter
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Phase 3: When the predator is going faster than the prey in a low-velocity ratio it is 

usually accompanied with a high level of exploitation capacity. This scenario occurs 

in the final stage of the optimization process, and Lévy is the best predator tactic 

when the velocity ratio is modest (v = 0.1). This phase is described as follows: 

 

 

 

 

                     (65) 

 

 

In the Lévy method, multiplying LR and Elite simulates predator movement, while 

adding the step size to Elite position simulates predator movement to aid in the 

updating of prey position. 

 

Eddy formation and FADs’ effect: 

 

Environmental factors such as eddy formation or the effects of Fish Aggregating 

Devices (FADs) are another factor that causes behavioural changes in marine 

predators [21]. Local optima are referred to as FADs, and their influence is described 

as "trapping" in these points in search space. Simulating these larger jumps prevents 

local optima from becoming stagnant. As a result, the FADs effect is represented 

numerically as: 

 

 

 

                             (66) 

 

 

 

                             (67) 

 

The following figure represents the flow chart of MPA algorithm: 
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The probability of FADs effect on the optimization process is FADs = 0.2. U  is a binary 

vector that contains arrays of zero and one. This is made by creating a random vector 

in the range [0,1] and setting its array to zero if it is less than 0.2 and one if it is more 

than 0.2. In the range [0,1], r is the uniform random number. The lower and higher 

bounds of the dimensions are represented by the vectors minX  and maxX . Random 

indexes of the prey matrix are denoted by the r1 and r2 subscripts. 

 

Fig.  8: MPA flowchart 
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Marine memory: 

 

Predators of the sea have a good memory for remembering where they have been 

successful in foraging. Memory saving in MPA simulates this capability. After 

updating the Prey and including the FADs impact, Prey matrix is examined for fitness 

to update the Elite. Each current iteration's solution is compared against its 

counterpart from the previous iteration, and the current one replaces the previous 

one if it is more suited. The MPA pseudo-code is listed below: 

 
Initialize search agents (Prey) populations 

i=1,…,n 

 

While termination criteria are not met 

Calculate the fitness and construct the Elite 

matrix 

 

If Iter<Max_Iter/3 

Update prey based on Eq. 61 

 

Else if Max_Iter/3<Iter<2*Max_Iter/3 

For the first half of the populations 

(i=1,…,n/2) 

Update prey based on Eq. 62 

 

For the other half of the populations 

(i=n/2,…,n) 

Update prey based on Eq. 63 

 

Else if Iter>2*Max_Iter/3 

Update prey based on Eq. 65 

End (if) 

 

Accomplish memory saving and Elite update 

 

Applying FADs effect and update based on Eq. 66 

& 67 

 

Accomplish memory saving and Elite update 

 

End while 
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2.1.5 Multi Trial vector based Differential Evolution (MTDE): 

 

The no-free lunch theorem, which states that different search techniques are required 

to tackle diverse optimization problems, is addressed by the multi-trial vector-based 

differential evolution (MTDE) algorithm [22]. For all global optimization problems 

with varied properties, no single algorithm can show superior performance. In other 

words, different search strategies might be effective on different problems and at 

different points of the search process, depending on several criteria like as the 

multimodality of the problem, the chosen EA, and the global exploration/local 

exploitation stages of the search process. The MTV method is used in the MTDE 

algorithm, which has two key steps: initializing and movement. N individuals x1, ..., 

xN are randomly dispersed in the search space in the initializing stage to assume a 

constrained boundary between lower bound (l) and upper bound (u) by utilizing the 

following equation: 

( ) (0.1)ij j j jx l u l rand= + −                                                                       (68) 

Where, xij is the i-th individual's location in the j-th dimension, and lj and uj are the j-

th dimension's lower and upper bounds. Individual xi is represented by the vector xi = 

{xi1, xi2,..., xiD} where D specifies the number of dimensions of the search space and N 

individuals are stored in the matrix N DX  . 

 

Movement step using MTV approach: 

The MTDE movement phase is based on the previously mentioned MTV method, 

which takes into account three trial vector producers: R-TVP, L-TVP, and G-TVP. 

The purpose of combining these three trial vector generators is to give MTDE for a 

variety of issues. R-TVP is used to avoid local optima trapping and maintain diversity, 

L-TVP benefits from fast convergence and a proper balance of exploration and 

exploitation, and G-TVP represents a significant ability in exploitation and escaping 

local optima. As indicated in the flowchart, the MTDE algorithm's movement step has 

four sub-steps: winner-based distributing, multi-trial vector producing, evaluating, 

and life-time archiving. The winner-based distributing sub-step is based on the 

following Definitions: 

 

Definition 1:  

Given k WinIter, each with n iterations, and only one winner TVP denoted by Win-

TVP, there is only one winner TVP for each WinIter. R-TVP is regarded Win-TVP in 

the first WinIter, while Win-TVP in subsequent WinIters is the TVP with the highest 

improved rate in the previous WinIter. The enhanced rate of X-TVP (where X stands 

for R, L, or G) denoted by IRX-TVP is determined using the equation below. 
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X TVP
X TVP

X TVP

IF
IR

FE

−
−

−

=                                                                                   (69) 

Where, the number of enhanced finesses by the X-TVP and the number of function 

evaluations in a WinIter are represented by IFX-TVP and FEX-TVP, respectively. The 

winner-based distribution sub-step distributes the population amongst the trial vectors 

R-TVP, L-TVP, and G-TVP after determining the Win-TVP with the help of the 

distribution policy based on Definition 2. 

 

Definition 2: 

 NR-TVP, NL-TVP, and NG-TVP are the sizes of the subpopulations of XR-TVP, XL-TVP, and 

XG-TVP, respectively. The size of these subpopulations is set by two reward and 

punishment procedures defined based on the Win-TVP. N individuals are then 

allocated randomly amongst these subpopulations. 

 

Reward rule:  

If R-TVP or L-TVP is Win-TVP, 

then 0.6   0.2Win TVP Loser TVPsN N and N N− −=  =           (70) 

 

Penalty rule:  

If G-TVP is Win-TVP,  

then 0.2   0.4G TVP Loser TVPsN N and N N− −=  =               (71) 

The next paragraphs provide basic preliminaries and essential concepts before 

describing how three introduced TVPs use their movement strategy.  

In order to construct the final produced trial vectors, both R-TVP and G-TVP cross 

their produced trial vectors across their corresponding individuals. A scale factor is 

calculated for each individual xi using the Cauchy distribution, with  

 

( ),i i fF randc  =                                                                             (72) 

 

where
f is the mean value of improved scale factors and   is the variance with 

constant value 0.2. Fi must be between 0 and 1, and if Fi > 1, it is considered by 1, 
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and if 0iF   it will be calculated again, with the parameter f set to 0.5. If any improved 

individual in the population exists in subsequent iterations, 
f  is determined using 

the weighted Lehmer mean, and if there is no improved individual, the scale factors 

remain unaltered. 

 

2

ii f

ii f

f if S

f

f if S

w f

w f







=






                                                                                        (73) 

 

Where Sf is the set of all Fs in the current iteration for which f(ui)<f(xi), and the weight 

is derived according to the previous equation,  

 

i

i f

i
f

if S

f
w

f



=


                                                                                                  (74) 

 

Where, ( ) ( )i i if f x f u= − . 

Using the locations of a random individual xu_pop from the unionPopulation and two 

individuals, xi_best and xi_worst, R-TVP shifts individual xi from its subpopulation. The 

i-th elements of the ascending and descending ordered representation of the fitness 

values of the subpopulation XR-TVP are xi_best and xi_worst, respectively. Then, using the 

transformation matrix M and its binary inverse M and vi calculated and the trial vector 

ui in R-TVP is created. 

 

i i iu M x M v=  +                                                                                        (75) 

 

( ) ( ) ( )1 _best worsti i i i i i i i u pop iv x F x x F x x a x x= +  − +  − +  −              (76) 

 

Where 1

2
2a iter

MaxIter

 
= −  

 
                                                              (77) 
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The difference between the positions of two randomly picked people xr1 and xr2 from 

XL-TVP and the difference of xi from a randomly selected individual xu_pop derive 

from the unionPopulation is considered by L-TVP to modify the position of xi. As 

demonstrated in the equation below,  

 

( ) ( )1 2 2 _i i i r r u pop iv x F x x a x x= +  − +  −                                             (78) 

 

Where,  

( )2 ( ) (( ) / )Mua initial initial final MaxIter iter MaxIter= − −  −     (79) 

 

The flowchart of MTDE algorithm is presented in the following figure: 

 

Fig.  9: MTDE flowchart 
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The initial and final values of control parameter a2 are initial and final, respectively, 

and Mu is a dimension dependent value. The final trial vector ui, unlike the R-TVP, is 

based on individual learning rather than evolution, hence it does not utilize a crossover 

and ui = vi. 

 

G-TVP is developed to address the problem of trapping in local optima by utilizing a 

gbest history dubbed gbest-history. The gbest-history is initialized with simply the 

gbest in the first iteration. The gbest of each iteration is then added to the gbest-history 

in the subsequent iterations. When gbest-history is full, the current gbest is replaced 

by a previous gbest with a better fitness value from the past. A matrix Mgb-h with NG-

TVP rows and D columns is also created from the gbest-history for the G-TVP. The Mgb-

h is built in each iteration by reproducing the gbest-history for (N/m) times where m is 

the number of gbest-history members. The trial vector ui is then computed which is 

analogous to the R-TVP utilizing the M and M matrixes and vi computation. Here, 

xi_gb-h is the i-th row of the Mgb-h, and xr1 and xr2 are two people from the XG-TVP chosen 

at random. 

 

i i iu M x M v=  +                                                                                         (80) 

 

( )_ 2 1 2i i gb h r rv x a x x−= +  −                                                                         (81) 

 

The quality of each trial vector ui from UX-TVP is compared to its matching individual 

xi from XX-TVP in the assessing sub-step. If ( ) ( )i if u f x  then xi in the population 

remains unaffected. If ( ) ( )i if u f x , the population updating mechanism advances 

xi by ui.  

 

Additionally, the value of Fi is saved, and the number of individuals benefitted by each 

TVP is increased by one. Then, as an inferior solution, the life-time archiving sub-step 

adds xi to the life-time archive. The life-time archive is initially empty, and it can store 

the position and lifetime of N individuals. The lifetime of archived individuals is 

increased by one at the conclusion of each iteration, while N younger archived 

individuals with shorter lifetimes are kept. Finally, the iteration counter (iter) is raised 

by one, and the evolutionary search can be repeated until the maximum number of 

iterations (MaxIter) is reached. 
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2.2 Two Area AGC with PID Controller: 

 

2.2.1 General Representation of the Model: 

 

In this work, an interconnected two area non reheat thermal power system is 

considered under study. The system model with PID controller is as follows: 

 

 

Here, PID controller is used in both areas. In the model, 𝑢1 and 𝑢2 are the outputs of 

the PID controllers of area1 and area 2, respectively. 

 

 

 

 

2.2.2 State Space Modeling of the System: 

 

The state-space model of the PID incorporated two-area thermal power system is 

represented as:  

 

1

.
1

2 7 1 1

1 1

1
( )

ps

ps ps

K
x x x w x

T T
= − − −                (82) 

2

.

3 2

1

1
( )

t

x x x
T

= −                                           (83) 

Fig.  10: System model with PID controller 



43 
 

3

.
1

1 3

1 1

1
( )

sg

x
x u x

T R
= − −                    (84) 

4

.
2

5 12 7 2 4

2 2

1
( )

ps

ps ps

K
x x a x w x

T T
= − − −         (85) 

5

.

6 5

2

1
( )

t

x x x
T

= −        (86) 

6

.
4

2 6

2 2

1
( )

sg

x
x u x

T R
= − −       (87) 

7

.

12 1 42 ( )x T x x= −        (88) 

1

.

1 1 2 2 3 3 4 4 5 5 6 6 7 7 1 8u x e x e x e x e x e x e x e w e= + + + + + + +   (89) 

2

.

1 1 2 2 3 3 4 4 5 5 6 6 7 7 2 8u x f x f x f x f x f x f x f w e= + + + + + + +   (90) 

 

The detailed expressions of the coefficients e  and f  of Eq. (89-90) can be found in 

appendix C. The state matrix which is derived from Eq. (82-90) can be defined as, 

 

A = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

−1

𝑇𝑝𝑠1
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𝑇𝑡2
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0

−1

𝑇𝑠𝑔2
0 0

1

𝑇𝑠𝑔2

2𝜋𝑇12 0 0 −2𝜋𝑇12 0 0 0 0 0
𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 0 0
𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

  (91) 

 

 

 

 

 

2.2.3 Controller & Objective Function: 

 

In the LFC field, application of several kinds of controllers are observed such as PI 

controllers [18], classical PID controllers [18], [29], [17], and [26], Ziegler-Nichols 
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tuned PID controllers [29] and [26], PIDN controllers [30] and [27], Fuzzy PID 

controllers [43], FOPID (Fractional Order PID) controllers [31], ANN-based controllers 

[14], etc. For this study, a generic PID controller is chosen due to its industry-wide 

availability and affordability. The transfer function of the proposed controller, which 

is adopted from [56]: 

i
PID p d

K
TF K K s

s
= + +       (38) 

Kp, Ki, and Kd are the proportional, integral, and derivative gains of the controllers 

respectively. The inputs of the controllers are ACEs defined as, 

1
1 1 1 1 1 1 7( )i

p d

K
ACE K K s u x b x

s
= + + = +     (39) 

2
2 2 2 2 4 2 12 7( )i

p d

K
ACE K K s u x b a x

s
= + + = −    (40) 

The operational objectives of the LFC are to maintain reasonably uniform frequency, 

to divide the load between generators, and to control the tie-line interchange 

schedules [3]. To keep the system frequency deviation within acceptable limits, the 

controller gains are optimized with the objective of minimization of ITAE, reducing 

ACEs of both areas, along with the deviation of the tie-line power flow.  Hence, the 

optimization problem is formulated as follows: 

Minimize 1 4 7
0

( )
finalt

t
ITAE t X X X dt

=
= + +     (41) 

Subject to the following controller gain boundaries,  

min max

1 1 1p p pK K K         (42) 

min max

1 1 1i i iK K K         (43) 

min max

1 1 1d d dK K K         (44) 

min max

2 2 2p p pK K K         (45) 

min max

2 2 2i i iK K K         (46) 

min max

2 2 2d d dK K K         (47) 

 
In this work the search space for the parameters of the controller is chosen as, 

 

116 6pK−   −        (48) 
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145 15iK−   −        (49) 

18 3dK−   −        (50) 

216 6pK−   −        (51) 

245 15iK−   −        (52) 

28 3dK−   −        (53) 
 

 

 

2.3 Two Area AGC with FOPID Controller: 

 

2.3.1 General Representation of the Model: 

 

The FOPID incorporated system is exactly same as the PID controller incorporated 

system except the controller part. The system model with FOPID controller is as 

follows: 
 

 

 

 

 

 

 

 

Fig.  11: System model with FOPID controller 
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As mentioned earlier, FOPID controller has two more extra tunable parameters 

(𝜆 𝑎𝑛𝑑 𝜇) which give the controller more authority to reduce error. The following 

figure represents the structure of the FOPID controller [23]: 

 

 

2.3.2 Modeling in Simulink: 

 

Initially the system is modeled in Simulink. Then the tunable parameters are assigned 

in the FOPID block. After that ITAE based objective function is optimized using those 

assigned parameters in Matlab to get the optimum parameter value. 

 

The following figure is the representation of the Simulink model: 

Fig.  12: Basic structure of FOPID controller [23] 

Fig.  13: Simulink modeling of the system 
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Now, the figures below represent the area 1 and area 2 of the above modelling: 

 

 

 

 

 

 

Fig.  14: Area1 in Simulink modeling of the system 

Fig.  15: Area2 in Simulink modeling of the system 
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Now the following figure is the FOPID controller box parameters for area1: 

 

Here, 5 tunable parameters (𝐾𝑝, 𝐾𝑖, 𝑙𝑎𝑚𝑑𝑎, 𝐾𝑑 𝑎𝑛𝑑 𝑚𝑢) are assigned as variable so 

that the values of those parameters can be set by the optimizer. The frequency range 

[wb, wh] and approximation order (N) is calculated using eqn. (16-18). The controller 

parameters for area 2 is exactly similar. 

 

2.4 Neural Network (NN) incorporation into the system: 

 

Due to the dynamic nature of load, we need to pay heed to the time constraints. Widely-

used optimizers are able to significantly reduce the ITAE value, however, they are averaging 

80-90 seconds per SLPs. To reduce the execution time, the application of neural networks is 

proposed. 

 

Fig.  16: FOPID controller box parameters 
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A. Data description and preparation: 

By extensive executions and simulations, it is found that for the system under study, 

EGBO, GBO, MPA, and MTDE algorithms performed better than the 30-odd optimizers 

tested on this problem. For this reason, four separate datasets are created, with the four 

optimizers mentioned above. For the simulation, SLPs from 0.005 pu to 0.25 pu are taken 

for the two areas, which lead to 2500 simulated samples per optimizers, totaling 10000 

samples collected in around 278 hours. 

In this study, step changes in load demand in two areas are considered as the input 

feature and the PID parameters of the controllers are considered as the output feature. 

Each of the datasets contain 168,342 parameters and for each dataset, the data is split 

80-10-10 to train, validation, and test sets.  

 

B. Model preparation: 

For training, ANN (Artificial Neural Network) is chosen due to its worldwide popularity 

and ease of use.  For the four datasets, the number of layers and activation functions have 

been kept the same for fair comparisons. The hyperparameters of the models have been 

set manually after extensive trial and error runs. All the trainable layers except the output 

layer are L2 regularized (0.0001) to avoid over-fitting. Dropouts are not introduced to 

reduce the unpredictability of the models. Other general parameters are: 

• Optimizer: Adam 

• Learning Rate: 0.0001 

• Loss functions: Mean Squared Error, Cosine Similarity 

• Batch Size: 32 

• Epoch Determiner: Early Stopping (Patience: 250) 

 

Table 1: Layer Based Hyperparameters 

Layer Type No. of Units Activation Function 

Batch Normalization 
  

Fully Connceted 144 ReLU 

Fully Connceted 144 ReLU 

Fully Connceted 144 ReLU 

Fully Connceted 144 ReLU 

Fully Connceted 144 ReLU 

Fully Connceted 144 ReLU 
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Fully Connceted 144 ReLU 

Fully Connceted 144 ReLU 

Fully Connceted 144 ReLU 

Fully Connceted 6 Linear 
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Chapter 3: Results & Outcomes 
3.1 Optimization of PID Controller incorporated Two Area AGC: 

For a comprehensive comparative analysis, along with EGBO, five other optimization 

algorithms, namely GBO GWO, PSO, SCA, and ChOA are adopted in the PID controller gain 

optimization process. For the sake of fair competition, the number of population or search 

agents for each algorithm is chosen to be 100, with a maximum of 500 iterations. All of the 

algorithms are initialized with random PID gain parameters. Other relevant parameters for 

the aforementioned algorithms are provided in appendix D.  

A. Case Studies: 

For the breakdown of the performances of the controller optimized by the 

aforementioned algorithms, the following case studies are conducted:  

• Case-1: 15% constant SLP in both areas 

• Case-2: 25% constant SLP in area 1 and no SLP in area 2 

• Case-3: 25% constant SLP in area 2 and no SLP in area 1 

• Case-4: 20% constant SLP in area 1 and 10% constant SLP in area 2 

• Case-5: 20% constant SLP in area 2 and 10% constant SLP in area 1 

 

i. Case-1: 

Table 2: Optimal Values of the Controller for Case-1 

   
Controller 1 Parameters Controller 2 Parameters 

Algorithms Best 
Optimal 

ITAE 

Execution 
Time 
(sec) 

Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 

ChOA 0.2344 94.3089 -14.9522 -41.6957 -5.6072 -14.7309 -43.1649 -5.618 

EGBO 0.2292 74.8221 -15.1838 -43.5993 -5.7641 -15.1738 -45 -5.761 

GBO 0.2293 76.1791 -15.2024 -43.5671 -5.7899 -15.178 -44.9967 -5.7857 

GWO 0.2298 95.7718 -15.1871 -43.7646 -5.7986 -15.0911 -45 -5.7799 

PSO 0.2296 81.6852 -15.2116 -43.837 -5.8098 -15.1177 -45 -5.7709 

SCA 0.2359 97.6668 -16 -45 -6.103 -16 -45 -5.9294 
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From table 2, it is evident that EGBO provides the best optimal ITAE while taking the least amount 

of time. In terms of both best ITAE and execution time, EGBO edges over second-placed GBO and 

third-placed PSO. In fig. 16, although the algorithms show a similar trend in terms of FD, for the 

case of TPD, it is evident that EGBO is by far the superior algorithm, boasting very little overshoot 

and settling in around 6-second.  

 

i. Case-2: 

 
Table 3: Optimal Values of the Controllers for Case-2 

   
Controller 1 Parameters Controller 2 Parameters 

Algorithms Best 
Optimal 

ITAE 

Execution 
Time 
(sec) 

Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 

ChOA 0.9384 95.4597 -10.9494 -45 -4.7316 -16 -45 -5.0483 

EGBO 0.9378 98.3608 -10.8375 -45 -4.7069 -16 -39.1146 -4.8704 

GBO 0.9378 100.6737 -10.8375 -45 -4.7069 -16 -39.1148 -4.8702 

GWO 0.9379 96.9174 -10.8392 -45 -4.7091 -15.955 -41.607 -4.9248 

PSO 0.9378 105.1054 -10.8375 -45 -4.7069 -16 -39.1335 -4.8708 

SCA 0.939 100.0173 -10.8832 -45 -4.7175 -15.0735 -21.4369 -5.774 

 

Fig.  17: (i) FD in area 1 (ii) FD in area 2 (iii) TPD for case-1 
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For case-2, EGBO, GBO, and PSO deliver the same optimal ITAE of 0.9378, while GWO just falls 

short with an ITAE of 0.9379. Some of the controller parameters obtained from EGBO, GBO, and 

PSO are almost identical, which resonate with the simulation of FD in area 1 and TPD. However, 

SLP applied on only area 1 seems to have an adverse effect on FD of area 2. The algorithms seem 

to find it difficult to minimize the oscillation and to minimize the settling time, albeit EGBO, which 

provides a smoother response with a faster settling time.  

 

i. Case-3: 

Table 4: Optimal Values of the Controllers for Case-3 

   
Controller 1 Parameters Controller 2 Parameters 

Algorithms Best 
Optimal 

ITAE 

Execution 
Time 
(sec) 

Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 

ChOA 0.9507 97.3061 -16 -43.5345 -5.0029 -10.7151 -45 -4.6522 

EGBO 0.95 99.9523 -16 -45 -4.9366 -10.6501 -45 -4.6468 

GBO 0.95 105.6416 -16 -45 -4.9366 -10.6501 -45 -4.6468 

GWO 0.9501 103.3018 -16 -45 -4.9314 -10.6555 -45 -4.6481 

PSO 0.95 113.7967 -16 -45 -4.9366 -10.6501 -45 -4.6468 

SCA 0.9528 101.2585 -11.3121 -45 -5.0956 -10.6818 -45 -4.6705 

Fig.  18: (i) FD in area 1 (ii) FD in area 2 (iii) TPD for case-2 
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For case-3, the aforesaid effect of only one area load perturbation on the FD and TPD 

simulations as explained for case-2 can be seen, as well as similar trends for ITAE and PID gains. 

For further discussions on case-2 and case-3, the execution time can be accounted for. For both 

cases, ChOA exhibits the smallest execution times, but not the best optimal ITAEs. Among the 

algorithms that provide the best optimal ITAEs, EGBO converges to the solution, the quickest. 

 

i. Case-4: 

Table 5: Optimal Values of the Controllers for Case-4 

   
Controller 1 Parameters Controller 2 Parameters 

Algorithms Best 
Optimal 

ITAE 

Execution 
Time 
(sec) 

Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 

ChOA 0.2805 93.7092 -15.64 -45 -5.931 -16 -23.8575 -5.6133 

EGBO 0.2735 82.1557 -15.292 -45 -5.856 -15.3763 -23.4416 -5.4057 

GBO 0.2736 82.6738 -15.309 -45 -5.8478 -15.4755 -23.4111 -5.382 

GWO 0.2739 92.401 -15.2249 -45 -5.8318 -15.4385 -23.404 -5.3673 

PSO 0.2737 85.5741 -15.2937 -45 -5.863 -15.425 -23.4928 -5.4229 

SCA 0.2821 101.5411 -16 -45 -5.9795 -15.478 -22.6949 -5.3067 

 

Fig.  19: (i) FD in area 1 (ii) FD in area 2 (iii) TPD for case-3 
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From table 5, it is clear that EGBO possesses the best optimal ITAE value and execution time 

among the optimizers, surpassing its parent GBO by a slight margin. SCA shows better overshoot 

in the case of TPD as seen in figure 5, however, it requires a longer execution time.  

 

 

i. Case-5: 

Table 6: Optimal Values of the Controllers for Case-5 

   
Controller 1 Parameters Controller 2 Parameters 

Algorithms Best 
Optimal 

ITAE 

Execution 
Time 
(sec) 

Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 

ChOA 0.285 92.4471 -15.0874 -22.0303 -5.4886 -14.6593 -45 -5.7556 

EGBO 0.2772 78.7314 -15.1578 -21.3754 -5.3152 -15.0066 -45 -5.3152 

GBO 0.2773 79.3398 -15.1262 -21.3442 -5.3058 -15.0664 -44.9952 -5.7503 

GWO 0.2775 93.1188 -15.1036 -21.3543 -5.3137 -15.0168 -45 -5.7608 

PSO 0.2773 84.7991 -15.1633 -21.3759 -5.3172 -15.0122 -45 -5.7557 

SCA 0.2892 97.3272 -16 -22.3174 -5.519 -15.3498 -45 -5.6841 

 

 

Fig.  20: (i) FD in area 1 (ii) FD in area 2 (iii) TPD for case-4 
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 For case-5, the superiority of EGBO is crystal clear, which is evident from fig. 20 as both FD and 

TPD simulations exhibit less jitter and faster settling time. Figure 6 is the justification of the lowest 

optimal ITAE value provided by EGBO among the algorithms. EGBO is also the fastest to converge 

to such value. 

 

B. Convergence Comparison of the Optimizers: 

Table 7: Comparison of the Controllers for Case-5 after 50 iterations 

Algorithms Fitness Value Optimal ITAE Execution Time 
(sec) 

ChOA 0.3861 0.285 11.1407 

EGBO 0.2776 0.2772 8.4618 

GBO 0.2779 0.2773 8.9891 

GWO 0.3007 0.2775 10.1287 

PSO 0.2793 0.2773 8.8641 

SCA 0.3943 0.2892 11.0746 

 

 

 

 

Fig.  21: (i) FD in area 1 (ii) FD in area 2 (iii) TPD for case-5 
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As explained earlier, it is vital to know exactly how fast the algorithm traverses the search space 

to get to the optimal fitness value. For an industry-wide application, the optimized controllers 

should be able to cope up with the dynamic load, meaning, coping with the variation in SLP after 

a certain amount of time. For demonstrating the performance comparison, the first 50 iterations 

of case-5 are taken, along with the fitness value after 50 iterations, time taken for the algorithms 

to obtain such fitness value, and the optimal ITAEs found in table 6. From fig. 21, it can be seen 

that, although GBO performs well for the first few iterations, EGBO provides the lowest ITAE, 

which is apparent in table 7. EGBO and GBO take around 8 seconds for finding the final fitness 

value while being 0.14% and 0.22% closer to the optimal ITAE value of each algorithm, 

respectively. 

 

C. Comparative Statistical Analysis:  

This section represents statistical analysis data of all the cases for each algorithm for 

better comparative study. 

Table 8: Statistical study of the algorithms for the studied five cases 

Cases Statistical 
Measures 

ChOA EGBO GBO GWO PSO SCA 

Case-I Mean 0.2358 0.2296 0.23 0.2302 0.2303 0.2471 

Best 0.2344 0.2292 0.2293 0.2298 0.2296 0.2359 

Worst 0.2383 0.2301 0.2303 0.2304 0.2321 0.2673 

Case-II Mean 0.9395 0.9378 0.9379 0.9384 0.9379 0.94 

Fig.  22: Convergence curves of the algorithms under comparison 
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Best 0.9384 0.9378 0.9378 0.9379 0.9378 0.939 

Worst 0.9408 0.9378 0.9391 0.9393 0.9391 0.9416 

Case-III Mean 0.9544 0.95 0.95 0.9506 0.95 0.9575 

Best 0.9507 0.95 0.95 0.9501 0.95 0.9528 

Worst 0.9582 0.95 0.9501 0.9532 0.9501 0.9641 

Case-IV Mean 0.2896 0.2737 0.2754 0.2741 0.2738 0.3021 

Best 0.2805 0.2735 0.2736 0.2739 0.2737 0.2821 

Worst 0.303 0.2738 0.2979 0.2743 0.2748 0.3222 

Case-V Mean 0.2961 0.2773 0.2792 0.2778 0.2784 0.3077 

Best 0.285 0.2772 0.2773 0.2775 0.2773 0.2892 

Worst 0.3088 0.2775 0.3043 0.278 0.3032 0.3215 

 

For each case, the algorithms are run for 30 times. The case study section of the paper is 

comprised of the best cases found while simulating the algorithms. For the comparative 

statistical analysis, all of the 30 runs are considered and the best, worst and mean values of 

each of the algorithms for the five cases are calculated and presented in table 8. EGBO is the 

superior of the studied algorithms, performing efficiently all across the board. For case-2 and 

case-3, EGBO provides the same value for the considered three statistical measures, 

showcasing the robustness of the optimizer. 

 

 

3.2 Optimization of FOPID Controller incorporated Two Area AGC: 

 

As EGBO gives superior result in the previous section, most priority is given to EGBO in terms 

of optimization algorithm in this section. Basically, in this section, ITAE based objective 

function is optimized by EGBO in order to tune the FOPID controllers. The optimization is run 

for 250 iterations and 30 population size. The SLPs for both areas are kept 10%. The other 

parameters for optimization algorithm are mentioned in appendix D. 

 

The following table represents the results of the FOPID controller for the above-mentioned 

scenario: 

               Table 9: Optimal Values of the FOPID Controller for the mentioned scenario 
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The convergence curve for the EGBO FOPID controller is as follows: 

 

From fig. 22, it can be clearly noticed that after 130 iterations, the curve becomes completely 

flat. And the ITAE is 0.0835 which exceptionally good result for this kind of scenario. 

The following table shows the comparison between EGBO based FOPID controller and EGBO, 

GBO, MPA & MTDE based PID controller results for the same model with 10% SLPs on the both 

areas. It can be seen that the FOPID-EGBO result is superior compared to others in terms of ITAE. 

 

Table 10: Comparison of the controllers’ results 

 

Controller ITAE Exe. Time (s) 

PID-EGBO 0.15428 74.881 

PID-GBO 0.15487 88.288 

PID-MPA 0.15431 408.409 

PID-MTDE 0.15458 94.068 

FOPID-EGBO 0.08348 21855.722 

Fig.  23: Convergence curve of the EGBO FOPID controller 
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3.3 Neural Network Prediction Based Approach for Two Area AGC: 

 

A. Error Metrics: 

The models have been tested based on three different error parameters - RMSE (Root 

Mean Squared Error), MAE (Mean Absolute Error) and the coefficient of determination, 

R2. 

B. Experimental Results: 

 

  Table 11: Experimental results of 4 optimizers 

R2 RMSE Epochs MSE MAE Optimizer 

0.9289 0.4107 2634 0.2149 0.1929 EGBO 

0.9639 0.3352 1487 0.1644 0.1511 GBO 

0.9748 0.2606 1000 0.1206 0.1110 MTDE 

0.9744 0.2531 1750 0.1154 0.1009 MPA 

 

 

Table 12: Comparison of neural network based controllers and optimized controllers for w1,w2 = 0.1 
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C. Discussion: 

It is clear from the experimental results table that, the MPA model possesses less error in 

terms of RMSE and MAE, which signifies the ability of the model to update the weights 

meticulously, catering to the provided outputs. However, MTDE yields the highest 

coefficient of determination, with a staggering 97.48% of the data fitted into the 

approximated regression model. Before applying ANNs, the primary goal is to reduce the 

execution to the extent where the controllers will be able to perform real-time. From the 

comparison table, it is safe to say that the goal is reached as the ANN-based controllers 

could predict the PID gain parameters in real-time, without sacrificing vital amount of 

ITAE value. 
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Chapter 4:  Future Works & Conclusion  

 

4.1 Future Works: 

 

Although the FOPID controller gives very good result in terms of ITAE [13], the execution time 

is extremely high which should be reduced. That’s why reducing the execution time of the 

FOPID controller is one of the future works. It can be done by approximating the integer order 

of the fractional order transfer function and executing the whole program in Matlab [8]. 

 

Tilt-Integral Derivative (TID) controllers and Fuzzy logic controller can be tried as new 

controllers in this work to compare the results with existing ones. 

 

Weather-based day ahead load forecasting can be done as future works by applying various 

Recurrent Neural Network (RNN) architectures such as LSTM and GRU. 

 

 

 

4.2 Conclusion: 

 

By improving PID and FOPID controllers using EGBO algorithm and a model predictive method 

utilizing ANN, this work presents an effective and optimum solution to the LFC problem. This 

project is separated into three sections: PID controller, FOPID controller, and ANN-

based controller. So, if a good tuning of PID controllers in a two-area AGC is required, our 

study can assist with a good ITAE optimization of the tunable parameters. On the other hand, 

if exceptionally low errored control of the two area AGC is required, this work can also assist 

by creating extremely low ITAE utilizing its FOPID controller optimization portion. Again, if 

tweaking a PID controller with nearly no waiting time is required, the predictive technique is 

the only option. In this situation, an ANN-based model may almost instantly anticipate the 

adjustable parameters.  
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