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Abstract 

 

An industry is composed of various types of machines and instruments 

interconnected through a system of network performing in harmony following specific 

instructions assigned to specific nodes or equipment. Industrial control system refers to 

the whole environment that keeps everything included in the industrial system in order. 

Like any other system, industrial control system is also prone to attacks which might 

result in massive loss. In this paper, six machine learning algorithms have been applied 

for detecting the presence of anomaly in industrial control system using HIL-based 

Augmented ICS (HAI 21.03) Security Dataset. The dataset has been analyzed using 

analysis of variance to extract 50 of the most important features from each sample in 

the dataset. All the machine learning models' performances are recorded, and a full 

comparative analysis for hyperparameter optimization, downsampling-upsampling 

with hyperparameter tuning, and without hyperparameter tweaking is shown. Random 

search cross validation has been employed for hyperparameter optimization, and 

synthetic minority oversampling technique has been used for upsampling. In terms of 

several evaluation metrics like accuracy, recall, precision, F1-score, Receiver 

Operating Characteristic (ROC) Area Under the Curve (AUC) and specificity, 

satisfactory performances have been observed. In addition to these evaluation metrics, 

which have also been used by other researchers in previous studies, we have evaluated 

the performance of our models using Geometric Mean(G-Mean) and Matthews 

Correlation Coefficient (MCC), which are considered two of the most important 

evaluation metrics in imbalanced datasets. Using our proposed approach, a maximum 

recall score of 99.77% and an F1-score of 99.50% have been achieved, which are 

significantly higher than previous studies. Maximum G-Mean of 99.89% and MCC of 

0.9950 have been obtained by the application of K-Nearest Neighbors (KNN) model. 

Therefore, our proposed approach has the prospect to be an efficient method for 

detecting anomalies in industrial control systems and taking appropriate actions.
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1 Chapter 1 

Introduction 

 

This chapter provides an introduction to the Industrial Control System and the 

scopes and significance of deploying Machine Learning Algorithms to prepare an 

autonomous Anomaly Detection System. 

 

1.1 Problem Statement and Motivation 

 

Industry modernization requires digitization of manufacturing along with 

technological advancement. The emerging Industry 4.0 manifests the incorporation of 

classic industrial processes with digital technology. Employment of advanced 

technologies is increasing rapidly as the production lines are becoming large-scale, 

resulting in a more critical production infrastructure. To name just a few major strategic 

large-scale infrastructures, industrial control systems (ICSs) are mainstreamed in smart 

grids, electricity supply, transportation, and water treatment [1]. The conventional CIA 

triad (Confidentiality, Integrity, and Availability) is assigned a converse order in the 

case of ICSs, which are part of the cyber-physical system (CPS) [2]. An ICS, as opposed 

to an IT system where the primary concern is the confidentiality of data, is dependent 

on availability in order to ensure human safety and fault tolerance [3]. Furthermore, 

along with legacy industrial system modernization, modern cynicism has spread like a 

pandemic. The fast-track digitization and integration of legacy ICSs exposes these 

systems to intruders, creating new vulnerability surfaces [4]. Systems regulating 

physical and potentially harmful operations necessitate security, as they are extremely 

prone to malevolent activity by unscrupulous attackers. 

The gravity of ensuring the security of ICSs cannot be overstated. ICSs play a 

crucial part in power plants, and a plethora of computerized systems operate on a 

SCADA (Supervisory Control and Data Acquisition) framework [5]. Besides SCADA, 

ICSs contain control systems like, Distributed Control Systems (DCS) and 

Programmable Logic Controllers (PLC) [5]. As evidenced by previous occurrences, 
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ICSs are highly susceptible to cyber-attacks. An early cyberattack on SCADA systems 

resulted in a massive explosion on the Trans-Siberian pipeline in 1982 [6]. ICS security 

flaws have been disclosed in a number of cases over the consecutive years since that 

causal incident. Several viruses that attempted ICSs have been detected in recent years. 

The most well-known virus in this category is arguably Stuxnet. This computer worm 

succeeded in inducing 984 nuclear centrifuges to self-destruct at an Iranian uranium 

enrichment site by targeting PLCs [7]. ICSs were targeted by BlackEnergy, a variant of 

an infamous trojan family, in 2014 [8]. A number of different sectors, including the 

media, energy, mining, railways, airports, and rails, have been attacked in Ukraine [8]. 

On December 23, 2015, a BlackEnergy3 attack prompted the Kyiv Power Distribution 

business to disconnect 30 substations for three hours, culminating in several hours of 

blackouts in the vicinity [8]. Following the haphazard shutdown of a petrochemical 

plant in Saudi Arabia in 2017, TRITON emerged as a serious malware threat [9]. This 

virus reprograms several unique PLCs that are intended for safety purposes, leading 

them to fail [9]. According to a Kaspersky Lab analysis, 39.2% of industrial devices 

safeguarded by Kaspersky's solutions were targeted in the second half of 2016, 

indicating that threats to ICSs are becoming rampant [10]. Every successful attack 

against ICS is a tribulation for the involved organizations as they suffer financially. 

These repercussions include operational halts, equipment impairment, business waste, 

intellectual property deceit, safety risks, and extensive health jeopardy [4].  

It is critical to deploy innovative security-by-design measures to prevent such 

catastrophes. If such measures are not feasible, prevention or mitigation techniques 

must be implemented. A robust testing infrastructure is necessary to build a new 

security-by-design paradigm [4]. In general, researchers use ad hoc models of real ICSs 

to create realistic infrastructures inside a structured setting known as test bench [4]. The 

generation of a new test bench is laborious. It inflates a series of challenges, including 

implementation expenditures, sharing competences, and authenticity [4]. Nowadays, 

researchers deploy machine learning strategies to detect misconduct or prospective 

attacks through training classification algorithms in order to build prevention and 

mitigation techniques. In this research, we also used machine learning classification 

methods on a security dataset based on industrial systems to detect anomalies. Gaussian 

Naive Bayes (GNB), K- Nearest Neighbor (KNN), Logistic Regression (LR), Random 

Forest (RF), Extreme Gradient Boosting (XGBOOST), and Multilayer Perceptron 
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(MLP) are the classification algorithms we trained for our research-based simulation. 

The algorithms are implemented considering their characteristics and functionalities.  

 

All the algorithms that we employed here are supervised learning algorithms. 

GNB is a variant of Naive Bayes that follows Gaussian normal distribution assuming 

no co-variance between dimensions [11]. KNN is an effective method for classification 

though it lacks efficiency in many applications for example dynamic web mining for a 

large repository [12]. Besides, its effectiveness solely depends on the selection of the 

best value of k [12]. Another supervised learning algorithm is LR, which is very 

efficient to train [13]. For estimating the categorical dependent variable using a given 

set of independent variables, LR is used [14]. It is an easily implementable as well as 

interpretable algorithm [13]. RF is employed in high dimensional and multi-source data 

reduction applications [15]. In case of accuracy, RF is surpassed by XGBOOST [16], a 

scalable end-to-end tree boosting system [17]. XGBOOST gives less prediction error 

than RF or any boosting algorithm [16]. It is extremely efficient if speed is a concern 

without affecting accuracy [16]. Designing this algorithm is aimed at solving linearly 

inseparable problems as well as approximate solutions to continuous functions [18]. 

Other notable applications of MLP include pattern categorization, recognition, 

prediction, and approximation [18]. 

 

The easiest technique of data collection is to capture and distribute data from 

real ICSs to academics. Despite this, all such processes seem to be frequently critical 

as well as vital to societal structure, so the approach may become difficult in a number 

of ways. Due to the physical damage that can occur as a result of an attack, they are 

extremely difficult to execute in real-world conditions [4]. Furthermore, privacy is an 

issue: private organizations may be hesitant to provide system data obtained from their 

ICSs. Disclosing system data may result in intellectual property theft as well as expose 

the infrastructure's vulnerabilities in reality, alluring cybercriminals. Data from a test 

bench can be generated and distributed among researchers in order to analyze and 

enhance the effectiveness of various classification methods. Such collections become 

known as datasets which might include physical measurements as well as network 

traffic. Because of their ease of use and accessibility, datasets are a good testing 

solution. They are, nevertheless, hard in many ways, such as the generation process and 

lack of modularity. However, due to a paucity of industrial control system datasets and 
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challenges in selecting suitable anomaly detection models, these insights have subsided 

in practice [19]. To address this, our study used the HIL-based Augmented ICS (HAI 

21.03) dataset. The National Security Research Institute released this dataset for 

conducting research on the security and integrity of ICSs [20].  

 

1.2 Research Objectives 

This paper addresses the concerns of industrial cybersecurity researchers and 

firms that seek to ameliorate the contemporaneous security status of ICS. Besides 

developing an anomaly detection model, the objective of this research is to explore what 

factors the Industrial Control Systems can use to detect anomalies. The study strategy 

includes data pre-processing, supervised machine learning models fitting, and assessing 

the classification accuracy of each model. Analysis of Variance (ANOVA) correlation 

test was performed for feature selection process. Down sampling and Synthetic 

Minority Over-sampling Technique (SMOTE) after up sampling were conducted for 

data manipulation. The confusion matrix, recall, Area Under the Curve (AUC), and 

Receiver Operating Characteristics (ROC) curve are the traditional approaches for 

assessing model effectiveness. Apart from these, some other performance metrics such 

as: Geometric Mean (G-Mean), Matthews Correlation Coefficient (MCC) are also 

generated. Ideally, our vision is to obtain machine-learning-based solutions for anomaly 

detection in ICSs and develop prevention measures against such exploitation.  

 

 

1.3 Literature Review 

Several studies on intrusion detection, anomaly detection, and similar activities 

have been conducted utilizing control and security systems. Based on voltage 

measurement data, Choi et al. [21] has proposed an Intrusion Detection System (IDS) 

that utilizes the unique characteristics of electrical signals to detect Controller Area 

Network (CAN) intrusions within vehicles. Due to their reliance on only one type of 

variable to detect suspicious activity in their IDS, they experienced a high rate of false 

positives despite having a well-designed approach. Generally, IDS monitors network 

traffic in an ICS and attempts to identify unusual activity in data packet transmissions 

[5]. Whereas, the Measurement Intrusion Detection System (MIDS) probes unusual 
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activity in the system's measurement data rather than monitoring network traffic [5]. 

Mokhtari et al. [5] a MIDS technique through which the system can detect any anomaly 

even if an attacker conceals it within the control layer of the system. They constructed 

an ML model based on supervised learning that can distinguish between normal and 

anomalous actions within an Industrial Control System. In addition, a HIL (Hardware-

in-the-loop) based test bench was created for analyzing units for power generation and 

also exploiting attack datasets.  

 

Tai et al. [22] examined multiple machine learning models against the HIL-

based Augmented ICS (HAI) dataset to find the best performing model indicating 

anomalous activity in an ICS under attack. Whereas, Zhong et al. [23] executed 

anomaly detection on the basis of a real gas turbine data, using Isolation Forest 

(iForest). Ahmed et al. [24] also employed the iForest algorithm but for detecting 

anomalies in a smart grid environment. For anomaly detection, Kim et al. [25] proposed 

the Clustered Deep One-Class Classification (CD-OCC) model, a hybrid of the 

clustering algorithm and Deep Learning (DL) model. The proposed model was 

evaluated by using the SWaT and HAI datasets. Using the HAI dataset for learning, 

Kim et al. [26] projected a technique on anomaly detection in an ICS employing both 

supervised and unsupervised machine learning algorithms. This dataset has 2 versions, 

both of them were utilized in [27]. Kim et al. [27] evaluated their ensemble model for 

anomaly detection using the HAI Datasets 20.07 and 21.03. Following that, different 

performance evaluation techniques were conducted to compare the detection 

performance of the single model as well as the ensemble Recurrent Neural Networks 

(RNN) model. HAI dataset was employed in several researches for training machine 

learning models as it is publicly accessible on the internet. There has been much more 

research regarding the detection, mitigation, and prevention of anomalies employing 

various techniques based on industrial environments. From an architectural and security 

standpoint, Conti et al. [4] provided a meticulous overview of ICSs. Moreover, the most 

effective IDS algorithms on each dataset are reported in order to create a foundation 

inside this field's design approach. In our study, we attempted to train some supervised 

machine learning algorithms on the latest version of the HAI dataset in order to detect 

anomalies with a level of accuracy that outperformed all previous research. As part of 

our work, we aimed to improve the recall parameter, which represents how accurately 

we can identify relevant data. 
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2 Chapter 2 

Machine Learning Algorithms 

 

 

 

A data that does not follow the distribution of the rest of the data, as if it were formed 

by a different system". As a result, anomaly detection entails looking for patterns in 

data that suggest unusual behavior. Models for anomaly identification, on the other 

hand, are difficult to create because it's difficult to define normal areas that 

encompass all conceivable normal behaviors, and data often contains noise that 

resembles true anomalies [10]. Furthermore, because CPS datasets are large and most 

of the data is normal, developing detection algorithms is more challenging. 

Nonetheless, a significant amount of effort has gone into developing the CPS anomaly 

detection algorithm.  

 

 This research integrates a number of Machine Learning algorithms for 

intrusion and anomaly detection which have been discussed in the following sections. 

 

 

2.1 Gaussian Naïve Bayes (GNB) : 

 

GNB is a Naive Bayes derivative which accepts consistent information and 

utilize the Gaussian standard allocation. 

The Bayes principle serves as the foundation for the Naive Bayes set of 

autonomous ML classifying methods. It's a simple classifying technique having a 

strong core. They're handy once the diversity of the sources becomes significant. The 

NB Classifier is similarly applied to address difficult identification problems. 
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2.2 Logistic Regression (LR) : 

The goal of LR is predicting the probabilities of two alternative outcomes in 

classification situations. It's a characteristic of the linear regression model for 

classification problems that's quite substantial. The logistic sigmoid function modifies 

the logistic regression output values to provide a statistical significance which may be 

converted to two or additional independent categories. 

Figure 2.1 is the graphical representation of how a Logistic Regression 

algorithm functions. The chance of an event occurring within a given class is estimated 

using logistic regression, a statistical classification model. Spite of the notion that the 

term "regression" appears in its name, LR becomes a widely employed algorithm. A 

discriminator becomes a boundary imposed for forecasting the category of information 

a set of data corresponds with. This categorization possibility is determined using the 

linear model, and that is basically a sigmoid function. 

 ˆ ( ) Tp h x x      

Here,  

1
( )

1 t
t

e






 

 

Figure 2.1: Logistic Regression Algorithm 
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2.3 K-Nearest Neighbors (KNN) : 

 

One of the very fundamental and extensively used guided ML techniques 

includes KNN. The KNN method considers that the fresh information and current 

circumstances are comparable and allocates the contemporary instances to the 

category that is most similar to the prior groups. 

 

It does not train specific sample; rather, each event becomes forecasted 

for belonging to the class with the most k-nearest neighbors. 

The value of K is chosen so that accurate predictions are made with the fewest 

possible errors. The nearest datapoint to the viewing platform can be considered the 

far more comparable towards the observation item, which is why distance is used as a 

metric to determine resemblance. Distance measures come in a wide range of forms. 

Euclidean distance: 

 2 2

1

n

euclidean i i

i

d x y


   

Manhattan distance: 

tan

1

n

manhat i i

i

d x y


   

 

 

2.4 Random Forest (RF) : 

 

RF is a regression and categorization learning technique which operates 

through constructing many decision trees during training and provides output classes 

for individual trees. RF is premised on the idea that a huge proportion of significantly 

statistically independent systems operating as a group can surpass all of the other 

structural algorithms individually. Even without hyper parameter adjustment, it 

produces reasonable prediction results. Bagging is a minor adjustment that uses the 

orthogonalized trees via producing new spate of schemas using rebooted batches from 
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trained data. During bootstrap, it selects a limited combination of multiple columns 

from across all characteristic elements. Bootstrapping reduces variation while 

increasing bias. Prediction of unknown inputs can be determined by the formula 

below: 

 

1

1ˆ ( )
B

b

b

f f x
B 

   

Here, B= Optimal number of trees  

Also, uncertainty of the prediction can be written as:  

 2

1

ˆ( ) )

1

B

b

b

f x f

B
 

 





 

 

2.5 Extreme Gradient Boosting : 

 

XGBoost is a GB-relying multiple classifier ML technique. XGBoost 

focuses on model performance and computational speed, and it comes with a 

lot of advanced features. The model is very effective in case of regression, 

categorization, order, and forecasting when dealing with datasets that are tiny 

to big in size and are organized as well as hierarchical. It performs a range of 

tasks by enhancing sparse features in datasets using gradient convergence 

framework. XGBoost offers GBDT, GBM, a concurrent tree enhancing 

approach which rapidly and reliably addresses a number of data analytics 

problems. 

 

 

2.6 Multilayer Perceptron : 

 

MLP is a feedforward artificial cognitive infrastructure composed of several 

stacks of perceptrons. It has three layers where the first one is input layer, second one 

is hidden layer, and the final one is output layer. This method utilizes a non-linear 
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activating mechanism for transforming leaden inputs to neuronal outcomes. Inside the 

work, the activating parameters used were sigmoid functions. 

 

Figure 2.2 shows the working procedure of MLP. First hyperbolic tangent has 

a range of -1 to 1, while the next one has linear functions. In order to decrease error, 

training entails modifying the model's parameters, such as weights and biases. To 

perform those weight and bias adjustments related to the mistake, backpropagation is 

used. 

 

( ) tanh( )i iy v v  

1( ) (1 )iv

iy v e
    

Backward propagation is used in perceptron development, and the reduced loss 

function at sending end j following optimization algorithms may indeed be 

represented as: 

21
( ) ( )

2
j

j

n e n    

 

 

Figure 2.2: Multilayer Perceptron Algorithm 
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3 Chapter 3 

Methodology 

 

In this chapter the workflow that has been used to construct an effective Machine 

Learning based anomaly detection system that can be deployed in an Industrial Control 

System has been discussed. 

 

 

3.1 Dataset Description 

 

This study utilizes the latest version of the HIL based augmented ICS test bench 

(HAI) dataset [28][29], which is freely accessible over the Internet. This database was 

created to aid in the detection of anomalies in CPSs and it contains both normal and 

abnormal datasets, with the normal abnormal dataset collected in response to various 

attack scenarios. 

 

A complex process system was built using an Hardware- in-the-loop simulator 

in September 2018 to combine the systems associated with the three test benchs: GE's 

turbine test bench, Emerson's boiler test bench, and FESTO's "MPS" modular 

production system, which are a year earlier released laboratory-scale CPS test benchs. 

Thermal power generation and pumped-storage hydropower generating were both 

simulated using the HIL simulator. The water level, flow rate, pressure, temperature, 

water feed pump, and heater control for the boiler process, which was water-to-water 

heat transfer at low pressure and mild temperature, were all controlled using Emerson's 

Ovation distributed control system (DCS). There was a rotor kit test bench inside the 

turbine system that closely resembled the behavior of an actual rotating machine and 

was controlled by GE's Mark VIe DCS to monitor vibration and control speed. During 

the HIL simulation, water was first pumped into the higher reservoir and after that into 

the lower reservoir based on a pumped-storage hydropower generating model, and it 

was controlled by a Siemens S7-300 PLC for water level and pump control. A 
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dSPACE® SCALEXIO system is used for the HIL simulations, which is coupled to the 

real-world processes through ET200 remote IO devices and a Siemens S7-1500 PLC. 

HAI 21.03, which was released in 2021, is built on a tighter-knit HIL simulator that 

delivers clearer attack effects with more strikes.  

Table 3.1 shows a summary of the different versions of HAI 21.03 dataset in a 

tabulated form. Compared to the previous version 20.07, HAI 21.03 has almost 1.5 

times more data points, as well as 21 additional features recorded. For 50 attacks, this 

dataset comprised ICS operating data from both normal and aberrant scenarios. This 

supplied more quantitative information and covered a wide range of operational 

scenarios, as well as improved insights into the physical system's dynamic changes. 

 

Table 3.1 Information about the HAI 21.03 dataset 

Dataset: HAI 21.03 

Released Date: 2021-03-25 

Total Data: 1,323,608 

Data Points: 78 points/second 

Type Files 
Interval 

(hour) 
Size (MB) Attack Count 

Normal Data 

(1,314,661) 

train1.csv 60 110 

- train2.csv 63 116 

train3.csv 229 245 

Abnormal Data 

(8,947) 

train1.csv 12 22 5 

train2.csv 33 61 20 

train3.csv 30 55 8 

train4.csv 11 20 5 

train5.csv 26 47 12 

 

 

3.2 Data Visualization 

 

The dataset consists of 3 train files and 5 test files. The dataset has 84 features. 

The train files together hold 921,603 samples of which none are anomalous samples. 

The test files together hold 402,005 samples. It consists of 8947 anomalous samples. 

Hence, in total there are a sum total of 1,323,608 samples. Among these, there are 

13,146,661 normal samples and 8,947 anomalous samples. The anomaly rate stands at 

0.67% which is very common in Industrial Control System. Adversarial attacks are an 
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irregular phenomenon. But one such attack may result in a catastrophe. We first 

visualized our dataset through various parameters.  

 

 

Figure 3.1: Attack instances in training set 

 

Fig. 3.1 shows a summary of all the samples from the 3 train files. It can be seen 

that there are no anomaly data point and hence it just a horizontal straight line. 

 

Fig. 3.2 shows a summary of all the datapoints of the 5 test files. It can be seen 

that there are multiple vertical straight lines. These vertical straight line signifies the 

existence of anomaly at that instance.  

 

We then took all the datapoints under a single dataframe and then observed the 

data. Fig. 3.3 is a summary of all the data points together. It can be seen that the 

anomalous samples are all shifted towards the right. This has happened because the 

anomalous samples were all in the test set and the test set has been appended to the 

training set that contained no anomaly data points. 

 

From the initial observation of data it can be concluded that the dataframe under 

consideration is highly skewed and imbalanced. 
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Figure 3.2: Attack instances in testing set 

 

 

Figure 3.3: Attack instances in joined dataset 
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3.3 Pipeline 

 

In order to get the best out of our study, we took a 3-step observation and 

optimization procedure. At first, we worked on the default/raw dataset without any data 

manipulation. We observed the result from the unmanipulated dataset and then moved 

forward to hyperparameter tuning. Lastly, to best serve our purpose and to get the most 

optimized result with least runtime, we performed data manipulation. The overall 

pipeline diagram is shown in Fig. 3.4. 

 

 

Figure 3.4: Proposed pipeline for an efficient ML based ADS in ICS 
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3.4 Data Preprocessing 

 

3.4.1 Elimination of Skewness 

 

To get rid of the skewing, we used a fixed random state to shuffle our data 

frame. This was done to evenly distribute the anomalous data points across the whole 

data frame without changing any of the values in original dataset. 

 

Fig. 3.5 shows the anomaly data distribution of the first 1000 data points after 

shuffling which shows clearly how the skewness of the dataset has been solved. 

 

 

Figure 3.5: Attack instances in first 1000 samples after data shuffling 

 

3.4.2 Predictor/Output Selection 

 

After that the predictors and output variables were chosen from the data frame. 

Four features were dropped at first that mentioned the time and which among the 3 

processes of HIL ICS was being affected as that was not a concern for this study. 

Among 79 remaining features, the feature ‘attack’ was chosen as output variable and 

the rest of the features were chosen as our predictors. 
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3.4.3 Feature Selection using ANOVA Correlation Test 

 

ANOVA correlation testing is a method of determining the contribution of each 

numerical predictor to the categorical output variables. As opposed to the generic 

correlation testing where the dependence and independence factor does not play much 

significance, ANOVA test helps correlate in terms of dependent and independent 

features. For a numerical input to categorical output ANOVA correlation coefficient is 

one of the best evaluation criteria for understanding the relation among predictors and 

outputs. The dataset contains a large number of samples as well as a significant number 

of features. For minimizing runtime, feature selection has been done using ANOVA 

correlation testing, in the next step. The test result returned 19 null/ not applicable 

features. 

  

From the rest 60 features, top 50 features were chosen in terms of ANOVA test 

score for the next phase. The top 50 features along with their ANOVA test scores (also 

called co-efficients) have been provided in table 3.2 and has been graphically shown in 

figure 3.6. 

 

Then a new dataframe was created with only the selected features from the 

original dataset.  

 

A train and test split were done once more. This time training set remained 80% 

as before, but the previous test set was divided into equal parts of validation set (10%) 

and test set (10%). Normalization was also incorporated on the dataset. And that marks 

the end of the data pre-processing part of our first among 3 core optimization phases 
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Table 3.2 ANOVA test scores of the top 50 features 

Features Scores  Features Scores 

P2_OnOff 44618.44  P1_TIT02 349.301 

P2_Emerg 44216.74  P1_B3005 346.2579 

P2_VT01 40910.69  P4_HT_PS 214.6442 

P1_PCV02Z 40698.08  P4_ST_PS 214.6442 

P1_PCV02D 39278.66  P1_FT02 170.1509 

P1_LCV01D 38527.71  P1_FT02Z 166.8306 

P1_LCV01Z 36818.05  P1_B400B 166.4269 

P2_SIT02 36776.5  P3_LCP01D 157.7815 

P2_SIT01 36770.21  P3_PIT01 112.0158 

P2_CO_rpm 30534.62  P1_B4005 109.8485 

P1_FT01 7832.106  P3_FIT01 102.8014 

P2_VYT03 7615.269  P1_B4002 101.1173 

P1_PIT01 4417.682  P1_TIT01 90.20611 

P4_ST_PT01 4380.628  P1_FCV02D 83.10977 

P2_VYT02 2844.932  P1_FCV02Z 73.51914 

P1_FCV03D 1135.057  P4_LD 68.23568 

Figure 3.6: ANOVA test scores for feature selection 
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P1_FCV03Z 1120.14  P1_FCV01Z 60.94246 

P2_VXT02 1115.839  P1_FCV01D 59.33446 

P2_VXT03 972.5336  P4_HT_LD 57.83826 

P1_FT01Z 812.7218  P4_HT_PO 53.81125 

P1_LIT01 791.6849  P1_B3004 51.5366 

P1_FT03Z 516.6129  P4_ST_PO 48.40944 

P1_FT03 462.8482  P3_LCV01D 45.51998 

P1_PCV01Z 391.1211  P4_ST_LD 42.34632 

P1_PCV01D 379.3134    

 

3.5 ML Model Training and Testing 

3.5.1 Without Hyperparameter Tuning 

The machine learning model was trained using 6 machine learning classifiers 

i.e., KNN, XGB, GNB, LR, RF, MLP with no tuning. Performance evaluation metric 

results were obtained for each classifier. 

 

3.5.2 With Hyperparameter Optimization 

The 2nd phase of the optimization phases is hyperparameter tuning. 

Hyperparameter optimization was done using RandomizedSearchCV. 

RandomizedSearchCV helps to find out the most appropriate parameter values for a 

classifier using ‘fit’ and ‘score’ method. With data preprocessing steps remaining the 

same, the machine learning model was then trained with the same ML classifiers, but 

this time each of the classifiers’ hyper-parameters were tuned to achieve maximum 

recall value.  

 

False negative outcomes are the most undesirable for any anomaly detection or 

intrusion detection system. Maximizing recall value minimizes the false negative rate. 

The evaluation metrics were again recorded to observe how each of the classifiers 

performed. 

 

The tuned hyper-parameters thus obtained for each classifiers has been shown 

in Table 3.3. 
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3.5.3 With data Manipulation 

From the previous analysis it is evident not all classifiers are suitable for attack 

- Data manipulation for maximizing performance. There are a few additional steps 

conducted in the preprocessing phase. After the new data frame was created with 

selected features, dataset was split into 80% training set,10% validation set and 10% 

testing set with stratification along the output feature.  It was observed that the training 

set consisted of 1,051,728 normal data samples  

and 7,158 anomalous data samples, validation set consisted of 131,467 normal data 

samples and 894 anomalous data samples, while test set consisted of 131,466 normal 

data samples and 895 anomalous data samples. The huge imbalance in the training set 

is a major cause for performance reduction in ML classifiers. Undersampling was done 

first to reduce the number of normal data points. 1,000,000 normal data points were 

randomly selected first.  After that SMOTE was employed to increase the number of 

anomalous data points of the training set to 10,000. SMOTE stands for Synthetic 

Minority Oversampling Technique. SMOTE is a type of data augmentation for the 

minority class through which new samples are synthesized.  Thus, the anomaly rate was 

increased to 1%. Further up sampling was avoided to maintain consistency with real 

life anomaly rate. After that the testing set was equally divided into validation and 

testing set and the machine learning model was again trained with tuned 

hyperparameters (obtained from the previous phase of optimization) of the mentioned 

classifiers. This resulted in significant improvement as observed from the evaluation 

metrics. 
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Table 3.3 Tuned Hyper-parameters for each classifier 

KNN 

algorithm='auto',  

leaf_size=50,  

metric='minkowski', 

metric_params=None,  

n_jobs=None,  

n_neighbors=1, p=1, 

weights='uniform' 

 

XGBoost 

alpha=3,  

base_score=0.5,  

booster='gbtree',  

colsample_bylevel=1, 

colsample_bynode=1,  

colsample_bytree=1,  

eta=3,  

gamma=0.1, 

learning_rate=0.1,  

max_delta_step=0,  

max_depth=3, 

min_child_weight=1,  

missing=None,  

n_estimators=100,  

n_jobs=1, 

nthread=None,  

objective='binary:logistic',  

random_state=0, 

reg_alpha=0,  

reg_lambda=3,  

scale_pos_weight=1,  

seed=None, 

silent=None,  

subsample=1,  

verbosity=1 

DT 

ccp_alpha=0.0,  

class_weight=None,  

criterion='gini', 

max_depth=100,  

max_features=None,  

max_leaf_nodes=None, 

min_impurity_decrease=0.0, 

min_samples_leaf=1,  

min_samples_split=20, 

min_weight_fraction_leaf=0.0, 

random_state=0,  

splitter='best' 

 

GNB 

priors=None,  

var_smoothing=1e-07 

LR 

C=100, class_weight=None, 

dual=False, fit_intercept=True, 

intercept_scaling=1, l1_ratio=None, 

max_iter=100, 

multi_class='auto', n_jobs=None, 

penalty='l2', 

random_state=1, solver='liblinear', 

tol=0.0001, verbose=0, 

warm_start=False 
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Table 3.3(continued) Tuned Hyper-parameters for each classifier 

 

 

  

RF 

bootstrap=True, ccp_alpha=0.0, 

class_weight=None, 

criterion='gini', max_depth=None, 

max_features='auto', 

max_leaf_nodes=None, 

max_samples=None, 

min_impurity_decrease=0.0, 

min_samples_leaf=1, 

min_samples_split=2, 

min_weight_fraction_leaf=0.0, 

n_estimators=73, 

n_jobs=None, oob_score=False, 

random_state=None, 

verbose=0, warm_start=False 

 

MLP 

activation='relu',  

alpha=0.0001,  

batch_size='auto',  

beta_1=0.9, 

beta_2=0.999,  

early_stopping=False,  

epsilon=1e-08, 

hidden_layer_sizes=(50, 100, 50), 

learning_rate='constant', 

learning_rate_init=0.001,  

max_fun=15000,  

max_iter=200, 

momentum=0.9,  

n_iter_no_change=10,  

nesterovs_momentum=True, 

power_t=0.5,  

random_state=None,  

shuffle=True,  

solver='adam', 

tol=0.0001,  

validation_fraction=0.1,  

verbose=False, 

warm_start=False 
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4 Chapter 4 

 

Performance Metrics 

 

 

 

The effectiveness of a predictive model is determined using performance metrics. In 

classification operations, the most widely used metric is accuracy. However, for 

unbalanced datasets, the accuracy values are biased towards the ruling class, which 

can be very misleading [30].  

 

Class-specific counters are more convenient for non-equilibrium classification 

operations. The confusion matrix helps to convey these points more clearly (shown in 

Table II). The binary classification problem has two possible consequences. False (0) 

and True (1) 

 

Table 4.1 Confusion Table format 

    

Predicted 

Actual  

Categories False (0)  True (1)  

False (0)  TN  FP  

True (1)  FN  TP  

 

 

The term TP refers to correct predictions for positive (1) class instances, while 

TN indicates the correct predictions for negative (0) class instances. FP shows the 

prediction of negative cases as positive and FN shows the prediction of positive cases 

as negative. In this study, anomalous instances are labeled as 1 to represent a minority 
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class. Normal instances are considered as 0 which form a majority class. Evaluation 

key figures are defined based on these four basic terms. Table 4.1 provides a clearer 

insight in the confusion matrix format. 

4.1 Accuracy  

 

Accuracy is a metric that expresses how the model will perform throughout all classes 

in general. It is calculated by dividing the number of accurate predictions by the 

number of total predictions.  

 

Accuracy = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁  

 

Where,  

TP = True Positive , 

TN = True Negative ,  

FP = False Positive,  

FN = False Negative.  

 

The majority class of the dataset dominates a model's classification accuracy 

[31]. If the data is imbalanced, the classifier can achieve high accuracy. However, this 

high level of accuracy is too optimistic to accurately reflect the performance of the 

classifier. As a result, various evaluation metrics that describe possible class 

imbalance scenarios should be considered in order to reflect the classifier's 

performance. 

 

 

4.2 Recall/Sensitivity 

  

The probability of correctly identifying a positive test sample or a minority test 

sample is indicated by recall [32]. A higher recall value indicates that the classifier is 

effective in predicting instances of the minority class. As the dataset is hugely 

imbalanced, we have put more emphasis on this evaluation metric.  

Recall/Sensitivity = (𝑇𝑃+𝑇𝑁)/(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)           
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4.3 Precision  

 

Precision represents the proportion of detected minorities that are actually correct. 

Precision is affected by the order of the classes as it combines results from both major 

and minor samples [32].  

Precision = = 𝑇𝑃/(𝑇𝑃+𝐹𝑃)            

 

  

4.4 F1-Score  

 

F1-score consolidates two metrics (precision and recall) of a classifier into a solitary 

metric by using their harmonic mean. F1-score is used to evaluate classifications that 

have a significant proportion of false negatives and false positives. [33].  

F1 Score = 2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)             

 

 

4.5 Specificity  

 

Specificity is an indicator of how accurately the negative class was foreseen [34]. It's 

quite often used in the context of sensitivity. Because negative classes obtain the 

major part of instances, models tend to have higher specificity and yet lower 

sensitivity.  

Specificity = 𝑇𝑃/(𝑇𝑃+𝐹𝑃)                    
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4.6 Receiver Operating Characteristic (ROC) 

and Area Under the Curve (AUC)  

 

ROC plot combines sensitivity and specificity into one figure, allowing researchers to 

evaluate the accuracy of the proposed metrics on the y-axis graphically. For any 

reliable indicator, a transition in specificity produces a permanent effect in sensitivity, 

which is schemed as a curve in the ROC graph. AUC stands for Area Under the 

Curve. The value of ROC AUC varies from 0 to 1. Here 0.5 expresses a 50-50 

assumption and 1.0 indicates a 100% reliable forecasting model [35].  

 

 

4.7 Geometric Mean (G-Mean)  

 

G-mean was suggested in [36] as the product of sensitivity and specificity. A low G-

Mean score indicates poor classification results if only one of the two classes has a 

greater classification error.  

G-mean = √(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)                  

 

4.8 Matthews Correlation Coefficient (MCC)  

 

MCC is a reliable analytical metric that only yields successful outcome if the 

forecasting showed good performances in all four categories of the confusion matrix. 

However, it does not distinguish between majority and minority class results. The 

value can be anywhere between -1 and +1 [37]. A prediction with a +1 value is the 

best possible prediction, a prediction having a 0 MCC value is just an arbitrary 

prediction, and a prediction with a -1 value is the worst possible prediction.  

MCC = (𝑇𝑃 ×𝑇𝑁−𝐹𝑃 ×𝐹𝑁)/((𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁))               
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5 Chapter 5 

    Results and Discussion 

 

 

 

Table 5.1 Confusion Matrix for GNB, KNN, LR, RF, XGB MLP 

                                                                                 Algorithm 

A
c
tu

a
l 

Case Predi

cted 

GNB KNN LR RF XGB MLP 

 Categ

ories 

0 1 0 1 0 1 0 1 0 1 0 1 

1 
0 130920 546 131453 13 131444 22 119904 11562 125139 6327 131461 5 

1 425 470 24 871 585 310 47 848 204 691 279 616 

2 
0 130920 546 131459 7 131432 34 116179 15287 123729 7737 131455 11 

1 425 470 3 892 529 366 45 850 196 699 62 833 

3 
0 130906 560 131459 7 131422 44 114432 17034 120764 10702 131443 23 

1 419 476 2 893 519 376 38 857 170 725 43 852 

 

 

 

Table 5.2 Comparison of recall, precision & accuracy (before tuning, after tuning & 

upsamplingdownsampling+tuning) 

                                              Performance Metrics 

Algorithms Recall (%) Precision (%) Accuracy (%) 

1 2 3 1 2 3 1 2 3 

GNB 52.51 52.51 53.18 46.26 46.26 45.95 99.27 99.27 99.26 

KNN 97.31 99.66 99.77 98.53 99.22 99.22 99.97 99.99 99.99 

LR 34.63 41.89 42.01 93.37 91.50 89.52 99.54 99.57 99.57 

RF 94.75 94.97 95.75 6.83 5.27 4.79 91.23 88.41 87.10 

XGB 77.20 78.10 81.01 9.85 8.29 6.34 95.07 94.00 91.79 

MLP 68.82 93.07 95.20 99.2 98.7 97.37 99.79 99.94 99.95 
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Table 5.3 Comparison of f1 score, specificity & roc auc (before tuning, after tuning & 

upsampling- downsampling+tuning) 

                                                        Performance Metrics 

Algorithms 
                F1 Score 

(%) 

                 Specificity                  ROC_AUC 

1 2 3 1 2 3 1 2 3 

GNB 49.19 

 

49.19 49.30 99.58 99.58 99.57 0.7605 0.7605 0.7638 

KNN 97.92 99.44 99.50 99.99 99.99 99.99 0.9865 0.9983 0.9989 

LR 50.53 56.53 57.19 99.98 99.97 99.97 0.6731 0.7043 0.7099 

RF 12.75 9.98 9.12 91.20 88.37 87.04 0.9298 0.9167 0.9400 

XGB 17.46 14.98 11.77 95.19 94.11 91.86 0.8620 0.8610 0.8643 

MLP 81.27 95.80 96.27 99.99 99.99 99.98 0.8441 0.9653 0.9759 

 

 

 

Table 5.4 Comaprison of g-mean & mcc (before tuning, after tuning & upsampling- 

downsampling+tuning) 

 Performance Metrics 

Algorithms 
G-Mean (%) MCC 

1 2 3 1 2 3 

GNB 72.32 72.32 72.77 0.4892 0.4892 0.4906 

KNN 98.65 99.83 99.89 0.9791 0.9944 0.9950 

LR 58.85 63.94 64.81 0.5672 0.6102 0.6117 

RF 92.96 91.61 91.29 0.2417 0.2088 0.1985 

XGB 85.73 85.73 86.26 0.2648 0.2423 0.2126 

MLP 82.96 96.47 97.56 0.8254 0.9582 0.9625 

 

 

 

5.1 Simulation Results 

Python has been used to carry out the simulations, with Google Colab serving as the 

coding platform. The confusion matrices are shown in Table Ⅲ for three cases: 

 

1. Without hyperparameter tuning 

2. With hyperparameter tuning 

3. With upsampling-downsampling and hyperparameter tuning 
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The confusion matrices showed in Table 5.1  provided the  performance metrics 

for anomaly detection. Evaluation indicators such as accuracy, precision, recall, G-

Mean, MCC, F1 score, ROC- AUC and specificity were calculated and reported from 

Table 5.2 to Table 5.6 for all three cases. 

 

In Table 5.2, recall, precision and accuracy are shown with default 

hyperparameters first, then     with efficient hyperparameters and finally with down 

sampling-up sampling along with hyperparameter optimization 

According to the results, with a maximum recall score of 99.77%, KNN outperformed 

the other classifiers in aspects of recall whereas RF and MLP were close with recall 

score of 95.75% and 95.20% respectively. However, the lowest recall was achieved 

by LR with about 42.01%. In the case of precision, KNN is the most promising 

classifier with a score of 99.22%. Besides, MLP (99.20%) and LR (93.37%) also 

showed respectable results. RF showed the lowest precision score with about 6.83 For 

accuracy, it can be seen that all of the algorithms performed similarly, although KNN 

outperforms the others with a value of 99.99%.  

 

In Table 5.3, F1-score, ROC-AUC and specificity values are shown for three 

different cases. KNN showed the highest value of F1-score with over 99.50%, 

followed by MLP (96.27%). RF showed the lowest F1 score value (12.75%). For 

specificity, all the algorithms performed well. MLP (99.99%) and KNN (99.99%) 

showed highest specificity values among them. KNN even performed the best 

regarding ROC score with a value of 0.9989, closely pursued by MLP and RF with 

0.9759 and 0.9400, correspondingly. LR had the lowest ROC score, which was 

around 0.7099.  

 

In Fig. 5.1, the ROC of the classifiers after undersampling and SMOTE has 

been shown. In Table 5.4, G-mean and MCC are shown for all three cases. In terms of 

G-mean, KNN outperformed the other models with a value of 99.89%. MLP and RF 

are the other virtually implemented ML models, having  G- mean values of 97.56% 

and 97.56%, respectively. 
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LR achieved the lowest G-mean of around 64.81%. For MCC, KNN again 

performed the best with a value of 0.9950 whereas MLP, with 0.9625, came up just 

short. RF (0.2417) and XGB (0.2648) both performed poorly. As the recall score is 

the basis of hyperparameter tuning, recall values increased for each algorithm except 

GNB after hyperparameter optimization.  

 

The default hyperparameters were good enough for GNB. So, recall value 

remained same for this algorithm. After performing downsampling and upsampling 

with hyperparameter optimization, recall values got increased more. As F1 score 

depends on recall value, it maintained the same pattern for all algorithms except RF 

and XGB.  

 

Deceasing value of precision is the reason for falloff of F1 score in these 

algorithms as F1 score also depends on precision. As the hyperparameters were tuned 

on the basis of recall, some algorithms showed lower values of precision after 

optimizing the hyperparameters. The same thing also happened for some other 

evaluation metrics. But none of the values decreased significantly. Like recall, G-

mean values increased after hyperparameter adjustment for all algorithms except RF 

and GNB.  

 

Figure 5.1:  ROC curve for SMOTE after tuning 
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The values increased further considerably after performing downsampling- 

upsampling with hyperparameter tweaking. MCC values almost followed the same 

pattern.  

 

From Table 5.2 – 5.4, it is evident that among all evaluation metrics, highest 

values have been achieved after performing downsampling-upsampling along with 

hyperparameter optimization. In Fig. 5.2, the comparison between recall and F1 score, 

and in Fig. 5.3, the comparison between G-mean and MCC, is shown, respectively. 

 

 

Figure 5.2: Comparison of recall and F1 score 

 

From figure 5.2, the comparative analysis of recall and F1 score can be 

observed. For KNN, GNB and MLP; F1 score and recall acted in the same way. That 

means precision value also acted in the same way for these three algorithms. But on 

the contrary, for XGB and RF, recall values were much higher than F1 score which 

indicate poor precision values. But in case of LR, F1 score values were much higher 

than recall value. This indicates strong performances of precision for LR.  
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From figure 5.3, the comparative analysis of G-Mean and MCC score can be 

observed.  For KNN, LR and MLP; G-Mean and MCC acted in the same way. But on 

the contrary, for XGB and RF, G-Mean values were much higher than MCC. For 

GNB, G-Mean values were slightly better than MCC 

 

 

 

5.2 Comparative Analysis  

                                                                                                                                                                                                                           

Table 5.5 shows the differences between this study and other anomaly detection 

studies that have been done previously. First two rows of the comparison table are 

based on the same dataset that has been used in this paper. The remaining three rows 

are based on earlier version of our used dataset (HAI 20.07). Bian et al. [38] presented 

the Stacked Gated Recurrent Unit-Infrequent Residual Analysis (SG-IRA) which is an 

unsupervised learning approach and 80.6% recall, 96.8% precision and 97.7% F1-

score were achieved there with time-series awareness. In another study, Kim and Kim 

used Ensemble Recurrent Neural Networks with time-series awareness to achieve 

90.2% recall, 97.7% precision and 93.8% F1-score consecutively [6]. Kim et al. used 

One Class Support Vector Machine (OCSVM) to detect the presence of anomaly 

where HAI 20.07 dataset was used, and their learning model approach demonstrated 

95% recall, 96% precision, and 95% F1 score [5].  

 

Figure 5.3: Comparison of G-Mean and MCC score 
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Table 5.5 Comparison with other Researches 

Reference Version Algorithm Recall Precision F1-Score 

[38] 21.03 SG-IRA 80.6% 96.8% 97.7% 

[27] 21.03 
Ensemble RNN 

90.2% 97.7% 93.8% 

[19] 20.07 OCSVM 95% 96% 95% 

[25] 20.07 CD-OCC 84% 84% 83% 

[4] 20.07 N/A N/A 90.8% 80.4% 

This Study 
21.03 KNN 99.77% 99.22% 99.50% 

 

However, in another study, for HAI 20.07 dataset, Kim and Kim showed 84% 

recall, 84% precision and 83% F1 score using Clustered Deep One-Class 

Classification (CD-OCC) framework [3]. Moreover, Conti et al. got 90.8% precision 

and 80.4% F1-score in their study [4]. Tai et al. only showed accuracy for HAI 20.07 

where maximum 83.63% accuracy was achieved using Gradient Boosting Machine 

GSCV (Grid Search Cross Validation) model [22]. Finally, the approach used in this 

study achieved the highest recall of 99.77%, highest precision of 99.22%, maximum 

F1 score of 99.50%, and best accuracy of 99.99% using the KNN algorithm. 

Hyperparameter tuning with the RandomSearchCV, as well as the use of 

downsampling and the SMOTE method, played a significant role in achieving 

comparatively higher performance across all results. Furthermore, the evaluation 

metrics G-mean and MCC had never been used in any of the previous studies. In our 

study, highest G-mean of 99.89% and MCC value of 0.9950, both also indicate 

satisfactory performance of our explored methodology 
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Chapter 6 

Conclusion 

Industrial control system (ICS) serves a significant role in implementing required 

functions along with enhancing safety. An industrial control system keeps the 

overall harmony of all the machines within an industry through collecting data from 

sensors. In this study, we have observed, analyzed and optimized the performance 

of six ML algorithms for anomaly detection in an HIL based Industrial Control 

System. Our study serves two purpose, one is the evaluation of the effectivity of 

ML in such an environment for failure proof system and to what extent it can be 

done, and the other is anomaly detection in the absence of any time related pattern 

as there might be insufficient timed data to begin with. Among the six classifiers, 

KNN outperforms all other classifiers in terms of all the 8 evaluation metrics under 

our consideration 

Therefore, it is reasonable to infer that ML techniques have a beneficial 

influence on industrial control system sector with the introduction of an efficient 

anomaly detection system, which will ultimately strengthen the cyber resilience of its 

computer-controlled framework. Future work on our topic can be to study our proposed 

pipeline or workflow to evaluate the algorithms in a multiclass system. Also the 

evaluation of our proposed model in terms of other industrial control systems is also a 

topic of interest. 

Future Development  

There are some scopes of development of our work:  

● Application with Different Datasets:  More datasets can be used and thus the 

effectuality of our proposed approach can be understood more clearly  

● Hybrid Models: No hybrid models have been used in this study. So there is a 

scope of developing a hybrid model that is more efficient  

● Positions of anomaly:  We have found out whether there is any anomaly or not. But 

the exact positions of anomaly have not been detected in this study. In future work, 

positions of anomaly and thus more exact information about anomalous data can be 

extracted. 
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