
i

Anomaly Detection System in Industrial Control System

Using Machine Learning

by

Ahammed Sakir Nabil (170021037)

Ahnaf Akif Rahman (170021153)

Imtihan Ahmed (170021025)

A Thesis Submitted to the Academic Faculty in Partial Fulfillment of the

Requirements for the Degree of

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC

ENGINEERING

Department of Electrical and Electronic Engineering

Islamic University of Technology (IUT)

Gazipur, Bangladesh

May 2022

i

ii

iii

Table of Contents

List of Tables .. v

List of Figures ... vi

List of Acronyms .. vii

Acknowledgements ... ix

Abstract .. x

1 Chapter 1 ... 1

Introduction ... 1

1.1 PROBLEM STATEMENT AND MOTIVATION ... 1

1.2 RESEARCH OBJECTIVES .. 4
1.3 LITERATURE REVIEW ... 4

2 Chapter 2 ... 6

Machine Learning Algorithms .. 6

2.1 GAUSSIAN NAÏVE BAYES (GNB) : .. 6
2.2 LOGISTIC REGRESSION (LR) : ... 7

2.3 K-NEAREST NEIGHBORS (KNN) : ... 8
2.4 RANDOM FOREST (RF) : ... 8

2.5 EXTREME GRADIENT BOOSTING : ... 9
2.6 MULTILAYER PERCEPTRON : .. 9

3 Chapter 3 ... 11

Methodology ... 11

3.1 DATASET DESCRIPTION .. 11
3.2 DATA VISUALIZATION .. 12

3.3 PIPELINE .. 15
3.4 DATA PREPROCESSING ... 16

3.4.1 Elimination of Skewness .. 16
3.4.2 Predictor/Output Selection .. 16

3.4.3 Feature Selection using ANOVA Correlation Test.......................... 17
3.5 ML MODEL TRAINING AND TESTING .. 19

3.5.1 Without Hyperparameter Tuning ... 19
3.5.2 With Hyperparameter Optimization ... 19

3.5.3 With data Manipulation ... 20

4 Chapter 4 ... 23

Performance Metrics ... 23

4.1 ACCURACY .. 24
4.2 RECALL/SENSITIVITY ... 24

4.3 PRECISION ... 25
4.4 F1-SCORE .. 25

4.5 SPECIFICITY ... 25

iv

4.6 RECEIVER OPERATING CHARACTERISTIC (ROC) AND AREA UNDER THE

CURVE (AUC) .. 26

4.7 GEOMETRIC MEAN (G-MEAN) .. 26
4.8 MATTHEWS CORRELATION COEFFICIENT (MCC) .. 26

5 Chapter 5 ... 27

Results and Discussion ... 27

5.1 SIMULATION RESULTS .. 28

5.2 COMPARATIVE ANALYSIS... 32

Chapter 6 .. 34

Conclusion .. 34

Future Development .. 34

References .. 35

v

List of Tables

Table 3.1 Information about the HAI 21.03 dataset .. 12

Table 3.2 ANOVA test scores of the top 50 features .. 18

Table 3.3 Tuned Hyper-parameters for each classifier .. 21

Table 3.3(continued) Tuned Hyper-parameters for each classifier 22

Table 4.1 Confusion Table format ... 23

Table 5.1 Confusion Matrix for GNB, KNN, LR, RF, XGB MLP 27

Table 5.2 Comparison of recall, precision & accuracy (before tuning, after tuning &

upsamplingdownsampling+tuning) .. 27

Table 5.3 Comparison of f1 score, specificity & roc auc (before tuning, after tuning &

upsampling- downsampling+tuning) .. 28

Table 5.4 Comaprison of g-mean & mcc (before tuning, after tuning & upsampling-

downsampling+tuning) .. 28

Table 5.5 Comparison with other Researches ... 33

vi

List of Figures

Figure 2.1: Logistic Regression Algorithm .. 7

Figure 2.2: Multilayer Perceptron Algorithm ... 10

Figure 3.1: Attack instances in training set ... 13

Figure 3.2: Attack instances in testing set .. 14

Figure 3.3: Attack instances in joined dataset ... 14

Figure 3.4: Proposed pipeline for an efficient ML based ADS in ICS 15

Figure 3.5: Attack instances in first 1000 samples after data shuffling 16

Figure 3.6: ANOVA test scores for feature selection .. 18

Figure 5.1: ROC curve for SMOTE after tuning ... 30

Figure 5.2: Comparison of recall and F1 score ... 31

Figure 5.3: Comparison of G-Mean and MCC score .. 32

file:///E:/Enzineering/4-2/Thesis_Format.docx%23_Toc102854857
file:///E:/Enzineering/4-2/Thesis_Format.docx%23_Toc102854864
file:///E:/Enzineering/4-2/Thesis_Format.docx%23_Toc102854865
file:///E:/Enzineering/4-2/Thesis_Format.docx%23_Toc102854867

vii

List of Acronyms

ACM Association for Computing Machinery

ADS Anomaly Detection System

ANOVA Analysis of Variance

AUC Area Under the ROC Curve

BMC Baseboard Management Controller

CA, Certificate Authority

CAN Campus Area Network

CD Cyber Defence

CIA Central Intelligence Agency

CPS Cyber Physical System

CV Cross Validation

DCS Distributed Control System

DL Deep Learning

DOA, Direction of Arrival

DT Decision Tree

EN European Standards

FN False Negative

FP False Positive

GB Gradient Boosting

GBDT, Gradient Boosted Decision Trees

GBM, Gradient Boosting Machine

GNB Gaussian Naïve Bayes

GSCV Grid Search Cross Validation

H0 Null Hypothesisi

HAI HIL-based Augmented ICS

HIL Hardware-in-the-loop

ICPHM IEEE International Conference on

Prognostics and Health Management

ICS Industrial Control System

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IO Input-Output

IS, Information System

IT Information Technology

KNN K Nearest Neighbors

LR Logistic Regression

viii

MCC Matthews Correlation Coefficient

MD, Mobile Internet Device

MIDS Multifunctional Information Distribution System

ML Machine Learning

MLP Multilayer Perceptron

MPS Malware Protection System

NB Naïve Bayes

OCC One-Class Classification

OCSVM One Class Support Vector Machine

ODBASE International Conference on Ontologies,

Databases, and Applications of Semantics

PL Program Lock

PLC Programmable Logic Controllers

RF Random Forest

RN Regulatory Notice

RNA Reconnaissance Network Appliance

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic Curve

SCADA Supervisory Control and Data Acquisition

SG Security Guide

SMOTE Synthetic Minority Over-sampling Technique

SW Spyware

TN True Negative

TP True Positive

USA United States of America

XGB Extreme Gradient Boosting

XGBOOST Extreme Gradient Boosting

ix

Acknowledgements

First of all, we would like to thank our parents for their patience, inspiration

and motivation that has helped us to come this far in our life. Although we can never

completely repay our debts to them, this research is a small token of appreciation for

all the hardships they have endured throughout our journey.

We would like to express our heartfelt gratitude to our thesis advisor, Mr.

Safayat Bin Hakim for his guidance and motivation. One cannot ask for a better

advisor. His tricks and tips were the most useful in solving many of the issues during

the research. Apart from everything else, his attention to minute details is really

praiseworthy.

Last but not the least, we appreciate the EEE department of Islamic University

of Technology for enabling us to conduct a research based on Machine Learning which

is very important for Industry 4.0

x

Abstract

An industry is composed of various types of machines and instruments

interconnected through a system of network performing in harmony following specific

instructions assigned to specific nodes or equipment. Industrial control system refers to

the whole environment that keeps everything included in the industrial system in order.

Like any other system, industrial control system is also prone to attacks which might

result in massive loss. In this paper, six machine learning algorithms have been applied

for detecting the presence of anomaly in industrial control system using HIL-based

Augmented ICS (HAI 21.03) Security Dataset. The dataset has been analyzed using

analysis of variance to extract 50 of the most important features from each sample in

the dataset. All the machine learning models' performances are recorded, and a full

comparative analysis for hyperparameter optimization, downsampling-upsampling

with hyperparameter tuning, and without hyperparameter tweaking is shown. Random

search cross validation has been employed for hyperparameter optimization, and

synthetic minority oversampling technique has been used for upsampling. In terms of

several evaluation metrics like accuracy, recall, precision, F1-score, Receiver

Operating Characteristic (ROC) Area Under the Curve (AUC) and specificity,

satisfactory performances have been observed. In addition to these evaluation metrics,

which have also been used by other researchers in previous studies, we have evaluated

the performance of our models using Geometric Mean(G-Mean) and Matthews

Correlation Coefficient (MCC), which are considered two of the most important

evaluation metrics in imbalanced datasets. Using our proposed approach, a maximum

recall score of 99.77% and an F1-score of 99.50% have been achieved, which are

significantly higher than previous studies. Maximum G-Mean of 99.89% and MCC of

0.9950 have been obtained by the application of K-Nearest Neighbors (KNN) model.

Therefore, our proposed approach has the prospect to be an efficient method for

detecting anomalies in industrial control systems and taking appropriate actions.

1

1 Chapter 1

Introduction

This chapter provides an introduction to the Industrial Control System and the

scopes and significance of deploying Machine Learning Algorithms to prepare an

autonomous Anomaly Detection System.

1.1 Problem Statement and Motivation

Industry modernization requires digitization of manufacturing along with

technological advancement. The emerging Industry 4.0 manifests the incorporation of

classic industrial processes with digital technology. Employment of advanced

technologies is increasing rapidly as the production lines are becoming large-scale,

resulting in a more critical production infrastructure. To name just a few major strategic

large-scale infrastructures, industrial control systems (ICSs) are mainstreamed in smart

grids, electricity supply, transportation, and water treatment [1]. The conventional CIA

triad (Confidentiality, Integrity, and Availability) is assigned a converse order in the

case of ICSs, which are part of the cyber-physical system (CPS) [2]. An ICS, as opposed

to an IT system where the primary concern is the confidentiality of data, is dependent

on availability in order to ensure human safety and fault tolerance [3]. Furthermore,

along with legacy industrial system modernization, modern cynicism has spread like a

pandemic. The fast-track digitization and integration of legacy ICSs exposes these

systems to intruders, creating new vulnerability surfaces [4]. Systems regulating

physical and potentially harmful operations necessitate security, as they are extremely

prone to malevolent activity by unscrupulous attackers.

The gravity of ensuring the security of ICSs cannot be overstated. ICSs play a

crucial part in power plants, and a plethora of computerized systems operate on a

SCADA (Supervisory Control and Data Acquisition) framework [5]. Besides SCADA,

ICSs contain control systems like, Distributed Control Systems (DCS) and

Programmable Logic Controllers (PLC) [5]. As evidenced by previous occurrences,

2

ICSs are highly susceptible to cyber-attacks. An early cyberattack on SCADA systems

resulted in a massive explosion on the Trans-Siberian pipeline in 1982 [6]. ICS security

flaws have been disclosed in a number of cases over the consecutive years since that

causal incident. Several viruses that attempted ICSs have been detected in recent years.

The most well-known virus in this category is arguably Stuxnet. This computer worm

succeeded in inducing 984 nuclear centrifuges to self-destruct at an Iranian uranium

enrichment site by targeting PLCs [7]. ICSs were targeted by BlackEnergy, a variant of

an infamous trojan family, in 2014 [8]. A number of different sectors, including the

media, energy, mining, railways, airports, and rails, have been attacked in Ukraine [8].

On December 23, 2015, a BlackEnergy3 attack prompted the Kyiv Power Distribution

business to disconnect 30 substations for three hours, culminating in several hours of

blackouts in the vicinity [8]. Following the haphazard shutdown of a petrochemical

plant in Saudi Arabia in 2017, TRITON emerged as a serious malware threat [9]. This

virus reprograms several unique PLCs that are intended for safety purposes, leading

them to fail [9]. According to a Kaspersky Lab analysis, 39.2% of industrial devices

safeguarded by Kaspersky's solutions were targeted in the second half of 2016,

indicating that threats to ICSs are becoming rampant [10]. Every successful attack

against ICS is a tribulation for the involved organizations as they suffer financially.

These repercussions include operational halts, equipment impairment, business waste,

intellectual property deceit, safety risks, and extensive health jeopardy [4].

It is critical to deploy innovative security-by-design measures to prevent such

catastrophes. If such measures are not feasible, prevention or mitigation techniques

must be implemented. A robust testing infrastructure is necessary to build a new

security-by-design paradigm [4]. In general, researchers use ad hoc models of real ICSs

to create realistic infrastructures inside a structured setting known as test bench [4]. The

generation of a new test bench is laborious. It inflates a series of challenges, including

implementation expenditures, sharing competences, and authenticity [4]. Nowadays,

researchers deploy machine learning strategies to detect misconduct or prospective

attacks through training classification algorithms in order to build prevention and

mitigation techniques. In this research, we also used machine learning classification

methods on a security dataset based on industrial systems to detect anomalies. Gaussian

Naive Bayes (GNB), K- Nearest Neighbor (KNN), Logistic Regression (LR), Random

Forest (RF), Extreme Gradient Boosting (XGBOOST), and Multilayer Perceptron

3

(MLP) are the classification algorithms we trained for our research-based simulation.

The algorithms are implemented considering their characteristics and functionalities.

All the algorithms that we employed here are supervised learning algorithms.

GNB is a variant of Naive Bayes that follows Gaussian normal distribution assuming

no co-variance between dimensions [11]. KNN is an effective method for classification

though it lacks efficiency in many applications for example dynamic web mining for a

large repository [12]. Besides, its effectiveness solely depends on the selection of the

best value of k [12]. Another supervised learning algorithm is LR, which is very

efficient to train [13]. For estimating the categorical dependent variable using a given

set of independent variables, LR is used [14]. It is an easily implementable as well as

interpretable algorithm [13]. RF is employed in high dimensional and multi-source data

reduction applications [15]. In case of accuracy, RF is surpassed by XGBOOST [16], a

scalable end-to-end tree boosting system [17]. XGBOOST gives less prediction error

than RF or any boosting algorithm [16]. It is extremely efficient if speed is a concern

without affecting accuracy [16]. Designing this algorithm is aimed at solving linearly

inseparable problems as well as approximate solutions to continuous functions [18].

Other notable applications of MLP include pattern categorization, recognition,

prediction, and approximation [18].

The easiest technique of data collection is to capture and distribute data from

real ICSs to academics. Despite this, all such processes seem to be frequently critical

as well as vital to societal structure, so the approach may become difficult in a number

of ways. Due to the physical damage that can occur as a result of an attack, they are

extremely difficult to execute in real-world conditions [4]. Furthermore, privacy is an

issue: private organizations may be hesitant to provide system data obtained from their

ICSs. Disclosing system data may result in intellectual property theft as well as expose

the infrastructure's vulnerabilities in reality, alluring cybercriminals. Data from a test

bench can be generated and distributed among researchers in order to analyze and

enhance the effectiveness of various classification methods. Such collections become

known as datasets which might include physical measurements as well as network

traffic. Because of their ease of use and accessibility, datasets are a good testing

solution. They are, nevertheless, hard in many ways, such as the generation process and

lack of modularity. However, due to a paucity of industrial control system datasets and

4

challenges in selecting suitable anomaly detection models, these insights have subsided

in practice [19]. To address this, our study used the HIL-based Augmented ICS (HAI

21.03) dataset. The National Security Research Institute released this dataset for

conducting research on the security and integrity of ICSs [20].

1.2 Research Objectives

This paper addresses the concerns of industrial cybersecurity researchers and

firms that seek to ameliorate the contemporaneous security status of ICS. Besides

developing an anomaly detection model, the objective of this research is to explore what

factors the Industrial Control Systems can use to detect anomalies. The study strategy

includes data pre-processing, supervised machine learning models fitting, and assessing

the classification accuracy of each model. Analysis of Variance (ANOVA) correlation

test was performed for feature selection process. Down sampling and Synthetic

Minority Over-sampling Technique (SMOTE) after up sampling were conducted for

data manipulation. The confusion matrix, recall, Area Under the Curve (AUC), and

Receiver Operating Characteristics (ROC) curve are the traditional approaches for

assessing model effectiveness. Apart from these, some other performance metrics such

as: Geometric Mean (G-Mean), Matthews Correlation Coefficient (MCC) are also

generated. Ideally, our vision is to obtain machine-learning-based solutions for anomaly

detection in ICSs and develop prevention measures against such exploitation.

1.3 Literature Review

Several studies on intrusion detection, anomaly detection, and similar activities

have been conducted utilizing control and security systems. Based on voltage

measurement data, Choi et al. [21] has proposed an Intrusion Detection System (IDS)

that utilizes the unique characteristics of electrical signals to detect Controller Area

Network (CAN) intrusions within vehicles. Due to their reliance on only one type of

variable to detect suspicious activity in their IDS, they experienced a high rate of false

positives despite having a well-designed approach. Generally, IDS monitors network

traffic in an ICS and attempts to identify unusual activity in data packet transmissions

[5]. Whereas, the Measurement Intrusion Detection System (MIDS) probes unusual

5

activity in the system's measurement data rather than monitoring network traffic [5].

Mokhtari et al. [5] a MIDS technique through which the system can detect any anomaly

even if an attacker conceals it within the control layer of the system. They constructed

an ML model based on supervised learning that can distinguish between normal and

anomalous actions within an Industrial Control System. In addition, a HIL (Hardware-

in-the-loop) based test bench was created for analyzing units for power generation and

also exploiting attack datasets.

Tai et al. [22] examined multiple machine learning models against the HIL-

based Augmented ICS (HAI) dataset to find the best performing model indicating

anomalous activity in an ICS under attack. Whereas, Zhong et al. [23] executed

anomaly detection on the basis of a real gas turbine data, using Isolation Forest

(iForest). Ahmed et al. [24] also employed the iForest algorithm but for detecting

anomalies in a smart grid environment. For anomaly detection, Kim et al. [25] proposed

the Clustered Deep One-Class Classification (CD-OCC) model, a hybrid of the

clustering algorithm and Deep Learning (DL) model. The proposed model was

evaluated by using the SWaT and HAI datasets. Using the HAI dataset for learning,

Kim et al. [26] projected a technique on anomaly detection in an ICS employing both

supervised and unsupervised machine learning algorithms. This dataset has 2 versions,

both of them were utilized in [27]. Kim et al. [27] evaluated their ensemble model for

anomaly detection using the HAI Datasets 20.07 and 21.03. Following that, different

performance evaluation techniques were conducted to compare the detection

performance of the single model as well as the ensemble Recurrent Neural Networks

(RNN) model. HAI dataset was employed in several researches for training machine

learning models as it is publicly accessible on the internet. There has been much more

research regarding the detection, mitigation, and prevention of anomalies employing

various techniques based on industrial environments. From an architectural and security

standpoint, Conti et al. [4] provided a meticulous overview of ICSs. Moreover, the most

effective IDS algorithms on each dataset are reported in order to create a foundation

inside this field's design approach. In our study, we attempted to train some supervised

machine learning algorithms on the latest version of the HAI dataset in order to detect

anomalies with a level of accuracy that outperformed all previous research. As part of

our work, we aimed to improve the recall parameter, which represents how accurately

we can identify relevant data.

6

2 Chapter 2

Machine Learning Algorithms

A data that does not follow the distribution of the rest of the data, as if it were formed

by a different system". As a result, anomaly detection entails looking for patterns in

data that suggest unusual behavior. Models for anomaly identification, on the other

hand, are difficult to create because it's difficult to define normal areas that

encompass all conceivable normal behaviors, and data often contains noise that

resembles true anomalies [10]. Furthermore, because CPS datasets are large and most

of the data is normal, developing detection algorithms is more challenging.

Nonetheless, a significant amount of effort has gone into developing the CPS anomaly

detection algorithm.

 This research integrates a number of Machine Learning algorithms for

intrusion and anomaly detection which have been discussed in the following sections.

2.1 Gaussian Naïve Bayes (GNB) :

GNB is a Naive Bayes derivative which accepts consistent information and

utilize the Gaussian standard allocation.

The Bayes principle serves as the foundation for the Naive Bayes set of

autonomous ML classifying methods. It's a simple classifying technique having a

strong core. They're handy once the diversity of the sources becomes significant. The

NB Classifier is similarly applied to address difficult identification problems.

7

2.2 Logistic Regression (LR) :

The goal of LR is predicting the probabilities of two alternative outcomes in

classification situations. It's a characteristic of the linear regression model for

classification problems that's quite substantial. The logistic sigmoid function modifies

the logistic regression output values to provide a statistical significance which may be

converted to two or additional independent categories.

Figure 2.1 is the graphical representation of how a Logistic Regression

algorithm functions. The chance of an event occurring within a given class is estimated

using logistic regression, a statistical classification model. Spite of the notion that the

term "regression" appears in its name, LR becomes a widely employed algorithm. A

discriminator becomes a boundary imposed for forecasting the category of information

a set of data corresponds with. This categorization possibility is determined using the

linear model, and that is basically a sigmoid function.

 ˆ () Tp h x x    

Here,

1
()

1 t
t

e







Figure 2.1: Logistic Regression Algorithm

8

2.3 K-Nearest Neighbors (KNN) :

One of the very fundamental and extensively used guided ML techniques

includes KNN. The KNN method considers that the fresh information and current

circumstances are comparable and allocates the contemporary instances to the

category that is most similar to the prior groups.

It does not train specific sample; rather, each event becomes forecasted

for belonging to the class with the most k-nearest neighbors.

The value of K is chosen so that accurate predictions are made with the fewest

possible errors. The nearest datapoint to the viewing platform can be considered the

far more comparable towards the observation item, which is why distance is used as a

metric to determine resemblance. Distance measures come in a wide range of forms.

Euclidean distance:

 2 2

1

n

euclidean i i

i

d x y


 

Manhattan distance:

tan

1

n

manhat i i

i

d x y


 

2.4 Random Forest (RF) :

RF is a regression and categorization learning technique which operates

through constructing many decision trees during training and provides output classes

for individual trees. RF is premised on the idea that a huge proportion of significantly

statistically independent systems operating as a group can surpass all of the other

structural algorithms individually. Even without hyper parameter adjustment, it

produces reasonable prediction results. Bagging is a minor adjustment that uses the

orthogonalized trees via producing new spate of schemas using rebooted batches from

9

trained data. During bootstrap, it selects a limited combination of multiple columns

from across all characteristic elements. Bootstrapping reduces variation while

increasing bias. Prediction of unknown inputs can be determined by the formula

below:

1

1ˆ ()
B

b

b

f f x
B 

 

Here, B= Optimal number of trees

Also, uncertainty of the prediction can be written as:

 2

1

ˆ())

1

B

b

b

f x f

B
 

 






2.5 Extreme Gradient Boosting :

XGBoost is a GB-relying multiple classifier ML technique. XGBoost

focuses on model performance and computational speed, and it comes with a

lot of advanced features. The model is very effective in case of regression,

categorization, order, and forecasting when dealing with datasets that are tiny

to big in size and are organized as well as hierarchical. It performs a range of

tasks by enhancing sparse features in datasets using gradient convergence

framework. XGBoost offers GBDT, GBM, a concurrent tree enhancing

approach which rapidly and reliably addresses a number of data analytics

problems.

2.6 Multilayer Perceptron :

MLP is a feedforward artificial cognitive infrastructure composed of several

stacks of perceptrons. It has three layers where the first one is input layer, second one

is hidden layer, and the final one is output layer. This method utilizes a non-linear

10

activating mechanism for transforming leaden inputs to neuronal outcomes. Inside the

work, the activating parameters used were sigmoid functions.

Figure 2.2 shows the working procedure of MLP. First hyperbolic tangent has

a range of -1 to 1, while the next one has linear functions. In order to decrease error,

training entails modifying the model's parameters, such as weights and biases. To

perform those weight and bias adjustments related to the mistake, backpropagation is

used.

() tanh()i iy v v

1() (1)iv

iy v e
  

Backward propagation is used in perceptron development, and the reduced loss

function at sending end j following optimization algorithms may indeed be

represented as:

21
() ()

2
j

j

n e n  

Figure 2.2: Multilayer Perceptron Algorithm

11

3 Chapter 3

Methodology

In this chapter the workflow that has been used to construct an effective Machine

Learning based anomaly detection system that can be deployed in an Industrial Control

System has been discussed.

3.1 Dataset Description

This study utilizes the latest version of the HIL based augmented ICS test bench

(HAI) dataset [28][29], which is freely accessible over the Internet. This database was

created to aid in the detection of anomalies in CPSs and it contains both normal and

abnormal datasets, with the normal abnormal dataset collected in response to various

attack scenarios.

A complex process system was built using an Hardware- in-the-loop simulator

in September 2018 to combine the systems associated with the three test benchs: GE's

turbine test bench, Emerson's boiler test bench, and FESTO's "MPS" modular

production system, which are a year earlier released laboratory-scale CPS test benchs.

Thermal power generation and pumped-storage hydropower generating were both

simulated using the HIL simulator. The water level, flow rate, pressure, temperature,

water feed pump, and heater control for the boiler process, which was water-to-water

heat transfer at low pressure and mild temperature, were all controlled using Emerson's

Ovation distributed control system (DCS). There was a rotor kit test bench inside the

turbine system that closely resembled the behavior of an actual rotating machine and

was controlled by GE's Mark VIe DCS to monitor vibration and control speed. During

the HIL simulation, water was first pumped into the higher reservoir and after that into

the lower reservoir based on a pumped-storage hydropower generating model, and it

was controlled by a Siemens S7-300 PLC for water level and pump control. A

12

dSPACE® SCALEXIO system is used for the HIL simulations, which is coupled to the

real-world processes through ET200 remote IO devices and a Siemens S7-1500 PLC.

HAI 21.03, which was released in 2021, is built on a tighter-knit HIL simulator that

delivers clearer attack effects with more strikes.

Table 3.1 shows a summary of the different versions of HAI 21.03 dataset in a

tabulated form. Compared to the previous version 20.07, HAI 21.03 has almost 1.5

times more data points, as well as 21 additional features recorded. For 50 attacks, this

dataset comprised ICS operating data from both normal and aberrant scenarios. This

supplied more quantitative information and covered a wide range of operational

scenarios, as well as improved insights into the physical system's dynamic changes.

Table 3.1 Information about the HAI 21.03 dataset

Dataset: HAI 21.03

Released Date: 2021-03-25

Total Data: 1,323,608

Data Points: 78 points/second

Type Files
Interval

(hour)
Size (MB) Attack Count

Normal Data

(1,314,661)

train1.csv 60 110

- train2.csv 63 116

train3.csv 229 245

Abnormal Data

(8,947)

train1.csv 12 22 5

train2.csv 33 61 20

train3.csv 30 55 8

train4.csv 11 20 5

train5.csv 26 47 12

3.2 Data Visualization

The dataset consists of 3 train files and 5 test files. The dataset has 84 features.

The train files together hold 921,603 samples of which none are anomalous samples.

The test files together hold 402,005 samples. It consists of 8947 anomalous samples.

Hence, in total there are a sum total of 1,323,608 samples. Among these, there are

13,146,661 normal samples and 8,947 anomalous samples. The anomaly rate stands at

0.67% which is very common in Industrial Control System. Adversarial attacks are an

13

irregular phenomenon. But one such attack may result in a catastrophe. We first

visualized our dataset through various parameters.

Figure 3.1: Attack instances in training set

Fig. 3.1 shows a summary of all the samples from the 3 train files. It can be seen

that there are no anomaly data point and hence it just a horizontal straight line.

Fig. 3.2 shows a summary of all the datapoints of the 5 test files. It can be seen

that there are multiple vertical straight lines. These vertical straight line signifies the

existence of anomaly at that instance.

We then took all the datapoints under a single dataframe and then observed the

data. Fig. 3.3 is a summary of all the data points together. It can be seen that the

anomalous samples are all shifted towards the right. This has happened because the

anomalous samples were all in the test set and the test set has been appended to the

training set that contained no anomaly data points.

From the initial observation of data it can be concluded that the dataframe under

consideration is highly skewed and imbalanced.

14

Figure 3.2: Attack instances in testing set

Figure 3.3: Attack instances in joined dataset

15

3.3 Pipeline

In order to get the best out of our study, we took a 3-step observation and

optimization procedure. At first, we worked on the default/raw dataset without any data

manipulation. We observed the result from the unmanipulated dataset and then moved

forward to hyperparameter tuning. Lastly, to best serve our purpose and to get the most

optimized result with least runtime, we performed data manipulation. The overall

pipeline diagram is shown in Fig. 3.4.

Figure 3.4: Proposed pipeline for an efficient ML based ADS in ICS

16

3.4 Data Preprocessing

3.4.1 Elimination of Skewness

To get rid of the skewing, we used a fixed random state to shuffle our data

frame. This was done to evenly distribute the anomalous data points across the whole

data frame without changing any of the values in original dataset.

Fig. 3.5 shows the anomaly data distribution of the first 1000 data points after

shuffling which shows clearly how the skewness of the dataset has been solved.

Figure 3.5: Attack instances in first 1000 samples after data shuffling

3.4.2 Predictor/Output Selection

After that the predictors and output variables were chosen from the data frame.

Four features were dropped at first that mentioned the time and which among the 3

processes of HIL ICS was being affected as that was not a concern for this study.

Among 79 remaining features, the feature ‘attack’ was chosen as output variable and

the rest of the features were chosen as our predictors.

17

3.4.3 Feature Selection using ANOVA Correlation Test

ANOVA correlation testing is a method of determining the contribution of each

numerical predictor to the categorical output variables. As opposed to the generic

correlation testing where the dependence and independence factor does not play much

significance, ANOVA test helps correlate in terms of dependent and independent

features. For a numerical input to categorical output ANOVA correlation coefficient is

one of the best evaluation criteria for understanding the relation among predictors and

outputs. The dataset contains a large number of samples as well as a significant number

of features. For minimizing runtime, feature selection has been done using ANOVA

correlation testing, in the next step. The test result returned 19 null/ not applicable

features.

From the rest 60 features, top 50 features were chosen in terms of ANOVA test

score for the next phase. The top 50 features along with their ANOVA test scores (also

called co-efficients) have been provided in table 3.2 and has been graphically shown in

figure 3.6.

Then a new dataframe was created with only the selected features from the

original dataset.

A train and test split were done once more. This time training set remained 80%

as before, but the previous test set was divided into equal parts of validation set (10%)

and test set (10%). Normalization was also incorporated on the dataset. And that marks

the end of the data pre-processing part of our first among 3 core optimization phases

18

Table 3.2 ANOVA test scores of the top 50 features

Features Scores Features Scores

P2_OnOff 44618.44 P1_TIT02 349.301

P2_Emerg 44216.74 P1_B3005 346.2579

P2_VT01 40910.69 P4_HT_PS 214.6442

P1_PCV02Z 40698.08 P4_ST_PS 214.6442

P1_PCV02D 39278.66 P1_FT02 170.1509

P1_LCV01D 38527.71 P1_FT02Z 166.8306

P1_LCV01Z 36818.05 P1_B400B 166.4269

P2_SIT02 36776.5 P3_LCP01D 157.7815

P2_SIT01 36770.21 P3_PIT01 112.0158

P2_CO_rpm 30534.62 P1_B4005 109.8485

P1_FT01 7832.106 P3_FIT01 102.8014

P2_VYT03 7615.269 P1_B4002 101.1173

P1_PIT01 4417.682 P1_TIT01 90.20611

P4_ST_PT01 4380.628 P1_FCV02D 83.10977

P2_VYT02 2844.932 P1_FCV02Z 73.51914

P1_FCV03D 1135.057 P4_LD 68.23568

Figure 3.6: ANOVA test scores for feature selection

19

P1_FCV03Z 1120.14 P1_FCV01Z 60.94246

P2_VXT02 1115.839 P1_FCV01D 59.33446

P2_VXT03 972.5336 P4_HT_LD 57.83826

P1_FT01Z 812.7218 P4_HT_PO 53.81125

P1_LIT01 791.6849 P1_B3004 51.5366

P1_FT03Z 516.6129 P4_ST_PO 48.40944

P1_FT03 462.8482 P3_LCV01D 45.51998

P1_PCV01Z 391.1211 P4_ST_LD 42.34632

P1_PCV01D 379.3134

3.5 ML Model Training and Testing

3.5.1 Without Hyperparameter Tuning

The machine learning model was trained using 6 machine learning classifiers

i.e., KNN, XGB, GNB, LR, RF, MLP with no tuning. Performance evaluation metric

results were obtained for each classifier.

3.5.2 With Hyperparameter Optimization

The 2nd phase of the optimization phases is hyperparameter tuning.

Hyperparameter optimization was done using RandomizedSearchCV.

RandomizedSearchCV helps to find out the most appropriate parameter values for a

classifier using ‘fit’ and ‘score’ method. With data preprocessing steps remaining the

same, the machine learning model was then trained with the same ML classifiers, but

this time each of the classifiers’ hyper-parameters were tuned to achieve maximum

recall value.

False negative outcomes are the most undesirable for any anomaly detection or

intrusion detection system. Maximizing recall value minimizes the false negative rate.

The evaluation metrics were again recorded to observe how each of the classifiers

performed.

The tuned hyper-parameters thus obtained for each classifiers has been shown

in Table 3.3.

20

3.5.3 With data Manipulation

From the previous analysis it is evident not all classifiers are suitable for attack

- Data manipulation for maximizing performance. There are a few additional steps

conducted in the preprocessing phase. After the new data frame was created with

selected features, dataset was split into 80% training set,10% validation set and 10%

testing set with stratification along the output feature. It was observed that the training

set consisted of 1,051,728 normal data samples

and 7,158 anomalous data samples, validation set consisted of 131,467 normal data

samples and 894 anomalous data samples, while test set consisted of 131,466 normal

data samples and 895 anomalous data samples. The huge imbalance in the training set

is a major cause for performance reduction in ML classifiers. Undersampling was done

first to reduce the number of normal data points. 1,000,000 normal data points were

randomly selected first. After that SMOTE was employed to increase the number of

anomalous data points of the training set to 10,000. SMOTE stands for Synthetic

Minority Oversampling Technique. SMOTE is a type of data augmentation for the

minority class through which new samples are synthesized. Thus, the anomaly rate was

increased to 1%. Further up sampling was avoided to maintain consistency with real

life anomaly rate. After that the testing set was equally divided into validation and

testing set and the machine learning model was again trained with tuned

hyperparameters (obtained from the previous phase of optimization) of the mentioned

classifiers. This resulted in significant improvement as observed from the evaluation

metrics.

21

Table 3.3 Tuned Hyper-parameters for each classifier

KNN

algorithm='auto',

leaf_size=50,

metric='minkowski',

metric_params=None,

n_jobs=None,

n_neighbors=1, p=1,

weights='uniform'

XGBoost

alpha=3,

base_score=0.5,

booster='gbtree',

colsample_bylevel=1,

colsample_bynode=1,

colsample_bytree=1,

eta=3,

gamma=0.1,

learning_rate=0.1,

max_delta_step=0,

max_depth=3,

min_child_weight=1,

missing=None,

n_estimators=100,

n_jobs=1,

nthread=None,

objective='binary:logistic',

random_state=0,

reg_alpha=0,

reg_lambda=3,

scale_pos_weight=1,

seed=None,

silent=None,

subsample=1,

verbosity=1

DT

ccp_alpha=0.0,

class_weight=None,

criterion='gini',

max_depth=100,

max_features=None,

max_leaf_nodes=None,

min_impurity_decrease=0.0,

min_samples_leaf=1,

min_samples_split=20,

min_weight_fraction_leaf=0.0,

random_state=0,

splitter='best'

GNB

priors=None,

var_smoothing=1e-07

LR

C=100, class_weight=None,

dual=False, fit_intercept=True,

intercept_scaling=1, l1_ratio=None,

max_iter=100,

multi_class='auto', n_jobs=None,

penalty='l2',

random_state=1, solver='liblinear',

tol=0.0001, verbose=0,

warm_start=False

22

Table 3.3(continued) Tuned Hyper-parameters for each classifier

RF

bootstrap=True, ccp_alpha=0.0,

class_weight=None,

criterion='gini', max_depth=None,

max_features='auto',

max_leaf_nodes=None,

max_samples=None,

min_impurity_decrease=0.0,

min_samples_leaf=1,

min_samples_split=2,

min_weight_fraction_leaf=0.0,

n_estimators=73,

n_jobs=None, oob_score=False,

random_state=None,

verbose=0, warm_start=False

MLP

activation='relu',

alpha=0.0001,

batch_size='auto',

beta_1=0.9,

beta_2=0.999,

early_stopping=False,

epsilon=1e-08,

hidden_layer_sizes=(50, 100, 50),

learning_rate='constant',

learning_rate_init=0.001,

max_fun=15000,

max_iter=200,

momentum=0.9,

n_iter_no_change=10,

nesterovs_momentum=True,

power_t=0.5,

random_state=None,

shuffle=True,

solver='adam',

tol=0.0001,

validation_fraction=0.1,

verbose=False,

warm_start=False

23

4 Chapter 4

Performance Metrics

The effectiveness of a predictive model is determined using performance metrics. In

classification operations, the most widely used metric is accuracy. However, for

unbalanced datasets, the accuracy values are biased towards the ruling class, which

can be very misleading [30].

Class-specific counters are more convenient for non-equilibrium classification

operations. The confusion matrix helps to convey these points more clearly (shown in

Table II). The binary classification problem has two possible consequences. False (0)

and True (1)

Table 4.1 Confusion Table format

Predicted

Actual

Categories False (0) True (1)

False (0) TN FP

True (1) FN TP

The term TP refers to correct predictions for positive (1) class instances, while

TN indicates the correct predictions for negative (0) class instances. FP shows the

prediction of negative cases as positive and FN shows the prediction of positive cases

as negative. In this study, anomalous instances are labeled as 1 to represent a minority

24

class. Normal instances are considered as 0 which form a majority class. Evaluation

key figures are defined based on these four basic terms. Table 4.1 provides a clearer

insight in the confusion matrix format.

4.1 Accuracy

Accuracy is a metric that expresses how the model will perform throughout all classes

in general. It is calculated by dividing the number of accurate predictions by the

number of total predictions.

Accuracy = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Where,

TP = True Positive ,

TN = True Negative ,

FP = False Positive,

FN = False Negative.

The majority class of the dataset dominates a model's classification accuracy

[31]. If the data is imbalanced, the classifier can achieve high accuracy. However, this

high level of accuracy is too optimistic to accurately reflect the performance of the

classifier. As a result, various evaluation metrics that describe possible class

imbalance scenarios should be considered in order to reflect the classifier's

performance.

4.2 Recall/Sensitivity

The probability of correctly identifying a positive test sample or a minority test

sample is indicated by recall [32]. A higher recall value indicates that the classifier is

effective in predicting instances of the minority class. As the dataset is hugely

imbalanced, we have put more emphasis on this evaluation metric.

Recall/Sensitivity = (𝑇𝑃+𝑇𝑁)/(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)

25

4.3 Precision

Precision represents the proportion of detected minorities that are actually correct.

Precision is affected by the order of the classes as it combines results from both major

and minor samples [32].

Precision = = 𝑇𝑃/(𝑇𝑃+𝐹𝑃)

4.4 F1-Score

F1-score consolidates two metrics (precision and recall) of a classifier into a solitary

metric by using their harmonic mean. F1-score is used to evaluate classifications that

have a significant proportion of false negatives and false positives. [33].

F1 Score = 2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

4.5 Specificity

Specificity is an indicator of how accurately the negative class was foreseen [34]. It's

quite often used in the context of sensitivity. Because negative classes obtain the

major part of instances, models tend to have higher specificity and yet lower

sensitivity.

Specificity = 𝑇𝑃/(𝑇𝑃+𝐹𝑃)

26

4.6 Receiver Operating Characteristic (ROC)

and Area Under the Curve (AUC)

ROC plot combines sensitivity and specificity into one figure, allowing researchers to

evaluate the accuracy of the proposed metrics on the y-axis graphically. For any

reliable indicator, a transition in specificity produces a permanent effect in sensitivity,

which is schemed as a curve in the ROC graph. AUC stands for Area Under the

Curve. The value of ROC AUC varies from 0 to 1. Here 0.5 expresses a 50-50

assumption and 1.0 indicates a 100% reliable forecasting model [35].

4.7 Geometric Mean (G-Mean)

G-mean was suggested in [36] as the product of sensitivity and specificity. A low G-

Mean score indicates poor classification results if only one of the two classes has a

greater classification error.

G-mean = √(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

4.8 Matthews Correlation Coefficient (MCC)

MCC is a reliable analytical metric that only yields successful outcome if the

forecasting showed good performances in all four categories of the confusion matrix.

However, it does not distinguish between majority and minority class results. The

value can be anywhere between -1 and +1 [37]. A prediction with a +1 value is the

best possible prediction, a prediction having a 0 MCC value is just an arbitrary

prediction, and a prediction with a -1 value is the worst possible prediction.

MCC = (𝑇𝑃 ×𝑇𝑁−𝐹𝑃 ×𝐹𝑁)/((𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁))

27

5 Chapter 5

 Results and Discussion

Table 5.1 Confusion Matrix for GNB, KNN, LR, RF, XGB MLP

 Algorithm

A
c
tu

a
l

Case Predi

cted

GNB KNN LR RF XGB MLP

 Categ

ories

0 1 0 1 0 1 0 1 0 1 0 1

1
0 130920 546 131453 13 131444 22 119904 11562 125139 6327 131461 5

1 425 470 24 871 585 310 47 848 204 691 279 616

2
0 130920 546 131459 7 131432 34 116179 15287 123729 7737 131455 11

1 425 470 3 892 529 366 45 850 196 699 62 833

3
0 130906 560 131459 7 131422 44 114432 17034 120764 10702 131443 23

1 419 476 2 893 519 376 38 857 170 725 43 852

Table 5.2 Comparison of recall, precision & accuracy (before tuning, after tuning &

upsamplingdownsampling+tuning)

 Performance Metrics

Algorithms Recall (%) Precision (%) Accuracy (%)

1 2 3 1 2 3 1 2 3

GNB 52.51 52.51 53.18 46.26 46.26 45.95 99.27 99.27 99.26

KNN 97.31 99.66 99.77 98.53 99.22 99.22 99.97 99.99 99.99

LR 34.63 41.89 42.01 93.37 91.50 89.52 99.54 99.57 99.57

RF 94.75 94.97 95.75 6.83 5.27 4.79 91.23 88.41 87.10

XGB 77.20 78.10 81.01 9.85 8.29 6.34 95.07 94.00 91.79

MLP 68.82 93.07 95.20 99.2 98.7 97.37 99.79 99.94 99.95

28

Table 5.3 Comparison of f1 score, specificity & roc auc (before tuning, after tuning &

upsampling- downsampling+tuning)

 Performance Metrics

Algorithms
 F1 Score

(%)

 Specificity ROC_AUC

1 2 3 1 2 3 1 2 3

GNB 49.19

49.19 49.30 99.58 99.58 99.57 0.7605 0.7605 0.7638

KNN 97.92 99.44 99.50 99.99 99.99 99.99 0.9865 0.9983 0.9989

LR 50.53 56.53 57.19 99.98 99.97 99.97 0.6731 0.7043 0.7099

RF 12.75 9.98 9.12 91.20 88.37 87.04 0.9298 0.9167 0.9400

XGB 17.46 14.98 11.77 95.19 94.11 91.86 0.8620 0.8610 0.8643

MLP 81.27 95.80 96.27 99.99 99.99 99.98 0.8441 0.9653 0.9759

Table 5.4 Comaprison of g-mean & mcc (before tuning, after tuning & upsampling-

downsampling+tuning)

 Performance Metrics

Algorithms
G-Mean (%) MCC

1 2 3 1 2 3

GNB 72.32 72.32 72.77 0.4892 0.4892 0.4906

KNN 98.65 99.83 99.89 0.9791 0.9944 0.9950

LR 58.85 63.94 64.81 0.5672 0.6102 0.6117

RF 92.96 91.61 91.29 0.2417 0.2088 0.1985

XGB 85.73 85.73 86.26 0.2648 0.2423 0.2126

MLP 82.96 96.47 97.56 0.8254 0.9582 0.9625

5.1 Simulation Results

Python has been used to carry out the simulations, with Google Colab serving as the

coding platform. The confusion matrices are shown in Table Ⅲ for three cases:

1. Without hyperparameter tuning

2. With hyperparameter tuning

3. With upsampling-downsampling and hyperparameter tuning

29

The confusion matrices showed in Table 5.1 provided the performance metrics

for anomaly detection. Evaluation indicators such as accuracy, precision, recall, G-

Mean, MCC, F1 score, ROC- AUC and specificity were calculated and reported from

Table 5.2 to Table 5.6 for all three cases.

In Table 5.2, recall, precision and accuracy are shown with default

hyperparameters first, then with efficient hyperparameters and finally with down

sampling-up sampling along with hyperparameter optimization

According to the results, with a maximum recall score of 99.77%, KNN outperformed

the other classifiers in aspects of recall whereas RF and MLP were close with recall

score of 95.75% and 95.20% respectively. However, the lowest recall was achieved

by LR with about 42.01%. In the case of precision, KNN is the most promising

classifier with a score of 99.22%. Besides, MLP (99.20%) and LR (93.37%) also

showed respectable results. RF showed the lowest precision score with about 6.83 For

accuracy, it can be seen that all of the algorithms performed similarly, although KNN

outperforms the others with a value of 99.99%.

In Table 5.3, F1-score, ROC-AUC and specificity values are shown for three

different cases. KNN showed the highest value of F1-score with over 99.50%,

followed by MLP (96.27%). RF showed the lowest F1 score value (12.75%). For

specificity, all the algorithms performed well. MLP (99.99%) and KNN (99.99%)

showed highest specificity values among them. KNN even performed the best

regarding ROC score with a value of 0.9989, closely pursued by MLP and RF with

0.9759 and 0.9400, correspondingly. LR had the lowest ROC score, which was

around 0.7099.

In Fig. 5.1, the ROC of the classifiers after undersampling and SMOTE has

been shown. In Table 5.4, G-mean and MCC are shown for all three cases. In terms of

G-mean, KNN outperformed the other models with a value of 99.89%. MLP and RF

are the other virtually implemented ML models, having G- mean values of 97.56%

and 97.56%, respectively.

30

LR achieved the lowest G-mean of around 64.81%. For MCC, KNN again

performed the best with a value of 0.9950 whereas MLP, with 0.9625, came up just

short. RF (0.2417) and XGB (0.2648) both performed poorly. As the recall score is

the basis of hyperparameter tuning, recall values increased for each algorithm except

GNB after hyperparameter optimization.

The default hyperparameters were good enough for GNB. So, recall value

remained same for this algorithm. After performing downsampling and upsampling

with hyperparameter optimization, recall values got increased more. As F1 score

depends on recall value, it maintained the same pattern for all algorithms except RF

and XGB.

Deceasing value of precision is the reason for falloff of F1 score in these

algorithms as F1 score also depends on precision. As the hyperparameters were tuned

on the basis of recall, some algorithms showed lower values of precision after

optimizing the hyperparameters. The same thing also happened for some other

evaluation metrics. But none of the values decreased significantly. Like recall, G-

mean values increased after hyperparameter adjustment for all algorithms except RF

and GNB.

Figure 5.1: ROC curve for SMOTE after tuning

31

The values increased further considerably after performing downsampling-

upsampling with hyperparameter tweaking. MCC values almost followed the same

pattern.

From Table 5.2 – 5.4, it is evident that among all evaluation metrics, highest

values have been achieved after performing downsampling-upsampling along with

hyperparameter optimization. In Fig. 5.2, the comparison between recall and F1 score,

and in Fig. 5.3, the comparison between G-mean and MCC, is shown, respectively.

Figure 5.2: Comparison of recall and F1 score

From figure 5.2, the comparative analysis of recall and F1 score can be

observed. For KNN, GNB and MLP; F1 score and recall acted in the same way. That

means precision value also acted in the same way for these three algorithms. But on

the contrary, for XGB and RF, recall values were much higher than F1 score which

indicate poor precision values. But in case of LR, F1 score values were much higher

than recall value. This indicates strong performances of precision for LR.

32

From figure 5.3, the comparative analysis of G-Mean and MCC score can be

observed. For KNN, LR and MLP; G-Mean and MCC acted in the same way. But on

the contrary, for XGB and RF, G-Mean values were much higher than MCC. For

GNB, G-Mean values were slightly better than MCC

5.2 Comparative Analysis

Table 5.5 shows the differences between this study and other anomaly detection

studies that have been done previously. First two rows of the comparison table are

based on the same dataset that has been used in this paper. The remaining three rows

are based on earlier version of our used dataset (HAI 20.07). Bian et al. [38] presented

the Stacked Gated Recurrent Unit-Infrequent Residual Analysis (SG-IRA) which is an

unsupervised learning approach and 80.6% recall, 96.8% precision and 97.7% F1-

score were achieved there with time-series awareness. In another study, Kim and Kim

used Ensemble Recurrent Neural Networks with time-series awareness to achieve

90.2% recall, 97.7% precision and 93.8% F1-score consecutively [6]. Kim et al. used

One Class Support Vector Machine (OCSVM) to detect the presence of anomaly

where HAI 20.07 dataset was used, and their learning model approach demonstrated

95% recall, 96% precision, and 95% F1 score [5].

Figure 5.3: Comparison of G-Mean and MCC score

33

Table 5.5 Comparison with other Researches

Reference Version Algorithm Recall Precision F1-Score

[38] 21.03 SG-IRA 80.6% 96.8% 97.7%

[27] 21.03
Ensemble RNN

90.2% 97.7% 93.8%

[19] 20.07 OCSVM 95% 96% 95%

[25] 20.07 CD-OCC 84% 84% 83%

[4] 20.07 N/A N/A 90.8% 80.4%

This Study
21.03 KNN 99.77% 99.22% 99.50%

However, in another study, for HAI 20.07 dataset, Kim and Kim showed 84%

recall, 84% precision and 83% F1 score using Clustered Deep One-Class

Classification (CD-OCC) framework [3]. Moreover, Conti et al. got 90.8% precision

and 80.4% F1-score in their study [4]. Tai et al. only showed accuracy for HAI 20.07

where maximum 83.63% accuracy was achieved using Gradient Boosting Machine

GSCV (Grid Search Cross Validation) model [22]. Finally, the approach used in this

study achieved the highest recall of 99.77%, highest precision of 99.22%, maximum

F1 score of 99.50%, and best accuracy of 99.99% using the KNN algorithm.

Hyperparameter tuning with the RandomSearchCV, as well as the use of

downsampling and the SMOTE method, played a significant role in achieving

comparatively higher performance across all results. Furthermore, the evaluation

metrics G-mean and MCC had never been used in any of the previous studies. In our

study, highest G-mean of 99.89% and MCC value of 0.9950, both also indicate

satisfactory performance of our explored methodology

34

Chapter 6

Conclusion

Industrial control system (ICS) serves a significant role in implementing required

functions along with enhancing safety. An industrial control system keeps the

overall harmony of all the machines within an industry through collecting data from

sensors. In this study, we have observed, analyzed and optimized the performance

of six ML algorithms for anomaly detection in an HIL based Industrial Control

System. Our study serves two purpose, one is the evaluation of the effectivity of

ML in such an environment for failure proof system and to what extent it can be

done, and the other is anomaly detection in the absence of any time related pattern

as there might be insufficient timed data to begin with. Among the six classifiers,

KNN outperforms all other classifiers in terms of all the 8 evaluation metrics under

our consideration

Therefore, it is reasonable to infer that ML techniques have a beneficial

influence on industrial control system sector with the introduction of an efficient

anomaly detection system, which will ultimately strengthen the cyber resilience of its

computer-controlled framework. Future work on our topic can be to study our proposed

pipeline or workflow to evaluate the algorithms in a multiclass system. Also the

evaluation of our proposed model in terms of other industrial control systems is also a

topic of interest.

Future Development

There are some scopes of development of our work:

● Application with Different Datasets: More datasets can be used and thus the

effectuality of our proposed approach can be understood more clearly

● Hybrid Models: No hybrid models have been used in this study. So there is a

scope of developing a hybrid model that is more efficient

● Positions of anomaly: We have found out whether there is any anomaly or not. But

the exact positions of anomaly have not been detected in this study. In future work,

positions of anomaly and thus more exact information about anomalous data can be

extracted.

35

References

[1] K. Paridari, N. O’Mahony, A. El-Din Mady, R. Chabukswar, M. Boubekeur, and

H. Sandberg, “A framework for attack-resilient industrial control systems: Attack

detection and controller reconfiguration,” Proc. IEEE Inst. Electr. Electron. Eng., vol.

106, no. 1, pp. 113–128, 2018.

[2] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn, Guide to Industrial

Control Systems (ICS) Security Supervisory Control and Data Acquisition (SCADA)

systems Distributed Control Systems (DCS) and other control system configurations

such as Programmable Logic Controllers (PLC) Special Publication 800-82.

Gaithersburg, MD, 2015.

[3] B. Filkins, D. Wylie, and A. J. Dely, “Sans 2019 state of ot/ics cybersecurity

survey,” in SANSTM Institute, 2019.

[4] M. Conti, D. Donadel, and F. Turrin, “A survey on industrial control system testbeds

and datasets for security research,” IEEE Commun. Surv. Tutor., vol. 23, no. 4, pp.

2248–2294, 2021.

[5] S. Mokhtari, A. Abbaspour, K. K. Yen, and A. Sargolzaei, “A machine learning

approach for anomaly detection in industrial control systems based on measurement

data,” Electronics (Basel), vol. 10, no. 4, p. 407, 2021.

[6] B. Miller and D. Rowe, “A survey SCADA of and critical infrastructure incidents,”

in Proceedings of the 1st Annual conference on Research in information technology -

RIIT ’12, 2012.

[7] T. Armerding, “Throwback Thursday: Whatever Happened to Stuxnet?,” Synopsys,

2019.

[8] S. Shrivastava, “Blackenergy-malware for cyber-physical attacks,” Singapore,

vol. 74, 2016.

[9] A. D. Pinto, Y. Dragoni, A. Carcano, and “. Triton, The First ICS Cyber Attack on

Safety Instrument Systems Understanding the Malware, Its Communications and Its

OT Payload. Black Hat USA, 2018.

[10] Kaspersky.com. [Online]. Available: https://ics-

cert.kaspersky.com/media/KASPERSKY_H1_2020_ICS_REPORT_EN.pdf.

[Accessed: 16-Feb-2022].

36

[11] R. D. S. Raizada and Y.-S. Lee, “Smoothness without smoothing: why Gaussian

naive Bayes is not naive for multi-subject searchlight studies,” PLoS One, vol. 8, no. 7,

p. e69566, 2013.

[12] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in

classification,” in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,

and ODBASE, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 986–996.

[13] A. Narzullaev, Z. Muminov, and M. Narzullaev, “Wi-Fi based student attendance

recording system using logistic regression classification algorithm,” in

INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON

“COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020,

2021.

[14] P. Schober and T. R. Vetter, “Logistic regression in medical research,” Anesth.

Analg., vol. 132, no. 2, pp. 365–366, 2021.

[15] A. Sarica, A. Cerasa, and A. Quattrone, “Random forest algorithm for the

classification of neuroimaging data in Alzheimer’s disease: A systematic review,”

Front. Aging Neurosci., vol. 9, 2017.

[16] “eXtreme Gradient Boosting (XGBoost): Better than random forest or gradient

boosting,” Github.io. [Online]. Available:

https://liuyanguu.github.io/post/2018/07/09/extreme-gradient-boosting-xgboost-

better-than-random-forest-or-gradient-boosting/. [Accessed: 14-Feb-2022].

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, 2016, pp. 785–794.

[18] S. Abirami and P. Chitra, “Energy-efficient edge based real-time healthcare

support system,” in Advances in Computers, Elsevier, 2020, pp. 339–368.

[19] J. Kim, H. Choi, J. Shin, and J. T. Seo, “Study on anomaly detection technique in

an industrial control system based on machine learning,” in Proceedings of the 2020

ACM International Conference on Intelligent Computing and its Emerging

Applications, 2020

[20] H. Shin, W. Lee, J. Yun, and H. Kim, “HAI 1.0: HIL-based Augmented ICS

Security Dataset,” in 13 USENIX Workshop on Cyber Security Experimentation and

Test, 2020.

37

[21] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “Voltageids: Low-level

communication characteristics for automotive intrusion detection system,” IEEE Trans.

Inf. Forensics Secur, vol. 13, pp. 2114–2129, 2018.

[22] J. Tai, I. Alsmadi, Y. Zhang, and F. Qiao, “Machine Learning Methods for

Anomaly Detection in Industrial Control Systems,” in 2020 IEEE International

Conference on Big Data, IEEE, 2020, pp. 2333–2339.

[23] S. Zhong, S. Fu, L. Lin, X. Fu, Z. Cui, and R. Wang, “A novel unsupervised

anomaly detection for gas turbine using isolation forest,” in IEEE International

Conference on Prognostics and Health Management (ICPHM), San Francisco, CA,

USA, 2019, pp. 1–6.

[24] S. Ahmed, L. Youngdoo, and I. Seung-Ho Hyun, Unsupervised Machine Learning-

Based Detection of Covert Data Integrity Assault in Smart Grid Networks Utilizing

Isolation Forest”. IEEE, 2019.

[25] Y. K. Younghwan Kim and H. K. K. Younghwan Kim, “Cluster-based deep one-

class classification model for anomaly detection,” J. Internet Technol., vol. 22, no. 4,

pp. 903–911, 2021.

[26] J. Kim, H. Choi, J. Shin, and J. T. Seo, “Study on anomaly detection technique in

an industrial control system based on machine learning,” in Proceedings of the 2020

ACM International Conference on Intelligent Computing and its Emerging

Applications, 2020.

[27] H. Kim and Y.-M. Kim, “Abnormal Detection for Industrial Control Systems

Using Ensemble Recurrent Neural Networks Model,” Journal of the Korea Institute of

Information Security & Cryptology, vol. 31, no. 3, pp. 401–410, 2021.

[28] H. K. Shin, W. Lee, J. H. Yun, and H. Kim, “Implementation of programmable

CPS testbed for anomaly detection,” in 12th USENIX Workshop on Cyber Security

Experimentation and Test, 2019.

[29] W. S. Hwang, J. H. Yun, J. Kim, and H. C. Kim, “Time-series aware precision and

recall for anomaly detection: considering variety of detection result and addressing

ambiguous labeling,” in Proceedings of the 28th ACM International Conference, 2019.

[30] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient

(MCC) over F1 score and accuracy in binary classification evaluation,” BMC

Genomics, vol. 21, no. 1, p. 6, 2020.

38

[31] U. Bhowan, M. Johnston, and M. Zhang, “Evolving ensembles in multi-objective

genetic programming for classification with unbalanced data,” in Proceedings of the

13th annual conference on Genetic and evolutionary computation - GECCO ’11, 2011.

[32] A. P. Bradley, R. P. W. Duin, P. Paclik, and T. C. W. Landgrebe, “Precision-recall

operating characteristic (P-ROC) curves in imprecise environments,” in 18th

International Conference on Pattern Recognition, 2006.

[33] Z. C. Lipton, C. Elkan, and B. Narayanaswamy, “Thresholding classifiers to

maximize F1 score,” arXiv [stat.ML], 2014.

[34] Y. Baştanlar and M. Özuysal, Introduction to machine learning. miRNomics:

MicroRNA biology and computational analysis. 2014.

[35] A. J. Bowers and X. Zhou, “Receiver operating characteristic (ROC) area under

the curve (AUC): A diagnostic measure for evaluating the accuracy of predictors of

education outcomes,” J. Educ. Stud. Placed Risk, vol. 24, no. 1, pp. 20–46, 2019.

[36] M. Kubat and S. Matwin, Addressing the curse of imbalanced training sets: one-

sided selection. 1997.

[37] Y. Liu, J. Cheng, C. Yan, X. Wu, and F. Chen, “Research on the Matthews

correlation coefficients metrics of personalized recommendation algorithm evaluation,”

Int. J. Hybrid Inf. Technol., vol. 8, no. 1, pp. 163–172, 2015.

[38] X. Bian, Detecting Anomalies in Time-Series Data using Unsupervised Learning

and Analysis on Infrequent Signatures. 202

	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgements
	Abstract
	1 Chapter 1
	Introduction
	1.1 Problem Statement and Motivation
	1.2 Research Objectives
	1.3 Literature Review

	2 Chapter 2
	Machine Learning Algorithms
	2.1 Gaussian Naïve Bayes (GNB) :
	2.2 Logistic Regression (LR) :
	2.3 K-Nearest Neighbors (KNN) :
	2.4 Random Forest (RF) :
	2.5 Extreme Gradient Boosting :
	2.6 Multilayer Perceptron :

	3 Chapter 3
	Methodology
	3.1 Dataset Description
	3.2 Data Visualization
	3.3 Pipeline
	3.4 Data Preprocessing
	3.4.1 Elimination of Skewness
	3.4.2 Predictor/Output Selection
	3.4.3 Feature Selection using ANOVA Correlation Test

	3.5 ML Model Training and Testing
	3.5.1 Without Hyperparameter Tuning
	3.5.2 With Hyperparameter Optimization
	3.5.3 With data Manipulation

	4 Chapter 4
	Performance Metrics
	4.1 Accuracy
	4.2 Recall/Sensitivity
	4.3 Precision
	4.4 F1-Score
	4.5 Specificity
	4.6 Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC)
	4.7 Geometric Mean (G-Mean)
	4.8 Matthews Correlation Coefficient (MCC)

	5 Chapter 5
	Results and Discussion
	5.1 Simulation Results
	5.2 Comparative Analysis

	Chapter 6
	Conclusion
	Future Development

	References

