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Abstract

In this article, the use of an EMG control based wheelchair is presented. The me-

chanical design is based on six gestures and eight channel EMG sensors that are

controlled by six hand directions. Electric EMG-based wheelchairs are essential

for SCI patients. Because cervical spinal cord injury (SCI) creates severe sensory

anomalies in their bodies, SCI patients are unable to walk. Their hand nerves do

not respond correctly due to their upper limb impairments. It takes a long time

for their hand to react. As a result, SCI patients are unable to drive a normal

joystick wheelchair manually. They must rely on others to utilize these sorts of

wheelchairs. This study attempts to give a novel alternative controlling technol-

ogy for people with paralysis, particularly of the feet and hands, by creating an

electric wheelchair that uses the control of electromyography (EMG) signal as a

consequence of muscle relaxation. EMG signals are commonly utilized to quantify

torques in human muscles. We have created an electromyography (EMG)-based

hand gesture dataset to control electric wheelchair for the patient with spinal

cord injury (SCI). We have recorded eight-channel surface EMG (sEMG) signals

from the EMG sensor placed at the forearm of the SCI patient. These signals

were collected from six hand gesture-based wheelchair control movements (for-

ward, reverse, turn left, turn right, start and stop). We collected hand gesture

data containing different EMG signals from 12 healthy subjects and 7 SCI sub-

jects. Later on, The EMG signals were segmented and the time-domain feature

extraction technique was applied to generate 18000 training samples and 10500

testing samples. We then classified the hand gestural EMG signals using 5 differ-

ent classical machine learning models. We analyze the classification results in two

ways. The first one is, training the models using only data of healthy subjects

and cross-validated using data from 7 SCI patients. And the second one is by in-

cluding six SCI patient’s data in the training process along with healthy subjects

we performed leave one out cross-validation. From this analysis we were able to

achieve the highest 95.42% accuracy using decision tree (DT) and Random Forest

(RF) algorithms.

Keyword - EMG-Based wheelchair, Hand gesture define, Machine learn-

ing, EMG Signal, K-Nearest Neighbour(KNN) algorithm
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Chapter 1

Introduction

Electromyography (EMG) is a method that uses EMG-connected electrodes to

record muscle activity and measure the change in electrical potential between

two muscle locations [1]. Muscle contraction generates electrical impulses, which

reflects neuromuscular activity. As a result, an electrical signal is generated every

time the muscle contracts. The EMG signal is used to propel the wheelchair

forward and backward, as well as to turn left and right.

This study aimed to propose a gesture-controlled electric wheelchair based on

learning the appropriate hand gestures from EMG signals. We propose a unique

EMG-based hand gesture dataset which runs in several ML algorithms. The

dataset consists of gestural EMG signals of the healthy subjects and the real SCI

patients from the Centre for the Rehabilitation of the Paralyzed (CRP), Savar,

Dhaka, Bangladesh. The dataset we generated includes 18 thousand samples from

12 healthy subjects and 7 SCI subjects after pre-processing. We defined the seg-

mentation window by eliminating noises at the beginning and the end. We have

extracted mean absolute value (MAV) features from the time signals of 8 electrodes

placed in the armband of the subjects. We have considered both the validation set

and test set separately and found convincing classification accuracy using the K-

NN classification model, Support Vector Machine, Decision tree, Random forest,

and Artificial Neural Network for classification.

Patients with claw hands have twisted or bent fingers as a result of their illness.

This gives their hand the appearance of an animal’s claw. They are unable to do

anything on their own as a result of this. Because their hand takes a long time

to respond. Patients may be unable to make the desired hand motion at times.

1
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Paralysis or arm numbness in the human body can be caused by a number of

factors. They are controlled by a network of nerves that goes from the neck to the

hand and fingers. Any disorder affecting a nerve or a bundle of nerves anywhere

from the neck to the hand might produce hand pain and numbness. The first two

vertebrae at the top of the cervical spine in the human body are known as the C1

and C2 vertebrae.[2] When they come together, they produce the atlantoaxial joint,

which is a pivot joint. Compression of the spinal cord at the C2 level can cause arm

and leg tingling, numbness, and/or paralysis, as well as bowel and bladder control

problems and other disorders. Severe paralysis of the body below the injured

part of the spinal cord may occur in some cases. [3] Cervical spinal cord injury

(SCI) causes severe sensory abnormalities in the human body, which is why SCI

sufferers cannot walk. Because of their upper-limb problems, their hand nerves do

not react properly.[4][5] Their hand reacts slowly. At times, patients may be unable

to perform the necessary hand and foot actions. As a result, persons with SCI are

unable to manually operate a joystick wheelchair. They have to rely on others to

get around in their wheelchairs. As a result, they need a new controller to operate

their electric wheelchair. We tried to develop a model by conducting an experiment

in CRP with seven spinal cord injury patients to capture data from their arms in

order to identify the wheelchair orientation they would want to suggest. Their

arm sends a signal when they try but fail to move the wheelchair with their hand.

The direction can be inferred from their hand signal. Define some wheelchair-

movement hand motions, as well. Based on data collected from regular individuals

and patients with spinal cord injuries, we developed a model to train with a specific

hand gesture that would be delivered for a certain wheelchair orientation. On the

basis of the data, we may deduce the reason for their wheelchair movement. Hand

gestures in a wheelchair. We can infer the purpose of their wheelchair movement

based on the data. Some wheelchair mobility hand motions need also be described.

To investigate the impact of using the features for each of the patients, we have

designed and implemented an experiment using the model features. Six feature sets

were segmented to provide several situations, including forward, reverse, turn left,

turn right, start, and stop conditions. Performance measures such as precision,

recall, f-score and accuracy are used to evaluate the efficiency of the prediction.

We can determine if the model provides a better answer or not based on the

accuracy measurement provided by the model. This thesis makes a contribution by

determining the accuracy of the model characteristics and predicting the impacts of

utilizing the gadget. We constructed a model to train using distinct hand gestures

that would be supplied for specific wheelchair orientations based on data obtained

from normal people and those with spinal cord injuries. We can deduce the cause
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for their wheelchair movement from the data. To investigate the impacts, the high-

fidelity prototyping approach was employed for this experiment. In terms of detail

and functionality, a high-fidelity (hi-fi) prototype is a computer-based interactive

product visualization that is as close to the final version as feasible. It allows

for a more in-depth evaluation of usability issues and the development of user

behavior conclusions. The hi-fi designs take into account the product’s aesthetic

and technical user interface, as well as components of the user experience such as

interfaces, user flow, and behavior [6]. Appropriate hardware material was used

to construct a whole wheelchair prototype. After that, the wheelchair experiment

with an EMG sensor was completed.

1.1 Problem Statement

Cervical spinal cord injury (SCI) causes severe sensory abnormalities in the hu-

man body, which is why SCI sufferers cannot walk. Because of their upper-limb

problems, their hand nerves do not react properly. They have to depend on others

to move their wheelchair. For some SCI patients hands nerve does not response

instantly. It takes time. The patients who has difficulties with hand movements

need a system which can give them freedom to move their own wheelchair. For

example, MH.In et al.[7] and P.Polygerinos et al.[8] proposed voice controlled sys-

tem. this system contains a VAEDA glove uses voice recognition to determine

control mode, and to execute commands using EMG signals. Sánchez-Velasco et

al.[9] created an emg based dataset for their system. But they did not deploy ma-

chine learning approach. Saharia et al.[10] introduced a joystick based wheelchair

control system which is not appropriate for the people who has problem in con-

trolling by their hands. So its nesessary to overcome these drawbacks to design

the wheelchair for SCI patients.

The primary objective is to develop an EMG-based hand gestural dataset to train

the system. The secondary objective is to build a wheelchair prototype to evaluate

the user experiences of EMG-based wheelchair interaction through the defined

gestures.
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1.2 Motivation & Scopes

Every year, between 250000 to 500000 people are suffering from a serious spinal

cord injury (SCI), according to WHO. Physical limitations to basic movement are

one of three issues that prevent many individuals with SCI from fully participat-

ing in society. WHO recommends using suitable assisting technologies to enable

individuals with SCI to conduct daily tasks to improve care and overcome health,

social, and economic constraints. Only 5-15 % of persons with SCI in poor and

middle-income nations have access to the necessary assisting equipment[11]. SCI

patient suffers from numbness. This numbness in the human body is caused by the

damage of nerves that extends from the neck to the hand and fingers. Due to this

fact SCI patients face difficulties in controlling wheelchairs by themselves. Many

studies have indicated that various wheelchairs with different mechanics may be

useful to SCI patients. There are varieties of wheelchairs available on the market.

Wheelchair technology has progressed in recent years. The manual wheelchair

went from a very light, compact, and foldable form combining pushing wheels

utilizing hand-movement in gliding to one that could be operated using joystick

or buttons to ease and give comfort in the movement to paralytics. However, a

technological breakthrough is necessary to operate the electric wheelchair with an

alternate controller for those who have paralysis in most of their body, particu-

larly their hands and feet, and are unable to drive the wheelchair using joysticks

or buttons.

The following points best summarize the motivation of this work-

• SCI patients have to depend on others to move their wheelchair. For some

SCI patients hands nerve does not response instantly. It takes time. The

patients who has difficulties with hand movements need a system which can

give them freedom to move their own wheelchair.

• Researchers and practitioners are interested to design sensor-based system.

But EMG based wheelchair with which machine learning approach is de-

ployed can be an alternative and worthy solution for SCI patients.
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1.3 Research Challenges

A persistent challenge for the researchers specific to the EMG sensor based system

is the need to:

(a) To create a dataset consisting of EMG-based hand gesture signal to control

an electronic wheelchair. Though there are existing EMG dataset in this research

[9]. But A particular dataset only for SCI patients is needed for proposed system.

and

(b) To develop a hand gesture-based wheelchair control for SCI patients by learn-

ing the gestures from EMG signal. There are several wheelchar control system:

voice control [7][8], head motion control [12], facial expression control [10], joystick

controlled[13] wheelchair. The drawback of these wheelchairs are:

Joystick controlled wheelchairs are not for the people who is unable to move their

hands. Other systems also have some limitations for SCI patients user.

1.4 Research Contribution

Considering all the limitations of the existing literature, this study addresses the

problems that there is not sufficient hand gesture based dataset for SCI patients.

Another finding is that existing sensor based wheelchair control system does not

deploy machine learning approach for controlling. The principle contributions of

this thesis can be summarized as below:

• A dataset consisting of EMG-based hand gesture signal to control

an electronic wheelchair: A dataset has been created in this research.

This dataset contains hand gestural data of SCI patients. For the creation

of the dataset data was collected from Centre for Rehabilitation of Para-

lyzed(CRP), Savar. By conducting a survey and taken data from the patients

arm for particular gesture direction dataset was made.

• High-fidelity prototype EMG based wheelchair can run in real time:

For the evaluation of research work a high fidelity emg based wheelchair is

made. This wheelchair can run in real time.
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1.5 Thesis Outline

In Chapter 1 the objective of the study has been discussed in a concise manner.

Chapter 2 deals with the necessary background & literature review for this study.

In Chapter 3, data pre-processing, feature extraction, feature selection, and clas-

sification model. In Chapter 4 the experiments are devised and the experimental

apparatus necessary to conduct them is outlined. The appropriate formulae are

then used to characterize the performance measures. Separately, the results anal-

ysis for the experiments are shown. Chapter 5 draws a conclusion to the current

study and discusses future directions. The final segment of this study contains all

the references and credits used.



Chapter 2

Literature review

In this chapter, we have presented the related works and reviews regarding our

thesis. In this chapter the different types of wheelchair for SCI patients related

research are described, including the effect and impact of using these model fea-

tures, accuracy for using, whether these joysticks are suitable or not etc. Finally,

the background limitations and challenges are presented at the end of this chapter.

Cervical SCI causes substantial sensory abnormalities in both somatic (e.g., upper

and lower extremities, trunk) and vegetative functioning below the level of injury

[14][15]. The innervation of the shoulder and elbow flexors is intact in a C5 SCI,

whereas the innervation of the wrist extensors and elbow extensors is retained

in C6 and C7 injuries. C5 to C7 injuries prevent active elbow extension against

gravity [4]. As a result, their arm does not react swiftly. That is why they

require an electronic system, such as a smart wheelchair, to assist them. Moreover,

SCI patients frequently have hand claws that cause the fingers to twist or bend

noticeably.

Claw hands can also be caused by various diseases or accidents. Depending on

the severity of the condition, using one’s hands to pick up and hold items might

be challenging. It becomes difficult for the caregivers to provide support to allow

them to move freely.

EMG is one of the most well-known unimodal hand orthosis controllers, needing

truly simple algorithms and taking spontaneous action into account. In general,

electrodes are linked with the damaged arm’s flexor and extensor muscles, and an

open-loop system opens and closes the hand when EMG arrives at an edge [16]

[14].

7
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In [17], an EMG system has been designed and verified for joint ankle motions. The

technology used a multi-channel EMG data collecting device that collects EMG

signals under the knee muscles and wirelessly sends them to the computer. The

EMG surface system was computed from the skin using dual polar electrodes that

includes the desired muscles. In other research, the sensors are placed on muscles

that retain consistent EMG signals. Stroke patients, for example, can utilize the

upper contralateral extremity [18] or facial expressions [19] to activate EMG-based

controls. These two techniques entail learning a regulation that requires the usage

of muscles unrelated to the target task.

An alternative approach is to build a multimodal regulation that not only uses

EMG but also a more robust sensing modality. The VAEDA glove uses voice recog-

nition to determine control mode, and to execute commands using EMG signals

[20]. Under ideal conditions voice recognition is reliable but prone to noise. Radio

frequency identification (RFID) tags on items can be used to classify desired hand

positions as non-biological switches, again using EMG as a mechanism to execute

these positions [21]. RFID tags predetermine which objects the subject will com-

municate with in real world environments, restricting their usefulness. There has

been study of fusing Mechanomyography (MMG) and EMG for prosthetic control

[22], [23].

Several research works proposed controls that rely on different kinds of sensors

other than EMG. Many of these controllers are unimodal; they activate the system

by pressing a simple analog button [24], a wrist bend sensor [24], body- powered

motions [25], or myographic force [21], also a hands-free EMG and EOG-based

control system is suggested [26]. Authors in [27] presented a low-cost ECG and

EMG device that may be utilized for a variety of biometric and medical purposes.

The Soft Extra Muscle Glove employs force-sensitive resistors (FSRs) as a mon-

itor because they give useful information when individuals connect with objects

[28]. [29] [7], used optical strain sensors to provide location input for control

and movement analysis in a pneumatic actuation-based rehabilitation system.[30]

These are unimodal control that is yet to be demonstrated to be a reliable system

for long-term service and frequently rely on external signals rather than natural

hand motions.

EMG signal has been used as an alternative controller for electric wheelchairs in

numerous research [2], [31], and [32]. In certain experiments, the electromyography

(EMG) signal was coupled with the EOG signal to drive the electric wheelchair.
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To move forward and backward, as well as turn right and left, the EMG signal

was employed. Meanwhile, the EOG signal was used to regulate the speed of the

motors [27], [17].

There are different machine learning-based approaches used by the researchers to

recognize activities or gestures to control electric wheelchairs [33]. A KNN-based

subtler hand motion classification approach was applied to control the bionic arm

to control the wheelchair. An EMG signal-based electric wheelchair control system

was proposed in [34]. The Artificial Neural Network (ANN) model was proposed in

[35], to recognize control gestures of the electronic wheelchair from EMG signals.

Researchers in [7], proposed three EMG signal-based muscle-computer interfaces

to operate the electric wheelchair. They collected the EMG signals and tried to

regulate angular velocity and linear acceleration of the wheelchair.

Surface electromyography (sEMG) signals have been widely employed in the con-

trol of robotic prosthetic devices in recent years, see e.g.[36], [37], [38], and ref-

erences therein. Russo et al. [39] identify three different hand movements and

operate the artificial hand using a commercial artificial hand (Open Bionics), a

commercial muscle sensor (MyoWare), and an Arduino Nano module. They cre-

ated classifiers based on Support Vector Machines (SVM) and neural networks uti-

lizing time domain properties of EMG signals, achieving a performance of about

90%. [11] built a two-channel sEMG pattern-recognition system to distinguish

four human hand poses. Handposture identification was performed using the k-

nearest-neighbors (KNN) method as a classifier. This technology was used to

operate a DIY robotic hand with five fingers that move using four servomotors.

The data collecting was done with LabVIEW software, and the servomotors were

controlled by an Arduino microprocessor. The authors suggest that research on

nuanced finger postures rather than whole-hand mobility should be a future trend

in myoelectric control of bionic hands. The mechanical restrictions of the bionic

hand and the non-portability of the data collecting and processing system are the

key drawbacks of this technology for possible implementation in prosthetic devices.

Wang et al. [40] demonstrated the design and myoelectric control of a robotic

hand with five fingers and four degrees of freedom (DOF). The pattern recog-

nition system recognizes eight prehensile hand gestures and is based on Linear

Discriminant Analysis (LDA) using a collection of temporal characteristics from

EMG data. The hardware consists of four CD graphite brush micromotors, en-

coders, and line drivers manufactured by Maxon, two DE-2.1 differential EMG
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sensors with the Bagnoli-4 EMG system manufactured by Delsy Inc., and an ac-

quisition device (National Instruments, PCI-6220). The data processing is done

on a PC using LabVIEW software, which limits the system’s mobility. The robotic

hand has only been tested for gesture detection, not gripping activities. In [13],

the use of a commercial EMG armband for the motion control of a prototype hand

prosthesis is proposed. The mechanical design is based on an open source six de-

gree of freedom hand.The development of a low-cost prototype EMG-controlled

hand prothesis based on an open source robotic hand was presented. The original

mechanical design and the actuation system were modified in order to reduce the

production cost of the prototype and improve thumb mobility. An EMG-Based

dataset also made for their system.

According to study of literature review,research and development activities are

necessary to create active EMG-based electric wheelchair that meet functional

criteria while remaining cheap. EMG-Based wheelchair can be a solution for SCI

patients to control wheelchair by their own.



Chapter 3

Proposed Approach

An EMG sensor-controlled module has been created to collect data from the arm

muscle. Previously, EMG data from the neck, thigh, masseter, and buccinators

muscles[30] was acquired to power wheelchairs for those with upper limb impair-

ments. Those systems were not that efficient in terms of affordability and ease.

Controlling wheelchairs using little hand movements could be trained using ma-

chine learning algorithms and accurate commands could be generated to control

electric wheelchairs. Upper-limb impairments make it difficult for people to move

their wheelchairs using their hands. However, we can easily determine the direc-

tion using EMG signals collected from the forearm muscles when an SCI patient

performs a hand gesture to direct the wheelchair.[31][41] SCI patients cannot give

the proper gesture for wheelchair movement. The classification system can define

the movement. Relationship between software and hardware is given below:

3.1 System Design

For the creation of a full wheelchair prototype, appropriate hardware material was

employed. The system was built according to their specifications after visiting

CRP, Savar and interviewing SCI patients. SCI patients who can occasionally lift

their hands can use this device. The system consists of a transmitter and receiver

and they are connected via wireless components. The transmitter module is the

EMG sensor embedded armband, placed in the forearm of the patient and the

receiver part is the wheelchair which is motorized in the workshop.

11
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Figure 3.1: Relationship between software and hardware

Figure 3.2: EMG-based module to capture EMG signals from the patient’s arm

3.2 Defining Hand Gestures

In order to carry out this study, we have obtained the information of eight SCI

individuals at CRP and defined the wheelchair con- trolling movement gestures ac-

cordingly. Those are dynamic hand gestures containing six directional commands
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to move the wheelchair according to their intention to move. Six gestures that

we define are: ’front’, ’back’, ’left’, ’right’, ’start’, and ’stop’. Figure 4 shows the

six hand gestures of the SCI patients. Using these gestures an SCI patient can

operate the electric wheelchair. Firstly, the EMG signal is detected and collected

from the muscle of the forearm. Then the feature is extracted. After classification

of the signal wheelchair movement is defined for the particular hand gesture. The

process of controlling the electric wheelchair through hand gesture is given below:

Figure 3.3: Six hand gestures (a–f) of the SCI patients to control directional move-
ments of the EMG-based wheelchair

Both the suggested approach and the experimental method might be used in-

terchangeably in this chapter. The processes for overall techniques include data

collection or dataset utilization, data pre-processing, feature extraction, feature se-

lection, and application of the classification model. Our proposed system consists

of dataset generation, segmentation and classification.

3.3 Dataset Generation:

Following a visit to CRP, Savar, and interviews with individuals with spinal

cord damage, the EMG sensor-based wheelchair system was created to their de-

mands. This gadget can be used by patients with SCI who are unable to walk,

use wheelchairs, and can only rarely lift their hands. An EMG sensor attached

to the patient’s arm serves as the wheelchair’s systems transmitter. The mo-

torized wheelchair serves as the receiving component. The system is a mech-

anism that moves the devices in a predetermined pattern. When a patient is

unable to make a correct gesture due to hand clawing, the gadget assumes the

EMG signal gesture. Six directions for 6 movements are determined in this sys-

tem. These motions are left, right, front, back, start and stop. The device

experiment was performed with 7 patients at CRP (Centre for Paralyzed Re-

habilitation) in Savar, Bangladesh. Patient data were obtained for the device
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experiment. From the survey, 250 samples were gathered for each gesture move-

ment performed by 7 patients. The link of generated data set is given below:

https://drive.google.com/drive/folders/1MhAeyTmRSFXVVqAL8DRtFrLEybP

Nat5n

EMG signals from various participants, and from different sessions, varied dra-

matically. Normalizing the data is required to adjust for these discrepancies [42].

Normalization converts the current amplitude to a proportion of the original or

smoothed sEMG amplitude [43]. The benefit of normalization is easy and precise;

the outcome has no conflict with repetition, and it can increase the model’s accu-

racy. The drawback is that all examined components must be fully peaked and

separated in the same session [44]

3.3.1 Dataset Pre-Processing:

A Kalman filter is an algorithm that uses a time series of measurements. These

values will contain noise, which will contribute to the measurement’s inaccuracy.

The Kalman filter will then attempt to estimate the system’s state using the

current and past states, which is more accurate than measurements alone. The

Kalman filter removes noise from the EMG signal.

The problem here is that the accelerometer is often fairly noisy when used to

determine gravity acceleration since the wheelchair is moving. The gyro’s challenge

is that it wanders with time, much like a spinning wheel does when it loses speed.

The Kalman filter creates a statistically optimal estimate of the system state based

on the measurement. To do so, it must understand both the noise of the filter’s

input, referred to as measurement noise, and the noise of the system itself, referred

to as process noise. To do this, the noise must have a Gaussian distribution and a

mean of zero, which most random noise does. The Arduino library for the Kalman

filter is provided below:

https://www.arduino.cc/reference/en/libraries/kalman-filter-library/
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3.3.2 Segmentation:

There are two elements to the segmentation stage: gesture detection and sliding

windowing. To improve prediction accuracy and training speed, it is usually nec-

essary to determine the region of the sEMG corresponding to gesture or muscle

activity and delete signals where the muscles are resting. Following the establish-

ment of a threshold, all instants greater than or equal to the threshold should be

extracted from the smoothed signal. The first of these examples depicts the be-

ginning of the muscular activity zone, while the final shows the end of the activity

zone [44]. CH1-8 are eight channel sEMG signals, and S2 is the standard deviation

of eight channel sEMG signals computed using the moving average approach, as

illustrated in Figure 5.

Figure 3.4: Segmentation

In the realm of sEMG control, the ideal sliding window length can ensure the

lowest classification error with the appropriate con- troller delay [45]. A lengthy

sequence may result in a considerable processing delay for the system, whereas

a brief window may not include enough valuable information. For a trustwor-

thy control system, the maximum permitted delay between signal generation and

driving command creation should be no more than 300 ms [45]. [46] revealed

that mechanical sensors benefit from sEMG windows of 150–250 ms. [47] proved

that the system’s performance declines when the sliding window length surpasses

100 ms. Windows can be separated or combined. Real-time continuous classifica-

tion needs not just high classification accuracy but also rapid response [45]. The

overlapping analysis window method may assist you in making a decision more

quickly [47]. The system’s major feature is correctly adjusting the window incre-

ments. In terms of hardware processing capability, overlapping analysis windows

that provide speedy and dense decision processes are often preferred.
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In this research, we employed mean absolute value (MAV), which is one of the

most often used temporal feature extraction approaches, particularly for EMG

data analysis. The MAV’s operation is based on the segmentation of the EMG

signal, after which a feature is generated for each segment (see Fig. 5). This

feature is an average of the absolute value of the EMG signal amplitude in a

segment of S samples, providing an estimate of the mean energy of this signal in a

specific time period. Given that the EMG signal is split into w segments, each of

which contains S samples, the MAV of the w − th segment is defined as in 4.3.2.

MAVw =
1

S

5∑
k=1

|yk| (3.1)

where, yk is the k− th sample in the segment w. Finally, the feature vector of the

EMG signal is defined as [MAV1;MAV2, ...,MAVw].

Because the amount of samples per segment is the sole parameter that influences

MAV performance, it is critical to determine the segment length. Different seg-

ment lengths are tested in our proposal to see which one gives a more efficient

categorization. Because the preceding considers just the EMG signal of one sensor

and for eight sensors, the total feature vector is calculated as,3.2

x = [MAV 1
1 , ...,MAV 1

w , ...,MAV 2
1 , ...,MAV 2

w , ...,MAV 8
1 , ...,MAV 8

w ] = [xj]n

(3.2)

where, n = 8 × w. This vector is used as an input for a classifier.

3.4 Classification Algorithm

After feature extraction, a feature vector is created. Classical machine learning

techniques K-Nearest Neighbor, Support Vector Machine, Decision Tree, Random

Forest and Artificial Neural Network algorithm are used to assess the performance

characteristics.
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Figure 3.5: Segmentation

3.4.1 K-nearest Neighbor:

KNN has lately emerged as a major machine learning technique because to its

processing speed and simplicity in the recognition process [48]. KNN is a straight-

forward notion. The KNN approach builds a collection of k data points from

training data and predicts test data using the closest neighbor. The value of k, on

the other hand, must be set with care because it has a considerable influence on

classification performance [49]. More specifically, the data collection and model

formulation have a significant impact on the k-value.

3.4.2 Support Vector Machine

In the categorization of EMG signals, the support vector machine (SVM) is known

as one of the best and most accurate classifiers. Many researchers have found that
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SVM has a lot of promise when it comes to identifying EMG data [50][51]. In

the EMG data set, SVM tries to provide the best classification function for distin-

guishing members of various classes. SVM also applies the notion of hyperplane

separation to data in order to identify data sets that did not separate linearly. The

complexity of selecting a kernel function and the longer calculation time are two

disadvantages of SVM. According to the research, the radial basis kernel function

(RBF) performs best in the categorization of EMG signals [50] [52].

3.4.3 Decision Tree

Decision Tree is a supervised learning method that may be used to solve classi-

fication and regression problems, however it is most typically used to solve clas-

sification problems. In this tree-structured classifier, internal nodes hold dataset

properties, branches indicate decision rules, and each leaf node offers the conclu-

sion. The attributes of the submitted dataset are used to make the judgements or

tests. It is a graphical representation of all possible solutions to a problem/deci-

sion based on specified factors. To create a tree, we use the CART method, which

stands for Classification and Regression Tree algorithm. It just poses a question

and splits the tree into subtrees based on the response (Yes/No).

3.4.4 Random Forest

Random forest (RF), based on the theory of decision trees, was first proposed

by Breiman [53]. Since RF creates accurate classifiers and regressors given the

correct input, it is a helpful technique for prediction [53]. The optimum split

among all variables is used to split each node in standard trees. Each node in

an RF is divided using the best predictor from a selection of predictors chosen at

random. In comparison to other classifiers such as discriminant analysis, SVM,

and neural networks, this seemingly paradoxical technique outperforms them all

and is resistant to overfitting [54]. Furthermore, when utilized to analyze high-

dimensional data, RF takes considerably less time to execute than RBF and SVM

since the RF algorithm can automatically identify the key characteristics [55]. It

also stands up to outliers and noise well. Because of these benefits, RF was chosen

for use in this investigation to investigate the link between the sEMG and the

knee joint. By building several decision trees, RF delivers greater generalization

performance as an ensemble learning approach. If RF contains N decision trees,



Chapter 3. Proposed Approach 19

N sample sets must be generated to train each tree. Each tree is grown in the

following manner [56][57]:

If the number of instances in the training set is Tr, then Tr cases are picked at

random from the original data but with replacement. This sample will serve as

the tree’s training set.

If there are Iv input variables, a number Nf Iv is supplied, so that Nf variables

are randomly picked from the Iv at each node, and the best split on these, m, is

used to divide the node. During the growth of the forest, the value of Nf remains

constant.

Each tree is cultivated to its full potential. Pruning is not an option.

3.4.5 Artificial Neural Network

This study’s ANN is a dynamic and powerful back-propagation (BP) network.

Its state changes over time until it reaches the final equilibrium point, which is

achieved by good training. To build BP, the Widrow-Hoff learning rule is applied

to a multi-layer network with a nonlinear differentiable transfer function. The

neural network propagation learning rule governs how the weights between the

layers change. The neural network is trained with input and target vectors until

it can approximate a function, correlate input vectors with certain output vectors,

or accurately categorize input vectors based on defined criteria. An input layer,

a tansigmoid hidden layer, and a linear output layer comprise the ANN. With

the exception of the input layer, each layer has a weight matrix W, a bias vector

b, and an output vector a. Layer weights (LW) are weight matrices derived from

hidden layer outputs, whereas input weights (IW) are weight matrices derived from

inputs (LW). Superscripts are also used to identify the network’s distinct weights

and other components’ source (second index) and destination (first index).
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Experimental Result and

Discussion

We have offered an in-depth examination of the experiments conducted for this

thesis in this chapter. In this chapter, the experiments are devised and the ex-

perimental apparatus necessary to conduct them is outlined. The appropriate

formulae are then used to characterize the performance measures. Separately, the

results analysis for the experiments are shown.

4.1 Experiments

The research contributions are presented in chapter 1 while describing the problem

statement of the thesis. From the contribution point of view, we have designed and

come up with two different experiments for this thesis. The first one is, training

the models using only data of healthy subjects and cross-validated using data

from 7 SCI patients. And the second one is by including six SCI patient’s data

in the training process along with healthy subjects we performed leave one out

cross-validation.

The positive impacts are evaluated by the performance metrics such as precision,

recall, f-score, accuracy.

20
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Figure 4.1: Experimental setup

4.1.1 Experimental Setup

The experimental setting, which includes data gathering, data pre-processing, fea-

ture extraction, data processing, and classification models, was developed accord-

ing to the ideal pattern recognition procedure. Different sorts of software tools

and methods are required for the setup.

As shown in fig. 8, we used a variety of software and open-source tools to assess

the performance and efficacy of our experiment. The studies took place on a com-

puter with the following settings.

Operating system: Windows 10

Processor : Core i5

Ram : 8 GB

System type: 64 bit operating system

Internet: 3G Connection of Local Operator

The above figure shows the name of the packages, descriptions and URL links used

for the experiments. These open source packages are used in our experiment as

they are being used widely by the machine learning researchers.

4.1.2 Performance Evaluation Metrics

For evaluating prediction systems, the widely used performance metrics is finding

the accuracy. As we have applied different binary classification algorithms, the

evaluation metrics are kept the same for all the algorithms. In this subsection, we

are going to describe these performance metrics with the help of formulas to cal-

culate them. In the context of our experiments, True Positive (TP) = Wheelchair
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Figure 4.2: Open source software/packages used for experimental analysis

directions for hand gesture are actually positive and predicted positive; True Neg-

ative (TN) = Wheelchair directions for hand gesture are actually negative and

predicted negative; False Positive (FP) =Wheelchair directions for hand gesture

are actually negative but predicted positive and False Negative (FN) = Wheelchair

directions for hand gesture are actually positive but predicted as negative. For

each of the wheelchair directions that we are working on are considered to be

examined using these same metrics.

Accuracy is considered to be the base metric for any kind of prediction system.

The percentage calculated over the equation is within the range of zero to hundred

percent and the more it is the better.

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(4.1)
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SectionResult Analysis of Experiment The training dataset was created using hand

gestures from 12 healthy subjects. The test dataset was created using hand ges-

tures from seven SCI patients. Each patient dataset comprises 1500 samples. For

our experiment, the outcome of the KNN accuracy test was 94%.For SVM, Deci-

sion tree, Random forest and ANN average accuracy is 81%. ,95.42% and 95.42%,

93.14%.

Table 4.1: Experiment 1

Algorithm Test1 Test2 Test3 Test4 Test5 Test6 Test7 Average

KNN 95 92 99 97 95 91 89 94

SVM 76 83 82 77 88 78 81 81

DT 96 94 99 98 97 94 90 95.42

RF 96 94 99 98 97 94 90 95.42

ANN 92 92 97 95 96 90 90 93.14

Highest average accuracy achieved in experiment 1 through Decision tree. Average

confusion matrix for decision tree is given below:

Figure 4.3: Confusion Matrix of Decision tree

Another experiment was done with a training dataset containing data of the

healthy person and patient data mixup. In each training dataset, there is data of

12 healthy people and 6 patients data. Testing was done by one patient’s dataset

every time. Each testing dataset contains 1500 data of patients. In leave one class

out method average accuracy of KNN, SVM, Decision tree, Random forest, ANN

are 94.85%. 80.28%. 95.42%,95.42% , 93%.

In the following table accuracy of each testing is given. Testing accuracy table is

given below:



Chapter 4. Experimental Result and Discussion 24

Table 4.2: Experiment 2

Algorithm Test1 Test2 Test3 Test4 Test5 Test6 Test7 Average

KNN 96 93 97 96 91 94 97 94.85

SVM 77 84 85 79 76 78 83 80.28

DT 96 94 99 98 97 94 90 95.42

RF 96 94 99 98 97 94 90 95.42

ANN 98 89 95 91 92 91 95 93

DT and RF algorithm shows highest accuracy for leave one class out cross valida-

tion. Average confusion matrix for is given below:

Figure 4.4: Confusion Matrix of Random forest

4.1.3 High Fidelity Prototype Building

We’ve gone over the system of wheelchair control in depth in this chapter. The

processes for overall techniques include hardware setup, dataset utilization, Signal

Filtering , feature extraction, feature selection, and gesture recognition from the

classification model.

4.2 Hardware setup

There are two portion in hardware. First one is transmitter side which containing

the EMG sensor. Second one is receiver side which attached with wheelchair.

Transmitter:

The transmitter side of the system consists of following component:

Arduino Uno
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LM2596 Voltage Regulator

EMG Sensor

Gyro Sensor

12C LCD

Radio transmitter

Receiver:

The receiver side consists of following components:

Arduino nano

BTS 7960 motor driver

LM2596 Voltage Regulato

12C LCD

Radio receiver

The equipment used in this prototype are: Wheelchair, Wripper Motor, BTS7890

Motor Driver, Lipo Battery, Arduino Mega, Gyro Sensor, Circuit, Battery Charger,

Accelerometer, and EMG sensors

Figure 4.5: WheelChair

Receiver side circuit is attached with motorized wheelchair. Circuit of receiver

side is given below:
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Figure 4.6: Receiver side circuit

When signal transmit from transmitter side receiver side responses according to

it. The above figure shows the response of receiver side according to transmitter

side.

4.3 Implimenting K-Nearest Neighbour in Weelchair

The prediction of motion based on supplied information in a human–computer

interaction has the potential to increase the reliability of motion classification to

operate a human-assisting device. After processing, the electromyography (EMG)

data were employed as a control source for wheelchair movement. K-Nearest

Neighbor (K-NN) is one of the most essential and straightforward approaches

for recognizing hand gestures. One of the most extensively used and well-known

categorization algorithms is K-Nearest Neighbour. Cover and Hart suggested it.

[57] Its simplicity and utility have led to its widespread application in a wide range

of categorization challenges. [58]
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Figure 4.7: Receiver side response according to transmission side

Here are a few ways to determine your K-nearest neighbors (KNN algorithm)

1. Determine the parameter K, which is the number of nearest neighbors.

2. Determine the distance between the query-instance and all training samples.

3. Sort the distance and find the nearest neighbors using the K-th shortest dis-

tance.

4. Collect the nearest neighbors’ category Y.

5. As the query instance’s prediction value, use the simple majority of the cate-

gory of nearest neighbors.

4.3.1 Case Study

The methods of gesture Recognition are divided into two states:

Training Sate: In this section the system is trained by EMG-based dataset. As

we have generated our own dataset of 18000 samples we trained with it. For six

gesture direction there are 250 samples for each person. Datset containing data of

12 subjects. EMG data has been collected from eight muscle position.

Feature extracted using Mean Absolute Value(MAV).
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4.3.2 Classification state

this state has following steps:

Step one: In this step take the feature extraction of input signal to produce vector

of six elements Z.

Step Two: Taking Euclidean distance between input vector Z and the data base X.

D(xi, z) = D(xi, z)i = 1, 2...48 (4.2)

D(xi, z) = [
√

(x1
i − z1)2 + (x2

i − z2)2 + (x3
i − z3)2 + (x4

i − z4)2 + (x5
i − z5)2 + (x6

i − z6)2

(4.3)

step three: Sort the distance and take first Kth element.

Step Four: Calculate which class has more elements in this group which represents

this class.

4.3.3 Gesture Reognition Experiment

There are total six hand gesture direction for six movements of wheelchair(left,

right, front, back, start, stop). As we know from confusion matrix there is confu-

sion between back and right. There is also confusion between back and start. So

we exclude the back movement when implementing KNN in wheelchair prototype.

Firstly we trained our system with dataset. Then feature extracted and classified

the dataset into six classes. We put the value of K= 5 to 30. The system gives

best performance at k=6. When the system is trained its ready to use. Then the

user will give hand gesture to move the wheelchair. Then the Euclidian distance

of the training sample and input sample will be measured.Then Kth minimum

distance was sorted out. Applying majority rule of the nearest neighbours hand

gesture has been recognised for particular wheelchair direction. Time frame for the

wheelchair movement was 300ms. For each gesture movement 300ms is allocated.

When we have surveyed at CRP(Savar) we record the time period of the patients

when they give the gesture. Average time period was 250-300 ms. So during ex-

periment we allocate the time 300ms. So that any user can use this. When the

patient gives a particular hand gesture for wheelchair movement the wheelchair
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move to the particular direction. Patients have to give new gesture after 300ms

to continue the wheelchair. Wheelchair stopped before 300ms. It stopped before

5ms. When a patient gives a gesture sensing module get the data from muscle.

Then it classifies the data and send to receiver module. Based on class receiver

module take the decision of wheelchair movement. Receiver module receive the

data from transmitter module through wireless communication. RF based wireless

communication has been used in this system.

4.4 Discussion

Using EMG signals to control wheelchairs for SCI patients can be a revolutionary

idea. SCI patients are unable to move their wheelchair on their own. So an EMG-

Based wheelchair can give them freedom of movement. We can see from the exper-

iment that EMG signals from arm muscles can move the wheelchair appropiately.

Using this technology, we can monitor patients’ muscle activity outside of the hos-

pital, such as at home or at work. The EMG equipment aids in the transmission

of medical information in real time. Electromyography (EMG) is a technique for

recording muscle activity and measuring the change in electrical potential between

two muscle sites utilizing EMG-connected electrodes. KNN is involved to train

the wheelchair. So when user use give the gesture to move wheelchair the signal

classified and find the nearest neighbours from trained module. Then it takes the

decision of movement.
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Conclusion and Future Work

We attempted to create an Emg-based hand gesture controlled wheelchair for SCI

patients in this thesis. EMG signals are commonly used as reference signals be-

cause they more closely represent the muscular condition of the individual receiv-

ing the signal. The major purpose of this study is to use EMG signals to monitor

the movement of a smart power-assisted wheelchair in six directions utilizing data

from the forearm. This implies that the method of collecting data from the muscles

of the forearm is ideal for the elderly, persons with amputated hands, or people

with hand claws. Furthermore, the control mechanism is relatively simple and has

a high level of dependability when applied to the wheelchair. This is a low-cost

gadget. The initial mechanical design and actuation mechanism were changed to

minimize prototype manufacturing costs and increase thumb mobility. The EMG

system was used to create a practical and inexpensive wheelchair. Finally, the

experimental findings demonstrate the feasibility of obtaining both power and ac-

curacy gripping motions using the suggested integrated system. It works well for

SCI patients with hand claws. For experimental assessment, a high-fidelity sys-

tem was employed. It is beneficial for people who are unable to move properly. A

patient who is unable to use a wheelchair. They can use this wheelchair and can

control it using their gestures. If they have trouble operating their wheelchair,

the signal from the EMG sensor will assume the gesture. We have created an

EMG-Based hand gesture dataset to control electric wheelchairs for the patients

with Spinal Cord Injury. Classifying the EMG dataset in five machine learning

techniques (KNN, SVM, RF, DT and ANN), we were able to achieve the highest

95.42% accuracy in DT and RF algorithms.

30
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For future scopes with this area of research, there are many opportunities and

challenges. In this section, we have highlighted some of them.

Applying Modified Machine Learning Algorithms: For more accuracy improve-

ment, any modified feature selection algorithms could be applied on the dataset.

Enhance the Dataset: There is scope to enhance the dataset by collecting data

from more patients.

Modify the Wheelchair Prototype: For our research work we developed an Emg-

Based electric wheelchair. This chair can be more user friendly by further research.
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Appendix

A.1 Survey

We have done a survey on SCI patients in CRP, Savar. We also took signals from

their muscle contraction to create our dataset. The questionnaires form of survey

is given below:

Findings from the Survey:

1. Patients average age 15-65 years

2. In most cases accidentally fall from rickshaw, cycle, bi-cycle, Slipped in bath-

room, pond, or road.

3. Problem faces after having SCI: Numbness in lower part of body, Numbness in

back, in several cases numbness in hands.

4. Arround 30% SCI patients of CRP have hand claws due to SCI.

5. In 70% cases patients drive their own wheelchair. Rest of them take help.

6. Patients happily want to wear EMG controllable device in their hands.

7. Gesture giving time varies patient to patient. Average time for one gesture

250-300 ms.

8. 80% patients think EMG-based wheelchair can solve his/her problem. Rest of

them have no opinion.

40% patients think the system is comfortable, 25% thinks very comfortable, 5%

thinks not comfortable at all, and 30% patients think somewhat comfortable.

32
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Figure A.1: Survey form of SCI patients

A.2 Dataset Generation

EMG data captured from patients arm to create dataset.

Summery of the dataset is given below:

Figure A.2: Dataset Summery
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[5] A. R.-B. Sébastien Mateo, “Upper limb kinematics after cervical spinal cord

injury:a review,” Journal ofNeuroEngineering and Rehabilitation, p. 249–255,

2015. [Online]. Available: https://doi.org/10.1186/1743-0003-12-9

[6] E. Ibragimova, “High-fidelity prototyping: What, when, why

and how?” 2016. [Online]. Available: https://blog.prototypr.io/

high-fidelity-prototyping-what-when-why-and-howf5bbde6a7fd4

[7] M. S. MH. In, B. B. Kang and K.-J. Cho., “Exo-glove: a wearable robot

for the hand with a soft tendon routing system.” IEEE Robot Autom Mag

22, 1 (2015)., 2015. [Online]. Available: https://doi.org/10.1109/MRA.2014.

2362863

[8] S. S. M. H. P.Polygerinos, K. C. Galloway and C. J. Walsh., “Emg controlled

soft robotic glove for assistance during activities of daily living.” 2015.

[Online]. Available: https://doi.org/10.1109/ICORR.2015.7281175

34

https://doi.org/10.1007/s11517-016-1551-4
https://doi.org/10.1109/TSP.2017.8076013
https://doi.org/10.1109/TSP.2017.8076013
https://doi.org/10.1001/archneur.1985.04210090068018
https://doi.org/10.1001/archneur.1985.04210090068018
https://doi.org/10.1186/1743-0003-12-9
https://blog.prototypr.io/high-fidelity- prototyping-what-when-why-and-howf5bbde6a7fd4
https://blog.prototypr.io/high-fidelity- prototyping-what-when-why-and-howf5bbde6a7fd4
https://doi.org/10.1109/MRA.2014.2362863
https://doi.org/10.1109/MRA.2014.2362863
https://doi.org/10.1109/ICORR.2015. 7281175


Bibliography 35

[9] A.-M. M. G.-R. E. Sánchez-Velasco, L.E. and E. Lugo-González, “A low-cost
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