
ISLAMIC UNIVERSITY OF TECHNOLOGY

Development Of An Explainable Natural
Language Query Driven Data Visualization

System

By

MD. Hamjajul Ashmafee (171041012)

A thesis submitted in partial fulfilment of the requirements

for the degree of M.Sc. in Computer Science and Engineering

Academic Year: 2017-2018

Department of Computer Science and Engineering

Islamic University of Technology.

A Subsidiary Organ of the Organization of Islamic Cooperation.

Dhaka, Bangladesh.

May 2022

Declaration of Authorship

I, Md. Hamjajul Ashmafee, declare that this thesis titled, ’Development Of An Ex-

plainable Natural Language Query Driven Data Visualization System’ and the work

presented in it is my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree

at this University.

■ Any part of this thesis has not been submitted for any other degree or qualification

at this University or any other institution.

■ Where I have consulted the published work of others, this is always clearly at-

tributed.

Submitted By:

(Signature of the Candidate)

Md. Hamjajul Ashmafee- 171041012

May 2022

i

ii

Development Of An Explainable Natural

Language Query Driven Data Visualization

System

Approved By:

Dr. Abu Raihan Mostafa Kamal

Thesis Supervisor and Professor,

Department of Computer Science and Engineering,

Islamic University of Technology.

Dr. Md. Hasanul Kabir

Professor,

Department of Computer Science and Engineering,

Islamic University of Technology.

Dr. Md. Moniruzzaman

Assistant Professor,

Department of Computer Science and Engineering,

Islamic University of Technology.

Dr. Chowdhury Farhan Ahmed

Professor,

Department of Computer Science and Engineering,

University of Dhaka, Dhaka, Bangladesh.

Abstract

Nowadays, visual interactive systems (Vis) are attracting more attention in re-

search and industries because of their effectiveness in conveying information. Ad-

ditionally, to make rational decisions based on extracted data, Vis is critical for

identifying and comprehending trends, outliers, and patterns in data. Existing re-

search has employed a broad range of methodologies to yield visualization insights

into certain decision-making systems, allowing participants to perceive a specific

problem from a wide range of viewpoints. However, there are still enough scopes

to design a new Vis especially using visualization-oriented natural language inter-

face (V-NLI) where state-of-the-art NLP techniques are utilized to visualize the

data according to the user’s NL queries. Furthermore, in several real-life decision-

making scenarios, this DV tools are required with proper explanations to build

trust on the predictions of the model. In this regard, we propose a framework for

explainable V-NLI based data visualization system. Therefore, (i) we developed a

deep learning-based NLP framework to extract key information to generate proper

visualization type (viz-type) on given user query. (ii) Next, we extend our prior

model to an explainable visualization model that not only accurately visualizes

the desired data but also explains why it appears depending on the given natural

language query (NLQ).

Keyword - Data visualization; V-NLI; LSTM; XAI, LIME

Acknowledgements

I would like to express my whole-hearted gratitude to Allah Subhanu Wata’ala for giving

me strength to complete this study, and being with me when none was there beside me.

I would also like to express my grateful appreciation to Dr. Abu Raihan Mostafa Kamal,

Dr. Md. Azam Hossain and Dr. Md. Rafiqul Islam for their constant motivation and

support throughout this study.

This work is partially supported by

Network and Data Analysis Group (NDAG)

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT)

iv

Contents

Declaration of Authorship i

Approval ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Problem Statement . 4
1.2 Research Challenges . 5
1.3 Research Contribution . 6
1.4 Thesis Outline . 7

2 Literature review 8
2.1 Data Visualization: Toolkits, Grammars and Visual Encoding . . . 8

2.1.1 Data Visualization: How It Works 9
2.1.2 NLI for Data visualization: An interface for visualization . . 10

2.2 Natural Language Processing Toolkits and Approaches 12
2.2.1 Natural Language Processing Toolkits 13
2.2.2 Rule based Natural Language Processing Approaches 13
2.2.3 ML based Natural Language Processing Approaches 14
2.2.4 DL based Natural Language Processing Approaches 15
2.2.5 RNN and LSTM . 16

2.3 Explainable AI: Techniques and Tools 20
2.3.1 LIME: How it Works? . 21

3 Proposed Methodology 24
3.1 Dataset Acuisation . 24

3.1.1 QUDA [1] . 24
3.1.2 Dataset amendment for this research 26

v

Contents vi

3.1.3 Overview of the final dataset: 27
3.2 Dataset Preprocessing . 27

3.2.1 Data augmentation to balance imbalanced dataset 27
3.2.2 Text Preprocessing . 29

3.3 Model Development for NLI to perform DV 30
3.3.1 Approach with rule-based model 30

3.4 Approach with ML based model . 31
3.4.1 Text Preprocessing . 31
3.4.2 Feature Extraction . 32
3.4.3 Model development . 32

3.5 Approach with LSTM-RNN based model 33
3.5.1 Tokenizing the words and word embedding 33
3.5.2 Padding . 33
3.5.3 Train, test split . 33
3.5.4 Model development . 33

3.6 Model Development for XAI: LIME Pipeline 34

4 Experimental Design 37
4.1 LSTM Implementation . 37
4.2 LIME Implementation . 38

5 Results and Discussions 40
5.1 Evaluation Metrics . 40
5.2 Result Analysis of LSTM . 42
5.3 Explanation of the produced model using LIME 44
5.4 Discussion . 46

5.4.1 LSTM model on NLP process 46
5.4.2 LIME: explain an ML model 47

6 Conclusion and Future Work 48

List of Figures

2.1 A line-chart from Vega-Lite [2] . 10
2.2 Interface of ADVISor [3] . 12
2.3 A single RNN architecture . 16
2.4 Unfolding a single RNN in different timestamp 17
2.5 tanh activation function in RNN 17
2.6 Unfold version of LSTM network in different timestamp 18
2.7 A single LSTM architecture . 18
2.8 Different gates in a single LSTM architecture 19
2.9 A general architecture of an explainable AI model 21
2.10 Intuition of LIME [4] . 23

3.1 Primary distribution of QUDA [1] 27
3.2 Distribution of augmented dataset 29
3.3 Extracted information from the given NLQ [5] 30
3.4 Mapping table of NL4DV [5] . 31

5.1 A basic confusion matrix . 41
5.2 Evaluation graphs - without dropouts 42
5.3 Evaluation graphs - with dropouts 43
5.4 Classification report - final . 43
5.5 LIME explanation for ”bar” visualization type 44
5.6 LIME explanation for ”line” visualization type 45
5.7 LIME explanation for ”tick” visualization type 45
5.8 LIME explanation for ”point” visualization type 46

vii

List of Tables

1.1 Existing key studies: explainable natural language query-based vi-
sualization interactive system . 2

5.1 Accuracy per model . 42

viii

Dedicated to my parents and siblings for their lifelong dedicated

support to my education . . .

ix

Chapter 1

Introduction

In today’s world, organizing, presenting, and highlighting data in a meaningful

way is a significant contribution to the data mining sector [6, 7]. Despite the

fact that there are numerous methods for managing, displaying, and recognizing

data to users, data visualization (DV) can play an important role in representing

data [8, 9]. However, to interact with these DV tools, it requires users to learn how

to transform their task intention into tool specific operations [10]. Thus, it is re-

quired to provide a user friendly graphical representation, where natural language

interfaces (NLIs) may be considered as a promising way to interact with such vi-

sualization systems for analyzing data [5, 11, 12]. From the key existing studies

as shown in Table 1.1, it is observed that NLIs are gaining popularity day by day

because they help to improve the usability of visualization systems in interactions,

feeding queries, providing commands, and eliminating complexities [13, 14]. More-

over, domain experts only know what questions they could ask through NLIs, but

they do not have enough technical depth to manage a visualization system for

investigating their inquiries [15].

In the past few decades, several researchers have shown an interest in exploring

natural language query (NLQ) processing in the data visualization domain [8, 17].

For example, Cox et al. [18] presented an initial prototype of an NLI that sup-

ported well-structured commands to specify visualizations of large and complex

data. Liu et al. [3] proposed a pipeline based on a deep learning model to generate

visualizations answering a natural language question related to the aggregation

functions on tabular data. However, the existing NLQ-based visualization sys-

tem have several difficulties, such as: (i) implementing free-form natural language

1

Chapter 1. Introduction 2

Table 1.1: Existing key studies: explainable natural language query-based visualization
interactive system

Reference Contributions Approaches

Narechania
et al. [5]

They developed a NLI for visualiza-
tion based on the input of a tabu-
lar dataset and a NLQ about that
dataset to flexibly specify and inter-
act with visualizations.

(i) Low level implementation of NLP
for natural language interface. (ii)
JSON objects for analytical specifica-
tions. (iii) Vega-Lite specifications for
visualizations.

Chowdhury
et al. [6]

They recommended a visual interac-
tion with a support of NLP to make
interaction easier for complex data
and remove modality limitations.

(i) A finite state model to combine in-
put as speech and direct manipulations
made by the user. (ii) Multiple coor-
dinated views for data representation.
(iii) A frame-based dialog management
tool to detect user’s intents and slots,
and manage the context

Kim et
al. [15]

They suggested an automatic chart
question answering pipeline to an-
alyze chart data, answer the ques-
tions, and explain those answers to
build the trust and transparency.

(i) Vega-Lite chart for data extraction
and visual encoding. (ii) NLP tech-
niques to analyze the given NL ques-
tions about the chart. (iii) Sempre ML
model to answer that question about
the chart. (iv) A template-based NL
generation approach to generate the
explanation.

Liu et
al. [3]

They contributed an automatic
pipeline to generate visualizations
with annotations to answer NL
questions about tabular data given
as input.

(i) Pre-trained BERT language model
to vectorized input NL questions and
table headers. (ii) A deep neural net-
work to extract related data areas and
corresponding aggregating types and
tasks.

Fu et
al. [1]

They have developed a new dataset,
Quda, to provide sufficient training
samples and implement visualiza-
tion oriented NLI in free-form nat-
ural language. This dataset con-
tains more than fourteen thousand
queries with ten analytic tasks for
visualization.

(i) Collect seed queries from the target
users. (ii) Use the crowd to generate
and validate paraphrases.

Kumar et
al. [16]

They built a system to detect sar-
casm in dialogues and conversa-
tional threads on social media ex-
tracting key features and trained
that ML model to detect sarcasm in
real time.

(i) XGBoost, an ensemble supervised
ML algorithm trained with MUStARD
dataset, to predict sarcasm (ii) two
post-hoc interpretability approaches,
LIME and SHAP to generate the ex-
planation.

Chapter 1. Introduction 3

input due to the complexity of human language grammar, (ii) deficiency of suffi-

cient NLI datasets aimed at data visualization for training a more generalized ML

model and so on. Therefore, to address these issues, existing research has proposed

several visualization systems following different strategies [8]. For example, Data-

Tone [19] uses a combination of lexical, constituency, and dependency parsing to

let people specify visualizations through NL as well as mixed-initiative interaction

to resolve these ambiguities through GUI widgets such as drop-down menus, lists,

thumbnails, and others. Articulate [20] is a natural language conversation-based

interface that accepts instructions from users and generates graphs based on the

categorization of visual analytic tasks, relieving the user of the burden of learning a

complicated user interface in order to create a visualization. FlowSense [21] makes

use of cutting-edge natural language processing methods to aid in the creation of

dataflow diagrams, allowing flexible visual data exploration and the development

of a dataflow diagram demonstrating the system’s functioning. Eviza [22] and

Evizeon [23] allow both specifying and interacting with visualizations through a

natural language interface to analyze data. However, based on the current re-

search, it has been shown that there are still certain constraints that limit the

efficacy of these DV tools. Mostly rule-based approaches to NLQ analysis that

rely on domain experts to construct visualization-oriented language rules [24].

Moreover, large-scale visual data analytics training corpora are required for the

development and benchmarking of learning-based approaches for the implementa-

tion of visualization-oriented NLIs (V-NLI). [1].

On the other hand, these advanced ML techniques for DV need to be ”explainable”

in order to improve the system and its performance. Because it is still hard to figure

out what really happened in these systems, and the visualizations of complicated

data or queries may need to be checked by humans. When a visualization model is

very complicated, it may be hard to explain how the results are made, which could

make some users doubt the prediction. Also, if the model is easy to understand,

it will quickly gain the trust of its users. Also, model developers may be able to

learn about important features so they can make a good decision [15, 25, 26].

In recent years, the accuracy of the visualization models for figuring out the inner

meaning of the context and the key features that are needed for free-form natural

language queries have become more important. A lot of popular NLP approaches

based on machine learning and deep learning have been made, but they should be

reconfigured with modern DV tools to make them more accurate [27]. In some

cases, a high prediction rate is needed to make a specific decision in regulatory

Chapter 1. Introduction 4

bodies where understanding and accountability of the model’s explanation are

very important. Some NLP models can’t take into account all of the possible

factors that could affect the overall decision. In these cases, explainability can

help find the features that affect both local and global decision making so that

the underlying model can be changed. This lets us know what will happen if a

parameter or input is changed. [16].

1.1 Problem Statement

Data visualization is commonly employed to facilitate the visual exploration of

vast amounts of data and to extract the key insights inherent within it. V-NLIs

have increased the effectiveness and usefulness of rendering visuals in response to

NL queries from the user. Based on recent research, we’ve found the following

problems that still need to be fixed:

1. Typically, data visualization systems that support V-NLIs employ rule-based

techniques that provide less room for template-free instructions. For in-

stance, if the template is built to search the maximum like ”Find the maxi-

mum of...”, the user’s utterance such as ”What is the finest...” might not be

appropriately interpreted due to the rigidity of the templates. Even if they

are semantically identical, the underlying regulation structures may prevent

the extraction of accurate information. As the majority of rules are devel-

oped by hand, morphological and syntactical analysis in this area demands a

profound comprehension of language. Also, domain specialists in data ana-

lytics need have a basic level of language comprehension to communicate with

these DV tools. If the rules are complicated, the system will be difficult to

comprehend quickly and will prevent users from freely exploring data. [5, 28].

2. Building a strong dataset is necessary for training a machine learning (ML)

model, which may be used to find out the underlying pattern while reliev-

ing domain experts of the responsibility of designing complicated rules. This

problem is particularly challenging in the field of natural language processing

(NLP), since the semantic feature space is constantly increasing [29]. Addi-

tionally, as the datasets in this area are exceedingly limited, it is difficult to

create a model for data visualization in this domain [1]. Another key problem

in this discipline is preprocessing the dataset in order for the model to learn

how to extract the relevant information from a given query [1, 24].

Chapter 1. Introduction 5

3. Another problem in the field of AI is that the systems we make based on

DV oriented ML, are getting harder for users to understand. So, users in

the governmental chairs are less likely to use these kinds of models because

they are less reliable in some sensitive and important situations [16]. Deep

learning techniques have been used to do state-of-the-art work in a number

of natural language processing (NLP) tasks. Even though these deep neural

network models perform very well, it is hard to get people to believe their

predictions because they lack the insight and explainability. This prediction

related explanation is required to understand how they are made in a dynamic

environment [30].

In order to overcome the aforementioned limitations, we must design a pipeline

that extracts key information about data visualization from a given natural lan-

guage query using a deep learning-based natural language processing approach.

The explainable module, which will generate the interpretation of the prediction

generated by the prior deep learning model, will be added later to this pipeline,

which will require more development.

1.2 Research Challenges

Despite the fact that the research area encompasses several state-of-the-art nat-

ural language processing (NLP), data visualization, and explanation generating

techniques and models, there are still some difficulties to overcome in order to

solve the limitations listed in the section 1.1:

• Dataset Collection and Preprocessing: This is difficult to do for two

reasons: first, the NLIs should accurately represent how professional data

analysts interact with data when performing various activities on different

data sets for visualization; and second, the collection of such a corpus is time-

consuming. Additionally, despite the fact that we are extremely capable of

collecting data from social media users, V-NLIs are not widely used in this

domain [1, 31]. Through the use of the crowd force, it is possible to validate

high quality and huge volume queries derived from seed queries as well as

enriched paraphrase queries, which is a very difficult process [1]. Also, as

was already said, having a person evaluate low-quality semantic queries takes

time and costs money.

Chapter 1. Introduction 6

• Development a Learning-based Approach: Currently, the semantic

parsing phase of natural language in existing V-NLI models is based on sim-

ple word or template matching, which is unable to deal with the problems of

ambiguity and underspecification that naturally occur in natural language.

In order to improve accuracy, we should eliminate the usage of pre-defined

templates when creating a visualization, as this technique still needs users to

be familiar about visualization design principles. A V-NLI model that does

not rely exclusively on the words or template must be developed in order

for a user to be able to generate an open domain question without relying

on the words or template. Because of the reduced barrier to entry in the

open domain questions, visualization may be viewed by a large number of

individuals if the open domain questions can be parsed accurately [3].

• Explanation of AI System’s Decision: Current Artificial Intelligence

(AI), Machine Learning (ML), and Deep Learning (DL) systems fail spectac-

ularly when it comes to establishing confidence in the minds of users while

making decisions. In order to make a decision, it is quite difficult to inter-

pret the information generated by the employed NLP techniques [32]. The

research should also be comprehensive in order to identify the features that

contribute to the decision-making process based on their saliency score and

to provide an effective and intelligible explanation to the user in order to

gain trust [16].

1.3 Research Contribution

To build trust during decision making, this study tackles challenges in NLP tech-

niques for extracting key information about data visualization from a given V-

NLI and making this framework explainable to users. A deep learning-based NLP

model is suggested in the first section of the study to extract key information about

data visualization. The second half of this study proposes another explainable AI-

based framework to make the prior model understandable to the user. This thesis’

main contributions are summarized as follows:

• First, we have looked at the existing dataset on V-NLIs, which contains a

large size corpus of seed inquiries from domain experts in the fields of data

analysis and data visualization. Validating these queries in order to retain

their quality is conducted as part of the data preparation to be tailored for

a learning-based model.

Chapter 1. Introduction 7

• Second, we have created a natural language processing model designed to

extract crucial information from the user-supplied NLQ for data visualiza-

tions. To construct a natural language query-based data visualization system

with an emphasis on deep learning, we examined several ways to maintain

improved accuracy and validation.

• Third, to make our deep learning-based DV-oriented NLP technique com-

prehensible so that users can readily develop trust in this model, we have

addressed a number of challenges, such as exploring post-hoc identifying

contributing features, generating surrogate models, and so on.

1.4 Thesis Outline

The rest of the dissertation is organized as follows. Chapter 2 deals with the

necessary background and literature review for this study. In Chapter 3, the pro-

posed methodology regarding developing the deep learning based NLP approach

for key information extraction and the explainability model for explanation have

been discussed in detail. The experimental designs for deep learning based NLP

approach and explainability model are presented separately in Chapter 4. Chapter

5 discusses the evaluation metrics, results of NLP based classification approaches

in ML and DL domain, process to generate the explanation for ML model and the

necessary aspects to consider while conducting additional research in this domain.

Chapter 6 draws a conclusion to the current study and discusses future directions.

The final segment of this study contains all the references.

Chapter 2

Literature review

In the booming field of data analytics, the use of interactive visualization is gaining

popularity due to its ability to visually emphasize key information for consumers.

The visualization-oriented natural language interface (V-NLI) has increased its

efficacy by allowing for the compilation of visualizations based on the user’s natural

interactions. Additionally, it assists the user in focusing on the task at hand

rather than the tool’s interface. The fast advancement of NLP technology has

created an excellent opportunity to further develop this discipline. On the other

hand, explainable artificial intelligence (XAI) has gained traction in industry and

research as a means of bridging the divide between why and how an AI system

makes a certain judgement. V-NLI-based data visualizaion (DV) is not unrelated

to this interest, since it is utilized to make governing decisions in a variety of

governance roles.

Through the perspective of literature, we will gradually study data visualizations,

V-NLIs, advances in NLP, and the evolution of XAI models in this chapter.

2.1 Data Visualization: Toolkits, Grammars and Visual

Encoding

There are several toolkits in visualization research that are designed to help the

formulation and development of visualization simpler. Furthermore, a number of

visualization creation tools are offered to aid visual exploration of tabular data.

Users of the methodologies and tools discussed above must establish the link be-

tween data properties and visual channels, which may make visual data exploration

8

Chapter 2. Literature Review 9

difficult for novices. As a result, several works also provide recommendations for

suitable visualizations. Based on established rules, Keshif [33], SeeDB [34], and

Voyager [35] focus on the appropriate data attributes and offer a selection of charts.

For data management, visual encoding, and interaction, these visualization tools

employ a set of configurable operators. Despite the fact that new combinations

of operators can provide customized views, we’ve found that most unique visual-

izations require programmers to change the visualization through scripting. As a

result, these visualization frameworks function well when the designers of the visu-

alizations are software engineers, but they are prohibitive for more broad audiences

such as web designers.

Many business tools, such as Tableau [36], PowerBI [37], andManyEyes [38], allow

us to create visualizations without having to write any code. Polaris [39], Lyra [40],

and iVisdesigner [41] allow users to drag and drop attributes from a table, define

encoding techniques, and then construct visualizations using the templates with

the specified encodings. The visualization tools are primarily designed to specify

and render visuals in a structured manner. Such toolkits as D3 [42], Vega [12]

and Vega-Lite [2] facilitate visualization design using declarative specifications,

allowing for quick visualization design and prototyping. The toolkits assist the

user in developing visualization specifications programmatically. The researchers

are also working on visualization grammars that give a high-level abstraction for

creating visualizations, reducing the need for software engineering expertise.

The visualization tools create the fundamental plots by mapping data attributes to

visual channels like location, color, shape, and size, and may incorporate standard

data transformations like binning, aggregating, sorting, and filtering [2]. They

may employ a portable file format (for example, JSON or XML) to exchange

simple visualization grammar and build appropriate visualizations from a range

of programming languages.

2.1.1 Data Visualization: How It Works

These tools are composed of visualization grammar, which enables the creation of

customized visualizations. Sometimes, they give a higher-level language for ab-

straction and visualization development. Grammar of Graphics [43], ggplot2 [44],

and ggvis [45] are often used examples.

Chapter 2. Literature Review 10

We describe how Vega-Lite [2] generates a visualization plot in this section. It

begins with the simplest Vega-Lite definition, also known as a unit specification,

which provides a single Cartesian plot with a specified mark type for data encoding.

It defines such a plot using a specified dataset, a certain mark type (e.g. bars, lines,

symbols), and a set of encoding definitions such as size, color, and x-y coordinates.

unit := (data, transforms,mark − type, encodings) (2.1)

encoding := (channel, field, data− type, value, functions, scale, guide) (2.2)

They integrate several composite operations using numerous unit plots to create

an algebra for generating composite views. Each operator is responsible for in-

tegrating or aligning any necessary underlying scales and axes. The composite

view is generated using supporting operators such as layer, concat, facet, and re-

peat. The layer operator receives numerous unit parameters and generates a view

in which succeeding charts are superimposed on one another. Vega-Lite includes

horizontal and vertical concatenation operators for concatenating views. In Figure

2.1, it shows an example visualization in Vega-Lite with mark − type = line and

its visual definition is instantiated in a JSON format.

Figure 2.1: A line-chart from Vega-Lite [2]

2.1.2 NLI for Data visualization: An interface for visualization

In 2001, Cox et al. [46] introduced an initial version of a NLI that allowed for the

specification of visualizations using well-structured commands. The fast evolution

of Natural Language Processing (NLP) technology over the years has created an

excellent opportunity to investigate a natural language-based interaction paradigm

for data visualization [24]. With the aid of powerful natural language processing

Chapter 2. Literature Review 11

toolkits [5], a wave of visualization-oriented natural language interfaces (V-NLI)

has evolved as a supplement to traditional tool-based interaction. It enables the

generation of visualizations based on the user’s NL queries and improves the sys-

tem’s usability and efficacy for beginner users. Later, Articulate [20] offered a

two-step approach for creating visualizations from natural language queries that

automatically extracts analytic task and data properties from the user query and

then provides the relevant visuals based on that information. It uses keyword-

based classification methods to determine the weighting of a user’s ambiguous

query in each feature. Sisl [47] is a multi-modal interface that supports a variety

of input modalities, including point-and-click, textual NL input, and NL input

through speech. Analyza [48] is a data exploration system that combines V-NLI

and a structured interface.

Microsoft Power BI [37], IBMWatson Analytics [49], Wolfram Alpha [50], Tableau [36],

and ThoughtSpot [51] all include V-NLIs to improve the analytic experience for

beginner users by including features such as autocompletion, inference for unspec-

ified utterances, and so on. DataTone [19] pioneered the use of ambiguity widgets

to manage query ambiguities using a mixed initiative method. Beyond data explo-

ration, FlowSense [21] added semantic parsing to a dataflow-based visualization

system using V-NLI. This enables users to interact with multiple views inside the

DV system. Eviza [22] and Evizeon [52] investigated how to build and manipulate

visuals using analytic conversations.

With the advancement of hardware devices, interest in synergistic multimodal

visualization interfaces has increased significantly. Orko [53] was the first solution

to integrate touch and spoken input on tablet devices, whereas Data@Hand [54]

focuses on smartphones and provides additional interactions for visual exploration

and analysis of graph data. Later, InChorus [55] included a pen as a third mode

of interaction for a more uniform interaction experience.

The techniques are mostly implemented using rule-based language parsers that

only handle limited free-form NL input. Rather than creating visuals, Text-to-

Viz [56] intends to create infographics from natural language statements by col-

lecting 800 valid proportion-related phrases and using a machine learning model

to analyze utterances. Although promising, Text-to-Visualization does not enable

a wide variety of analytic tasks. A sample V-NLI is depicted in Figure .

Chapter 2. Literature Review 12

V-NLIs’ performance and application scenarios are largely dependent on language

parsers. The most advanced NLP models have achieved near-human accuracy in

a variety of tasks, including semantic parsing, text categorization, and paraphrase

synthesis. However, few have been applied to V-NLIs with a focus on visualization.

Figure 2.2: Interface of ADVISor [3]

2.2 Natural Language Processing Toolkits and Approaches

Natural Language Processing (NLP) is a computer-assisted analytic approach aim-

ing at automatically analyzing and interpreting human language. It facilitates the

extraction of valuable insights from textual information without requiring tedious

computational effort. This discipline has gained significant traction in recent years

and is now one of the most dominating in data science. NLP is an area of artificial

intelligence (AI) that enables machines to automatically execute repetitive activ-

ities such as summarization, machine translation, pattern matching, sentiment

analysis, speech recognition, and many more [57]. It has not only brought about

revolutionary changes in people’s everyday lives, but also in business practices.

With the advent of AI bots in smart devices such as Alexa, Cortana, Siri, and

Google Assistant, the use of natural language processing has increased exponen-

tially. NLP has seen improvements in precision, speed, and even methodologies

that are now widely employed to handle complicated issues [58].

Chapter 2. Literature Review 13

2.2.1 Natural Language Processing Toolkits

Natural language processing assists us in comprehending text and gaining crucial

insights. The use of NLP technologies improves our comprehension of how lan-

guage may function in specific situations. There are currently an abundance of

natural language processing tools on the market. Primarily, they are employed in

a variety of NLP-related activities, including text categorization, part-of-speech

tagging, entity extraction, tokenization, parsing, stemming, semantic reasoning,

dependency parsing, removing stop-words, generating N-grams and many oth-

ers [5]. Recent research has uncovered a large number of NLP toolkits, the most

notable of which are NLTK [59], Stanford CoreNLP [60], Apache OpenNLP [61],

SpaCy [13], AllenNLPSpaCy [62], GenSim [63], TextBlob Library [64], Intel NLP

Architect [65], GoogleNLP [66], Flair [67], and Stanza [68]. These toolkits are

extremely efficient and useful for assisting developers with NLP tasks. The most

popular NLTK interface comprises text corpora and lexical resources and enables

rapid integration of NLP services into systems by developers. Tf-idf and BoW are

most common algorithms in these toolkits used to extract features from a given

text. However, because these are general-purpose toolkits, domain-expert devel-

opers must learn how to use the toolkit as well as the underlying NLP principles.

Knowing which dependency paths to traverse while processing queries or compre-

hending semantic similarity metrics are examples of these notions. The semantic

parser can conduct a series of NLP sub-tasks on the query string of V-NLI to

extract valuable details that can be used to detect relevant phrases. Internally,

NL4DV [me/10] leverages NLTK and SpaCy to provide NLP-related APIs that

encapsulate and mask the NLP implementation specifics. As semantic and syn-

tactic analysis is a fundamental task for V-NLI, the vast majority of NLP-based

systems, along with FlowSense [69] offer semantic parsing by directly employing

NLP toolkits. Moreover, in order to construct visualization systems, developers

must write extra code to translate the output of NLP toolkits into visualization-

relevant concepts (e.g., characteristics and values for applying data filters), which

may be a difficult and time-consuming process [70].

2.2.2 Rule based Natural Language Processing Approaches

Many researchers used the rule-based method and relied on hand-constructed lan-

guage rules in constructing their systems in the early days of NLP because of a lack

Chapter 2. Literature Review 14

of resources and their constraints. It usually consists of morphological and syntac-

tic analyzers that are utilized for certain tasks. Rule-based transformation systems

and tools are built on a solid foundation of language understanding. NLP analysts

use a knowledge-based technique to analyze language behaviors that occur inside

text employing syntactic, semantic, and discourse information in the development

of these rules to extract the coded segments [me/41], [me/64], [me/62].

Flowsense [57/280], for example, is a dataflow visualization system that uses the

Stanford SEMPRE framework [57/180], [57/288], to map natural language utter-

ances to appropriate tags and placeholders via intermediary logical forms. NL4DV

[me/10] keeps track of aliases and lets developers customize them. It checks for

syntactic and semantic similarities between N-grams and a lexicon of data at-

tributes, aliases, and values as it iterates over the created N-grams. NL4DV uses

the cosine similarity function for syntactic similarity and the Wu-Palmer similarity

score based on WordNet [57/163] for semantic similarity. Analyza [57/52] extends

the lexicon with a proprietary knowledge graph and uses additional heuristics to

infer information from data properties.

For complex rules, rule-based systems quickly become unmanageable. The interre-

lation between these rules gets excessively complicated with little over a hundred

rules. The sheer volume of data and rules that may be applied quickly proved

these techniques ineffective. Recent techniques, on the other hand, incorporate

methods that take advantage of the massive amount of data available for train-

ing language models. To put it another way, contemporary methods to language

processing make use of data-driven methodologies to achieve the aims of language

comprehension. [me/67]

2.2.3 ML based Natural Language Processing Approaches

Unlike the rule-based method, the ML technique uses cognitive modules that can

learn from historical data to automatically infer rules. ML algorithms are now

being used to carry out numerous NLP jobs. These algorithms’ parameters are

historical data from which features are synthesized, and this features-based data is

then utilized for prediction or classification [me/41]. In NLP, supervised learning

is the most often used approach for solving problems. The essential concept un-

derlying supervised machine learning models is that they infer rules from training

data automatically. Hidden Markov models (HMM), conditional random fields

(CRF), maximum entropy (MaxEnt), support vector machines (SVM), decision

Chapter 2. Literature Review 15

trees (DT), Nave Bays, and deep learning are the most often used machine learn-

ing models for ambiguity resolution [me/64]. These approaches are used in a lot

of current NLP toolkits as well. Based on statistical and semantic aspects in the

textual data, machine learning algorithms are employed to discover the complex

patterns within the text. Because it does not require an NLP expert to develop the

rules, using machine learning to infer underlying rules can be more cost-effective

than rule-based techniques (which must not to say that expertise is not required

at all).

Text-to-Viz [13] is an application for creating infographics using natural language

sentences with proportional data. The doctors collected 800 genuine proportion-

related statements and used machine learning to parse them. Text-to-Viz, while

promising, does not provide queries for a wide range of analytic tasks. VizML

[31/86] is a DV technique based on machine learning that may be used to improve

visual mapping.

The machine-learning approach’s success, on the other hand, is greatly dependent

on having a large number of training instances from which to learn and being able

to identify a relevant semantic feature space [me/66]. However, few have been

applied to visualization-oriented V-NLIs. [me/31].

2.2.4 DL based Natural Language Processing Approaches

Deep learning (DL) is gaining popularity in recent years because to its accuracy

when trained with vast amounts of data. It is one of the machine learning classes

that performs much better on unstructured data [me/66, 63]. The text is seen as

words in sequence by RNNs, which are designed to capture text structures and

dependencies on words in order to categorize the text. When compared to the

Feed forward model, the vanilla RNN model performed poorly. Though there

are many different types of RNNs, the most common designs are Long Short-

Term Memory (LSTM), GRU, and Bidirectional RNN, which are used to simulate

the dependencies [me/66]. By solving the gradient vanishing concerns that vanilla

RNNs have , LSTM incorporated a memory cell for remembering values in random

time intervals and gates for regulating information flows inside and outside of each

cell [me/63]. Transformers, BERT, seq2seq, and GPT-2 models have recently been

popular for generating predictions for class surfaces (label mask) based on context

[me/65]. However, owing of the lack of high-quality textual datasets to aid training

and evaluation, V-NLI implementations are limited.

Chapter 2. Literature Review 16

Liu et al. [12/15] proposed a method to automatically extract features from visu-

alization charts and create explanations in plain language based on a deep learning

model to improve the user’s understanding of data characteristics in visualizations.

Fu et al. [57/62] used an advanced pre-trained model, BERT [57/51], to train a

multi-label task classification model based on a dataset of NL queries for visual

data analytics. It use a deep neural network to construct the embeddings of the

NL query and table headers, which are subsequently utilized by a deep neural

network model to determine essential data visualization properties.

2.2.5 RNN and LSTM

In reality, we must depend on previous experiences rather than constructing ev-

ery events from scratch. A typical neural network, however, cannot learn from

prior occurrences since knowledge from one step does not impact the next. In

contrast, RNN acquires information from the preceding phase.

Figure 2.3: A single RNN architecture

the above diagram in Figure 2.3, a portion of a neural network evaluates the input

x(t) and returns the result h(t). A loop permits the transmission of data from one

network node to the next. These loops make recurrent neural networks difficult to

perceive at first. but, It turns out that they are not very different from a typical

neural network.A recurrent neural network is made up of many copies of the same

network. Let’s consider the unrolling of the loops in Figure 2.4

In this way, recurrent neural networks are similar to sequences and lists. They are

the best neural network architecture for this data. These networks are made up

of repeating neural network modules. In typical RNNs, this repeating module will

have a simple structure, like the single tanh layer in Figure 2.5.

Recurrent Neural Networks exhibit poor short-term memory. If a sequence is suf-

ficiently lengthy, it will be difficult to transmit information from previous time

Chapter 2. Literature Review 17

Figure 2.4: Unfolding a single RNN in different timestamp

Figure 2.5: tanh activation function in RNN

steps to newer ones. During back propagation, recurrent neural networks experi-

ence the vanishing gradient issue for the tanh activation function. Gradients are

values used to adjust the weight of a neural network depending on the activation

function.

The vanishing gradient issue occurs when the gradient decreases as it back propa-

gates in time. When a gradient value gets incredibly small, it contributes little to

no learning. Therefore, if we attempt to analyse a lengthy text in order to make

predictions, RNNs may omit crucial information from the beginning.

LSTM is a specific kind of RNN. A Long Short-Term Memory (LSTM) recurrent

neural network architecture was introduced by Hochreiter et al. [15]. This model

can solve the issue of vanishing gradients that occurs in prior models. They in-

troduced a memory cell unit to release the ordinary node. The memory cell unit

makes it possible that the gradient can flow through many time steps without

vanishing or exploding by a self-connected recurrent edge [16]. Input gate and

output gate have learnable parameters to regulate the amount of information that

can access to the cell. Forget gate was introduced into LSTM by Gers et al. [17]

which gives the ability to learn to forget internal resources of a memory cell unit

Chapter 2. Literature Review 18

to avoid the network break down caused by the state grow indefinitely. We use

X = (x1, x2, ..., xN) to denote the input sequence, where xt ∈ Rl. There are

many variants of the LSTM model, here we show one adopted by Rocktaschel[8]

as follows in Figure 2.6.

Figure 2.6: Unfold version of LSTM network in different timestamp

This LSTM offers a novel structure in place of conventional RNN which is called

a memory cell. The main components of a memory cell are - input gate, a neuron

with a self-recurrent connection, forget gate, and output gate as shown in Figure

2.7.

Figure 2.7: A single LSTM architecture

The core part of the LSTM is the cell state which works straightly with minor

interaction throughout the chain. It allows the information to be flowed without

any change. The LSTM cannot delete or add information to the cell state. How-

ever, it features structures known as gates that allow information to pass through

if desired. The gates consist of a sigmoid neural network layer and a pointwise

multiplication process.

Chapter 2. Literature Review 19

Figure 2.8: Different gates in a single LSTM architecture

The first step in our LSTM is to choose which cell state information will be dis-

carded. This choice is done via a sigmoid layer known as the ”forget gate layer.”

It examins at ht−1 and xt, and outputs a number between 0 and 1 for each number

in the cell state Ct−1. A = 1 represents “completely keep this” while A = 0 rep-

resents “completely get rid of this.” It works as the following equation in Figure

2.8(a).

ft = σ(Wf · [ht−1, xt] + bf) (2.3)

The next step is to determine what additional information will be stored in the

cell state. This consists of two parts. First, a sigmoid layer known as the “input

gate layer” decides which values will be updated. Next, a tanh layer creates a

vector of new candidate values, Ct, that could be added to the state. In the next

step, we’ll combine these two to create an update to the state. It works as the

following equation in Figure 2.8(b).

Chapter 2. Literature Review 20

it = σ(Wi · [ht−1, xt] + bi) (2.4)

C̃t = tanh(WC · [ht−1, xt] + bC) (2.5)

It’s now time to update the old cell state, Ct−1, into the new cell state Ct. The

previous steps already decided what to do, we just need to do it. We multiply

the old state by ft, forgetting the things we decided to forget earlier. Then we

add it ∗ C̃t. This is the new candidate values, scaled by how much we decided to

update each state value. It works as the following equation in Figure 2.8(c).

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.6)

Finally, we need to decide what we’re going to output. This output will be based

on our cell state, but will be a filtered version. First, we run a sigmoid layer which

determines what parts of the cell state we’re going to output. Then, we put the

cell state through tanh (to push the values to be between −1 and 1) and multiply

it by the output of the sigmoid gate, so that we only output the parts we decided

to. It works as the equation following in Figure 2.8(d).

ot = σ(Wo · [ht−1, xt] + bo) (2.7)

ht = ot ∗ tanh(Ct) (2.8)

2.3 Explainable AI: Techniques and Tools

Many recent scientific and technical advances include machine learning. In many

uses of machine learning, users must blindly trust a decision-making model. In

contrast, in some delicate and crucial circumstances, the user may request expla-

nation for the model against a particular conclusion. Before making judgments

based on ML models in healthcare, government services, the financial system, na-

tional security, and the energy sector, a certain degree of assurance is required.

Even though many machine learning models are black boxes, knowing the logic

behind the model’s predictions can help users decide whether to trust them as

depicted in Figure 2.9.

In several natural language processing (NLP) tasks, deep learning techniques have

yielded state-of-the-art outcomes. Although the performance of these deep neural

Chapter 2. Literature Review 21

Figure 2.9: A general architecture of an explainable AI model

network models is outstanding, it is difficult to persuade individuals to believe their

predictions because they lack the insight and explainability necessary to compre-

hend their dynamic decision-making process. People in the business are cautious

to implement NLP-based strategies for decision making due to the fact that they

are fundamentally black boxes for humans [me/70]. Nevertheless, eXplainable AI

(XAI) tackles this challenge by enhancing the explainability and transparency of

NLP models, hence removing the nature of a black box. A comprehensive overview

of XAI principles, taxonomies, prospects, problems, and XAI tool adoption was

presented by Danilevsky et al. [me/21].

To address this, model-agnostic post hoc explainability approaches such as LIME

(73/Ribeiro et al., 2016) and SHAP (73/Lundberg & Lee, 2017) were created, in

which an additional model is trained in order to comprehend, trust, and appro-

priately deal with the increasing number of AI applications [me/73]. Nurdin et

al. [me/75] proposed a deep learning-based sentiment analysis model, which was

further analyzed using various XAI methods such as LIME and SHAP, demon-

strating that XAI is not restricted to delivering information on what occurs in the

model, but may also help us comprehend and discern models’ personalities and

behaviors. Eval4NLP-2021 [me/74] presented a collaborative task on explainable

NLP evaluation metrics with LIME and SHAP.

2.3.1 LIME: How it Works?

Local Interpretable Model-agnostic Explanations (LIME) is a tool for understand-

ing and interpreting the underlying machine learning model while being model-

agnostic. LIME was designed to approximate machine learning models using in-

telligible models. This is performed locally since it may be easier to grasp and

approximate globally sophisticated machine learning models. [69/32]. The LIME

descriptions will assist users to comprehend and interpret the model based on its

contributing features. The LIME definition of explanations is as follows:

Chapter 2. Literature Review 22

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2.9)

To be model-agnostic, an explainable model will learn the behavior of the under-

lying model by perturbing the input instance and seeing how predictions change.

This is advantageous in terms of interpretability, since we may perturb the input

instance by modifying components that make sense to humans (e.g., words or por-

tions of an image), even if the model is employing far more complex components

as features (e.g., word embeddings). Then, an explanation may be generated by

approximating the underlying model as one that is interpretable. This explanation

is derived from perturbations made to the original input instance by eliminating

words or concealing images. The core concept underpinning LIME is approximat-

ing a black-box model locally using a simple model. Thinking locally is much

simpler than attempting to simulate a global model.

In the latter stages of this method, a data set of perturbed instances is formed

by ”turning off” certain interpretable components. Observe the probability of an

accurate model prediction for each instance that has been perturbed. On this data

set, a simple (linear) model is trained that is locally weighted. Errors in perturbed

situations are therefore taken into account because they are more crucial for mak-

ing the right decision. Finally, the instance with the highest positive weights as

an explanation is textually or graphically presented, discarding everything else.

This explanation is, intuitively, a local linear approximation of the model’s behav-

ior. Globally, the model may be rather complicated, but it is simpler to approx-

imate it in the area of a specific instance. As an explanation, while considering

the model as a black box, we perturb the instance we intend to explain and learn

a sparse linear model around it. The Figure 2.10 explains the concept underlying

this method.

The blue and pink background represents the the model’s decision function, which

is evidently nonlinear. The bold red cross represents the instance to be explained

(let’s name it X). We sample occurrences in the vicinity of X and weight them

based on their proximity to X (weight here is indicated by size). Then, we develop

a linear model (dashed line) that closely approximates the model around X, but

not necessarily globally. Instead of training a global surrogate model to explain

individual prediction, LIME trains local surrogate models. This entire procedure

is described in the algorithm 1.

Chapter 2. Literature Review 23

Figure 2.10: Intuition of LIME [4]

Algorithm 1 Explain a Prediction with a Trained Local Surrogate Model

1: Select the instance of interest for which the ML model is going to be explained.
2: Perturb new samples around the instance to get the predictions of the ML model.
3: Weight the new samples according to their proximity to the instance of interest.
4: Train an interpretable linear model on those samples with variations.
5: Explain the prediction of the instance by interpreting the linear model based on the

contributing features.

Chapter 3

Proposed Methodology

In this chapter, we will construct a pipeline to extract critical information from

a given query using a cutting-edge NLP technique. Through an intense training

process, this learning-based model will comprehend the underlying structure of

important information. In the end, this pipeline will be investigated further to

transform this decision-making model from a black box to a white box.

3.1 Dataset Acuisation

3.1.1 QUDA [1]

We have used here the corpus, QUDA which has 14,035 diverse user queries anno-

tated with basic low-level analytic tasks (e.g., correlate, filter, sort, find extremum

and others). These analytic tasks are associated with the data tables to extract

desired information to be visualized. This corpus consists of a number of queries

annotated with high-quality features and large-volume queries designed in the con-

text of V-NLIs. To accomplish this goal, the authors employed both expert and

crowd intelligence. First, they collected the seed queries by interviewing data an-

alysts which are treated as “expert queries”. Next, to diversify the ways of saying

something, they employed the crowd to collect a number of sentential paraphrases

for each query. Basically, these queries are restatements with approximately the

same meaning. Finally, they applied a validation procedure for quality control.

So, this dataset contains 920 utterances created by data analysts, and each are

accompanied by 14 paraphrases on average. All queries were annotated with one

24

Chapter 3. Proposed Methodology 25

of ten analytics tasks they have fixed earlier. They have characterized their data

set in the following ways:

• Abstraction: Concrete

Abstract queries are beneficial for generalizing an idea behind a specific ac-

tivity, although their interpretation might vary. A query should offer enough

information for V-NLIs to respond reasonably. So they concentrated on low-

abstraction queries that specify tasks and values directly.

• Composition: Low

A query’s composition level defines how many sub-queries it contains. Based

on these sub-queries, composition is a continuous scale from low to high. A

high-composition inquiry has several sub-queries, and a V-NLI may answer

it in stages. So, to make things easier, the searches in this dataset had a low

composition level.

• Type of Data: Table

The dataset influences the query syntax and semantics. For a network

dataset, analysts could seek the shortest route between two nodes. How-

ever, in the tabular dataset, connections between objects are not expressly

supported. Tables, trees, fields, clusters, sets, lists, and so on are all forms

of data. This corpus targets queries from a tabular dataset.

• Context Dependency: Independent

Because V-NLI is conversational, queries may depend on textual information.

If a query is followed by another inquiry in the same context, the second query

may look incomplete. Contextual queries are not considered in this dataset.

This corpus’ queries pertain to tasks or values connected with tasks.

• Construction of QUDA

As a result, the created 36 real-world data tables encompassing 11 various

areas such as health care, sports and entertainment. These 14035 queries

cover 10 low-level analytic activities. They used expert and crowd intelligence

to collect data in three steps. First, they interviewed 20 data analysts on

writing queries for 36 data tables and 10 low-level jobs. This phase yielded

920 expert queries. Then they used a large-scale crowd-sourced experiment

to gather sentential paraphrases for each expert inquiry. To assure data

quality, they created a validation step incorporating both crowdsourcing and

machine learning. The final step yields 13,115 paraphrases, with an average

of 14 paraphrases per expert statement.

Chapter 3. Proposed Methodology 26

3.1.2 Dataset amendment for this research

As we target to develop a visualization system based on NLIs, the visualization

types (viz type) were not integrated with the corpus described above. So, we have

used crowd intelligence to collect the corresponding viz type against each of the

queries from the 920 expert queries’ set and share the results into the associative

paraphrases. In this approach we have performed the following steps:

1. First, we described the task as “Find the best visualization among the fol-

lowing figures that is perfect to present the information asked in the query.”

to help crowd workers understand our task. The interface also encourages

the crowd to select the appropriate viz type that is suitable for the query

asked to visualize data. We demonstrate both valid and invalid examples

to explain our requirements. The interface shows a query and the corre-

sponding visualization based on different visualization types (viz type). The

crowd was asked to select the best figure that is meaningful and perfect to

understand the context from the displayed graph or chart against the given

query. Finally, we asked employees an open-ended inquiry to get feedback

and recommendations for this position. In the primary experiment, we built

a mechanism to guarantee the quality of the visualization kinds obtained for

each query. Before receiving an intensive fix, the subjects were told that the

findings will be examined and verified.

2. In the validation step, we have calculated the normal distribution of the an-

swers from the crowd for a particular query. After removing outliers outside

of 95% data points, we considered the majority vote of a particular viz type

against an expert query. To satisfy the voting as majority, we have fixed its

threshold value which should be maintained to be accepted (here it was 0.4

for each class).

3. Then we have copied this label of visualization types (viz type) to the cor-

responding paraphrases of a particular expert query.

4. We have set up a web-based system to assist the participants in conducting

comparison among the viz types. The system displayed the viz type descrip-

tions, examples and requirements. We have delivered 400 queries for this

survey along with ten gold standard instances for quality control (ten clear

and unambiguous queries). We manually crafted this set of gold standard

queries those are unambiguous and have a clear answer. We rejected any

jobs where four of the gold tasks were failed to be selected.

Chapter 3. Proposed Methodology 27

3.1.3 Overview of the final dataset:

After preparing the dataset we have collected 10334 queries with their correspond-

ing visualization types. From the collected data set we have got 4 different viz type

labels to cover all queries in the dataset. The distribution of the dataset is like

the following in Figure 3.1:

viz-type

co
un

ts

0

2000

4000

6000

8000

bar point line tick

Distribution of the viz-types

Figure 3.1: Primary distribution of QUDA [1]

Here, we can see that the number of samples of bar chart is very large as most of

the queries in the dataset could be visualized with bar chart and histogram. Some

others could be visualized with heatmap and scatter plot what is depicted with

point. Line charts basically present the trend of the data and tick charts visualize

the strip plot.

3.2 Dataset Preprocessing

3.2.1 Data augmentation to balance imbalanced dataset

The performance of the most machine learning and deep learning models in par-

ticular, depends on the quality, quantity and relevancy of training data. However,

insufficient data in different class labels is one of the most common challenges in

accurately implementing such models. This is because collecting of data covering

all class labels is very costly and time-consuming in many cases. So here we can

apply data augmentation to reduce reliance on data collection from the real world

and build more accurate machine learning models faster.

Chapter 3. Proposed Methodology 28

Data augmentation is a collection of strategies for producing additional data points

from existing data to artificially enhance the quantity of data. Making modest

adjustments to data or utilizing machine learning models to produce additional

data points are examples of this. By adding fresh and diverse instances to the

dataset, it is possible to enhance the performance and results of machine learning

models. In the NLP sector, it is becoming increasingly common to produce extra,

synthetic data from existing data.

In the case with NLP, the data augmentation should be done carefully due to the

grammatical structure of the text and should be used before training the model.

The common approaches of the text data augmentation are as followings:

• Back translation: We convert the text data into another language and then

back into the original language using this procedure. This may aid in the

generation of textual data using various terms while maintaining the context

of the text data. To do this, several language translation APIs are employed.

• Synonym replacement: Choose n words at random that are not stop

words from the sentence. Replace each of these words with a random syn-

onym for it.

• Random Insertion: Find a random synonym of a random word in the

sentence that is not a stop word. Insert that synonym into a random position

in the sentence.

• Random swap: Change the places of two words in the phrase at random.

• Random Deletion: Randomly remove each word in the sentence with prob-

ability p.

As our VNLIs are made of only one sentence providing a certain instruction based

on the data tables to visualize the extracted data, we think each word in the query

is equally important. In this case, back translation approach is not applied here

as the APIs for more accurate augmentation is paid and has some limitations to

paraphrase a large amount of data. Also, the random insertion, deletion and swap

will change the instruction inherent to the query. So as a best and most effective

practice, we have followed the synonym replacement via word embeddings [71].

We replace n number words with its synonyms (word embeddings that are close

to those words) to obtain a sentence with the same meaning but with different

words.

Chapter 3. Proposed Methodology 29

Here we have augmented the text by replacing with synonyms from the WordNet

thesaurus [72]. WordNet is a lexical database for the English language which is

a part of the NLTK corpus to find out the meanings of words, synonyms, and

antonyms. Besides the neural network approach like word2vec, GloVe, this the-

saurus can achieve similar objectives to find the synonym words [3]. To implement

this augmentation, this step provides a substitution feature to replace the target

word. Instead of finding synonyms purely, some preliminary checking makes sure

that the target word can be replaced.

The imbalance of our created dataset is depicted in Figure 3.1. We used this text

data augmentation to verify if it improves the model performance. Before data

augmentation, we split the data into the train and validation set so that no samples

in the validation set have been used for data augmentation. After performing this

augmentation, we have achieved the class label counts as Figure 3.2.

viz-type

0

2000

4000

6000

8000

bar point line tick

counts before augmentaion counts after augmentaion

Distribution of the viz-types after augmentaion

Figure 3.2: Distribution of augmented dataset

3.2.2 Text Preprocessing

Text preprocessing is a crucial step in the classification process. This step may

help with classification precision. Preprocessing is used to eliminate noise and

non-meaningful words from data. The following techniques were applied to each

query item in the dataset:

1. Expanding the short forms in the sentences

2. Removing extra spaces and punctuations

Chapter 3. Proposed Methodology 30

3. Removing common stop-words

4. Lemmatization instead of stemming

3.3 Model Development for NLI to perform DV

3.3.1 Approach with rule-based model

The rule-based technique uses a pre-defined rule set to classify text into distinct

categories, and thus requires a comprehensive domain expertise. Developing vi-

sualization NLIs is a difficult task which requires a low-level implementation of

natural language processing (NLP) tools as well as a thorough understanding of

visual analytic tasks and visualization design. For this project, we utilized NL4DV,

a toolbox for natural language-driven data visualization. NL4DV is a Python tool

that accepts a tabular dataset as well as a natural language query about it as

input. The toolkit responds by returning an analytic specification in the form

of a JSON object with data properties, analytic tasks, and a list of Vega-Lite

specifications relevant to the input query.

During the parsing the query, this toolkit should identify the key information men-

tioned in the query explicitly or implicitly about the visualization. This extracted

information can be visualized in the way depicted in Figure 3.3:

Figure 3.3: Extracted information from the given NLQ [5]

After extracted the necessary information, this toolkit can analyze them with the

help of a mapping table to draw the correct visualization. Here, NL4DV follows

a mapping table like in Figure 3.4 for attribute, visualization and task mapping

where Q, N, T, O refer to the data type elaborated as quant, nominal, order, and

temporal.

Chapter 3. Proposed Methodology 31

Figure 3.4: Mapping table of NL4DV [5]

3.4 Approach with ML based model

In this case we have to use NLP toolkit (e.g., NLTK) to parse all the key words

into tokens. To implement this ML approach, we will go through the following

steps:

3.4.1 Text Preprocessing

A typical pipeline for preprocessing text consists of the following steps:

1. Sentence segmentation: The text is divided into sentences in the first

phase of the preprocessing procedure. Punctuation, particularly the full

stop/period letter, exclamation, and question marks, may be used to in-

dicate the conclusion of a sentence in many languages, including English.

The period symbol, on the other hand, may be used in abbreviations like

Ms. or U.K., in which case the full stop character does not indicate the

conclusion of a sentence. To prevent misclassification of sentence borders, a

table of abbreviations is utilized in certain circumstances. To prevent unnat-

ural tokens, a separate dictionary of abbreviations must be created when the

text contains domain-specific terminology.

2. Normalization and tokenization: Tokenization is the process of breaking

down a text into words and punctuation marks, or tokens. Punctuation

markers, like sentence segmentation, may be difficult to understand. For

example, the United Kingdom should be treated as a single token, however

”don’t” should be divided into two tokens: ”do” and ”n’t.” The normalization

procedure includes steps like as stemming and lemmatization. Stemming and

lemmatization are two steps in normalization. The stem of the word is found

Chapter 3. Proposed Methodology 32

during the stemming process by eliminating suffixes like –ed and –ing. The

resultant stem isn’t always a word. Lemmatization is similar to deprecation

in that it removes prefixes and suffixes, but the end product belongs to the

language. A lemma is the name for this outcome.

3.4.2 Feature Extraction

The Bag-of-Words (BoW) technique is the simplest way to transform texts into

numeric vectors. The basic idea behind BoW is to collect all of the unique words

in a text corpus termed vocabulary. Each phrase may be represented as a vector

of ones and zeros using the vocabulary, based on whether or not a word from the

vocabulary is contained in the sentence.

3.4.3 Model development

We begin by separating the data into two sets: training and testing. Preprocess-

ing and normalization of the train and test data is required before features can

be retrieved. The most common text data feature extraction approaches were

addressed in the preceding sections. Machine learning techniques may be used to

text data after it has been transformed to numeric form. This is known as training

the model, and it involves the model learning patterns from the characteristics in

order to predict the labels. A procedure known as hyperparameter tuning may be

used to improve the model’s performance by tweaking model parameters.

There are several machine learning methods that are successful in the NLP arena.

We’ve looked at Support Vector Machine (SVM), Naive Bayes (NB), Random

Forest (RF), Gradient Boosting (GBT), Extreme Gradient Boosting (XGB) al-

gorithms which separates classes by using different effective kernels. The goal of

this kernel is to increase the distance between the data points and the hyper-

plane. Different regularization parameters are also added to the cost function.

The regularization parameter’s goal is to strike a compromise between accuracy

and loss.

Chapter 3. Proposed Methodology 33

3.5 Approach with LSTM-RNN based model

3.5.1 Tokenizing the words and word embedding

The input sample messages are tokenized, transforming them into a sequence of

tokens that the neural network uses as input. Tokens are also used to build

a vocabulary of terms that will be utilized throughout training. We’ll convert

each query into an actual vector domain using word embedding using word2vec,

a common text processing approach. This is a method in which words are stored

as real-valued vectors in a high-dimensional space, with similarity in meaning

translating to similarity in the vector space. Each word will be mapped to a

64-length real-valued vector.

3.5.2 Padding

As our queries are not of the same length, we padded zeroes to maintain a specific

length. This sequence length is same as number of time steps for LSTM layer.

3.5.3 Train, test split

When we have got our dataset, we will split our dataset into training and test sets

3.5.4 Model development

We build our LSTM model into different layers following the steps mentioned

below:

1. Embedding layer: It coverts our word tokens into embedding of specific

size. To prepare this embedding, it will create a neural network to update

the weights based on the corpus of V-NLIs we are providing. It takes two

parameters: the vocabulary size and the dimensionality of the embedding.

From the output of embedding layer, we can see it has created a 3-dimensional

tensor as a result of embedding weights. Now it has train-samples number

of rows, 100 columns and 30 embedding dimensions i.e. for each tokenized

word in the query we have added embedding dimension. This data will now

go to LSTM Layer.

Chapter 3. Proposed Methodology 34

2. LSTM Layer: It defines the hidden state dimensions and number of layers.

In this case, we are using a single LSTM layer of 100 neurons (also known as

hidden units). This layer is properly maintained with appropriate batch size

of inputs and drop out threshold value.

3. Fully connected Layer: For fully connected layer, number of input features

is equal to the number of hidden units in LSTM. It maps the outputs of

LSTM layer into the desired output size based on the number of class labels

we are providing. Here, this model will predict 4 different viz-types. Note

that before putting the LSTM output into the fully connected layer, it has

to be flattened out. Next, we use softmax activation function that turns all

output values into the probabilities of four classes.

4. Output: Softmax function from the last timestamp is considered as the final

output of the network. The outputs from this network are from an untrained

network for the first epoch. Hence, the output values will be more and more

accurate based on the number epochs we will train this network and it will

try to minimize its loss based on an optimizer approach.

3.6 Model Development for XAI: LIME Pipeline

In this pipeline we are going to explain our developed LSTM model in last section

in depth. To build this pipeline we do the following steps as we have mentioned

in the section 2.3.1:

1. Derive the permutation of each test case to be explained

2. Utilize the given complex model to predict all permuted test cases

3. Calculate the distance (similarity) between the permutated and original test

cases and convert them into similarity scores

4. Make the sub-set of K features with highest importance in complex model

for each permuted test case around the given instance

5. Fit a linear model with the sub-set of K features based on the permuted data

and derive the weights for this model.

6. Using this linear model explain the given instance prediction

Chapter 3. Proposed Methodology 35

Mathematically, the local surrogate models with interpretability constraint can be

expressed as follows which is an array of weights of the linear model:

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3.1)

The explanation model for instance x is the model g (e.g. linear regression model)

that minimizes loss L (e.g. mean squared error), which measures how close the

explanation is to the prediction of the original model f (e.g. an xgboost model),

while the model complexity Ω(g) is kept low (e.g. prefer fewer features). G is the

family of possible explanations, for example all possible linear regression models.

The proximity measure πx defines how large the neighborhood around instance x

is that we consider for the explanation. In practice, LIME only optimizes the loss

part. The user has to determine the complexity, e.g. by selecting the maximum

number of features that the linear regression model may use.

To apply this XAI pipeline we will do the following steps:

1. Surrogate Linear Model Development for Explanation:

Implement the explanation function using the following pseudocode:

Algorithm 2 Sparse Linear Explanations using LIME

1: Require: Classifier f , Number of samples N
2: Require: Instance x, and its interpretable version x′

3: Require: Similarity kernel πx, Number of features in the explanation K
4: Z ← {}
5: for i ∈ {1, 2, 3, . . . , N} do
6: z′i ← sample around(x′)
7: Z ← Z ∪ ((z′i, f(zi), πx(zi)))
8: end for
9: w ← fidelity function(Z,K) // weight update minimizing the loss

10: return w // updated weight

Here, G is a class of interpretable models such as linear models, decision tree.

So g ∈ G can be readily presented to the user visually or textually. Here, the

returned values w represents the linear model g. Let f be the model to be

explained and x is an instance and f(x) is a probability to a certain class.

We use πx(z) as a proximity measure between x and z to define the locality

of x. L is the loss function which should be minimized having the complexity

Chapter 3. Proposed Methodology 36

Ω (opposed to interpretability) of g. Finally, let L(f, g, πx) be a measure of

how unfaithful g is in approximating f in the locality defined by πx.

2. Explaining the prediction on a particular instance:

Here, we will provide the explanation of an instance based on the graphical

interface. First, an explanation instance will be created based on the expla-

nation object created in the last step to perturbate the samples based on

the given instance. With this instance, LIME will produce an interpretable

linear model to explain a particular instance selecting several top features

and several neighborhood samples. This interpretable linear model could be

used to present the visualization of the explanation.

Chapter 4

Experimental Design

To develop our system, we carefully evaluate each stages described as proposed

methodology in Chapter 3 and explain each alternative choice of our implementa-

tion in Chapter 5 for justification. For the implementation of the whole project we

have divided our task into two parts where in the first we have implemented the

deep learning based NLP model to extract key information from the given query

and in the later half, we have implemented the pipeline to trnsform a black-box

AI model into white-box.

4.1 LSTM Implementation

• Environment: The proposed system was implemented in Google Colab

using Tensorflow-Keras framework (version 2.7.1).The environment provides

an NVIDIA Tesla T4 GPU with a VRAM of 16 GB and an Intel Xeon CPU

with a base clock speed of 2.3 GHz. The total usable memory of the system

was 12 GB.

• Dataset Split: We have used the preprocessed QUDA dataset which con-

tains 10334 queries with 4 types of visualization types (i.e., bar, point, line

and tick). From that initial dataset, we have split it in 80:20 ratio as train

and test set. We have used this test set to evaluate the accuracy of all the

models. In the end, we have 8266 train queries and 2068 test queries. Dur-

ing the training we have split the dataset further in 80:20 ratio for training

and development purpose where we have 6613 and 1653 queries respectively

following the approach of the experiment [73].

37

Chapter 4. Experimental Design 38

• Dataset augmentation: The insufficient data in different class labels is

one of the most common challenges in accurately implementing such models.

We have implemented the synonym replacement based data augmentation

approach via word embeddings [71]. We replace n number words with its

synonyms (word embeddings that are close to those words) to obtain a sen-

tence with the same meaning but with different words. This n depends on

the number of iterations we have made to paraphrase each query based on a

particular class label.

• Hyper-parameter Tuning To reduce the overfitting problem of the model

we have explored different drop-out values between 0.2 and 0.5. The batch

size was 32 and number of hidden states in the LSTM layer were 100. The

vocabulary size was set 5000 and the maximum query length was set 50

analyzing all the queries in the dataset.

• Optimizer Tuning: We have used ADAM optimizer with hyper-parameters

β1 set to 0.9 and β2 set to 0.999 for optimization. The initial learning rate

is set to be 0.1 with the decay ratio of 0.95. If the validation loss starts to

be increased it reduces its learning rate and before overfitting the model it

stops its training as an early stopping approach following the method of the

experiment [73].

• Methods for Comparison: We have compared our model with NL4DV

as a rule based model, Additionally, we compared our model with Support

Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), Gradi-

ent Boosting (GBT), Extreme Gradient Boosting (XGB) as the ML models

since these models are frequently used in NLP related experiments [27]. We

re-implemented those models and reported the performance of our imple-

mentation.

4.2 LIME Implementation

To setup LIME we import the relevant libraries and make sure that our data and

model are in the right format to input into the LIME explainer. This means that

our data should be a list or array of strings and we need to create a pipeline

which takes in our data, and both transforms the text data with the vectoriser we

already built and then makes the predictions with the trained LSTM model. Next,

we create our explainer and choose our single prediction which we would like to

Chapter 4. Experimental Design 39

be explained. The feature weights are calculated using the LIME explanation. In

the explain instance algorithm we could also add the parameter num features if

we wanted to reduce the number of features used to explain the prediction.

Chapter 5

Results and Discussions

5.1 Evaluation Metrics

Evaluation metrics play a crucial role in quantifying the performance of a pre-

dictive classifier. Since the choice of metrics depends on the characteristic of the

dataset, this can often lead to misleading conclusion regarding the experiment. For

example, while evaluating an experiment on a highly imbalanced dataset, evalu-

ation metrics such as accuracy, precision, or recall may lead to a conclusion that

is practically useless. With imbalanced datasets, it is possible to reach very high

accuracy without predicting any useful prediction since the majority predictions

are from the densely populated classes.

Other widely used evaluation metrics like precision, recall, F1 score, ROC-AUC

etc based on confusion matrix shown in Figure 5.1. have their own limitations.

Precision is about exactness of classification task and relies only on true positive

and false positive, it is possible to get a precision score of 1.0 by only one true

positive prediction. On the other hand, recall is about completeness and depends

solely on true positive and false negative. As a result, predicting all the samples

as positive will give a recall of 1.0, whereas precision will be very low.

To tackle this issue, the Receiver Operating Characteristic (ROC) curve and area

under the ROC curve (AUC-ROC) are used as evaluation measures in this work,

such that models are evaluated based on how good they are at separating classes.

ROC curve is a diagnostic diagram that calculates the False Positive Rate (FPR),

and True Positive Rate (TPR) for a series of predictions made by the model

at different thresholds to summarize the model’s behavior which can be used to

40

Chapter 5. Results and Discussions 41

Figure 5.1: A basic confusion matrix

analyze the model’s ability to discriminate classes. True Positive Rate (TPR) tells

what proportion of the positive class get correctly classified by the classifier. False

Positive Rate (FPR) tells what proportion of the negative class got incorrectly

classified by the classifier. TPR and FPR are calculated as follows:

TPR =
TP

ActualPositive
=

TP

TP + FN
(5.1)

FNR =
FN

ActualPositive
=

FN

TP + FN
(5.2)

TNR =
TN

ActualNegative
=

TN

TN + FP
(5.3)

FPR =
FP

ActualNegative
=

FP

TN + FP
(5.4)

The Receiver Operator Characteristic (ROC) curve is a probability curve that

plots the TPR against FPR at various threshold values and essentially separates

the ‘signal’ from the ‘noise’. The Area Under the Curve (AUC) is the measure of

the ability of a classifier to distinguish between classes and is used as a summary

of the ROC curve. A model that with no discriminatory power between the classes

will be represented by a diagonal line between FPR 0 and TPR 0 (co-ordinate:

0,0) to FPR 1 and TPR 1 (co-ordinate: 1,1). Points below this line reflect models

with less competence than none. A flawless model will be represented as a point

in the plot’s upper left corner.

The final accuracy of the models we have tried on the test data set are depicted

in the table 5.1:

Chapter 5. Results and Discussions 42

Table 5.1: Accuracy per model

Bar-F1 Score Point-F1 Score Line-F1 Score Tick-F1 Score Test Accuracy

NL4DV - - - - 0.503

GBT 0.935 0.858 0.828 0.875 0.909

NB 0.848 0.730 0.792 0.690 0.806

RF 0.019 0.402 0.705 0.779 0.292

SVM 0.930 0.846 0.890 0.852 0.905

XGB 0.921 0.810 0.806 0.825 0.887

LSTM-V 0.944 0.868 0.884 0.800 0.922

LSTM-P 0.947 0.869 0.885 0.800 0.924

5.2 Result Analysis of LSTM

Here are the evaluation graphs considering no drop-outs during the training of the

LSTM model in Figure 5.3:

(a) Confusion matrix (b) ROC-AUC Curve

(c) Loss graph (d) Accuracy graph

Figure 5.2: Evaluation graphs - without dropouts

In Figure 5.3a, we can see the confusion matrix considering no dropouts. As it

over-fits the model, we can the loss graph in Figure 5.3c and the accuracy graph

in 5.3d is not satisfactory.

Chapter 5. Results and Discussions 43

Then we have added the drop outs (value=0.2) after each LSTM and dense layer

to reduce the bias of the model and achieved the following results in Figure 5.3:.

(a) Confusion matrix (b) ROC-AUC Curve

(c) Loss graph (d) Accuracy graph

Figure 5.3: Evaluation graphs - with dropouts

Here, we can see the randomness of the loss and accuracy graph is removed as

the overfitting problem of the LSTM model is removed. Also this has improved

the F1 scores which is reflected in the confusion matrix, The overall classification

report is depicted in Figure 5.4.

Figure 5.4: Classification report - final

Chapter 5. Results and Discussions 44

5.3 Explanation of the produced model using LIME

The LIME pipeline helps to identify an interpretable model over the interpretable

representation locally. When we apply LIME for an explanation of individual

predictions, it shows the visualization type output results with each featuring

tokenized word from a given query. In numerical contribution, the LSTM model

gives a particular contributing scores to each token based on probability during

the training of the model.

LIME is also capable of local interpretability of the models. Figures 5.5-5.8 show

the local explanations for different user given NL queries predicting different visu-

alization types.

Figure 5.5: LIME explanation for ”bar” visualization type

Figure 5.5 shows the contributing tokens to visualize a chart as a bar chart. Here,

it finds ”list” word contributing for such graph type. From the common knowledge,

it is obvious that it is true most of the time in real world and the model learns in

this way during its training.

Figure 5.6 shows ”years” token contributing to visualize a line chart. In the real

world, it is very common that we depict any time related trend with line chart.

Such this way, our model learned this pattern during training.

Figure 5.7 shows ”birdcall” token contributing to visualize a line chart. In the real

world, it is very common that we depict any one dimension feature in different

range using strip plot. So here each birdcall is made of different duration. Such

this way, our model learned this pattern during training.

Chapter 5. Results and Discussions 45

Figure 5.6: LIME explanation for ”line” visualization type

Figure 5.7: LIME explanation for ”tick” visualization type

In Figure 5.8 finds ”grade” word contributing for line graph type. In general,

we show the randomness of grades with scatter plots in data visualization. This

model learns this pattern to visualize data in this way during training period.

Chapter 5. Results and Discussions 46

Figure 5.8: LIME explanation for ”point” visualization type

5.4 Discussion

5.4.1 LSTM model on NLP process

The rule-based approach did really the bad prediction when we have paraphrased

the queries. It is because it only checks the presence of certain words in the query

to decide and if the query structure doesn’t match with the mapping function

it mispredicts that query though it has same connotation with seed query where

NL4DV works well. It is little bit improved when we have used ML approach, but

it is not satisfactory because still it checks the presence of words and word to word

sematic sequence is not maintained. But LSTM does maintain the word-to-word

semantic sequence and performs better for the paraphrases.

But in computation power analysis, rule-based NL4DV approach does not give any

load to learn any parameters whereas SVM will maintain the kernel function to

make the decision. In the LSTM model,it has around 213636 learnable parameters

which causes a large amount of computation power in exchange of best accuracy.

Chapter 5. Results and Discussions 47

5.4.2 LIME: explain an ML model

In some cases, our LSTM model predicts the instance correctly, but for the wrong

reasons. In train set, the word “List” comes in most of the cases of “bar chart” com-

paring other visualization types and happened the most similarly for test dataset

as well. This kind of artifact in the data set makes the problem much easier than

it is in the real world, where we wouldn’t expect such patterns to occur. Here

we can observe that both machine learning experts and novice users greatly could

benefit from the explanations like the given examples. Moreover, it could enable

them to choose which models generalize better, improve models by changing them,

and get crucial insights into the models’ behavior.

The correct definition of the neighborhood is a very big, unsolved problem when

using LIME with tabular data. In my opinion it is the biggest problem with LIME

and the reason why I would recommend using LIME only with great care. For

each application you must try different kernel settings and see for yourself if the

explanations make sense. Unfortunately, this is the best advice I can give to find

good kernel widths.

Sampling could be improved in the current implementation of LIME. Data points

are sampled from a Gaussian distribution, ignoring the correlation between fea-

tures. This can lead to unlikely data points which can then be used to learn local

explanation models.

Chapter 6

Conclusion and Future Work

In this research work, first, we propose a pipeline to develop a V-NLI based deep

learning model and extract key information for appropriate data visualization.

Next, we have extended that pipeline to make the decision for data visualization for

the user explainable in order to earn the user’s trust and make them transparent.

According to our proposed method, we attempt to boost the efficiency of our

model by utilizing the LSTM language model to extract relevant information from

user input¿ in this regard we did not rely on the presence of certain words to make

the decision rather we have checked the semantic notation exploring the relations

among the words in a sentence sequence.

Trust is an another crucial for effective human interaction with machine learning

systems, and we think explaining individual predictions is an effective way of

assessing trust. We have used the LIME technique to produce a visual explanation

of the system’s decision. Our proposed pipeline is an efficient tool to facilitate

such trust for machine learning practitioners and a good choice to add to their

tool belts, but there is still plenty of work to be done to better explain machine

learning models.

48

References

[1] S. Fu, K. Xiong, X. Ge, S. Tang, W. Chen, and Y. Wu, “Quda: Natural

Language Queries for Visual Data Analytics,” CoRR, vol. abs/2005.03257,

2020. [Online]. Available: https://arxiv.org/abs/2005.03257

[2] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-Lite:

A Grammar of Interactive Graphics,” IEEE Transactions on Visualization

and Computer Graphics, vol. 23, no. 1, pp. 341–350, 2017. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/7539624

[3] C. Liu, Y. Han, R. Jiang, and X. Yuan, “ADVISor: Automatic Visualization

Answer for Natural-Language Question on Tabular Data,” in 2021 IEEE

14th Pacific Visualization Symposium (PacificVis). Tianjin, China: IEEE,

2021, pp. 11–20. [Online]. Available: https://ieeexplore.ieee.org/abstract/

document/9438784

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?” ex-

plaining the predictions of any classifier,” in Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining,

2016, pp. 1135–1144.

[5] A. Narechania, A. Srinivasan, and J. Stasko, “NL4DV: A Toolkit for

Generating Analytic Specifications for Data Visualization from Natural

Language Queries,” IEEE Transactions on Visualization and Computer

Graphics, vol. 27, no. 2, pp. 369–379, 2021. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9222342

[6] I. Chowdhury, A. Moeid, E. Hoque, M. A. Kabir, M. S. Hossain, and

M. M. Islam, “MIVA: Multimodal Interactions for Facilitating Visual

Analysis with Multiple Coordinated Views,” in 2020 24th International

Conference Information Visualisation (IV). Melbourne, Australia: IEEE,

2020, pp. 714–717. [Online]. Available: https://ieeexplore.ieee.org/abstract/

document/9373232

49

https://arxiv.org/abs/2005.03257
https://ieeexplore.ieee.org/abstract/document/7539624
https://ieeexplore.ieee.org/abstract/document/9438784
https://ieeexplore.ieee.org/abstract/document/9438784
https://ieeexplore.ieee.org/abstract/document/9222342
https://ieeexplore.ieee.org/abstract/document/9373232
https://ieeexplore.ieee.org/abstract/document/9373232

References 50

[7] M. T. Islam, M. R. Islam, S. Akter, and M. Kawser, “Designing

Dashboard for Exploring Tourist Hotspots in Bangladesh,” in 2020 23rd

International Conference on Computer and Information Technology (ICCIT).

Dhaka, Bangladesh: IEEE, 2020, pp. 1–6. [Online]. Available: https:

//ieeexplore.ieee.org/abstract/document/9392708

[8] M. R. Islam, S. Akter, M. R. Ratan, A. R. M. Kamal, and G. Xu, “Deep

Visual Analytics (DVA): Applications, Challenges and Future Directions,”

Human-Centric Intelligent Systems, vol. 1, pp. 3–17, 2021. [Online].

Available: https://www.atlantis-press.com/journals/hcis/125959056/view

[9] J. Zerafa, M. R. Islam, A. Kabir, and G. Xu, “ExTraVis: Exploration

of Traffic Incidents Using Visual Interactive System,” in 25th International

Conference Information Visualisation (IV 2021), IEEE, Institute of Electrical

and Electronics Engineers. Sydney, Australia: IEEE, 2021. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/9582720

[10] B. Lee, P. Isenberg, N. H. Riche, and S. Carpendale, “Beyond mouse and

keyboard: Expanding design considerations for information visualization

interactions,” IEEE Transactions on Visualization and Computer Graphics,

vol. 18, no. 12, pp. 2689–2698, dec 2012. [Online]. Available: https:

//doi.org/10.1109%2Ftvcg.2012.204

[11] R. Amar, J. Eagan, and J. Stasko, “Low-level components of analytic

activity in information visualization,” in IEEE Symposium on Information

Visualization, 2005. INFOVIS 2005. Minneapolis, MN, USA: IEEE, 2005,

pp. 111–117. [Online]. Available: https://ieeexplore.ieee.org/abstract/

document/1532136

[12] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer, “Reactive Vega: A

Streaming Dataflow Architecture for Declarative Interactive Visualization,”

IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1,

pp. 659–668, 2016. [Online]. Available: https://ieeexplore.ieee.org/abstract/

document/7192704

[13] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding with

Bloom embeddings, convolutional neural networks and incremental parsing,”

2017, to appear.

[14] V. Setlur, M. Tory, and A. Djalali, “Inferencing Underspecified Natural

Language Utterances in Visual Analysis,” in Proceedings of the 24th

https://ieeexplore.ieee.org/abstract/document/9392708
https://ieeexplore.ieee.org/abstract/document/9392708
https://www.atlantis-press.com/journals/hcis/125959056/view
https://ieeexplore.ieee.org/abstract/document/9582720
https://doi.org/10.1109%2Ftvcg.2012.204
https://doi.org/10.1109%2Ftvcg.2012.204
https://ieeexplore.ieee.org/abstract/document/1532136
https://ieeexplore.ieee.org/abstract/document/1532136
https://ieeexplore.ieee.org/abstract/document/7192704
https://ieeexplore.ieee.org/abstract/document/7192704

References 51

International Conference on Intelligent User Interfaces, ser. IUI ’19. New

York, NY, USA: Association for Computing Machinery, 2019, p. 40–51.

[Online]. Available: https://dl.acm.org/doi/abs/10.1145/3301275.3302270

[15] D. H. Kim, E. Hoque, and M. Agrawala, “Answering Questions about

Charts and Generating Visual Explanations,” in Proceedings of the 2020 CHI

Conference on Human Factors in Computing Systems. New York, NY, USA:

Association for Computing Machinery, 2020, pp. 1–13. [Online]. Available:

https://dl.acm.org/doi/abs/10.1145/3313831.3376467

[16] A. Kumar, S. Dikshit, and V. H. C. Albuquerque, “Explainable

Artificial Intelligence for Sarcasm Detection in Dialogues,” Wireless

Communications and Mobile Computing, vol. 2021, 2021. [Online]. Available:

https://www.hindawi.com/journals/wcmc/2021/2939334/

[17] M. R. Islam, S. Liu, X. Wang, and G. Xu, “Deep learning for misinformation

detection on online social networks: a survey and new perspectives,” Social

Network Analysis and Mining, vol. 10, no. 1, pp. 1–20, 2020. [Online].

Available: https://link.springer.com/article/10.1007/s13278-020-00696-x

[18] K. Cox, R. E. Grinter, S. L. Hibino, L. J. Jagadeesan, and D. Mantilla,

“A Multi-Modal Natural Language Interface to an Information Visualization

Environment,” International Journal of Speech Technology, vol. 4, no. 3,

pp. 297–314, 2001. [Online]. Available: https://link.springer.com/article/10.

1023/A:1011368926479

[19] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios,

“DataTone: Managing Ambiguity in Natural Language Interfaces for Data

Visualization,” in Proceedings of the 28th Annual ACM Symposium on User

Interface Software & Technology, ser. UIST ’15. New York, NY, USA:

Association for Computing Machinery, 2015, p. 489–500. [Online]. Available:

https://dl.acm.org/doi/abs/10.1145/2807442.2807478

[20] Y. Sun, J. Leigh, A. Johnson, and S. Lee, “Articulate: A Semi-

automated Model for Translating Natural Language Queries into Meaningful

Visualizations,” in Smart Graphics, R. Taylor, P. Boulanger, A. Krüger,

and P. Olivier, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,

pp. 184–195. [Online]. Available: https://rd.springer.com/chapter/10.1007/

978-3-642-13544-6 18

[21] B. Yu and C. T. Silva, “FlowSense: A Natural Language Interface for

Visual Data Exploration within a Dataflow System,” IEEE Transactions

https://dl.acm.org/doi/abs/10.1145/3301275.3302270
https://dl.acm.org/doi/abs/10.1145/3313831.3376467
https://www.hindawi.com/journals/wcmc/2021/2939334/
https://link.springer.com/article/10.1007/s13278-020-00696-x
https://link.springer.com/article/10.1023/A:1011368926479
https://link.springer.com/article/10.1023/A:1011368926479
https://dl.acm.org/doi/abs/10.1145/2807442.2807478
https://rd.springer.com/chapter/10.1007/978-3-642-13544-6_18
https://rd.springer.com/chapter/10.1007/978-3-642-13544-6_18

References 52

on Visualization and Computer Graphics, vol. 26, no. 1, pp. 1–11, 2020.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8807265

[22] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang, “Eviza:

A natural language interface for visual analysis,” in Proceedings of the 29th

Annual Symposium on User Interface Software and Technology, ser. UIST ’16.

New York, NY, USA: Association for Computing Machinery, 2016, p. 365–377.

[Online]. Available: https://dl.acm.org/doi/abs/10.1145/2984511.2984588

[23] E. Hoque, V. Setlur, M. Tory, and I. Dykeman, “Applying Pragmatics

Principles for Interaction with Visual Analytics,” IEEE Transactions on

Visualization and Computer Graphics, vol. 24, no. 1, pp. 309–318, 2018.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8019833

[24] L. Shen, E. Shen, Y. Luo, X. Yang, X. Hu, X. Zhang, Z. Tai, and J. Wang,

“Towards natural language interfaces for data visualization: A survey,”

IEEE Transactions on Visualization and Computer Graphics, pp. 1–1, 2022.

[Online]. Available: https://doi.org/10.1109%2Ftvcg.2022.3148007

[25] J. Hu, “12explainable deep learning for natural language processing,” Ph.D.

dissertation, KTH Royal Institute of Technology, 2018. [Online]. Available:

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254886

[26] T. Spinner, U. Schlegel, H. Schäfer, and M. El-Assady, “explAIner:

A Visual Analytics Framework for Interactive and Explainable Machine

Learning,” IEEE Transactions on Visualization and Computer Graphics,

vol. 26, no. 1, pp. 1064–1074, 2020. [Online]. Available: https:

//ieeexplore.ieee.org/abstract/document/8807299

[27] M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, and

P. Sen, “A Survey of the State of Explainable AI for Natural

Language Processing,” in Proceedings of the 1st Conference of the Asia-

Pacific Chapter of the Association for Computational Linguistics and the 10th

International Joint Conference on Natural Language Processing. Suzhou,

China: Association for Computational Linguistics, Dec. 2020, pp. 447–459.

[Online]. Available: https://aclanthology.org/2020.aacl-main.46

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding,”

in Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

https://ieeexplore.ieee.org/abstract/document/8807265
https://dl.acm.org/doi/abs/10.1145/2984511.2984588
https://ieeexplore.ieee.org/abstract/document/8019833
https://doi.org/10.1109%2Ftvcg.2022.3148007
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254886
https://ieeexplore.ieee.org/abstract/document/8807299
https://ieeexplore.ieee.org/abstract/document/8807299
https://aclanthology.org/2020.aacl-main.46

References 53

Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association

for Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online]. Available:

https://aclanthology.org/N19-1423

[29] A. Kumar Sharma, S. Hazra, and A. Professor, “10. Application of

Deep Learning Techniques for Text Classification on Small Datasets,”

International Journal of Engineering Science and Computing, vol. 8, no. 4,

pp. 17 212–17 213, 2018. [Online]. Available: http://ijesc.org/

[30] H. Liu, Q. Yin, and W. Y. Wang, “Towards Explainable NLP: A Generative

Explanation Framework for Text Classification,” Tech. Rep. [Online].

Available: https://www.pcmag.com/

[31] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks

for text classification,” Advances in neural information processing systems,

vol. 28, 2015.

[32] M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, and P. Sen, “A Survey of

the State of Explainable AI for Natural Language Processing,” Tech. Rep.

[Online]. Available: https://xainlp2020.github.io/xainlp/

[33] M. A. Yalcin, N. Elmqvist, and B. B. Bederson, “Keshif: Rapid and

expressive tabular data exploration for novices,” IEEE Transactions on

Visualization and Computer Graphics, vol. 24, no. 8, pp. 2339–2352, aug

2018. [Online]. Available: https://doi.org/10.1109%2Ftvcg.2017.2723393

[34] M. Vartak, S. Madden, A. Parameswaran, and N. Polyzotis, “SeeDB,”

Proceedings of the VLDB Endowment, vol. 7, no. 13, pp. 1581–1584, aug

2014. [Online]. Available: https://doi.org/10.14778%2F2733004.2733035

[35] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,

and J. Heer, “Voyager: Exploratory analysis via faceted browsing of

visualization recommendations,” IEEE Transactions on Visualization and

Computer Graphics, vol. 22, no. 1, pp. 649–658, jan 2016. [Online]. Available:

https://doi.org/10.1109%2Ftvcg.2015.2467191

[36] P. L. M. Olivia Nix, “Now in beta: Ask questions of your data with natural

language, schedule your tableau prep flows,” Oct 2018. [Online]. Available:

https://www.tableau.com/

[37] “Data visualization: Microsoft power bi.” [Online]. Available: https:

//powerbi.microsoft.com/en-us/

https://aclanthology.org/N19-1423
http://ijesc.org/
https://www.pcmag.com/
https://xainlp2020.github.io/xainlp/
https://doi.org/10.1109%2Ftvcg.2017.2723393
https://doi.org/10.14778%2F2733004.2733035
https://doi.org/10.1109%2Ftvcg.2015.2467191
https://www.tableau.com/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/

References 54

[38] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon,

“ManyEyes: a site for visualization at internet scale,” IEEE Transactions

on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1121–1128, nov

2007. [Online]. Available: https://doi.org/10.1109%2Ftvcg.2007.70577

[39] C. Stolte and P. Hanrahan, “Polaris: a system for query, analysis

and visualization of multi-dimensional relational databases,” in IEEE

Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

IEEE Comput. Soc. [Online]. Available: https://doi.org/10.1109%2Finfvis.

2000.885086

[40] A. Satyanarayan and J. Heer, “Lyra: An interactive visualization design

environment,” Computer Graphics Forum, vol. 33, no. 3, pp. 351–360, jun

2014. [Online]. Available: https://doi.org/10.1111%2Fcgf.12391

[41] D. Ren, T. Hollerer, and X. Yuan, “iVisDesigner: Expressive interactive

design of information visualizations,” IEEE Transactions on Visualization

and Computer Graphics, vol. 20, no. 12, pp. 2092–2101, dec 2014. [Online].

Available: https://doi.org/10.1109%2Ftvcg.2014.2346291

[42] M. Bostock, V. Ogievetsky, and J. Heer, “D3 Data-Driven Documents,” IEEE

Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp.

2301–2309, 2011. [Online]. Available: https://ieeexplore.ieee.org/abstract/

document/6064996

[43] L. Wilkinson, The Grammar of Graphics. Springer New York, 1999.

[Online]. Available: https://doi.org/10.1007%2F978-1-4757-3100-2

[44] H. Wickham, “ggplot2,” Wiley interdisciplinary reviews: computational

statistics, vol. 3, no. 2, pp. 180–185, 2011.

[45] W. Chang and H. Wickham, “ggvis: Interactive grammar of graphics,” R

package version0, vol. 4, 2016.

[46] K. Cox, R. E. Grinter, S. L. Hibino, L. J. Jagadeesan, and D. Mantilla,

“A multi-modal natural language interface to an information visualization

environment,” International Journal of Speech Technology, vol. 4, no. 3, pp.

297–314, 2001.

[47] T. Ball, C. Colby, P. Danielsen, L. J. Jagadeesan, R. Jagadeesan, K. Läufer,

P. Mataga, and K. Rehor, “Sisl: Several interfaces, single logic,” International

Journal of Speech Technology, vol. 3, no. 2, pp. 93–108, 2000.

https://doi.org/10.1109%2Ftvcg.2007.70577
https://doi.org/10.1109%2Finfvis.2000.885086
https://doi.org/10.1109%2Finfvis.2000.885086
https://doi.org/10.1111%2Fcgf.12391
https://doi.org/10.1109%2Ftvcg.2014.2346291
https://ieeexplore.ieee.org/abstract/document/6064996
https://ieeexplore.ieee.org/abstract/document/6064996
https://doi.org/10.1007%2F978-1-4757-3100-2

References 55

[48] K. Dhamdhere, K. S. McCurley, R. Nahmias, M. Sundararajan, and Q. Yan,

“Analyza: Exploring data with conversation,” in Proceedings of the 22nd

International Conference on Intelligent User Interfaces. ACM, mar 2017, pp.

493–504. [Online]. Available: https://doi.org/10.1145%2F3025171.3025227

[49] “Ibm analytics.” [Online]. Available: https://www.ibm.com/au-en/analytics

[50] “Wolfram: Alpha.” [Online]. Available: https://www.wolframalpha.com/

[51] “Thoughtspot; ai-driven analytics,” Apr 2022. [Online]. Available: https:

//www.thoughtspot.com/

[52] E. Hoque, V. Setlur, M. Tory, and I. Dykeman, “Applying pragmatics princi-

ples for interaction with visual analytics,” IEEE Transactions on Visualiza-

tion and Computer Graphics, vol. 24, no. 1, pp. 309–318, 2018.

[53] A. Srinivasan and J. Stasko, “Orko: Facilitating Multimodal Interaction

for Visual Exploration and Analysis of Networks,” IEEE Transactions on

Visualization and Computer Graphics, vol. 24, no. 1, pp. 511–521, 2018.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/8019860

[54] Y.-H. Kim, B. Lee, A. Srinivasan, and E. K. Choe, “Data@ hand: Fostering

visual exploration of personal data on smartphones leveraging speech and

touch interaction,” in Proceedings of the 2021 CHI Conference on Human

Factors in Computing Systems, 2021, pp. 1–17.

[55] A. Srinivasan, B. Lee, N. H. Riche, S. M. Drucker, and K. Hinckley,

“InChorus: Designing consistent multimodal interactions for data visual-

ization on tablet devices,” in Proceedings of the 2020 CHI Conference on

Human Factors in Computing Systems. ACM, apr 2020. [Online]. Available:

https://doi.org/10.1145%2F3313831.3376782

[56] W. Cui, X. Zhang, Y. Wang, H. Huang, B. Chen, L. Fang, H. Zhang,

J.-G. Lou, and D. Zhang, “Text-to-viz: Automatic generation of infographics

from proportion-related natural language statements,” IEEE Transactions

on Visualization and Computer Graphics, vol. 26, no. 1, pp. 906–916, jan

2020. [Online]. Available: https://doi.org/10.1109%2Ftvcg.2019.2934785

[57] N. Ranjan, K. Mundada, K. Phaltane, and S. Ahmad, “A survey

on techniques in NLP,” International Journal of Computer Applications,

vol. 134, no. 8, pp. 6–9, jan 2016. [Online]. Available: https:

//doi.org/10.5120%2Fijca2016907355

https://doi.org/10.1145%2F3025171.3025227
https://www.ibm.com/au-en/analytics
https://www.wolframalpha.com/
https://www.thoughtspot.com/
https://www.thoughtspot.com/
https://ieeexplore.ieee.org/abstract/document/8019860
https://doi.org/10.1145%2F3313831.3376782
https://doi.org/10.1109%2Ftvcg.2019.2934785
https://doi.org/10.5120%2Fijca2016907355
https://doi.org/10.5120%2Fijca2016907355

References 56

[58] Y. Kang, Z. Cai, C.-W. Tan, Q. Huang, and H. Liu, “Natural language

processing (NLP) in management research: A literature review,” Journal

of Management Analytics, vol. 7, no. 2, pp. 139–172, apr 2020. [Online].

Available: https://doi.org/10.1080%2F23270012.2020.1756939

[59] E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” in Proceedings

of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching

Natural Language Processing and Computational Linguistics. Philadelphia,

Pennsylvania, USA: Association for Computational Linguistics, Jul. 2002,

pp. 63–70. [Online]. Available: https://aclanthology.org/W02-0109

[60] “Corenlp overview.” [Online]. Available: https://stanfordnlp.github.io/

CoreNLP/

[61] “Apache opennlp overview.” [Online]. Available: https://opennlp.apache.org/

[62] “Allennlp - allen institute for ai.” [Online]. Available: https://allenai.org/

allennlp

[63] “Gensim: Topic modelling for humans,” May 2022. [Online]. Available:

https://radimrehurek.com/gensim/

[64] “Textblob: Simplified text processing.” [Online]. Available: https:

//textblob.readthedocs.io/en/dev/

[65] “Nlp architect: Simplified text processing.” [Online]. Available: https:

//intellabs.github.io/nlp-architect/#

[66] “Googlenlp.” [Online]. Available: https://github.com/BrianWeinstein/

googlenlp

[67] flairNLP, “Flairnlp/flair: A very simple framework for state-of-the-

art natural language processing (nlp).” [Online]. Available: https:

//github.com/flairNLP/flair

[68] “Stanza: Overview.” [Online]. Available: https://stanfordnlp.github.io/

stanza/

[69] B. Yu and C. T. Silva, “Visflow-web-based visualization framework for tabu-

lar data with a subset flow model,” IEEE transactions on visualization and

computer graphics, vol. 23, no. 1, pp. 251–260, 2016.

[70] L. Shen, E. Shen, Y. Luo, X. Yang, X. Hu, X. Zhang, Z. Tai, and J. Wang,

“Towards Natural Language Interfaces for Data Visualization: A Survey,”

https://doi.org/10.1080%2F23270012.2020.1756939
https://aclanthology.org/W02-0109
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://opennlp.apache.org/
https://allenai.org/allennlp
https://allenai.org/allennlp
https://radimrehurek.com/gensim/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://intellabs.github.io/nlp-architect/#
https://intellabs.github.io/nlp-architect/#
https://github.com/BrianWeinstein/googlenlp
https://github.com/BrianWeinstein/googlenlp
https://github.com/flairNLP/flair
https://github.com/flairNLP/flair
https://stanfordnlp.github.io/stanza/
https://stanfordnlp.github.io/stanza/

References 57

IEEE Transactions on Visualization and Computer Graphics, vol. XX, no. X,

pp. 1–20, 2022.

[71] J. Wei and K. Zou, “EDA: Easy data augmentation techniques for

boosting performance on text classification tasks,” in Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP). Association for Computational Linguistics, 2019.

[Online]. Available: https://doi.org/10.18653%2Fv1%2Fd19-1670

[72] J. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi,

“TextAttack: A framework for adversarial attacks, data augmentation,

and adversarial training in NLP,” in Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System Demonstrations.

Association for Computational Linguistics, 2020. [Online]. Available:

https://doi.org/10.18653%2Fv1%2F2020.emnlp-demos.16

[73] S. Wang and J. Jiang, “Learning natural language inference with lstm,” arXiv

preprint arXiv:1512.08849, 2015.

https://doi.org/10.18653%2Fv1%2Fd19-1670
https://doi.org/10.18653%2Fv1%2F2020.emnlp-demos.16

	Declaration of Authorship
	Approval
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Challenges
	1.3 Research Contribution
	1.4 Thesis Outline

	2 Literature review
	2.1 Data Visualization: Toolkits, Grammars and Visual Encoding
	2.1.1 Data Visualization: How It Works
	2.1.2 NLI for Data visualization: An interface for visualization

	2.2 Natural Language Processing Toolkits and Approaches
	2.2.1 Natural Language Processing Toolkits
	2.2.2 Rule based Natural Language Processing Approaches
	2.2.3 ML based Natural Language Processing Approaches
	2.2.4 DL based Natural Language Processing Approaches
	2.2.5 RNN and LSTM

	2.3 Explainable AI: Techniques and Tools
	2.3.1 LIME: How it Works?

	3 Proposed Methodology
	3.1 Dataset Acuisation
	3.1.1 QUDA 8quda
	3.1.2 Dataset amendment for this research
	3.1.3 Overview of the final dataset:

	3.2 Dataset Preprocessing
	3.2.1 Data augmentation to balance imbalanced dataset
	3.2.2 Text Preprocessing

	3.3 Model Development for NLI to perform DV
	3.3.1 Approach with rule-based model

	3.4 Approach with ML based model
	3.4.1 Text Preprocessing
	3.4.2 Feature Extraction
	3.4.3 Model development

	3.5 Approach with LSTM-RNN based model
	3.5.1 Tokenizing the words and word embedding
	3.5.2 Padding
	3.5.3 Train, test split
	3.5.4 Model development

	3.6 Model Development for XAI: LIME Pipeline

	4 Experimental Design
	4.1 LSTM Implementation
	4.2 LIME Implementation

	5 Results and Discussions
	5.1 Evaluation Metrics
	5.2 Result Analysis of LSTM
	5.3 Explanation of the produced model using LIME
	5.4 Discussion
	5.4.1 LSTM model on NLP process
	5.4.2 LIME: explain an ML model

	6 Conclusion and Future Work

