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Abstract

Disabilities of the upper limb, which may be caused either due to accidents, neurological disor-

ders, or even birth defects, impose limitations and restrictions on the interaction with a computer

for the concerned individuals, while using a generic optical mouse. In this thesis, we propose

the design and development of the working prototype of a sensor-based wireless head-mounted

Assistive Mouse Controller (AMC), facilitating interaction with a computer for people with up-

per limb disability. Leveraging a combination of low-cost, Inertial Measurement Units (IMUs)

and Infrared (IR) sensors, the proposed AMC tracks the user’s head rotation and cheek mus-

cle twitches for mouse cursor movement on the screen and actuation of different mouse clicks,

respectively. The performance of the AMC has been juxtaposed with that of a generic optical

mouse in different pointing tasks, utilizing Fitts’s law, as well as in typing tasks, using a virtual

keyboard. Furthermore, this work also provides an in-depth analysis of the usability, user satis-

faction, and acceptability of the proposed AMC, featuring the System Usability Scale (SUS), the

Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) framework,

and the Technology Acceptance Model (TAM), respectively. Highlights of the results of these

analyses along with the research challenges and potential avenues for future research have been

reported as well.

Keywords - Upper Limb Disability; Wearable Sensors; Assistive Mouse Controller;

Prototype Development; Fitts’s Law; Usability Analysis; System Usability Scale;

User Satisfaction Analysis; QUEST 2.0; User Acceptability Analysis; Technology

Acceptance Model.
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Chapter 1

Introduction

Physical disability is the complete or partial loss of motor functionality of the human body aris-

ing out of either any disease, birth defect, accidents, or amputation. According to a collaborative

report by the World Health Organization (WHO) and the World Bank (WB) in 2011 [1], it was

stated that about 15.3% (978 million) of the world population (6.4 billion as of 2004) suffered

from “moderate or severe disability”, while 2.9% (185 million) of them had “severe disability”.

In the same report [1], human motor activities have been categorized into 3 correlated areas,

such as –

(a) Impairments, which are related to the abnormalities or the alterations of the structural

units of human body. For example – paralysis, amputation, birth defects, etc.

(b) Activity limitations, which focus on the difficulties faced during execution of a partic-

ular task.

(c) Participation restrictions, the discriminations faced by disabled individuals at differ-

ent points of their daily lives such as employment, transportation, etc.

Compared to the broad spectrum of physical disability, upper limb disability refers to the

complete or partial loss of motor functionalities of the arm, shoulder, and/or hand, which may

be caused due to – stroke [2–5], spinal injury [6, 7], cerebral palsy [8–11], Amyotrophic Lat-

eral Sclerosis (ALS) [12, 13], contractures due to fractures and burns, deformation of limbs at

birth [14, 15] or because of amputation [16–18], etc. Correlating with the categories of human

motor activities as mentioned in the preceding paragraph, these impairments affect the lives

of the disabled people in terms of both activity limitations and participation restrictions [19].

Moreover, research [20–22] findings suggest that such people are more likely to be depressed

due to their limitations in terms of mobility, social engagement, and economic status, thereby,

making their Health-Related Quality of Life (HRQoL), a crucial concern. Therefore, exploring

alternative modalities to overcome the limitations of activity and to ensure unrestricted partic-

ipation, while improving the socio-economic status and HRQoL of the disabled people is still of

interest to the research community [19].
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Due to the technological advancements in the twenty-first century, pervasive and ubiqui-

tous computing [23] have increased our dependency on computers for any task as simple as –

“checking today’s date”, to a complex task, such as – “writing a computer program”. With the

help of a generic computer mouse, a user can move the cursor on the computer screen, actuate

mouse clicks, and perform various other complex interactions, such as – browsing the web, file

navigation, playing games, etc. However, other interacting devices, such as – touchpad, joystick,

trackball, etc. have also been developed for doing the same in different contexts. Although a

keyboard is used for typing and carrying out other relevant tasks on a computer, alternatively,

a mouse or any similar device may be used for the same purpose through a software-defined

on-screen keyboard, otherwise known as a virtual keyboard. From this discussion, it may be

stated that a computer mouse serves as a generic pointing device, ensuring seamless interaction

with a computer for healthy individuals.

Although normal people, due to their physical capability, can use the generic handheld

pointing devices without any difficulties, the scenario is quite different for the people with

upper limb disability, as the corresponding causal factors of such disability hamper motor func-

tionalities in different manners. For example, for patients with ALS, disability is characterized

by motor dysfunctions (e.g., spasticity, muscle weakness or paresis), however, the brain and the

eye functionalities are preserved as residual or unaltered abilities [12, 24–27]. On the contrary,

motor capabilities of upper limb amputees [18] are limited by their amputated body part(s),

respectively. Research have shown that unlike a normal person, the residual sensory abilities

of a disabled individual intensifies over time, compensating for their lost ability [28–32]. For

instance, people suffering from blindness exhibit strong memory [28, 29] and a superior sense

of hearing [30–32] compared to their healthy counterparts. Similarly, people with upper limb

disability, through utilization of their residual motor capabilities, accomplish different tasks in

their daily lives [33–36]. Since a generic computer mouse is hand-held, such people require spe-

cial devices, otherwise known as Assistive Technologies (AT) or Assistive Devices (AD) [37] that

leverage their residual motor capabilities to facilitate alternative input modalities for interacting

with a computer. Hence, any AT that functions as an alternative to a generic computer mouse

or a similar pointing device, facilitating Human-Computer Interaction for a disabled individual,

may be termed as an Assistive Mouse Controller (AMC).
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1.1 Motivation and Scopes

To date, researchers have explored various technologies for developing AMCs, which may be

categorized into 4 categories, such as – 1) Vision-based, 2) Electromyography (EMG)-based, 3)

Electrooculogram (EOG)-based, and 4) Wearables Sensor-based. The motivations behind these

explorations were –

(a) To make interaction with a computer accessible to individuals with upper limb disability.

(b) To analyze the feasibility of different gestures and sensor technologies as an alternative

input modality.

(c) To analyze the influence of different usability and human factors on the acceptance of a

particular technology.

(d) To analyze the impact of such technologies on the HRQoL of the disabled community.

Intuitively, people with a certain disability may find a particular AMC technology convenient

for them, while it might not be the same for people with a different type of disability. As

mentioned earlier, eye movement is one of the residual motor abilities of patients with ALS [12,

24–27]. Therefore, AMC technologies that exploit eye movement tracking, using either Vision-

based [39–42], Electromyography (EMG)-based [43–46], or Electrooculogram (EOG)-based [24,

27, 47, 48] approach, may be more appropriate for them compared to those that exploit Head

Motion Sensing technologies [45, 49–51]. This leads to the consideration of multiple external

factors such as perceived usefulness, perceived ease-of-use, comfort, affordance, accessibility,

satisfaction, etc. while designing acceptable and user-friendly AMCs for people with upper

limb disability [19, 38, 52–59], due to which the development of such AMCs is still an active

research area. To analyze the usability, user satisfaction, and acceptability of different ATs in

general, several frameworks, such as – the System Usability Scale (SUS) [60–65], the Quebec

User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) [25,66–68], and the

Technology Acceptance Model (TAM) [39,53–55,69–74], respectively, have been developed.

Therefore, it may be surmised from this discussion that while developing an AMC, 3 funda-

mental factors need to be considered, such as – 1) the availability of residual motor functional-

ities, 2) the feasibility of existing sensor technologies capable of leveraging these functionalities

as alternative input modalities for interacting with a computer, and 3) the factors (perceived

usefulness, perceived ease-of-use, comfort, affordability, accessibility, etc.) affecting the usability,



Chapter 1. Introduction 4

user satisfaction, and acceptability of the AMC technology under development. The underlying

motivations of this work can be summarized as follows –

(a) The development of AMCs as alternative input modalities to human-computer interaction

for people with upper limb disability is still an active research area.

(b) To the best of our knowledge, a wearable AMC technology, leveraging a combination of

low-cost IMUs and IR sensors for registering head movements and cheek muscle twitches,

respectively, has not yet been conceptualized.

(c) For a wearable AMC, extensive investigation into its performance in different tasks, us-

ability, user satisfaction, and its acceptance to users, have not been conducted in prior

studies, paving the way for a novel investigation.

1.2 Objective

Based on the overview, our objective is to design, develop and evaluate, a sensor-based head-

mounted wireless AMC, facilitating an alternative input modality to human-computer inter-

action, for people with upper limb disability. In this work, we have used a combination of

– 1) low-cost Commercial Off-The-Shelf (COTS) Inertial Measurement Unit (IMU), featuring

MPU9250, as motion sensor for capturing head-movement for cursor control and 2) Infrared

(IR) sensors for detecting cheek muscle twitches for actuating mouse clicks, while overcoming

some, if not all the shortcomings of the existing state-of-the-art AMCs. In short, the following

aspects have been addressed -

(a) Design and development of a working prototype of a sensor-based wearable AMC, lever-

aging head movements and cheek muscle twitches, while considering different principles

associated with the design of wearable assistive technologies [19,38]. Apart from the basic

mouse controls, such as – cursor movement and mouse clicks, we have defined a special

gesture that will allow a user to enable or disable the AMC, so that he/she can interact

freely with his/her surroundings.

(b) Comparative analysis of the performance of people with upper limb disability and their

healthy counterparts, leveraging the proposed AMC and a generic optical mouse as in-

teraction devices, respectively, in different tasks, such as – pointing and typing. In the

case of pointing tasks, the comparative analysis has been performed applying Fitts’s law,

where a novel derivation for accurately quantifying the perceived difficulty of such tasks
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under the influence of subjective behavior and context of interaction has been proposed

and evaluated. For the typing tasks, the comparative analysis has been performed with

the help of relevant performance metrics, derived from the users’ data.

(c) Investigation into the usability, user satisfaction, and user acceptance of the proposed

AMC, leveraging different state-of-the-art questionnaires and frameworks.

1.3 Thesis Outline

In Chapter 1, we have discussed our study in a precise and concise manner. Chapter 2 deals

with the necessary literature review for our study and their development so far. In Chapter 3,

we have elaborated on our approach to the design and development of the proposed AMC from

both hardware and software perspectives. Chapter 4 elaborates on the different experiments

conducted as part of this study, their results, and observations. Finally, Chapter 5 provides

a summary of this study in terms of research challenges, future research scope, and concluding

remarks. The final segment of this study contains the references to all the related works in this

area of research.
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Chapter 2

Literature Review

Due to the recent technological advancements, the design and development of Assistive Mouse

Controllers (AMC) for physically challenged individuals have gained a new dimension, making

it a prominent research area. Interaction data from the users may be recorded either using

computer vision, electromyography, electrooculogram, or wearable sensors. These data are further

processed, and mapped to appropriate system calls to provide an alternative input modality for

the physically challenged people to interact with a computer. In this section, we elaborate on

the existing state-of-the-art AMCs, their limitations, and justify our scope and motivation for

developing a sensor-based wireless head-mounted AMC.

2.1 Existing Assistive Mouse Controllers (AMCs)

2.1.1 Vision-based AMCs

Existing vision-based AMCs in the literature map a user’s eye gaze to a particular screen

coordinate through gaze fixations, extracted from real-time video feed either using eye trackers,

webcams, or other types of imaging sensors such as an optical mouse for moving the cursor. For

mouse click operations, dwell-time-based or eye blink-based mechanisms are among the popular

ones. However, before such AMCs can be used, user’s eye gaze needs to be calibrated using

different calibration techniques.

Using a low-cost eye tracker, such as the Eye Tribe Tracker, Zhang et al. [39] have developed

a software application for mouse control through eye gaze. Their proposed system architecture,

as shown in Fig. 2.1a, is divided into two engines, such as the Eye Tracking Engine and the

Mouse/keyboard Simulation Engine. The Eye Tracking Engine is responsible for mapping the

eye gaze tracking data with mouse cursor movement function. The Mouse/keyboard Simulation

Engine on the other hand, contains the main virtual interface of the application, as shown in

Fig. 2.1b, from which various mouse and keyboard functionalities, such as left-click, right-click,

drag, scroll, etc. can be activated through a short dwelling time measured using eye fixation.

The authors have performed two experiments, a searching task, and a web browsing task and

have evaluated their system using the Technology Acceptance Model (TAM) [53, 54, 69] and
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System Usability Scale (SUS) [61].

Leveraging nose tracking for cursor movement, and either, facial gestures such as eye wink,

eye blink, etc., or dwell-time-based mechanism, researchers [42,75–77] have previously developed

interfaces that provide people with upper limb disability accessibility to a computer, as shown

in Fig. 2.2.

(a) System Architecture. (b) Mouse control toolbar.

Figure 2.1: Eye gaze tracking and dwell time-based Assistive Mouse Controller (AMC) as proposed

by Zhang et al. [39] (image adopted).

(a) (b) (c)

(d)

Figure 2.2: Nose tracking and different facial gestures or dwell time-based Assistive Mouse

Controllers (AMC) as proposed by - (a) Khan et al. [42] (b) Varona et al. [75] (c) Gorodnichy et

al. [76] and (d) Kabra et al. [77] (images adoptedfrom respective sources).
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Researchers [40, 41] have also explored optical mouse sensors, (ADNS-3080 ), as shown in

Fig. 2.3a, as alternatives to eye trackers and webcams for tracking the user’s gaze, in the

development of low-cost and computationally inexpensive AMCs. However, in both studies, an

additional light source had to be incorporated for eye movement tracking with these sensors.

Researchers in [40] have used such imaging sensors for tracking the movement of the episclera

(white part of the eye), as shown in Fig. 2.3b, whereas, in [41], the same has been used for

pupil tracking, as shown in Fig. 2.3c, facilitating mouse cursor movement. Researchers in [41]

have implemented an eye blink-based mechanism for mouse click operations, whereas in [40],

only the feasibility of cursor control through episcleral surface tracking have been explored.

(a)
(b)

(c)

Figure 2.3: (a) Optical Mouse Sensor ADNS-3080. (b) Episcleral movement tracking for mouse

control by Borsato et al. [40] and (c) Eye pupil tracking for mouse control by Tresanchez et al. [41]

(images adopted from [40,41]).

To address the “Midas Touch” problem [78] of dwell-time-based click actuation where, un-

wanted mouse clicks are actuated due to eye gaze fixation, a unique click actuation technique

through muscle shrugging, using either eyebrow shrugging, or opening and closing action of the

jaw, as shown in Fig. 2.4a, was proposed in [79]. Their proposed actuation technique was built



Chapter 2. Literature Review 9

upon the detection algorithms provided by the software packages, “Camera Mouse” [80,81] and

“ClickerAid” [82], as shown in Fig. 2.4b and Fig. 2.4c, respectively.

(a)

(b) (c)

Figure 2.4: (a) Opening and closing action of the jaw for mouse click actuation by Zuniga et al. [79]

(b) Interface of the “Camera Mouse” software package and (c) Interface of the “ClickerAid” software

package (images adopted from [79]).

Figure 2.5: Assistive Mouse Controller (AMC) featuring eye tracking and pressure sensor-based

footwear by Rajanna et al. [83, 84] (image adopted).
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Furthermore, Rajanna et al. [83, 84] have also developed a system for people with arm or

hand impairment that uses eye gaze for pointing at a screen-element while selection is actuated

by exerting pressure on a pressure sensor-based footwear, as shown in Fig. 2.5.

2.1.2 Electromyography (EMG)–based AMCs

Electromyography (EMG) signals refer to the measurement of very low electric potentials gen-

erated due to muscle contractions [85]. These signals can be measured with electrodes placed on

the skin in a non-invasive manner, where the signal amplitudes are proportional to the exerted

muscle force.

For people with upper limb disabilities, especially amputees, EMG signals are retrieved from

the contraction of their residual muscles [86], which can then be used to determine the type

of intended motions, such as - wrist flexion/extension, ulnar/radial deviation [43]. Leveraging

this feature of EMG technology, researchers have explored the feasibility and performance of

myoelectric cursor control for amputees [43] with the help of a myoelectric armband, as shown

in Fig. 2.6a. The EMG band has eight bipolar EMG electrodes, with a sampling rate of 200Hz

at 8-bit resolution. With this configuration, they were able to extract simple amplitude related

features, however, for more complex feature extraction, more electrodes and complex setup are

required. The retrieved muscle contraction signals were transferred wirelessly via Bluetooth.

Before the device could be used for mouse cursor control, the users had to go through a training

phase for device calibration and preparation for the subsequent test phase.

(a) (b) (c)

Figure 2.6: (a) Myoelectric armband worn by an amputee for retrieving EMG signals due residual

muscle contractions. (b) User-feedback interface during training phase. and (c) Mouse cursor control

interface during testing phase (images adopted from [43]).

As shown in Fig. 2.6b, from the myoelectric signals, obtained during the training phase,

three types of feedbacks were visualized, such as - 1) Estimated position of the cursor, indicated
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by a red cross, 2) Current position of the target, indicated by a large green circle, and 3) Potential

future target positions, indicated by small green circles. During the training phase, different

parameters are determined and continuously adjusted for proper detection of intended motion.

After 5 iterations of the training phase, the users were given a different screen containing several

target locations in green circles, as shown in Fig. 2.6c. Their objective was to move the red

cross to various target locations, while maintaining position for about 1 second. Their research

outcomes suggest feasibility of the EMG based AMC technology, at the cost of more complex

and expensive setup.

For making computers accessible to people with high-level spinal cord injury, researchers

in [44] have proposed two cursor control methods, “auto-rotate” and “manual rotate” using a

single-site surface EMG sensor. In connection to this, they had used two disposable Ag/AgCl

center snap electrodes, which were placed on the temporalis muscle of the users, 2.5cm apart,

and a gold disc electrode with conductive paste was placed on the ear lobe as reference point.

In the “auto-rotate” method, the cursor was set to rotate automatically at a predetermined

velocity. It moved forward only when the temporalis muscle was contracted. On the contrary,

a subject had control over both forward and rotational motion of the cursor through muscle

contraction. A threshold value was set to distinguish between signals that indicated intention

of the user to manipulate forward or rotational motions of the cursor. They evaluated their

proposed methodology through a pointing task-based experiment, utilizing Fitts’s law. The

outcome of their study suggests the viability of an AMC using such an EMG sensor. The user

interface of their control methods is outlined in Fig. 2.7.

Figure 2.7: User interface for manipulating rotational and forward motions of mouse cursor,

leveraging single-site EMG signal acquisition (image adopted from [44]).
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2.1.3 Electrooculogram (EOG)-based AMCs

Electrooculogram (EOG) is used to measure the corneal-retinal Transepithelial Potential Differ-

ence (TEPD), which is produced due to horizontal and vertical movements of the eye [26,47,48].

For measuring TEPD of a particular eye, a pair of skin electrodes are attached on both sides

of the eye and a third electrode, acting as a ground or reference, is normally placed on the

forehead or earlobe [48], as shown in Fig. 2.8. TEPD is likely to fluctuate in different lighting

conditions, making light adaptation and training an integral part of EOG-based AMCs. To

reiterate, although ALS is a neurodegenerative disorder, it does not affect the brain functions

or the eye movement, and therefore, EOG-Based systems are best suited for people suffering

from ALS [25,26].

Figure 2.8: Placement of electrodes for Electrooculogram (EOG) signal acquisition (image adopted

from [93]).

To facilitate typing through recognition of eye movement patterns, real-time EOG-based

systems have been developed [24, 27, 89–92] for people with ALS, some of which have been

outlined in Fig. 2.9.
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Electrooculogram (EOG)-
based Typing Interfaces for
people with upper limb

disability.

Figure 2.9: Electrooculogram-based typing interfaces (images adopted from [24,27,97]).

Furthermore, researchers have also developed game interfaces for people with motor disabil-

ities, which are exclusively played through eye movements [93, 94], as outlined in Fig. 2.10.

EOG-based AMCs that leverage eye movements to extract relative gaze position on the screen

have also been proposed [95–99], facilitating interaction with a computer for people suffering

from neurodegenerative disorders.
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(a)

(b)

Figure 2.10: Electrooculogram (EOG)-based assistive gaming interfaces - (a) “tile matching” game

(image adopted from [93] and (b) “baseball” game (image adopted from [94]).

2.2 Sensor-based Wearable AMC Technologies

Apart from Vision, EOG and EMG – based AMCs, sensor-based wearable AMC technologies

have also been developed for assisting people with upper limb disabilities, leveraging their

residual motor functionalities as alternative input modalities. Among these alternatives, head

movement is a natural, effective, and the most common modality for moving a cursor [45,49–51].

Other alternatives include but are not limited to tongue muscles movement [100], and Brain

Computer Interfaces (BCI) [101].

Velasco et al. [51] have developed an AMC for people with cerebral palsy, where the subjects

can move the cursor through their head movements, as shown in Fig. 2.11a. The cursor

movement is mapped with absolute movement of the head. They proposed a pointing facilitation

algorithm “MouseField”, which provides UI elements to have some sort of gravitational effect on
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the cursor. Whenever the cursor comes within a certain radius, Dmin of the UI element, it gets

captured by that element’s gravity field, as shown in Fig. 2.11b. To escape from the gravity

field, the cursor needs to be moved outside a radius of Dmax, or in other words, the cursor will

be free from the gravitational effect at a distance Deff from the center of the element, as shown

in Fig. 2.11c. They had designed a video game, featuring pointing tasks, which had to be

played with and without the “MouseField” algorithm in action.

(a)

(b)
(c)

Figure 2.11: (a) Head mounted motion sensor-based AMC by Velasco et al. [51]. (b) Illustration of

mouse cursor capture by a UI element, featuring “MouseField” algorithm. and (b) Illustration of

mouse cursor release from a UI element, featuring “MouseField” algorithm (images adopted from [51]).

Most of the studies [45, 49, 51], involving head movement detection for cursor control, have

used head-mounted Inertial Measurement Sensors (IMUs) for tracking 3D head movement.

However, Gorji et al. [50] have used Infrared (IR) sensors mounted inside a collar, which is

wearable on the user’s neck, below the chin level, as shown in Fig. 2.12, for measuring user’s

range of head tilt motion. The raw data from the IR sensors were passed through a moving
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average filter on the preceding 15 data from the sensors, for eliminating ambient noises. For

cursor movement, they have designed two separate modes, such as the joystick mode and the

direct mapping mode. In the joystick mode, the cursor is set to move horizontally and vertically

at a specific speed, while the sensor data are used to determine the direction of movement. For

each of the IR sensors, they have determined a lower and upper thresholds during a calibration

phase, which spans only 0.1 seconds, while the user maintains his/her head in resting position.

On the other hand, in the direct mapping mode, the data from the IR sensors are mapped directly

to the cursor position on the screen. Similar to the joystick mode, a calibration phase, lasting

about 4 seconds, is accommodated in the direct mapping mode as well. During this phase, the

user is required to perform a set of training movements, such as moving the head maximally

in up, down, left, and right directions for measuring sensor thresholds in respective directions.

For both of these modes, they conducted two experiments that involved - 1) moving the cursor,

following a predefined path on the screen, and 2) guiding the cursor within a predefined location

on the screen, as shown in Fig. 2.13. They evaluated user performance using Fitts’s law,

while considering the metrics, such as - Index of Difficulty (ID), Path Efficiency (PE), and

Throughput (TP ).

Figure 2.12: Infrared (IR) sensor-based wearable AMC by Gorji et al. [50] (image adopted

from [50]).
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(a) (b) (c) (d)

Figure 2.13: Moving the cursor, following a predefined path on the screen in - (a) joystick mode and

(b) direct mapping mode. Guiding the cursor within a predefined location on the screen in - (c)

joystick mode and (d) direct mapping mode (images adopted from [51]).

For mouse click actuation using wearables, dwell-time-based approach [51], EMG-based

approach [45], BCI-based approach [49,101] have also been explored in the literature. In addition

to these approaches, researchers have also leveraged various residual motor capabilities for

actuating mouse clicks. For example, authors in [102] have used flex sensors for detecting

cheek muscle twitches, whereas tongue muscle was used for clicking a joystick, embedded in a

user-specific mouth retainer, was explored in [100], as shown in Fig. 2.14a and Fig. 2.14b,

respectively.

(a) (b)

Figure 2.14: Mouse click actuation featuring - (a) cheek muscle twitches, registered with flex sensors,

and (b) tongue musccles, registered with joystick button, embedded in a user-specific mouth retainer

(images adopted from [100,102]).

Yamamoto et al. [103] conducted a single case study, involving a user with mixed type of
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cerebral palsy, to verify the use of a wearable and stretchable strain sensor for click actuation.

The authors mainly studied the feasibility of their proposed click actuation method compared to

the user’s previous input method, where pressing left and right buttons of a trackball emulated

left and right mouse clicks, respectively. However, for cursor movement, the user was allowed

to move the track ball with his neck as he used to do it prior to the case study, as shown in

Fig. 2.15a. The proposed stretchable strain sensor, simulated a mouse button release event,

when relaxed, and a mouse button press event, when stretched, as shown in Fig. 2.15b and

Fig. 2.15c, respectively.

(a)
(b) (c)

Figure 2.15: (a) Mouse cursor movement using a trackball. (b) Illustration of mouse button release

mechanism using a stretchable strain sensor. and (b) Illustration of mouse button press mechanism

using a stretchable strain sensor (images adopted from [103]).

2.3 Limitations of Existing AMC Technologies

2.3.1 Limitations of Vision-based AMCs

Processing the high resolution, real-time video feeds from eye trackers and webcams is com-

putationally expensive, and therefore, challenging for devices with low computational power to

ensure smooth user interaction. A critical requirement for vision-based AMCs to work properly

is to ensure proper lighting condition for calibration and accurate detection of facial [42,75–77]

or eye gaze [39–41] features. For eye gaze-based AMCs, gaze tracking may be challenging due to

image resolution, different lighting conditions, user’s dependency on eyeglasses due to poor eye-

sight and skin color of the user. Although eye gaze-based cursor movement has its benefits [58],

there are some inherent issues with this approach from the perspective of user experience, such

as –

(a) As stated in [58], the human eye is not the most accurate pointing device. In addition to
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that, when a user controls a mouse cursor with eye gaze, he/she cannot move the cursor

to a particular Region of Interest (ROI) and fixate on any other screen element at a

different ROI, simultaneously, as opposed to the AMCs developed using head movements

or other interaction techniques.

(b) As the eyes are used both for cursor movement (through eye movement) and mouse click

operations (through eye blink, wink, or dwell time-based mechanism), users may find it

challenging to perform both actions simultaneously.

(c) A particular problem of the dwell-time-based click mechanism using eye gaze fixation is

the “Midas Touch” problem [78], arising from unwanted selection of interface elements

due to low pointing accuracy of eye gaze-based AMCs [58].

(d) Another disadvantage of vision-based AMCs is that existing eye trackers and webcams

can not detect and track a user’s eye gaze beyond a particular distance from the PC or

workstation. As a result, for interacting with the computer, the user has to maintain a

particular distance from the PC or workstation, which under certain circumstances may

be inconvenient and non-ergonomic.

2.3.2 Limitations of Electromyography (EMG)-based AMCs

EMG and BCI signals are susceptible to external noises and are highly dependent on the exact

and accurate placement of electrodes [87] for accurate gesture recognition, every time a user

intends to use it as an AMC. One of the inherent problems of EMG technology is that the

retrieved signals are typically weaker and varies from person to person [88], thereby, requiring a

user-specific device calibration and gesture recognition for further applications such as AMCs.

Although deep learning techniques [46] have been proposed for mitigating the need for user-

specific device calibration and gesture recognition, the computational expense for fulfilling the

simple objective of an AMC seems unreasonable.

2.3.3 Limitations of Electrooculogram (EOG)-based AMCs

Although EOG is a promising low-cost AMC technology that is still being researched, it has its

own set of research challenges, such as –

(a) EOG-based systems are limited by their low spatial resolutions, as it is difficult to estimate

the absolute gaze position due to noise from nearby sources of bio-potentials [27,93,95].
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(b) Pre-processing complexity of EOG signals [93] is comparatively high.

(c) The characteristics of the EOG signals vary due to the variation in the number, the type

(dry or wet), the material, and the placement of electrodes [24,90,91,93–95].

(d) Furthermore, from an ergonomic perspective, it is intuitive that continuous eye move-

ments for controlling a mouse may pose certain health issues, thereby, affecting user’s

performance and comfort.

Based on these discussions, it may be stated that EOG-based AMCs and/or ATs facilitating

human-computer interaction, may be a last resort for people, whose residual motor capability

is their eye movements, for example, patients suffering from ALS.

2.3.4 Limitations of Wearable Sensors-based AMCs

Existing state-of-the-art wearable devices have few limitations. For example, the device in [100]

is totally user specific as it is placed in a retainer inside the user’s mouth. Fatigue of tongue

muscle and hygiene issues may arise due to repeated and prolonged usage. Due to the unrealistic

setup of the IR sensors in [50], the sensor readings are susceptible to fluctuations, due to changes

in lighting conditions. Thus, the performance of the device might not be consistent in all

environments, unless a software or hardware-based compensation mechanism is adopted. The

calibration phase in their proposed device requires a user to perform certain training movements,

which may compromise the ease-of-use of the device. Furthermore, in scenarios that require

rapid movements of the mouse cursor, their device may not be a viable option. Again, the

device proposed by Yamamoto et al. [103] can not be used by individuals with amputated or

disabled upper limbs
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Chapter 3

Proposed Approach

Based on the literature review, few vital points need to be considered during the design and

development of a head mounted prototype of wireless head-mounted Assistive Mouse Controller

(AMC), such as –

(a) The associated design principles.

(b) The factors that may influence user acceptance of a new technology.

(c) The possibilities of any detrimental effects on the user’s health due to prolonged use.

(d) The difficulties that a user may face while using and adapting to the new technology.

(e) The performance reliability of the device.

In connection to this, we have developed a working prototype of a sensor-based wireless head-

mounted AMC, combining low-cost Commercial Off-The-Shelf (COTS) Inertial Measurement

Unit (IMU), and Infrared (IR) sensors to enhance human-computer interaction for individuals

with upper limb disability. It exploits head movements, measured in degrees of rotation using

the IMU, followed by a conversion to 2D screen coordinates, facilitating cursor movement on

the screen. The movement of the cursor is bound with the absolute movement of the head.

Data from the IR sensors are used to detect cheek muscle twitches for mouse click actuation.

As mentioned in the earlier, IR sensor readings are subject to fluctuations due to changes in

the ambient lighting conditions, for which we have designed an algorithm for overcoming this

limitation. Furthermore, we have incorporated gesture control that will enhance the user’s ex-

perience while interacting with the device. A device driver, with customizable features, had

also been designed that handles the mapping of the wirelessly received sensor data from user

interaction with the AMC to appropriate system calls for mouse cursor movement and click

actuation. Most importantly, due to variances in the form-factor of the human head, adjustable

head-straps have been facilitated. The IR sensors are placed on a visor mechanism with ver-

tically adjustable housing, which can be slid up and down, allowing 2 degrees of adjustments

to fit differently shaped cheek muscles for proper sensor reading. The working prototype of the
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AMC is depicted in Fig. 3.1. In this section, we elaborate on the associated design principles,

followed by prototype development, and system design and implementation of the proposed

wearable AMC.
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IR Sensors
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Battery
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Figure 3.1: Working prototype of the proposed Assistive Mouse Controller (AMC).

3.1 Associated Design Principles

Considering the limited motor capabilities of people with upper limb disability, their residual

motor functionalities are usually leveraged as alternative input modalities for human-computer

interaction. These residual capabilities vary from person to person, and therefore, various de-

sign principles play a crucial role in the design and development of a wearable AMC, making

it a challenging process. Previous studies [38], have identified 20 principles associated with the

generic design of such wearables, such as – aesthetics, affordance, comfort, contextual-awareness,

customization, ease-of-use, ergonomics, fashion, intuitiveness, obtrusiveness, overload, privacy,

reliability, resistance, responsiveness, satisfaction, simplicity, subtlety, user-friendliness and
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wearability, which facilitate effective consideration of human factors in the early stages of pro-

totype development and may be grouped into three broad categories, such as – 1) Device

Accessibility Principles (DAP), 2) Device Interaction Principles (DIP) and 3) Device Usability

Principles (DUP). An overview of these design principles is depicted in Fig. 3.2. This section

briefly elaborates on, how and why, these design principles have been either incorporated or

discarded in the context of this study.

Contextual
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Comfort Wearable Device

LEGEND

Device Accessibility Principles (DAP)

Device Interaction Principles (DIP)

Device Usability Principles (DUP)

Figure 3.2: The design principles involved in the development of the proposed Assistive Mouse

Controller (AMC).

3.1.1 Device Accessibility Principles (DAP)

Accessibility relates to the facilitating conditions that allow a physically challenged person to

interact with technology just like their healthy counterparts [104]. As seen from Fig. 3.2,

Device Accessibility Principles (DAP) include contextual awareness, resistance, obtrusiveness,

overload, affordance, wearability, and intuitiveness, which actively facilitate equivalent user

experience despite physical barriers [104]. A brief description of each of these principles, in

connection to this study, is provided in this section.
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3.1.1.1 Contextual Awareness and Resistance

According to Motti et al. [38], contextual awareness and resistance deal with a clear under-

standing of scenarios, where the wearable device will be used, affecting the design process of

the device. For the proposed head-mounted AMC, the target users are people with upper limb

disability, who will not be able to wear the device themselves, and therefore, are most likely

to be dependent on a caregiver. Thus, the device needs to be designed in such a way that it

is easily wearable with assistance from a caregiver. Furthermore, the device is most likely to

be used indoors at room temperature. Therefore, it was not necessary to choose heat-resistant

materials for developing the prototype of the device. However, light weight, yet durable material

was preferred.

3.1.1.2 Obtrusiveness and Overload

For wearable devices, whose functionality depends on sensor-data, mostly gather data from

various anatomical parts of the human body [38]. When it comes to the case of people with

upper limb disability, depending on the type of sensors used, residual motor capabilities play

a significant role. The overload principle deals with designing wearable devices in such a way

that while interacting with the device, primary tasks of a user are not hampered [38].

Therefore, it must be kept in mind that while using wearable devices, a user’s natural

movements should not be hampered in any manner. In other words, the user should be able to

interact with his/her surroundings even while using the device. In the context of the proposed

AMC, the mouse cursor movement is designed in such a way that in whatever direction a user

moves his/her head, the cursor will follow. Again, as mouse clicks are actuated with cheek

muscle twitches, talking while using this device may result in false actuation of mouse clicks.

Considering these scenarios, a user will not be able to interact with his/her surroundings while

using this device. This has led to the consideration of two gesture controls, one for enabling and

the other for disabling the mouse functionality. Furthermore, since head rotation is involved,

the AMC needs to be designed in such a way that it does not disrupt this motion.

3.1.1.3 Affordance and Wearability

Affordance, according to Motti et al. [38], prioritizes the shape and anatomical constraints of

the human body. Given the residual motor capabilities of the people with upper limb disability,

affordance, in this context, resembles whether they can move their head or twitch cheek muscles.
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Wearability and affordance are closely related with each other, as wearability is associated with

the form-factor of wearable devices with respect to that of the human body [38]. While for the

majority of the people with upper limb disability, the ability to perform these movements is

retained, few cases may arise, where these are not retained. In the process of conceptualizing

the proposed AMC, head movement and cheek muscle twitches, with references to previous

studies [45,49–51,102], were considered as the most natural forms of interaction, which can be

leveraged to develop a non-invasive technology. Thus, in the context of the proposed AMC, only

people with upper limb disability who can move their head freely and perform cheek muscle

twitches, can afford to wear, and use it.

3.1.1.4 Intuitiveness

Intuitiveness, in terms of accessibility, means the capability to immediately perceive the inter-

action mechanism of any wearable device. In other words, it resembles affordance in terms of

human cognition [38]. In the context of this study, any individual with upper limb disabil-

ity, possessing basic knowledge of computing and interacting with different elements of a user

interface, are considered to have the intuitiveness required to use the proposed AMC.

3.1.2 Device Interaction Principles (DIP)

Once the Device Accessibility Principles (DAP) have been resolved, the next most important

principles to consider are the Device Interaction Principles (DIP), such as – simplicity, respon-

siveness, reliability, satisfaction, subtlety, privacy, and user-friendliness. These principles, once

incorporated in the design and development lifecycle of wearable devices, play significant roles

in ensuring efficient, effective, and reliable user-interaction. A brief description of each of these

principles, with respect to this study, is provided in this section.

3.1.2.1 Simplicity

Simplicity of interaction is bound with affordance and principles that affect human cognition,

such as intuitiveness, ease-of-use, etc. [38]. In connection to this, we aimed to design the

interaction mechanism of the proposed AMC in such a way that, even a novice user, finds it

simple to use. Hence, the left, right, up, and down movements of the cursor were mapped with

respective head motions, and the left/right mouse clicks were mapped with respective twitching

of the cheek muscles.
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3.1.2.2 Responsiveness

Responsiveness of any wearable device for human-computer interaction is a measure of how fast,

or how slow, the consequence of an action is materialized. Low responsiveness compromises

user acceptance of a particular interaction device, while a highly responsive system allows the

corresponding users to accomplish any task efficiently and productively [38]. In connection

to this, real-time cursor movement and mouse click actuation using the proposed AMC is

significantly important for people with upper limb disability. The raw sensor data are subject

to various noises, and therefore, if these noises are not filtered properly, it will result in a jittery

movement of the mouse cursor, compromising precision and responsiveness in the process. To

facilitate this, different smoothing algorithms were adapted to ensure seamless interaction.

3.1.2.3 Reliability

According to Motti et al. [38], reliability concerns the precision (data accuracy), effectiveness

(expected responses), confidence of interaction, and safety associated with any wearable device.

Given the proposed AMC, the algorithms that were adapted, ensured reasonable precision,

and effective, intuitive, and safe interaction mechanisms, thereby ensuring reliable means of

human-computer interaction.

3.1.2.4 Satisfaction

Satisfaction with wearable devices involves various aspects, such as – effectiveness, performance,

etc. [38]. During the development phase of the proposed AMC, it was hypothesized that the

device would be able to meet user satisfaction, given its simple, reliable, and intuitive interaction

mechanism. To get a complete picture of user satisfaction with the AMC, we have used the

Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) [66], which

will be elaborated in section 4.4, “User Satisfaction Analysis of the Assistive Mouse

Controller (AMC)”. To summarize, the users were satisfied with the overall performance of

the proposed AMC.

3.1.2.5 Subtlety

Subtlety refers to the discreetness of user-interaction such that it does not become a source of

disturbance for others. Furthermore, it also involves ensuring interaction mechanism of wearable

devices, such that it prevents drawing unnecessary attention from people, compromising privacy



Chapter 3. Proposed Approach 27

[19, 38]. Initially, when conceptualizing the interaction mechanism of the proposed AMC, a

provision for auditory feedback was considered, every time a user actuated left/right mouse

click. However, considering the subtlety of interaction, we realized that such feedback would

be annoying for the users and people near them, which might compromise users’ satisfaction

with the device. Furthermore, it would draw unnecessary attention of people nearby, which is

undesirable.

3.1.2.6 Privacy

Privacy is related to subtlety of interaction, where information intended for the user does not

become a source of disturbance for his/her surrounding [38]. It also concerns collection of users’

personal or interaction data without their consent [19]. However, to interact with a computer

with the proposed AMC, the users did not require opening any account. Furthermore, the

device is an alternative means of controlling a mouse, and therefore it does not gather any sort

of personal or interaction data that the users might consider, a breach of their privacy.

3.1.2.7 User-Friendliness

User-friendliness may be correlated with principles, such as – intuitiveness, simplicity, subtlety,

and privacy, which affect user satisfaction with a wearable device. Given that these principles

were considered while developing the AMC, it may be stated that the device is user-friendly,

which will be further analyzed in section 4.4, “User Satisfaction Analysis of the Assis-

tive Mouse Controller (AMC)”.

3.1.3 Device Usability Principles (DUP)

Usability of a prototype may be considered as the last stage of developing a wearable device.

The Device Usability Principles (DUP) primarily encapsulate the idea of how easily a user

can adapt to a particular wearable device [104], which influences its user acceptability. The

contributing principles in this regard are – ergonomics, comfort, customization, ease-of-use,

aesthetics, and fashion. A brief description of each of these principles, in the context of this

study, is provided in this section.

3.1.3.1 Ergonomics, Customization, and Comfort

The principles, ergonomics, customization, and comfort, are inter-related. With respect to the

human anatomy, ergonomics, in the context of this study, is the process of designing wearable
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devices in such a way that they are a good fit for the targeted user base [38,105]. Comfort with

any wearable device is highly influenced by its ergonomic design, which may include factors

such as – shape, weight, flexibility, tightness, etc. of the device. Customization is another

important factor, which is correlated with these factors, which can be described from both

software and hardware perspectives of a wearable device. For example, the adjustable head

straps and IR sensor housing of the proposed AMC are customizable features from a hardware

perspective, while the device driver features, such as – mouse sensitivity, invert mouse-click,

etc., are customizable features from a software perspective.

3.1.3.2 Ease-of-Use

Ease-of-use of any system, according to David et al. is defined as, “the degree to which a person

believes that using a particular system would be free of effort” [53, 54]. Utmost priority was

given in the design and development of the proposed AMC to ensure its ease-of-use. However,

this can only be verified by the stakeholders of this device from their first-hand interaction with

it. We will verify this aspect of the device in details in section 4.3, “Usability Analysis of

the Assistive Mouse Controller (AMC)”, section 4.4, “User Satisfaction Analysis

of the Assistive Mouse Controller (AMC)”, and section 4.5, “User Acceptability

Analysis of the Assistive Mouse Controller (AMC)”. To summarize, the users who had

interacted with the AMC, were satisfied with its ease-of-use.

3.1.3.3 Aesthetics and Fashion

Aesthetics of a wearable device concerns the level of attraction that a user possesses towards

it. It may be due to its physical appearance or functionality for the intended use case [19, 38].

Fashion, on the other hand, affects user perception of comfort or desirability of the wearable

device [38]. In the context of this study, comfort, functionality, and physical appearance of

the AMC were sequentially prioritized, which we believed will enhance the desirability of the

device. We will analyze the desirability or acceptance of the device leveraging the Technology

Acceptance Model (TAM) [53, 54, 69] in details later, in section 4.5, “User Acceptability

Analysis of the Assistive Mouse Controller (AMC)”.

3.2 Prototype Development

Considering the design principles related to the accessibility, interaction, and usability of wear-

able assistive technologies, as discussed in section 3.1, “Associated Design Principles”,
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we have fabricated a working prototype of the proposed head-mounted AMC, as shown in

Fig. 3.3a. The prototype is shaped after a helmet, with a visor-like arch that can be rotated

up and down. The main purpose of the visor is to house the IR sensor adjustment mechanism,

as shown in Fig. 3.3a and Fig. 3.3b, and to make it easier for the user to wear the AMC. The

prototype of the proposed Assistive Mouse Controller (AMC) comprises three separate entities,

as outlined in Fig. 3.3, such as – 1) a transmitter unit, 2) a receiver unit, and 3) a device

driver software. The transmitter unit, shaped as a helmet, is basically the wearable part of the

AMC, which contains all the sensors, microcontroller, wireless communication module, power

source and is responsible for sensor data acquisition, processing, and wireless transmission to a

PC via the receiver unit. The form-factor of human head varies across humans. Therefore, to

ensure wearability of the AMC by people with varying head sizes, adjustable head straps have

been facilitated. An inherent challenge with actuating mouse clicks with cheek muscle twitches

is that the cheek shape varies from person to person as well, resulting in different patterns of

cheek muscle movements. So, to ensure proper actuation of mouse clicks, the IR sensors have

also been made adjustable to make the AMC usable by people with different cheek shape, as

depicted in Fig. 3.3b.

The receiver unit connects to a PC and is responsible for retrieving data from the transmitter

unit, wirelessly. These data are then mapped to appropriate system calls with the help of a

custom device driver software, enabling mouse control.



Chapter 3. Proposed Approach 30

Right IR Sensor
Housing

Left IR Sensor
Housing

Background Light
Blocking Shield

Visor Hinge

Adjustable Straps
Slide Up

Visor, holding the
IR Sensors

Slide Down

Rotate Down

Rotate Up

Microcontroller

Inertial Measurement Unit

RF-Module

Battery

Transmitter Unit

IR Sensor Adjustment
Mechanism

(a)

(c)

(d)

IR Transmitter

Slide Up

Slide Down

IR Sensor
Adjustment
Mechanism IR Receiver

IR Sensor
Adjustment
Rail

Background Light
Blocking Shield

(b)

Figure 3.3: The constituent elements of the proposed Assistive Mouse Controller (AMC). (a) The

wearable transmitter unit, for sensor data acquisition and transmission, (b) IR sensor housing and

adjustable mechanism, (c) the receiver unit, for wireless retrieval of sensor data and forwarding those

to the device driver software, and (d) the custom device driver software for mapping sensor data to

system calls for mouse control.
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Figure 3.4: Yaw and pitch movements of the human head.

Two types of sensors, each for a different purpose, were used in the proposed AMC. First,

the Inertial Measurement Unit (IMU), featuring an MPU9250 (a combination of a 3-axis ac-

celerometer, a 3-axis gyroscope, and a 3-axis magnetometer). Second, one pair of IR sensors

(transmitter and receiver) per cheek (left and right), to detect cheek muscle twitches for mouse
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click actuation. The purpose of the IMU is to measure the yaw (horizontal rotation of head

about the z-axis) and the pitch (vertical rotation of head about the y-axis) angles of head rota-

tion, as shown in Fig. 3.4, facilitating horizontal and vertical movements of the mouse cursor

on the screen, respectively. A user can ensure full screen coverage of the cursor by rotating

his/her head by only ±15◦ both horizontally and vertically, which according to experts is well

within the ergonomic range of motion of the human head [106,107].

3.3 System Design and Implementation

In this section, we provide a walkthrough of the sequence of steps involved in processing various

sensor data to facilitate mouse control using our proposed AMC.

3.3.1 Transmitter Unit: Sensor Data Acquisition and Processing

For generating the yaw and pitch angles of head rotation, the raw readings from the accelerom-

eter, the gyroscope, and the magnetometer, must be passed through an orientation filter based

on a sensor fusion algorithm. In connection to this, we have used the popular, robust, and com-

putationally inexpensive orientation filter for IMUs, known as the Madgwick filter [108, 109],

which prevents accumulation of angular measurement errors over time, while having insignifi-

cant (< 5◦) instantaneous measurement errors. Furthermore, the mouse cursor movement on

the screen, is mapped to the absolute rather than relative movement of the head to prevent error

accumulation overtime. Madgwick filter internally handles the calculations using quaternions

which prevents Gimbal lock [108,109].

The yaw and pitch angles are measured relative to a reference zero point. This point is

considered as the orientation of the user’s head at device startup, while focusing on the screen

at its center. The corresponding measurements at this stage are measured as the offset angles,

yawoffset and pitchoffset. Therefore, at startup, the proposed AMC goes through a calibration

phase (8 − 10 seconds), during which the user orients his/her head towards the middle of the

screen and holds position until they hear 3 consecutive beeps. The reference values, yawoffset,

pitchoffset, are calculated as the means of yaw and pitch angles, obtained during the calibration

phase, following Eq. 3.1 and Eq. 3.2, respectively, where n is the number of observations of
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each of these angles during this phase.

yawoffset =
1

n

n∑
i=0

yawi (3.1)

pitchoffset =
1

n

n∑
i=0

pitchi (3.2)

Finally, to get the offset adjusted yaw and pitch angles, yaw
′
and pitch

′
, relative to the

reference zero point, the offset values, yawoffset and pitchoffset, are subtracted from the raw

yaw and pitch angles, as shown in Eq. 3.3 and Eq. 3.4, respectively.

yaw
′
= yaw − yawoffset (3.3)

pitch
′
= pitch− pitchoffset (3.4)

Analogous to measuring head rotation angles, mouse clicks are actuated when the differences

between the left and right IR sensor readings, IRLeft and IRRight, and the respective reference

values, IRRef
Left and IRRef

Right, exceed an empirically determined threshold. The values of IRRef
Left

and IRRef
Right are measured as the means of the respective values, IRLeft and IRRight, obtained

during the calibration phase, following Eq. 3.5 and Eq. 3.6, respectively, while the cheek

muscles of the user are in relaxed state.

IRRef
Left =

1

n

n∑
i=0

IRLeft (3.5)

IRRef
Right =

1

n

n∑
i=0

IRRight (3.6)

The third beep at the end of the calibration phase indicates that the device has been cal-

ibrated, and the user is free to move his/her head or twitch cheek muscles for controlling the

mouse. After that the values yaw
′
, pitch

′
, IRLeft, IRRight, IR

Ref
Left, and IRRef

Right are transmit-

ted to the receiver unit, connected with the PC, for further processing. Considering the design

principles, obtrusiveness, and overload, two gesture controls, one for enabling and the other for

disabling the mouse functionality of the AMC have been incorporated. For disabling the mouse,

a user has to rotate his/her head down to about 35◦ and twitch both cheek muscles, after which

they can easily interact with their surroundings. During this time, no data will be transmitted

to the receiver unit. For re-enabling the mouse, the user has to rotate his head up to about

35◦ and twitch both cheek muscles, after which data transmission will be re-initiated, and the

mouse can be controlled as before.
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3.3.2 Receiver Unit: Processed Data Retrieval

Upon receiving the processed values from the transmitter unit, the values yaw
′
, pitch

′
, IRLeft,

and IRRight, are passed through a smoothing filter, which calculates the weighted averages of the

respective current and previous values of these readings for noise removal. Once smoothened, the

yaw
′
and pitch

′
angles are converted to a value between 0 and 1 through min-max normalization

for generating the screen coordinates (screenx and screeny), later in the device driver software.

These data are then transferred to the device driver software via serial communication for

invoking appropriate system functions, which give the user control over the computer mouse.

3.3.3 Device Driver Software: System Function Invocation

The min-max normalized values of the yaw
′
and pitch

′
angles, received via serial communi-

cation from the receiver unit, are converted into screen coordinates (screenx and screeny) by

multiplying with the screen resolution, fetched from the operating system, as shown in Eq. 3.7

and Eq. 3.8, respectively. These coordinates are then used by the driver software for moving

the mouse cursor to the desired location on the screen.

screenx = minmax(yaw
′
)× screenwidth (3.7)

screeny = minmax(pitch
′
)× screenheight (3.8)

As mentioned earlier, mouse clicks are actuated if the difference between IR sensor reading

and its reference value, due to cheek muscle twitches, exceeds a certain threshold value. In such

cases, the system function that simulates a “mouse button press” event, is invoked. Otherwise,

the system function that simulates a “mouse button release” event, is invoked. A workflow

diagram showing the different steps of sensor data acquisition, processing, screen coordinate

generation, and mouse click actuation, distributed across the 3 different entities of the proposed

AMC, is outlined in Fig. 3.5. In the next section, we will elaborate on our experimental

procedures, where we investigate different aspects of the proposed Assistive Mouse Controller

(AMC), such as – performance in pointing and typing tasks, usability analysis, user satisfaction

analysis, and device acceptability analysis.
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Figure 3.5: A workflow diagram of sensor data acquisition, processing, and mouse control signal

generation using the proposed Assistive Mouse Controller (AMC).
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Chapter 4

Experimental Design and Result Anal-

ysis

In this section, we elaborate on the suite of experiments that have been conducted for analyzing

the performance, the usability, the user satisfaction, and the user acceptance of the proposed

Assistive Mouse Controller (AMC).

In connection to the performance analysis of the AMC, two within subjects experiments

were conducted, such as –

(a) “Point and Click” experiment, where a user is required to move the cursor over a specific

on-screen target and click on it by twitching their cheek muscles.

(b) “Typing” experiment, where a user is required to type in certain sentences with the help

of a virtual keyboard.

For analyzing the performance of the AMC in these two tasks, real-life individuals with

upper limb disability were recruited for first-hand interaction with a computer using the AMC

only. Furthermore, healthy individuals were also recruited for performing the same two tasks in

a within subject arrangement, with an optical mouse only, such that a comparative performance

analysis of the AMC and an optical mouse in similar tasks could be accommodated, involving

physically challenged and healthy individuals, respectively. The screen resolution was considered

as a control variable while conducting these analyses.

Next, for analyzing perceived usability and satisfaction of the physically challenged individ-

uals from their first-hand experience with the AMC, the System Usability Scale (SUS) [60, 61]

and the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) [66]

framework.

Finally, user acceptance of the AMC was analyzed with the help of a survey questionnaire,

leveraging the Technology Acceptance Model (TAM) [53,54,69]. However, due to the outbreak

of COVID-19 at the time of the analysis, first-hand interaction with the AMC could not be ac-

commodated, and therefore, the survey had to be conducted online on a different user base with
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upper limb disability. A detailed walkthrough of these analyses is provided in the subsequent

sections.
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4.1 Point and Click Experiment

In the domain of Human-Computer Interaction (HCI), a pointing task is considered as the user

interaction for selecting any element on a user interface with any pointing device such as mouse,

stylus, trackpad, finger, or any other wearable devices. The purpose of this experiment is to

get an understanding of users’ performance while interacting with different user interfaces us-

ing the proposed Assistive Mouse Controller (AMC), considering interface elements (windows,

icons, menus, etc.) of different shapes and sizes in terms of, the time required to complete

a pointing task and its perceived difficulty. Shannon’s Index of Difficulty (ID), reputable

for quantifying the perceived difficulty of pointing tasks as a logarithmic relationship between

movement-amplitude (A) and target-width (W ), is used for modelling the corresponding ob-

served movement-times (MTO) in such tasks in controlled experimental setup. However, real-life

pointing tasks are both spatially and temporally uncontrolled, being influenced by factors, such

as – human aspects, subjective behavior, the context of interaction, the inherent speed-accuracy

trade-off where, emphasizing accuracy compromises speed of interaction and vice versa, and so

on. Effective target-width (We) is considered as spatial adjustment for compensating accuracy.

However, no significant adjustment exists in the literature for compensating speed in different

contexts of interaction in these tasks. As a result, without any temporal adjustment, the true

difficulty of an uncontrolled pointing task may be inaccurately quantified using Shannon’s ID.

In this section, we verify this by proposing ANTASID (A Novel Temporal Adjustment to Shan-

non’s ID) formulation with detailed performance analysis. This section begins with a discussion

on the relevant theoretical background, followed by a brief literature review, and our proposed

approach. Finally, details of our experimental methodology, involving a generic mouse and our

proposed AMC, result analysis, and research implications have been discussed.

4.1.1 Theoretical Background

In the domain of Human-Computer Interaction (HCI), a pointing task is considered as the user

interaction for selecting any element on a user interface with any pointing device such as mouse,

stylus, trackpad, finger, or any other wearable devices. Shannon’s Index of Difficulty (ID) [110],

as shown in Eq. 4.1, is reputable for quantifying the perceived difficulty of such a task. It is

expressed as a logarithmic relation between movement-amplitude (A) and target-width (W ),

where A is defined as the distance between the starting location of the cursor and the target’s

center. Applying Fitts’s law, the movement-time (MT ) of any pointing task can be modeled
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as a linear function of ID, as shown in Eq. 4.2, where the constants a and b are empirically

defined from a regression analysis of experimental data. The ideology of ID is that the difficulty

of a task increases, as A increases and/or W decreases. However, it fails to address the speed-

accuracy trade-off in pointing tasks [111]. The basic idea of this trade-off is that if users prefer

to be efficient in terms of speed, the observed movement-time (MTO) will be shorter and if

the focus is shifted to accuracy, it will be longer. To account for the variability in accuracy,

researchers have formulated a Spatially Adjusted (SA) variant of ID, as shown in Eq. 4.3, by

replacing the nominal target-width, W with the effective target-width, We [110, 112, 113]. We

can be calculated either using the standard deviation method, given the endpoint coordinates

are recorded, as shown in Eq. 4.4, or using the discrete-error method given the error-rates of

pointing are recorded [110].

ID = log2

(
A

W
+ 1)

)
(4.1)

MT = a+ b× ID (4.2)

IDSA = log2

(
A

We
+ 1

)
(4.3)

We = 4.133× SDx (4.4)

The index of performance, also known as throughput (TP ), as shown in Eq. 4.5, is defined

as the average of the ratio of ID and MTO over n pointing tasks [110,114], where TP increases

proportionally with ID.

TP =
1

n

n∑
i=1

IDi

MTOi

(4.5)

In most studies related to Fitts’s law [111, 114–120], controlled experiments are conducted

in a lab setup with either subjective or parametric (manipulating A or W ), or operational

constraints (extremely accurate, accurate, neutral, fast, and extremely fast). In uncontrolled

experiments, however, no such constraints are imposed. The objective of controlled experiments

is to understand the effect of manipulating a variable on other variables of interest. This is

often preferred while exploring new aspects of HCI. As stated in literature [121], although these

studies may have high internal validity, they are at a risk of low external validity. In other words,

findings of these studies may not hold for a different experimental setup. Moreover, factors that

are difficult to manipulate in controlled experiments, makes this issue even more complex [111].

Therefore, it is imperative to conduct uncontrolled experiments to understand the extent of

validity of any theories or formulations. It is logical to consider pointing tasks in real-life as
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part of uncontrolled experiments as they are both spatially and temporally unconstrained and

biased due to human factors such as physical inability, distraction, fatigue, excitement, cognition

time, etc., thereby, introducing context of interaction.

To comprehend the speed-accuracy trade-off in real-life pointing tasks, let us consider a

user in two different contexts of submitting an online exam script: 1) well ahead of deadline

and 2) at the verge of deadline, with the click of a “Submit” button. In the first scenario, the

person will be in a relaxed state of mind, naturally, s/he will not emphasize speed of interaction

over accuracy. However, in the second scenario, the person will feel tensed, emphasizing speed

of interaction over accuracy to meet the submission deadline. Therefore, the time taken to

complete similar pointing tasks on the same interface, may vary depending on the context.

Moreover, interaction with two similar graphical interfaces for two different applications

might be different, based on the context and use cases of the applications. For example, Face-

book being a “Social Media” platform and Google Classroom being an “Educational” platform,

have a “Post” and a “Submit” button, respectively, for doing similar tasks, i.e., uploading con-

tents to the platforms. However, while posting on Facebook, users are generally in a relaxed

state of mind. On the contrary, while using Google Classroom as an exam script submission

system, drawing from the previous example of submitting a script at the verge of deadline, the

users are generally in a tensed state of mind. Therefore, in the case of Facebook, while a user

will focus more on clicking the “Post” button accurately taking adequate time, in the other

case, a user will focus more on clicking the “Submit” button quickly, minimizing the interaction

time while emphasizing speed of interaction due to contextual differences.

It is evident from these discussions that the context of any pointing task affects the inherent

speed-accuracy tradeoff, along with the corresponding task-completion time. In such scenarios

of uncontrolled pointing tasks, concerning context of interaction and subjective behavior [111],

Shannon’s ID may fail to quantify the perceived difficulty of these tasks with or without spatial

adjustment, justifying the need for a temporal adjustment factor (t). Although prior studies on

Fitts’s law conducted controlled experiments [111,114–120] and uncontrolled experiments [122–

126] with various adjustments to Shannon’s ID, no significant evidence was found regarding

temporal adjustments to account for the context and speed-accuracy tradeoff of interaction.

In connection to this, we present a novel formulation of a temporal adjustment factor, t,

as the binary logarithm of observed movement-time (MTO) of pointing tasks to quantify the

contextual information of the task in bits. We have augmented the unadjusted and the spatially

adjusted formulation of Shannon’s ID, as shown in Eq. 4.1 and Eq. 4.3, respectively, with t
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as a power factor of W , to form ANTASID (A Novel Temporal Adjustment to Shannon’s ID)

formulation for quantifying ID of such tasks. We hypothesized that Shannon’s ID may not be

able to accurately quantify the perceived difficulty of pointing tasks due to the subjective and

contextual behavior, and speed-accuracy trade-off with or without spatial adjustment. Hence,

augmenting it with t may resolve these issues and ensure a reliable quantification of ID.

In the next sections, we present a literature review on the quantification of perceived dif-

ficulty of pointing tasks, followed by an explanation of the proposed ANTASID formulation

in details. We then elaborate on the user study, followed by the result analysis section and a

discussion on the properties of ANTASID formulation. Finally, we summarize our observations

and give a direction on future works.

4.1.2 Literature Review

Researchers have been trying to understand the impact of speed-accuracy trade-off in pointing

tasks based on Fitts’s law for quite a while. The correct formulation of ID given the nature

and constraints of pointing tasks is still an active research area.

Having analyzed the impact of speed-accuracy trade-off in pointing tasks in [111], the authors

have proposed a modified spatial adjustment factor, Wm, as shown in Eq. 4.6, where α is a

power factor expressing a nonlinear relation between A and Wm. ID was formulated using this

modified spatial adjustment factor Wm, as shown in Eq. 4.7. The value of α was empirically

determined and cannot be generalized for other datasets. The authors imposed five operational

constraints (extremely accurate, accurate, neutral, fast, and extremely fast) in their experiment.

In our experiment, however, we did not impose any such operational constraints to get an

understanding of how Fitts’s law performs in uncontrolled experiments using the classical as

well as the proposed formulation of ID.

Wm = W ×
(
4.133× SDx

W

)α

(4.6)

ID = log2

(
A

Wm
+ 1

)
(4.7)

A human motor behavioral model in distal pointing tasks [115] has been explored that for-

mulates ID as a function of angular amplitude (α), angular target width (ω) and an empirically

defined constant (k), as shown in Eq. 4.8. The authors considered k as a power of, ω due to

the nonlinear relationship between α and ω. However, they did not provide any mathematical

derivation of k. As a result, R2-value of the regression model varied for different values of

k. Using their proposed formulation of ID, they achieved a R2-value of 0.961 for k = 3 in a
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controlled study.

ID =
[
log2

( α

ωk
+ 1

)]2
(4.8)

Researchers have also studied the effect of screen size variations on ID in controlled ex-

perimental conditions [116]. Their findings revealed that the ratio of A and W in ID, fails

to capture the true perceived difficulty in pointing tasks. They proposed modifications in the

formulation of ID for larger and smaller screen sizes, as shown in Eq. 4.9 and Eq. 4.10, re-

spectively. The terms α and β were empirically determined. Motivated by their work, we have

defined the temporal adjustment factor (t) as a power of W . However, rather than quantifying

an experiment-specific value of t, we have defined it as a function of MTO of each pointing task

for better quantification of ID in any experimental setup.

ID = log2

(
Aα

W
+ 1

)
, α > 1 (4.9)

ID = log2

(
A

W β
+ 1

)
, β > 1 (4.10)

A predictive error model was derived in [117] by manipulating parameters of Fitts’s law such

as, W , A, and MTO. The authors reported that W has a greater influence on error-rate than

A. They also reported a logarithmic speed-accuracy trade-off described by Fitts’s law.

In [118], the authors have analyzed the speed-accuracy phenomenon of Fitts’s law in trajectory-

based tasks with temporal constraints. They reported that in spatially constrained tasks, lateral

deviation of the trajectory was affected by W and subjective bias. On the other hand, in tem-

porally constrained tasks, it was affected by W and average steering speed.

Researchers in [119] reported that temporal constraint influences the speed-accuracy trade-

off in aimed hand movements. Furthermore, the SH-model for pointing tasks was introduced

based on the temporal distribution of successful hits and general principles of information theory

[120]. The performance of this model was validated with the help of AIC (Akaike’s Information

Criterion) [127][.

A new derivation of Fitts’s law was also proposed based on velocity profile in pointing

tasks [122]. The authors have compared their model’s performance with widely accepted models.

They conducted both controlled and uncontrolled experiments using homogeneous targets (the

same value of W for a group of targets) and heterogeneous targets (different value of W for each

target).

Considering maximum entropy, researchers have also explored an exponentially modified

Gaussian model to estimate a linear bound of linear regression in the presence of outliers [124].
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According to their work, data from such tasks have high variance and positive skewness, resulting

in a very poor fit of the classical linear regression models. Considering their observations, we

conducted experiments involving uncontrolled pointing tasks and analyzed the performance of

various ID formulations on the experimental data.

Considering uncontrolled aimed movements in Graphical User Interfaces (GUI), a real-life

“in the wild” or in other words, an uncontrolled scenario of pointing tasks was analyzed by

logging mouse cursor trajectories without imposing any constraints on user interaction [126].

The authors have introduced a spatial adjustment factor Length Distance Index (LDI), as shown

in Eq. 4.11, in the formulation of ID where, L is the amplitude of movement and D is the

straight-line distance between the starting and the end points of the movement. Apart from the

studies mentioned above, a formal information theoretic approach of resolving speed-accuracy

tradeoff has also been explored [125].

LDI =

(
L

D
− 1

) 1
4

(4.11)

It is evident from the literature review that the relative weights of movement-amplitude (A)

and target-width (W ) have been adjusted by a power factor while quantifying ID, minimizing

the inherent non-linearity between the two parameters. However, all these factors were empiri-

cally defined, and cannot be generalized for other experiments. In the next section, we discuss

the proposed ANTASID formulation, where we define the temporal adjustment factor (t) for

analyzing the perceived difficulty of real-life pointing tasks applying Fitts’s law.

4.1.3 ANTASID Formulation

ANTASID formulation introduces a temporal adjustment factor (t) to ID as a power factor of

W . The Path Efficiency (PE) of a pointing task is defined as the ratio of Straight Line Distance

(SLD) between the cursor position at the beginning of a task and the target’s center to the

movement-amplitude (A) [128], quantifying the corresponding spatial efficiency. Analogous to

PE, our proposed adjustment factor, t, for a particular pointing task is based on the Temporal

Efficiency (TE) of that task.

Taking the influence of external factors, such as- context of interaction, biased human behav-

ior, speed-accuracy trade-off, human factors, and so on [111,114–123] into account, if there are

n pointing tasks in an experiment, we define the TE of the ith pointing task (TEi), as shown

in Eq. 4.12, as the ratio of the average observed movement-time (MTO) over the n pointing
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tasks to the observed movement-time (MT i
O) of that task.

TEi =
MTO

MT i
O

, where 1 ≤ i ≤ n (4.12)

To comprehend the significance of the temporal adjustment factor (t), we have conducted

two uncontrolled experiments through a pointing-task-based game (developed in-house) using

an optical mouse and our proposed Assistive Mouse Controller (AMC) as pointing devices.

We have defined uncontrolled pointing tasks as those, where – 1) no operational constraints

are imposed and 2) no manipulation of A occurs. We have constructed two Internal Datasets

with the uncontrolled user-interaction data from this game. The authors in [122] proposed a

new derivation of Fitts’s Law and conducted both controlled and uncontrolled experiments on

pointing tasks. Datasets of both of their experiments [123] are publicly available. In addition to

the data from the uncontrolled experiments of the Benchmark [123] and the Internal Datasets,

we have leveraged the data from the controlled experiments of the Benchmark Dataset to verify

the external validity of ANTASID formulation in controlled scenarios of pointing tasks as well.

From the data of our uncontrolled pointing task experiment using a mouse, and that of the

controlled and uncontrolled pointing experiments in the Benchmark Dataset [123], the value of

MTO was found to be 0.8875, 0.7628, and 0.8618 seconds for n = 6469, n = 8345, and n = 39050

pointing tasks, respectively. Based on this empirical data, we considered the value of MTO as

1 second for mathematical convenience. Since ID is expressed in bits, we defined ti of the ith

pointing task as the binary logarithm of TEi, as shown in Eq. 4.13, quantifying the temporal

information of that task in bits. As MTO = 1 second, the expression ti, as shown in Eq. 4.13,

reduces to the negative binary logarithm of MT i
O, as shown in Eq. 4.14, as log21 = 0. However,

in case of different experiments, for instance, analysis of Fitts’s law in pointing tasks using a

wearable pointing device, if the value of MTO deviates far from 1 second, the actual value of

MTO might produce better quantification of ID, subject to further investigation. In other

words, the expression of ti, as shown in Eq. 4.13, may be a better fit in this case.

ti = log2

(
MTO

MT i
O

)
, where 1 ≤ i ≤ n (4.13)

ti = − log2
(
MT i

O

)
, whereMTO = 1 second and 1 ≤ i ≤ n (4.14)

Shannon’s ID in its original form, as shown in Eq. 4.1, is neither spatially nor temporally

adjusted. From this point onward, we will refer to it as IDNA, following Eq. 4.15. The

spatially adjusted ID, as shown in Eq. 4.3, will be referred to as IDSA, following Eq. 4.16.

To address the nonlinear relationship between A and W , most studies have adjusted W with a
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power factor [111, 115]. Furthermore, as the movement time for any pointing task depends on

two sub-movements [117, 118], such as - 1) Initial Ballistic Phase and 2) Optional Correction

Phase, it is intuitive that for a target with smaller W , more time will be spent on the latter.

Based on this intuition and evidence from the literature, our proposed ANTASID formulation

augments IDNA and IDSA with t as a power factor of W to formulate IDTA and IDTSA, as

shown in Eq. 4.17 and Eq. 4.18, respectively, where IDTA is only temporally adjusted and

IDTSA is both temporally and spatially adjusted.

IDNA = log2

(
A

W
+ 1

)
(4.15)

IDSA = log2

(
A

We
+ 1

)
(4.16)

IDNA = log2

(
A

W t
+ 1

)
(4.17)

IDSA = log2

(
A

W t
e

+ 1

)
(4.18)

Due to the speed-accuracy trade-off phenomenon accompanied by context of interaction and

subjective behavior, by definition, the value of t will be different for each of the i ∈ n tasks and

participants, resulting in a realistic value of ID. An overview of the context and method of

ANTASID formulation, is depicted in Fig. 4.1. In the next section, we discuss our experimental

design and data analysis to investigate the validity of our formulation.
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Figure 4.1: Overview of the context and the proposed ANTASID formulation.
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4.1.4 Methodology

To investigate the significance of ANTASID formulation in accurately quantifying ID in un-

controlled pointing tasks, we conducted two separate uncontrolled within-subject experiments,

featuring a balloon popping game, “Popper” (implemented in-house using python) with an

optical mouse and our proposed AMC as pointing devices. We have constructed two Internal

Datasets with the uncontrolled user-interaction data from this game, where one dataset contains

interaction data of healthy individuals using an optical mouse, and the other contains interaction

data of individuals with upper limb disability using our proposed Assistive Mouse Controller

(AMC). We also analyzed the data from the controlled and the uncontrolled experiments of the

Benchmark Dataset [123]. After analyzing all the associated datasets, we have gained valuable

insights of the performance of ANTASID formulation in both scenarios of pointing tasks using

two different devices.

To validate the significance of the temporal adjustment factor, t, in quantifying ID of point-

ing tasks in both controlled and uncontrolled scenarios and to verify how accurately the classical

formulation of Shannon’s ID can quantify the perceived difficulty of these tasks, we analyzed

MT from four different regression models, considering spatial and/or temporal adjustments

to Shannon’s ID, such as- neither spatially nor temporally adjusted (IDNA), only temporally

adjusted (IDTA), only spatially adjusted (IDSA), and both temporally and spatially adjusted

(IDTSA). We state our null hypothesis, H0, as -

H0: “Temporally adjusted Shannon’s ID might not accurately quantify the perceived

difficulty of pointing tasks in both controlled and uncontrolled scenarios.”

To be able to reject H0, we need to verify whether IDTA and IDTSA provide a better model

fit and are statistically significant over IDNA and IDSA in both controlled and uncontrolled

scenarios through statistical analyses of data using one-way ANOVA, one-way F -test, followed

by a post-hoc test. The level of significance (α) of the statistical analysis was considered as

α = 0.05.

As mentioned in section 4.1.3, “ANTASID Formulation”, whether the expression of

the temporal adjustment factor (t), following Eq. 4.13, quantifies the perceived difficulty of

uncontrolled pointing tasks better than that in Eq. 4.14, for the proposed wearable AMC,

has been tested as well. Therefore, considering both expressions of t, we have conducted the

same suite of regression and statistical analyses on the internal dataset containing uncontrolled

user-interaction data of the game “Popper” with the proposed AMC.
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To summarize, all the formulations of Shannon’s ID considered in this study, were analyzed

on – 1) three datasets featuring uncontrolled experiments [two Internal Datasets (6469 and 666

pointing tasks using an optical mouse and the proposed AMC, respectively) and one Benchmark

Dataset (39050 pointing tasks)] and 2) one dataset featuring controlled experiments [Benchmark

(8345 pointing tasks)].

4.1.4.1 Participants

The target users for this experiment were individuals with or without any form of upper limb

disability. However, all of them were required to have basic computing knowledge. For the

experimental studies with an optical mouse and our proposed AMC, 25 right-handed healthy

volunteers [16 males (64%, Mean Age: 24.19± 1.47 years), 9 females (36%, Mean Age: 21.33±

1.89 years); Mean Age: 23.20 ± 2.14 years], and 15 individuals with upper limb disability [9

males (60%, Mean Age: 26.57 ± 4.39 years), 6 females (40%, Mean Age: 24.33 ± 4.96 years)],

respectively, were recruited. All of them had adequate experience and knowledge of operating

a computer. The healthy participants were recruited from known acquaintances and via email,

while the individuals with upper limb disability were recruited from known acquaintances, local

rehabilitation centers, and local NGOs. Each of the participants provided a verbal consent prior

to their participation in this study.

4.1.4.2 Experimental Design

The healthy participants were asked to play the entire game 3 times on a laptop with a screen

resolution of 1920× 1080 pixels using a generic computer mouse as a pointing device, while the

individuals with upper limb disability were asked to play the game just once using the proposed

AMC in the same setup. We allotted 15 minutes per participant during which they were briefed

about the semantics of the game, had a few trial runs followed by the actual experiment. Data

for each play of the game were automatically uploaded to our server. The participants were

notified about the automated data collection prior to their participation and were assured of no

invasion of privacy from our part.

Since this work is focused specifically on uncontrolled pointing tasks, unlike the authors

in [111], we did not impose any constraints such as – extremely accurate, accurate, neutral, fast,

and extremely fast on their interaction with the game. The participants had to pop balloons

of 4 different widths, W (32 px, 64 px, 96 px, and 128 px) as targets, only one at a time,

appearing at random locations on the screen. The game was designed to be run in full-screen
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mode, ensuring full utilization of the screen resolution. The game featured two types of levels,

homogeneous level (all targets in a level have the same width) and heterogeneous level (targets

in a level are of different widths). There were a total of five levels in the game, with four

homogeneous levels and only one heterogeneous level.

(a) (b)

(c) (d)

5 5 5

5

Figure 4.2: Snapshots of the game “Popper” – (a) Selection of Player Type, (b) Player registration

and game instruction screen, (c) A particular level with a balloon of size 128px, and (d) Resting

period in the form of a reward screen between levels for reducing fatigue.

For the healthy participants, there were 15 targets per homogeneous level and 30 targets

in the heterogeneous level. Therefore, a total of 60 sequential homogeneous targets and 30

sequential heterogeneous targets were presented to a healthy participant. For the participants

with upper limb disability on the other hand, there were 9 targets per homogeneous level and

12 targets in the heterogeneous level, presenting, a total of 36 sequential homogeneous targets

and 12 sequential heterogeneous targets to them. A brief resting period was allocated after each

level in the form of a reward screen to reduce fatigue. The game ended when all the targets

had been popped by a participant, and the data was uploaded to our server for further analysis.

Few snapshots of the game have been provided in Fig. 4.2 and the quantitative and qualitative

summaries of the game levels are provided in Table 4.1.
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Table 4.1: Qualitative and quantitative summary of the game “Popper”.

Level Type Level Serial
Target Width,

wi ∈ W (pixels)

Total Targets

(Healthy

Participants)

Total Targets

(ULD

Participants) a

1 128 15 9

2 96 15 9

3 64 15 9
Homogeneous

4 32 15 9

Heterogeneous 5
Random

[32/64/96/128]
30 12

Total Targets 90 48

a Upper Limb Disabled (ULD).

In our experiment, we define the popping of a target as a trial. A trial began with the

appearance of a target and ended when a participant clicked inside a target. Clicks outside

the target boundary were recorded as miss-clicks. Trials with miss-clicks were not rejected as

artifacts. The screen coordinate of the cursor at the beginning and at the end of a trial were

considered as the starting and the ending coordinates, respectively. However, a participant

could move the cursor around the screen freely, before a target appeared and after it was

clicked. Therefore, there was no fixed starting coordinate for the mouse cursor in any trial,

rather the cursor coordinates at the time of appearance of a new target was considered as the

starting coordinate. Due to this arrangement, it is intuitive that the movement-amplitude,

A will vary, ensuring no spatial constraint is imposed. The movement-amplitude (A) was

calculated as the sum of the Euclidean Distances (EDs) between two consecutive coordinates

in the cursor trajectory, and the observed movement-time (MTO) was recorded as the duration

of a trial. After 3 plays of the game, “Popper”, from 25 healthy participants, about 6750

trials [4500 homogeneous (66.67%), 2250 heterogeneous (33.33%)], and from 15 participants

with upper limb disability after 1 play of the game, about 720 trials [540 homogeneous (75%),

180 heterogeneous (25%)], were registered. A descriptive summary of the parameters that were

recorded per trial is summarized in Table 4.2.
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Table 4.2: Descriptive summary of parameters, recorded per trial, for the game “Popper”.

Parameter Unit Interpretation

Level Serial x Level number (1 – 5).

Target-Width (W) 32, 64, 96, and 128 (pixels) Target-width (W) in pixels.

Starting Coordinate (x, y) Coordinate of the cursor at the time of target appearance.

Ending Coordinate (x, y) Coordinate of the cursor at the time of clicking inside the

target.

Target Center (x, y) Coordinate of the center of a target.

Movement Time (MTO) Time in seconds Time required to click on a target from the moment it ap-

peared on the screen.

Number of miss-clicks x Number of clicks outside the target boundary.

Coordinates of cursor trajectory [(x1, y1) , (x2, y2) , ..., (xn, yn)] List of coordinates in the cursor trajectory from the Start-

ing Coordinate to the Ending Coordinate. Used in the cal-

culation of movement-amplitude (A).

4.1.4.3 Data Processing

Data analysis was carried out using python. Prior to analysis, trials with erroneous parameter

values (e.g., MTO = 0 seconds) due to system issues, were removed from the Internal Datasets.

This cleanup is required to avoid erroneous calculation of t, following Eq. 4.14. For example,

for any trial i, if MT i
O = 0 (due to system error), then ti = −log20 is undefined. Furthermore,

trials having MTO beyond 3 Standard Deviations (SD) of the mean observed movement-time

(MTO) were removed from this dataset, which we term as the L1 cleanup. A summary of

data distribution for both healthy and disabled participants after each cleanup is depicted in

Table 4.3. A remarkable insight from this two-level cleanup on each of the two Internal Datasets

is the relatively constant ratio of homogeneous and heterogeneous trials at each level of cleanup.

Table 4.3: Distribution summary of trials in the Internal Dataset at different levels of cleanup.

Participant

Type

Nature of

Experiment

Cleanup

Type

Number

of Trials

Before

Cleanup

Accept/Reject Ratio of

Trials after Cleanup

Ratio of Trial Type

after Cleanup

Accepted a Rejected Homogeneous Heterogeneous

N % N % N % N %

Erroneous

Data

Removal

6750 6505 96.37 245 3.63 4319 66.40 2186 33.60
Healthy

L1 6505 6469 99.45 36 0.55 4291 66.33 2178 33.67

Erroneous

Data

Removal

720 677 94.03 43 5.97 445 65.73 232 34.27
ULD b

Uncontrolled

L1 677 666 98.38 11 1.62 436 65.47 230 34.53

a Trials within 3SD of MTO.

b Upper Limb Disabled (ULD).
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As mentioned earlier, the Benchmark Dataset [123] contained data from both controlled and

uncontrolled experiments, featuring homogeneous and heterogeneous targets. However, in the

experiments with homogeneous targets, the authors manipulated both the movement-amplitude

and the target-width, which goes against our experimental design. Therefore, in our analysis,

we considered data from both experiments featuring heterogeneous targets only. Although the

authors had already removed trial data with MTO beyond 3 SD of MTO from this dataset [8350

controlled and 39050 uncontrolled trials post-cleanup], we further removed trials with erroneous

parameter values (e.g., MTO = 0 seconds) from this dataset, obtaining 8345 controlled and

39050 uncontrolled trials.

For the Internal Dataset, we calculated We following the standard deviation method in

Eq. 4.4 [110]. However, one shortcoming of the Benchmark Dataset is that neither the coordi-

nates of target selection and its center nor the percentage of errors were recorded. Therefore,

We cannot be calculated using the standard deviation method. However, the discrete-error

method of determining We [110] can be applied by approximating a reasonable error-rate ϵ%,

where for error-rates less than ϵ%, We < W and vice versa and for error-rates equal to ϵ%,

We = W . Therefore, for the Benchmark Dataset, we approximated ϵ = 3.883% and calculated

the average effective target-width (We), such that We = W , as shown in Eq. 4.19, where n is

the number of trials, Wi is the target-width for trial i, and z is the Z-score at the corresponding

error-rate. IDSA and IDTSA were calculated for this dataset using the values of We as shown

in Table 4.4.

We =
1

n

n∑
i=1

2.066

z
×Wi (4.19)

Table 4.4: Comparison of Average effective target-width (We) at the approximated error-rate (ϵ) and

the average target-width (W ) in the Benchmark Dataset.

Nature of

Experiment
W (pixels)

Approximation of We

(pixels) (ϵ = 3.883%) a

Controlled 30.1780 30.1782

Uncontrolled 30.2105 30.2108

a ϵ is the approximated error-rate.
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4.1.5 Results

As mentioned earlier, we have used regression analysis for predicting MT using the different for-

mulations of ID (IDNA,IDSA,IDTA, and IDTSA). We conducted a one-way ANOVA, followed

by a paired F -test for analyzing the corresponding statistical significance of the quantification of

ID using classical and ANTASID formulations. Furthermore, to avoid the risk of Type-I errors,

we conducted the Tukey’s HSD post-hoc test [129] on our formulations. We did not perform

any comparative performance analysis of our models with that of the Benchmark Dataset [123]

because of the differences in the formulation of ID. We have used Shannon’s ID and proposed

adjustments to it, while they have used the Square-Root Variant of Fitts’s law. The result

analysis of this study is divided into two categories, such as – 1) controlled and uncontrolled

experiments using an Optical Mouse, and 2) uncontrolled experiment using the proposed AMC.

4.1.5.1 Controlled and Uncontrolled Experiments using Optical Mouse

In this section, results from the analysis of the Internal Dataset, obtained from the user-

interaction of the game “Popper” with an optical mouse in uncontrolled setup, and the Bench-

mark Dataset, featuring both controlled and uncontrolled experiments are discussed. From the

regression analysis of the Internal Dataset, as shown in Fig. 4.3, it is evident that ANTASID

formulation provides a reasonable fit (R2-value) of the model, with (R2
TSA = 0.8405) or without

(R2
TA = 0.8177) spatial adjustment, as shown in Fig. 4.3d and Fig. 4.3b, respectively. For the

Benchmark dataset, at the approximated error-rate of ϵ = 3.883%, similar results were observed

for both the controlled experiment (R2
TSA = 0.9095, R2

TA = 0.8521), as shown in Fig. 4.4d

and Fig. 4.4b, respectively, and the uncontrolled experiment (R2
TSA = 0.8953, R2

TA = 0.8308),

as shown in Fig. 4.5d and Fig. 4.5b, respectively. Evidently, IDTSA consistently follows a

normal distribution, as shown in Fig. 4.6d, Fig. 4.6h, and Fig. 4.6l. From one-way ANOVA,

it was observed that ANTASID formulations had significantly higher F -statistics at p < 0.001

in all the datasets compared to IDNA and IDSA. The parameters of regression analysis of the

four formulations on different datasets along with the corresponding results of ANOVA test are

summarized in Table 4.5.
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Figure 4.3: Regression Analysis of the Internal Dataset (Uncontrolled Experiment) with an Optical

Mouse, using – (a) IDNA, (b) IDTA, (c) IDSA, and (d) IDTSA.

Figure 4.4: Regression Analysis of the Benchmark Dataset (Controlled Experiment) with an Optical

Mouse, using – (a) IDNA, (b) IDTA, (c) IDSA, and (d) IDTSA.
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Figure 4.5: Regression Analysis of the Benchmark Dataset (Uncontrolled Experiment) with an

Optical Mouse, using – (a) IDNA, (b) IDTA, (c) IDSA, and (d) IDTSA.

Figure 4.6: Using an Optical Mouse, the distribution of different formulations of ID – (a, b, c, d)

Uncontrolled Experiment of the Internal Dataset, (e, f, g, h) Controlled Experiment of the Benchmark

Dataset, and (i, j, k, l) Uncontrolled Experiment of the Benchmark Dataset.



Chapter 4. Experimental Design and Result Analysis 54

Table 4.5: Regression model parameters of Fitts’s Law, TP and ANOVA test results for Optical

Mouse as a pointing device.

Dataset

(Experiment type)

[Pointing Device]

Formulation

Type
ID

R2

value

Std.

Error

(SE)

TP±

95%Cl

ANOVA

DOF F-stat p-value a

Classical
IDNA 0.1130 0.0042 4.15±(0.03) (1, 6467) 824.12 <0.001

IDSA 0.0275 0.0055 4.34±(0.04) (1, 6467) 182.78 <0.001

ANTASID
IDTA 0.8177 0.0006 8.19±(0.05) (1, 6467) 29010.66 <0.001

Internal Dataset

(Uncontrolled)

[Optical Mouse]
IDTSA 0.8405 0.0006 8.44±(0.05) (1, 6467) 34087.95 <0.001

Classical
IDNA 0.3100 0.0011 3.85±(0.01) (1, 39048) 17541.32 <0.001

IDSA 0.1206 0.0025 3.68±(0.01) (1, 39048) 5356.10 <0.001

ANTASID
IDTA 0.8308 0.0002 6.95±(0.02) (1, 39048) 191728.50 <0.001

Benchmark Dataset

(Uncontrolled)

[Optical Mouse]

(ϵ=3.883%) b IDTSA 0.8953 0.0002 7.13±(0.01) (1, 39048) 334025.21 <0.001

Classical
IDNA 0.4545 0.0018 4.25±(0.02) (1, 8343) 6950.55 <0.001

IDSA 0.2141 0.0043 4.09±(0.02) (1, 8343) 2273.19 <0.001

ANTASID
IDTA 0.8521 0.0004 6.77±(0.04) (1, 8343) 48051.61 <0.001

Benchmark Dataset

(Controlled)

[Optical Mouse]

(ϵ=3.883%) b IDTSA 0.9095 0.0003 6.94±(0.03) (1, 8343) 83876.01 <0.001

a p-values were computed at a significance level of, α=0.05.

b ϵ is the approximate error-rate.

Given all the datasets, IDTSA has the best average model fit (R2 = 0.8818) along with

the least average standard error, SE = 0.0004. A summary of the average performance of the

models across all the datasets in Table 4.6 suggests that the mean throughput (TP ) almost

doubles with ANTASID formulations compared to the classical ones. This is because, TP

increases continuously and proportionally with IDTSA and IDTA, which can be visualized from

the scatter plots of TP vs ID of the Internal Dataset, as shown in Fig. 4.7. Pairwise F -test,

as shown in Table 4.7, revealed the superiority of ANTASID formulation over both IDNA and

IDSA at the desired level of significance (α = 0.05), with a p-value < 0.001, in all the datasets

considered in this study. The post-hoc test using Tukey’s HSD [129] method also validated the

same, having an adjusted p-value of 0.001.

Table 4.6: Average performance of the regression models across all the datasets for interaction data

obtained with an Optical Mouse.

Formulation Type ID R2 (±95%) CI a SE (±95%) CI a TP (±95%) CI a

Classical
IDNA 0.2925 (±0.1227) 0.0024 (±0.0012) 4.08 (±0.15)

IDSA 0.1207 (±0.0668) 0.0041 (±0.0011) 3.03 (±0.24)

ANTASID
IDTA 0.8335 (±0.0124) 0.0004 (±0.0001) 7.30 (±0.55)

IDTSA 0.8818 (±0.0261) 0.0004 (±0.0001) 7.50 (±0.48)

a CI: Confidence Interval
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Figure 4.7: Analysis of the Throughput, TP , using - (a, c) the classical and (b, d) ANTASID

formulations of Shannon’s Index of Difficulty, ID, for the Internal Dataset, featuring Uncontrolled

Experiment with an Optical Mouse.

Table 4.7: Pairwise F -test results for interaction data obtained with an Optical Mouse.

ID (σ2
A > σ2

B) a

Internal Dataset

(Uncontrolled

Experiment)

Benchmark Dataset

(Uncontrolled

Experiment)

(ϵ=3.883 %) b

Benchmark Dataset

(Controlled

Experiment)

(ϵ=3.883 %) b

A B F-stat p-value c F-stat p-value c F-stat p-value c

IDTSA IDNA 7.4409 <0.001 2.8881 <0.001 2.0025 <0.001

IDTSA IDSA 30.6092 <0.001 7.4203 <0.001 4.2527 <0.001

IDTA IDNA 7.2310 <0.001 2.6807 <0.001 1.8744 <0.001

IDTA IDNA 29.7458 <0.001 6.8873 <0.001 3.9807 <0.001

a Variance (σ2
i ) of ID, where i ∈ {A,B}.

b ϵ is the approximated error-rate.

c p-values were computed at a level of significance, α=0.05.

4.1.5.2 Uncontrolled Experiment using the proposed AMC

In this section, results from the analysis of the Internal Dataset, obtained from the user-

interaction of the game “Popper” with the proposed AMC, featuring uncontrolled experiment.

The performances of ANTASID formulation using the two different representations of the tem-
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poral adjustment factor (t), following Eq. 4.13 and Eq. 4.14, are also elaborated.

From the regression analysis of the user-interaction data in Fig. 4.8, it is evident that the

classical formulations of Shannon’s ID (IDNA, IDSA) provide a poor fit of the data (R2
NA =

0.4316, R2
SA = 0.3167), as shown in Fig. 4.8a and Fig. 4.8b, respectively, with a very low

throughput (TP ) (TPNA = 0.58 ± 0.02 bits/s, TPSA = 0.60 ± 0.02 bits/s). On the contrary,

using ANTASID formulation (IDTA, IDTSA), following the expression of t in Eq. 4.14, where

the value of MTO is approximated to 1 second, both R2-values and TP exhibit an increase

in magnitude (R2
TA = 0.6590, TPNA = 4.22 ± 0.12 bits/s, R2

TSA = 0.8151, TPSA = 4.20 ±

0.11 bits/s), as shown in Fig. 4.8c and Fig. 4.8d, respectively. Compared to the classical

formulation, on an average, the throughput of the system increases by approximately 7.14

times in this case. Again, following the expression of t in Eq. 4.13, where the value of MTO

is the actual average of the observed movement times across all the pointing tasks using the

proposed AMC, the R2 values (R2
TA = 0.8581, R2

TSA = 0.8885) increase even more, as shown

in Fig. 4.8e and Fig. 4.8f. However, throughput of the system, as shown in Fig. 4.8e and

Fig. 4.8f, plummeted compared to that, as shown in Fig. 4.8c and Fig. 4.8d. On an average,

the throughput of the system, in this case, increases by approximately 1.57 times, compared to

the classical formulation.

Considering the proposed AMC, the results of regression analysis using ANTASID formu-

lation, where t is quantified as per Eq. 4.13, is more realistic. This can be mathematically

explained from the definition of TP in Eq. 4.5, where it is evident that with the increase of

ID and/or with the decrease of MT , the value of TP will increase. Again, from the relation

between MT and ID in Eq. 4.2, it can be inferred that the observed movement-time, MTO,

will increase with ID. Now, drawing from this relation and visualizing the TP vs ID graphs

in Fig. 4.9, quantification of ID using ANTASID formulations with MTO approximated to

1 second, as shown in Fig. 4.9c and Fig. 4.9d, fail to preserve this relation, as the majority of

the TP values decrease relatively monotonically with the increase in ID. However, when ID is

quantified using ANTASID formulations with MTO equal to the actual average of the observed

movement times, as shown in Fig. 4.9e and Fig. 4.9f, across all pointing tasks (8.1619 seconds,

in this case), the relation between TP and ID is preserved relatively better than the former

one, following the same pattern as the one in Fig. 4.7b and Fig. 4.7d.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Regression Analysis of the Internal Dataset (Uncontrolled Experiment) with the

proposed Assistive Mouse Controller (AMC), using different formulations of Shannon’s Index of

Difficulty (ID), such as – (a, b) the classical, (c, d) ANTASID with MTO approximated to 1 second,

and (e, f) ANTASID with MTO as the actual average.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Analysis of the Throughput (TP ) of the Internal Dataset (Uncontrolled Experiment)

with the proposed Assistive Mouse Controller (AMC), using different formulations of Shannon’s Index

of Difficulty (ID), such as – (a, b) the classical, (c, d) ANTASID with MTO approximated to 1 second,

and (e, f) ANTASID with MTO as the actual average.

For pointing tasks accomplished with the proposed AMC, the corresponding IDs, using

both classical and ANTASID formulations, are normally distributed, as shown in Fig. 4.10a
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and Fig. 4.10b. From one-way ANOVA, it was observed that ANTASID formulations had

significantly higher F -statistics at p < 0.001 in all the cases compared to IDNA and IDSA. The

parameters of regression analysis of the four formulations using the proposed AMC along with

the corresponding results of ANOVA test are summarized in Table 4.8. Pairwise F -test, as

shown in Table 4.9, revealed the superiority of ANTASID formulation over both IDNA and

IDSA at the desired level of significance (α = 0.05), with a p-value < 0.001, in all the cases.

The post-hoc test using Tukey’s HSD [129] method also validated the same, having an adjusted

p-value of 0.001. These analyses imply that we can reject the null hypothesis, H0 and accept

the alternative hypothesis -

H1: “Temporally adjusted Shannon’s ID may better quantify the perceived difficulty

of pointing tasks in both controlled and uncontrolled scenarios.”

The spatial adjustment on top of the temporal one makes the formulation even more robust

and provides a normally distributed ID along with enhanced TP .

(a) (b)

Figure 4.10: Using the proposed Assistive Mouse Controller (AMC), the distribution of different

formulations of ID with the temporal adjustment factor (t) fomulated considering – (a) MTO

approximated to 1 second and (b) ANTASID with MTO as the actual average.
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Table 4.8: Regression model parameters of Fitts’s Law, TP and ANOVA test results for the proposed

AMC as a pointing device.

Dataset

(Experiment type)

[Pointing Device]

Formulation

Type
ID

R2

value

Std.

Error

(SE)

TP±

95%Cl

ANOVA

DOF F-stat p-value a

Classical
IDNA 0.4316 0.1377 0.58±(0.02) (1, 664) 504.21 <0.001

IDSA 0.3167 0.2051 0.60±(0.02) (1, 664) 307.68 <0.001

ANTASID c
IDTA 0.6590 0.0223 4.22±(0.12) (1, 664) 1283.11 <0.001

IDTSA 0.8151 0.0148 4.20±(0.11) (1, 664) 2928.09 <0.001

ANTASID d
IDTA 0.8581 0.0151 0.91±(0.03) (1, 664) 4016.94 <0.001

Internal Dataset

(Uncontrolled)

[Proposed AMC b]

IDTSA 0.8885 0.0130 0.94±(0.03) (1, 664) 5293.44 <0.001

a p-values were computed at a significance level of, α=0.05.

b Assistive Mouse Controller (AMC).

c t in the formula of ID, is quantified using the approximation, MT0 = 1second (Eq. 4.14).

d t in the formula of ID, is quantified using actual average, MT0 of the observed movement times (Eq. 4.13).

Table 4.9: Pairwise F -test results for interaction data obtained with the proposed AMC.

Formulation Type ID (σ2
A > σ2

B) a
Internal Dataset

(Uncontrolled Experiment)

A B F-stat p-value b

ANTASID c

IDTSA IDNA 1.8885 <0.001

IDTSA IDSA 2.5742 <0.001

IDTA IDNA 1.5270 <0.001

IDTA IDNA 2.0813 <0.001

ANTASID d

IDTSA IDNA 0.0587 <0.001

IDTSA IDSA 2.8061 <0.001

IDTA IDNA 1.9882 <0.001

IDTA IDNA 2.7100 <0.001

a Variance (σ2
i ) of ID, where i ∈ {A,B}.

b p-values were computed at a level of significance, α=0.05.

c t in the formula of ID, is quantified using the approximation, MT0 = 1second (Eq. 4.14).

d t in the formula of ID, is quantified using actual average, MT0 of the observed movement times (Eq. 4.13).

4.1.6 Discussion

Extensive studies have been carried out on Fitts’s law over the years for understanding human

performance in pointing tasks. These studies have proposed several variants of ID with the

aim to develop an enhanced human interaction model. However, the perfect formulation of ID

is still an active research area. In this work, we have proposed ANTASID formulation utilizing

temporal efficiency of pointing tasks, reflecting the variation of perceived difficulty of pointing
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tasks in different contexts of interaction, and analyzed its effect alone or combined with spatial

adjustment in the quantification of ID using an optical mouse and the proposed AMC. To

summarize our contributions -

(a) We have formulated a temporal adjustment factor (t) for better quantification of ID by

considering the context of interaction in real-life uncontrolled pointing tasks.

(b) We have generated two datasets, containing the parameters required for quantifying ID

of uncontrolled pointing tasks using Fitts’s law with an optical mouse and the proposed

Assistive Mouse Controller (AMC).

(c) We have analyzed the statistical significance of ANTASID as well as the classical formu-

lation of Shannon’s ID and verified that the classical ones might not accurately quantify

ID for uncontrolled pointing tasks based on the context of interaction.

(c)

(a) (b)

Figure 4.11: Box plot analysis of the perceived difficulty of pointing tasks

(IDNA, IDTA, IDSA, IDTSA) using ANTASID and the classical formulations of Shannon’s Index of

Difficulty using an Optical Mouse, considering – (a) the Uncontrolled Experiment of the Internal

Dataset, (b) the Controlled, and (c) the Uncontrolled Experiment of the Benchmark Dataset.
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(a) (b)

Figure 4.12: Box plot analysis of the perceived difficulty of pointing tasks

(IDNA, IDTA, IDSA, IDTSA) using ANTASID and the classical formulations of Shannon’s Index of

Difficulty using the proposed AMC, featuring the Uncontrolled Experiment of the Internal Dataset,

considering – (a) MTO approximated to 1 second and (b) (MTO as the actual average.

With respect to the experimental datasets considered in this study, the perceived difficulty

of pointing tasks, quantified using ANTASID formulation (IDTA, IDTSA), has an enhanced

interquartile range compared to the classical formulations of Shannon’s ID (IDNA, IDSA),

as shown in Fig. 4.11 and Fig. 4.12. The mean of the predicted movement-times using

ANTASID (MTTA, MTTSA)) and the classical formulations of Shannon’s ID (MTNA, MTSA)

are almost constant for both the Internal dataset, as shown in Fig. 4.13a and Fig. 4.14, and

the Benchmark dataset, as shown in Fig. 4.13b and Fig. 4.13c. Both MTTA and MTTSA

exhibit interquartile ranges closer to the observed movement-time (MTO), compared to both

MTNA and MTSA, as shown in Fig. 4.13 and Fig. 4.14. From this analysis, we can infer that

the temporal adjustment factor (t) is able to capture the speed-accuracy trade-off phenomena

of pointing tasks by adjusting the relative weights of W and A through ANTASID formulations

(IDTA, IDTSA), exploiting the temporal efficiency of the user to reflect context-based deviation

of perceived difficulty of the tasks. We have found this inference to be consistent across all the

datasets.

A major observation from our analyses is that even in both controlled and uncontrolled

scenarios of pointing tasks, considering different pointing devices (handheld optical mouse and

wearable AMC), ANTASID formulation significantly improved the fitness value of the regression

model, as well as TP , compared to its classical counterparts, as seen from Table 4.5 and

Table 4.8. This proves the robustness of ANTASID formulation in handling the context of
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interaction and the speed-accuracy trade-off in real-life pointing tasks. Evidently, ANTASID

formulation is versatile and significantly overcomes the risk of low external validity.

(c)

(a) (b)

Figure 4.13: Box plot analysis of the predicted movement-times (MTNA,MTTA,MTSA,MTTSA)

using ANTASID and the classical formulations of Shannon’s Index of Difficulty compared to the

observed movement-time (MTO) using an Optical Mouse, considering – (a) the Uncontrolled

Experiment of the Internal Dataset, (b) the Controlled, and (c) the Uncontrolled Experiment of the

Benchmark Dataset.
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(a) (b)

Figure 4.14: Box plot analysis of the predicted movement-times (MTNA,MTTA,MTSA,MTTSA)

using ANTASID and the classical formulations of Shannon’s Index of Difficulty compared to the

observed movement-time (MTO) using the proposed AMC, considering – (a) MTO approximated to

1 second and (b) MTO as the actual average.

4.1.6.1 Research Implications

In certain contexts, it may be necessary to design application UIs to meet a specific index of

difficulty (ID). Based on the desired ID, general context of interaction, and temporal efficiency

of a specific pointing task, a possible practical significance of our study may be the determination

of a lower bound on the width (W ) of targets (windows, icons, menus, and navigation bars) in

the design of application UIs. This may not only help the UI designers in designing aesthetic UIs,

but also enhance the throughput and efficiency of user interaction. Our proposed ANTASID

formulation may be further used in testing the same UI in different circumstances. Taking

context of interaction into account, the need for introducing a temporal adjustment factor (t)

while quantifying the perceived difficulty of uncontrolled pointing tasks using Shannon’s ID

cannot be over-emphasized, facilitating better comprehension of the efficiency of an interface

with respect to its intended use case. For instance, in a click based real-time competitive

game, though the UI remains the same, considering different scenarios, a player might want

to quickly perform certain interactions. For instance, in the beginning of real-time strategy

games, generally the contention remains lesser than the middle or end portion of the game,

where the players focus more towards quick decisions, actions and clicks. The proposed model

can also be utilized in such scenarios to evaluate the perceived difficulty of real-time interaction

under different contexts. We plan to carry out such research in the future, further exploring

the implications of the proposed formulation.
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4.1.6.2 Practical Implications

When it comes to the design and development of any device for human-computer interaction,

minimal interaction time is one of the major concerns. A healthy individual can interact with a

computer using a mouse with a reasonably shorter time. Their physical ability plays a significant

role behind the amount of time that might be required to complete a certain task. However,

the situation is not quite the same for individuals with upper limb disability. They are deprived

of the ability to use an optical mouse, and therefore, are unable to accomplish basic computing

tasks, in connection to which an Assistive Mouse Controller (AMC) can play a significant role.

Although the task completion times using an AMC will be longer compared to an optical mouse,

at least it can assist people with upper limb disability in performing tasks that were previously

impossible on their part.

(a) (b)

Figure 4.15: Distribution of the task completion times in the “Point and Click” experiment, using –

(a) an optical mouse and (b) the proposed Assistive Mouse Controller (AMC).
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Table 4.10: Descriptive statistics of the task completion times in the “Point and Click” experiment

using different pointing devices.

Pointing Device Tasks (n)
Descriptive Statistics (in seconds)

Mean SD Min
25th

Percentile

50th

Percentile

75th

Percentile
Max

Optical Mouse 6469 0.8875 0.4036 0.3120 0.6410 0.7820 1.0000 3.1410

AMC 666 8.1619 5.8173 0.6720 4.3785 6.4065 10.1880 35.1090

Analyzing the histograms of the task completion times using the two pointing devices in

this experiment, as shown in Fig. 4.15, and the descriptive statistics of the same, as summa-

rized in Table 4.10, it was observed for the healthy individuals that, with an optical mouse,

the task completion times of about 64.11% of the tasks were within 0.34-0.85 seconds, with

a mean completion time of 0.8875 seconds. About 50% of the time, 0.7820 seconds were re-

quired to complete a task. For the individuals with upper limb disability, the corresponding

task completion times, using the proposed AMC, of about 60.81% of the tasks were within

1.02–7.22 seconds, with a mean of 8.1619 seconds and a 50th percentile of 6.4065 seconds. From

this analysis in the context of this experiment, the average task completion time using the

AMC was about 9.2 times longer than that of an optical mouse. However, for individuals with

upper limb disability, who could not previously accomplish the same tasks and interact with a

computer like a healthy person, the average task completion time may be regarded reasonable.

In the next section, we will analyze user performance in typing tasks using the AMC and an

optical mouse to facilitate a comparative performance analysis between the two.
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4.2 Typing Experiment

A keyboard and a mouse are considered as standard media of user input to a computer. A

healthy individual without any form of upper limb disability can use a physical keyboard for

providing different characters, numerals, commands, etc. as input to a computer. However, most

modern operating systems feature an on-screen virtual keyboard, on which a key press event can

be triggered with the help of a computer mouse as well. Individuals with upper limb disability,

unlike their healthy counterparts, cannot interact with a physical keyboard. Therefore, given

that they have access to a wearable Assistive Mouse Controller (AMC), the virtual keyboard in

combination with the mouse cursor may serve as an alternative input modality for typing tasks.

In this section, we elaborate on a typing experiment, where users were required to type 5 different

sentences with a virtual keyboard through a typing game “TypeWriter” (implemented in-house

using python), few snapshots of which have been provided in Fig. 4.16. Standard metrics, such

as – MissTypes, Accuracy, Words Per Minute (WPM), and Characters Per Minute (CPM),

were used for measuring user performance in this task. Both healthy individuals and those with

upper limb disability were recruited for this purpose, where the healthy individuals were asked

to give text input using an optical mouse only, and the physically challenged individuals were

asked to do the same with the proposed AMC only through a virtual keyboard that followed

the QWERTY layout. This arrangement helped us perform a comparative analysis of users’

performance using the two interaction devices. We have constructed two datasets with the

user-interaction data from this game, where one dataset contains interaction data of healthy

individuals using an optical mouse, and the other contains interaction data of individuals with

upper limb disability using our proposed AMC. It was hypothesized that the typing performance

of the healthy individuals with the optical mouse might be better compared to their physically

challenged counterparts, who used the proposed AMC for similar purpose. However, it is to be

noted that, the purpose of this study is not to determine the superiority of an optical mouse over

the proposed AMC, rather its purpose is to establish the contribution of the proposed AMC

in facilitating human-computer interaction for the people with upper limb disability, otherwise

impossible. This section begins with the details of our experimental methodology, involving a

generic mouse and our proposed AMC, followed by results analysis, and discussion sections.
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(a) (b)

(c) (d)

Figure 4.16: Snapshots of the game “TypeWriter” – (a) Player registration and game instruction

screen, (b) Target sentence shown in green, and user written sentence in red. (c) Sentence completed

(in cyan) with errors (in red rectangle), and (d) Sentence completed (in cyan) without error.

4.2.1 Methodology

4.2.1.1 Participants

The target users for this experiment were individuals with or without any form of upper limb

disability. However, all of them were required to have basic computing knowledge. For the

experimental study with an optical mouse, the same 25 healthy participants [16 males (64%,

Mean Age: 24.19 ± 1.47 years), 9 females (36%, Mean Age: 21.33 ± 1.89 years); Mean Age:

23.20 ± 2.14 years] of the “Point and Click” experiment in section 4.1, “Point and Click

Experiment”, were recruited. Although the same 15 participants with upper limb disability of

the “Point and Click” experiment were initially recruited for this experiment using our proposed

AMC, 6 of them could not attend the experiment sessions due to personal reasons, leaving 9

individuals [6 males (66.67%, Mean Age: 26.83 ± 3.89 years), 3 females (33.33%, Mean Age:

25.33 ± 1.70 years)] with upper limb disability. Each of the participants provided a verbal

consent prior to their participation in this study.
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4.2.1.2 Experimental Design

Both healthy participants and those with upper limb disability were asked to play the entire

game once on a laptop with a screen resolution of 1920× 1080 pixels using a generic computer

mouse and the proposed AMC as pointing devices, respectively. We allotted 15 minutes per

participant during which they were briefed about the semantics of the game, had a few trial

runs, followed by the actual experiment. Data for each play of the game were automatically

uploaded to our server. The participants were notified about the automated data collection

prior to their participation and were assured of no invasion of privacy from our part.

Each of the participants had to write 5 sentences, distributed in 5 levels of the game, using

their respective pointing devices and a virtual keyboard that followed the QWERTY layout.

The sentences that had to be written were displayed on the top half of the screen in green,

while the characters that were typed in, were shown on the bottom half in red, as depicted

in as shown in Fig. 4.16b, Fig. 4.16c, and Fig. 4.16d. Once a sentence was complete, it

turned into cyan, and a prompt, “Press Enter”, appeared below the sentence to allow the

participant to move to the next sentence with the press of the “Enter” button, as depicted

in Fig. 4.16c and Fig. 4.16d. The backspace key was intentionally disabled in the game to

correctly quantify some performance metrics. To facilitate opening the virtual keyboard, from

within the game, a button, “Open VKeys” was provided in the top right corner of the screen,

as shown in Fig. 4.16a. The game ended when all the sentences had been typed in by a

participant, and the data was uploaded to our server for further analysis. The user-interaction

data, recorded while playing the game, were – Typed String (TS), Player Keystrokes (PK),

First Acquired Time (FAT), and Sentence Completion Time (SCT). PK was measured as the

total number of keystrokes required by a player to complete a sentence. FAT was quantified as

the elapsed time from the appearance of a sentence on screen to the typing of the first character

of a sentence, while SCT was quantified as the elapsed time from typing the first character to

the press of the “Enter” button [130–132]. After one play of the game, “TypeWriter”, from 25

healthy participants, about 125 instances, 25 instance/sentence, and from 9 participants with

upper limb disability, about 45 instances, 9 instance/sentence, were registered.

A qualitative and quantitative summary of the 5 sentences featured in this game is provided

in Table 4.11 and a descriptive summary of the parameters that were recorded per sentence

is summarized in Table 4.12.
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Table 4.11: Qualitative and quantitative summary of the game “TypeWriter”.

Level Sentence
Uppercase

Letter(s)

Lowercase

Letter(s)

Special

Character(s)
Length

Ideal Number of

Strokes Required a

1 Rise and shine. 1 11 3 15 16

2 Nothing lasts forever. 1 18 3 22 23

3 Be honest. 1 7 2 10 11

4 Respect the elders. 1 15 3 19 20

5 Follow your heart. 1 14 3 18 19

Total 5 65 14 84 89

a Ideal number of keystrokes is greater than the number of characters by 1, due to pressing of the “shift” key for typing the uppercase letter.

Table 4.12: Descriptive summary of parameters, recorded per sentence, for the game “TypeWriter”.

Parameter Unit Interpretation

Level Serial x Level number (1 – 5).

Typed String (TS) string User-typed sentence.

Player Keystrokes (PK) x Number of keystrokes required by a participant to com-

plete a sentence.

First Acquired Time (FAT) Time in seconds Time required from appearance of sentence to first

keystroke.

Sentence Completion Time (SCT) Time in seconds Time required to complete a sentence.

4.2.1.3 Data Processing

Data analysis was carried out using python. Prior to analysis, the data set was cleaned off of

erroneous data to avoid erroneous calculation. In this study, typing performance was measured

using various standard metrics, such as – MissTypes, Accuracy, Words Per Minute (WPM), and

Characters Per Minute (CPM), adopted from prior studies [130–132]. As the backspace key

was intentionally disabled for this game, it was computationally convenient to count the number

of wrong characters typed in by the user by simple string-matching technique, quantifying the

metric, MissTypes, in the process. For the metric Accuracy, the ratio of the number of correctly

typed in characters to the length of the sentence was considered, as shown in Eq. 4.1. The

formula for quantifying WPM, as shown in Eq. 4.2, was adopted from prior studies [130–132],

where the length of a word is considered to be 5 characters long [132], while CPM was measured

as the ratio of the length of a user-typed string to SCT, as shown in Eq. 4.3. a descriptive

summary of the performance metrics that were considered for this study is summarized in

Table 4.13. A pairwise F -test for variances was conducted on the performance metrics to

analyze whether the variances in performance across differently abled users, using different

interaction devices, were significant. In any case, once the performance metrics for the respective

pointing devices were generated, they were visualized for better clarity and to get an idea of
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variances in user performance, considering differences in physical ability.

Accuracy =
numberofcorrectlytypedcharacters

lengthofthedisplayedstring
(4.1)

WPM =

∣∣∣∣ lengthofuser − typedstring

SCT
− 1

∣∣∣∣× 60× 1

5
(4.2)

CPM =
lengthofuser − typedstring

SCT
× 60 (4.3)

Table 4.13: Descriptive summary of the metrics, considered in this study, for quantifying typing

performance.

Metric Unit Interpretation

MissTypes x Number of mismatches between user-typed and displayed

sentences.

Accuracy percentage Ratio of the correctly typed characters and length of the

displayed sentence.

Words Per Minute (WPM) words / minute Estimate of speed of typing a 5-character long word.

Characters Per Minute (CPM) chars / minute Estimate of characters per minute, considering SCT.

4.2.2 Results

The results of the typing performance analysis are shown in Fig. 4.17. The average WPM

using the proposed AMC was found to be around 2.05, which is about 8 times lesser than that

of the optical mouse, around 16.72 WPM. Similar ratio is carried over to CPM as well, with

optical mouse having a value of 89.29 and AMC having 10.92, signifying the consistency of

the experiment. Moreover, the same ratio of 8 times, is inversely carried over to SCT as well,

with the optical mouse requiring almost 8 times less than the AMC to complete a sentence.

Another important thing to notice is the value of FAT, where using the AMC, it took around 4

times longer to hit the first character after the appearance of a sentence than the optical mouse.

Optical mouse also demonstrates better performance in terms of MissTypes and Accuracy, the

first one being almost 4 times less than that of the AMC. Accuracy is subject to speed-accuracy

trade-off [114, 125] and though less than that of an optical mouse (81.72% percent of that of

the optical mouse), the accuracy of the AMC is not equivalently less, as the other parameters

discussed before. From the analysis and visualization of the other parameters, it can be deduced

that the participants were trading off WPM and CPM, or in other term speed, in the case of

AMC to acquire comparatively better accuracy. The standard error of mean in most of the

parameters are quite small or consistent. However, in cases of SCT and CPM, the variations of
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standard error of mean are noticeably different, comparing the ones of the optical mouse and

the AMC.

(a) (b)

Figure 4.17: Visualization of typing performance metrics using – (a) an optical mouse and (b) the

proposed Assistive Mouse Controller (AMC). FAT: First Acquired Time, SCT: Sentence Completion

Time, WPM: Words Per Minute, CPM: Characters Per Minute.

Furthermore, from the summary of means of the performance metrics per sentence, as shown

in Table 4.14, a decreasing trend can be observed in the value of FAT for the AMC, which

is not the case for the optical mouse. This trend is an indication that with time, users of

the proposed AMC may demonstrate enhanced control of their interaction with a computer,

thereby, reducing interaction time in the process. The results of a pairwise F -test for variances

on the performance metrics, summarized in Table 4.15, suggest that the performance of the

healthy individuals, with the optical mouse was significantly better than that of the individuals

with upper limb disability, using the AMC.

Table 4.14: Summary of means of the performance metrics per sentence of the game “TypeWriter”.

Level Sentence
Mean FAT Mean SCT Mean MissTypes Mean Accuracy Mean WPM

Optical

Mouse
AMC

Optical

Mouse
AMC

Optical

Mouse
AMC

Optical

Mouse
AMC

Optical

Mouse
AMC

1 Rise and shine. 4.2338 12.1407 12.7990 91.1267 0.7391 5.1111 0.9500 0.6600 14.0370 1.9256

2 Nothing lasts forever. 1.5568 11.7847 15.4589 118.0624 2.9600 6.0000 0.8636 0.7256 17.4888 2.1822

3 Be honest. 1.7468 8.6648 7.4531 57.3056 0.4000 1.8889 0.9600 0.8111 16.2004 1.9633

4 Respect the elders. 3.2318 8.5381 12.4513 116.5487 0.9200 4.4444 0.9520 0.7667 18.2612 2.0733

5 Follow your heart. 2.1651 7.1614 11.7892 108.9044 1.3896 3.3333 0.9271 0.8144 17.2762 2.1089
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Table 4.15: Summary of the results of pairwise F -test for variance for the performance metrics.

Interaction Device
FAT SCT MissTypes Accuracy WPM(

σ2
A > σ2

B

)
a

A B F -stat p-value b F -stat p-value b F -stat p-value b F -stat p-value b F -stat p-value b

Optical

Mouse
AMC - - - - - - - - 99.1391 <0.001

AMC
Optical

Mouse
2.3921 <0.001 108.6828 <0.001 2.8648 <0.001 4.0345 <0.001 - -

a Variance
(
σ2
i

)
of performance metrics for device i, where i ∈ A,B.

b p-values were computed at a level of significance, α =0.05.

4.2.3 Discussion

This experiment investigated the performance of users with upper limb disability using the

proposed AMC compared to that of healthy individuals with an optical mouse, in typing tasks

through the game “TypeWriter” (implemented in-house in python). Various standard perfor-

mance metrics, such as – MissTypes, Accuracy, Words Per Minute (WPM), and Characters

Per Minute (CPM), were adopted from prior studies [130–132] to juxtapose their respective

performances in typing tasks. It was hypothesized that the performance of the healthy indi-

viduals might be better compared to their physically challenged counterparts. Also, the goal

of the study was not to establish the superiority of one device over the other, rather it was to

understand how the proposed AMC might assist physically challenged individuals to perform

typing tasks using an alternative input modality.

From our result analysis, we found that the performance of the healthy individuals was

significantly better than their physically challenged counterparts, supporting our hypothesis in

the process. Furthermore, we have also shown that using the proposed AMC, individuals with

upper limb disability can participate in typing tasks like their healthy counterparts. Although

their performance is not so high as the healthy participants, who used an optical mouse for

typing, it may provide a good starting point for future research, where the interaction of the

AMC may be optimized for enhancing user performance. In connection to this, future works

may include design and development of a keyboard layout for people with upper limb disabil-

ity, specifically suited for typing tasks using the proposed AMC. In the next section, we will

implement the System Usability Scale (SUS) [61] to obtain valuable and relevant insights of the

device usability.
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4.3 Usability Analysis of the Assistive Mouse Controller (AMC)

The purpose of assistive technologies is to help physically challenged individuals with differ-

ent activities, allowing them to participate equally in all forms of interaction like their healthy

counterparts. In this regard, usability of the device is a very important aspect, which primar-

ily encapsulates the idea of how easily a user can adapt to a particular assistive technology.

Usability of any assistive technology enhances user’s appeal for that technology. Therefore,

usability analysis of the proposed Assistive Mouse Controller (AMC) is a crucial part of this

study. In this section, we analyze the usability of the AMC, according to the System Usability

Scale (SUS) [61]. The section begins with a discussion on the theoretical background of SUS,

followed by its application in relation to this study.

4.3.1 Theoretical Background

According to ISO 9241−11, usability of any system or device is defined as, “the extent to which

a product can be used by specified users to achieve specified goals with effectiveness, efficiency,

and satisfaction in a specified context of use” [64]. The System Usability Scale (SUS) [60, 61]

is one of the most popular and easy to use methods that employs a closed-questionnaire based

approach to quantify the subjective assessments of usability of any system or device. It is a

10-item questionnaire, based on a 5-point Likert scale, corresponding to the basic issues that a

user might run into while using any system. The 10-items of SUS as proposed by J. Brooke [60]

have been summarized in Table 4.16.

Table 4.16: The 10 items of the System Usability Scale (SUS) as proposed by J. Brooke in 1996 [60].

Item Description

SUS 1 I think that I would like to use this system frequently.

SUS 2 I found the system unnecessarily complex.

SUS 3 I thought the system was easy to use.

SUS 4 I think that I would need the support of a technical person to be able to use this system.

SUS 5 I found the various functions in this system were well integrated.

SUS 6 I thought there was too much inconsistency in this system.

SUS 7 I would imagine that most people would learn to use this system very quickly.

SUS 8 I found the system very cumbersome to use.

SUS 9 I felt very confident using the system.

SUS 10 I needed to learn a lot of things before I could get going with this system.

SUS can be used for evaluating the usability of any device or system, only when the respon-

dents of the questionnaire have used it first-hand. The even numbered items in the questionnaire
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are negative sounding, while the odd ones are positive sounding, allowing identification of valid

responses. For example, if a user’s response to the item, “I found the system unnecessarily

complex”, is low, then his/her response to the item, “I thought the system was easy to use”,

logically must be high. However, if this is not the case, the response may be ignored.

The SUS score, as specified by J. Brooke [60], is a single number between 0 and 100, repre-

senting a composite measure of the overall usability of the system under evaluation. However,

before calculating this score, the scale contribution of each item, which is a number between 0

and 4, needs to be calculated. For the even numbered items, the respective score contribution

is calculated as 5 minus the scale value (1 5), while for the odd numbered items, it is calculated

as the scale value (1 5) minus 1. Next, the sum of the score contributions of the even and

the odd numbered items are calculated as YO and XO, respectively. Finally, the SUS score for

the system or device under evaluation is calculated as (XO + YO) × 2.5, generating a number

between 0 and 100. The process of calculating SUS scores is depicted in Fig. 4.18.

Find score contributions (0 – 4)
for each even numbered items as,

“ ”

Calculate sum of score
contributions of even

numbered items

Find score contributions (0 – 4)
for each odd numbered items as,

“ ”

Calculate sum of score
contributions of odd

numbered items

User Responses
Calculate SUS score as,
“ ”

SUS score between
0 and 100.

System Usability Scale
(SUS) Questionnaire

Figure 4.18: Workflow diagram of calculating the System Usability Scale (SUS) score.

The SUS score itself does not represent whether the usability of a system or a device is

poor or good. Therefore, to facilitate some form of interpretation of the SUS score, researchers

have assigned letter grades (A+, A,A−, etc.) to this score, based on empirical evaluation of

various studies related to SUS [133, 134]. For example, Bangor et al. [134] developed a SUS

score grading scale, where scores below 60 were assigned as “F”, between 60 and 69 as “D”,

between 70 and 79 as “C”, between 80 and 89 as “B”, and 90 and above as “A”. To provide

more granularity of interpretation, Lewis et al. [133], subdivided the letter grades “A”, “B”,

and “C” in to 3 categories, such as – “A+”, “A”, “A−”, “B+”, “B”, “B−”, etc. A summary of

the letter grade assignment to SUS scores, by Lewis et al. [133], is provided in Table 4.17. In

the next section, we elaborate on our methodology, followed by results analysis and discussion.
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Table 4.17: Letter grade assignment to System Usability Scale (SUS) scores by Lewis et al. [133] for

better interpretation of usability.

SUS Score Percentile Range Letter Grade

84.10 - 100.00 96 - 100 A+

80.80 - 84.00 90 - 95 A

78.90 - 80.70 85 - 89 A−
77.20 - 78.80 80 - 84 B+

74.10 - 77.10 70 - 79 B

72.60 - 74.00 65 - 69 B−
71.10 - 72.50 60 - 64 C+

65.00 - 71.00 41 - 59 C

62.70 - 64.90 35 - 40 C−
51.70 - 62.60 15 - 34 D

0.00 - 51.60 0 - 14 F

4.3.2 Methodology

4.3.2.1 Participants

The target users for this experiment were individuals with upper limb disability, who had first-

hand experience with the proposed AMC. In our case, the same 15 individuals with upper limb

disability [9 males (60%, Mean Age: 26.57 ± 4.39 years), 6 females (40%, Mean Age: 24.33 ±

4.96 years)] who participated in the “Point and Click” experiment in section 4.1, “Point

and Click Experiment”, were also recruited for this online survey. Each of the participants

provided a verbal consent prior to their participation in this study. The age distribution of the

15 respondents is depicted in Fig. 4.19.

Figure 4.19: Age distribution of the 15 respondents, who participated in the survey.
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4.3.2.2 Experimental Design

Once the participants completed the “Point and Click” and the “Typing” experiments with

the proposed AMC, they were invited to take an online survey for rating different usability

aspects of the AMC. The survey questionnaire comprised of the same 10-items, as proposed by

J. Brooke [60], measuring different usability aspects of the proposed AMC on a 5-point Likert

scale with ratings, such as – 1 – Strongly Disagree, 2 – Disagree, 3 – Neutral, 4 – Agree, and 5

– Strongly Agree.

4.3.2.3 Data Processing

In this study, data analysis was done in python. Once the user responses to the survey items

were recorded, the mean and Standard Deviation (SD) of the scores, corresponding to each item,

were calculated. The SUS score of the AMC per respondent and its equivalent letter grades

were then calculated, following the process outlined in Figure 23 and the grading scheme

summarized in Table 17, respectively. Then, the mean of all SUS scores and the corresponding

letter grade were calculated to get an overall interpretation of the usability of the proposed

AMC. Finally, pairwise F -tests were carried out on the user ratings of different pairs of SUS

items, to verify whether they varied significantly, which in theory, should not.

4.3.3 Results

From the user ratings of this study, summarized in Table 4.18, it was observed that the

SUS scores of the AMC ranged between 70.00 and 97.50, with a mean score of 84.17 (±8.05).

The minimum, the maximum, and the mean letter grades obtained, were C, A+, and A+,

respectively. The percentage of user ratings of the overall usability of the AMC, in terms

of the letter grades, A+, A, A−, C+, and C, were 60%, 6.67%, 13.33%, 13.33%, and 6.67%,

respectively. Considering the different SUS items, about 73.33% of the participants strongly

disagreed on their interaction with the AMC as being unnecessarily complex, with a mean

rating of 4.20 (±0.56). Considering the items SUS2, SUS3, and SUS8, where the first item

concerns about system complexity, the second about its ease-of-use, and the last about its cum-

bersomeness, the user ratings should not vary significantly. Intuitively, if the rating for SUS3 is

high, then the corresponding ratings for SUS2 and SUS8 should be low. To verify whether the

variances were significantly different, pairwise F -tests were carried out for all possible combi-

nations of the group of items SUS2, SUS3, and SUS8. For the SUS item pairs, (SUS2, SUS3),



Chapter 4. Experimental Design and Result Analysis 78

(SUS2, SUS8), and (SUS3, SUS8) the pairwise F -test results were (F14,14 = 1.9545, p = 0.1111),

(F14,14 = 1.9545, p = 0.1111), and (F14,14 = 1.0000, p = 0.5000), respectively, indicating the rat-

ings did not vary significantly. Interestingly, the percentage of users, who strongly agreed on

the AMC to be easy to use, was equal to that of those, who strongly disagreed on its cumber-

someness, which is about 53.33%. For the same two items, similar proportions for the ratings,

agreed -disagreed (40.00%) and neutral (6.67%), were observed as well. Similar consistency in

variance of user ratings, in theory, should exist between the items SUS5 and SUS6, which was

confirmed by a pairwise F -test on these two items (F14,14 = 1.3488, p = 0.2915). For better

visualization, box plots of user-ratings for the 10-items of the SUS questionnaire are outlined

in Fig. 4.20.

Table 4.18: Results of usability analysis of the proposed Assistive Mouse Controller (AMC) using the

System Usability Scale (SUS).

Respondent SUS 1 SUS 2 SUS 3 SUS 4 SUS 5 SUS 6 SUS 7 SUS 8 SUS 9 SUS 10 SUS Score Letter Grade a

R1 4 1 5 1 5 1 4 1 4 1 92.50 A+

R2 4 2 4 2 5 1 5 1 4 3 82.50 A

R3 4 1 4 2 3 2 3 2 3 1 72.50 C+

R4 4 1 5 2 5 1 4 2 5 1 90.00 A+

R5 4 1 5 1 5 1 4 1 4 1 92.50 A+

R6 5 2 4 2 5 1 4 1 5 1 90.00 A+

R7 5 1 5 2 5 1 5 1 5 1 97.50 A+

R8 4 2 5 4 4 2 5 2 3 2 72.50 C+

R9 4 1 3 2 4 2 3 2 3 2 70.00 C

R10 3 1 5 1 4 2 4 2 3 1 80.00 A−
R11 4 1 4 3 5 1 4 1 5 1 87.50 A+

R12 4 1 4 1 5 3 5 2 2 1 80.00 A−
R13 4 1 5 2 4 2 5 3 5 1 85.00 A+

R14 5 2 4 2 5 1 5 1 4 3 85.00 A+

R15 5 1 5 2 3 2 4 1 4 1 85.00 A+

Mean 4.20 1.27 4.47 1.93 4.47 1.53 4.27 1.53 3.93 1.40 84.17

SD 0.56 0.46 0.64 0.80 0.74 0.64 0.70 0.64 0.96 0.74 8.05
A+

a Letter Grades were adopted from [133].
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Figure 4.20: Box plot of user ratings of the proposed Assistive Mouse Controller (AMC) using the

System Usability Scale (SUS).

4.3.4 Discussion

This experiment investigated the users’ standpoint on the usability of the proposed AMC,

leveraging the System Usability Scale (SUS). From the result analysis of this experiment, the

user ratings were found to vary insignificantly, while maintaining consistency between the ratings

of different pairs of positive and negative sounding SUS items. In terms of usability, the mean

SUS score of the device was about 84.17 out of 100, achieving an overall rating of A+. This

rating, according to the letter grade assignment of SUS scores for better interpretation of system

usability by Lewis et al. [133], falls in the highest order of the usability scale (96−100 percentile

range). The lowest and the highest SUS scores of the device were 70.00 and 97.50, respectively.

Although some usability ratings were between the 41st and the 64th percentile, following Table

17, such as the ratings C+ and C, respectively, it is an indication that the perception of device

usability is subjective, and therefore, not every user will perceive its usability in the same way.

However, the proportions of such ratings are smaller than that of A+ rating. These findings

further raise the need to investigate users’ satisfaction with the device in connection to their

perceived level of device usability, which will be analyzed using the Quebec User Evaluation of

Satisfaction with Assistive Technology 2.0 (QUEST 2.0) framework in the following section.
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4.4 User Satisfaction Analysis of the Assistive Mouse Controller

(AMC)

From the perspective of physically challenged users, evaluating their perceived satisfaction with

any assistive technology is an important psychological phenomenon that significantly determines

whether it will be accepted or rejected by them for further use. In this regard, the most popular

tool is the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST

2.0) framework [66], which is a 12-item outcome measure that measures user satisfaction from

two perspectives, such as device and services. In this section, a discussion on the theoretical

background of QUEST 2.0, followed by our approach for analyzing users’ satisfaction of the

proposed Assistive Mouse Controller (AMC) has been provided.

4.4.1 Theoretical Background

The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST) was developed

to fill up the gap between theoretical knowledge and the factors that influence user satisfaction

with assistive technologies [66]. The initial version of QUEST was a 24-item outcome mea-

surement tool, where each item quantified users’ level of satisfaction based on a 5-point Likert

scale. Over the course of time, research [67, 68] had been carried out that aimed to validate

and analyze the reliability of the QUEST model, leading to the development of the QUEST

2.0, a generic 12-item questionnaire with the same objective as its predecessor. Among these

12-items, 8 items are intended to analyze user satisfaction from device perspective, while the

rest from service perspective. In any case, the analyst has the flexibility to add any other

items, which they considered important [66]. Apart from these 12-items, a user is also asked

to identify three of the most important factors associated with the assistive technology under

consideration. From the analysis of user responses, three types of scores are generated, such

as – device, services, and total QUEST. These scores are calculated as the average of the valid

responses per item [66]. In the next section, we elaborate on our methodology, followed by

results analysis and discussion.
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4.4.2 Methodology

4.4.2.1 Participants

The target users for this experiment were individuals with upper limb disability, who had first-

hand experience with the proposed AMC. In our case, the same 15 individuals with upper

limb disability [9 males (60%, Mean Age: 26.57 ± 4.39 years), 6 females (40%, Mean Age:

24.33 ± 4.96 years)] who participated in the “Point and Click” experiment in section 4.1,

“Point and Click Experiment”, were also recruited for this survey. Each of the participants

provided a verbal consent prior to their participation in this study.

4.4.2.2 Experimental Design

Since in the context of this study, a working prototype of a wearable Assistive Mouse Controller

(AMC) has been developed, the AMC is not yet available to the mass, and therefore, there is

no concept of follow-up user services at present. In other words, user satisfaction with the AMC

could not be analyzed from a service perspective. Therefore, in this study, users’ satisfaction

with the AMC has been analyzed from device perspective only.

A total of 10 items, corresponding to different aspects of the AMC, were considered for

analyzing user satisfaction with the AMC from device perspective. Some of these items were

adopted directly, some were adapted from prior studies [68] to suit the context of this study,

while some were newly developed specifically for this study. A 5-point Likert scale was used

to quantify users’ responses to the items with ratings, such as – 1 – Very Unsatisfactory, 2

– Unsatisfactory, 3 – More or Less Satisfactory, 4 – Satisfactory, and 5 – Very Satisfactory.

Furthermore, an additional question was considered where the users were asked to choose the

three most important aspects of the AMC from the 10 items. The entire survey was conducted

online. The items corresponding to the analysis of user satisfaction, with references to prior

studies, from which they were either adopted, adapted, or newly developed, are summarized in

Table 4.19.
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Table 4.19: Questionnaire items corresponding to QUEST 2.0 framework for analyzing user

satisfaction, adapted from [68].

Item Description

Item 1 How satisfied were you with, the dimensions (size, height, length, or width) of the As-

sistive Mouse Controller (AMC)?

Item 2 How satisfied were you with, the weight of the Assistive Mouse Controller (AMC)?

Item 3 How satisfied were you with, the adjustability (fixing, fastening) of the Assistive Mouse

Controller (AMC)?

Item 4 How satisfied were you with, the safety of the Assistive Mouse Controller (AMC)?

Item 5 How satisfied were you with, the durability (endurance, resistance to wear) of the As-

sistive Mouse Controller (AMC)?

Item 6 How satisfied were you with, the ease-of-use of the Assistive Mouse Controller (AMC)?

Item 7 How satisfied were you with, the comfortability of the Assistive Mouse Controller (AMC)?

Item 8 How satisfied were you with, the mouse cursor precision of the Assistive Mouse Controller

(AMC)?

Item 9 How satisfied were you with, the mouse click accuracy of the Assistive Mouse Controller

(AMC)?

Item 10 How satisfied were you with, the battery life of the Assistive Mouse Controller (AMC)?

Multiple Choice Considering different aspects of the AMC, such as - Dimensions, Weight, Adjustability,

Safety, Durability, Ease of Use, Comfortability, Mouse Cursor Precision, Mouse Click Ac-

curacy, and Battery Life, please select the three most important ones, in your opinion.

4.4.2.3 Data Processing

In this study, data analysis was done in python. Once the user responses to the survey items

were recorded, the reliability of the questionnaire was measured using the Cronbach’s Alpha

(α) (CA) test, where α > 0.7 is recommended for acceptable reliability [73, 135]. The mean

and standard deviation of the scores, corresponding to each item, were calculated. Since the

users’ satisfaction with the AMC has been analyzed from device perspective only, for reasons

mentioned earlier, there was no scope of calculating satisfaction scores from service perspective.

Therefore, the total QUEST 2.0 score was equivalent to the mean sub-score from a device

perspective. Furthermore, the responses were analyzed to identify the three most important

aspects of the proposed AMC, in terms of usability.

4.4.3 Results

Table 4.20 outlines the means of users’ satisfaction scores with the proposed AMC from device

perspective. The α value of questionnaire reliability, obtained using the CA test, was found

to be 0.7801, indicating acceptable reliability. The mean satisfaction scores of the users across
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different aspects of the AMC ranged between 3.8667 and 4.8667, which in terms of percentage

is between 77.33% and 97.33%. The overall mean satisfaction score was found to be 4.3867.

In other words, the users were able to achieve an overall satisfaction of 87.73% while using the

device. The three most important aspects of the AMC, according to the users, were found to

be mouse cursor precision, ease-of-use, and adjustability. The importance of different aspects

of the AMC, according to the users, is outlined in descending order in Fig. 4.21.

Table 4.20: Mean of satisfaction scores of users (n = 15) with the Assistive Mouse Controller (AMC)

from device perspective.

Device Aspects
User Satisfaction Scores

Mean % SD

Dimension 4.3333 86.67 1.1751

Weight 4.6000 92.00 1.0556

Adjustability 4.6667 93.33 0.8997

Safety 4.8667 97.33 0.5164

Durability 4.2000 84.00 1.2071

Ease of Use 4.3333 86.67 1.1751

Comfortability 4.2667 85.33 1.0998

Mouse Cursor Precision 3.8667 77.33 1.3558

Mouse Click Accuracy 3.9333 78.67 1.4376

Battery Life 4.8000 96.00 0.7746

Overall Mean Score 4.3867 87.73 1.0697

Figure 4.21: The importance of different aspects of the proposed Assistive Mouse Controller (AMC)

from users’ perspective.
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4.4.4 Discussion

This experiment investigated the users’ satisfaction with different aspects of the proposed AMC,

leveraging the QUEST 2.0 framework. From the result analysis of this experiment, cursor

movement precision was found to be the most important aspect. This is expected, as the

main purpose of this device is to control a mouse and if the cursor movement is not smooth

and precise, it will compromise human-computer interaction and all the other relevant aspects.

The user ratings for ease-of-use and adjustability were similar, which turned out to be the

second and the third most important aspects, respectively. Comfortability turned out to be

the fourth important aspect from the users’ perspective. From this analysis, it may be inferred

that ease-of-use of the device encompasses most of the other aspects of the device, not in the

top three, which influence user interaction with a computer. To conclude, the proposed AMC

demonstrated a high level of user satisfaction (about 87.73%), which leads us to further analyze

users’ perspective on whether they will accept this technology as an AMC for human-computer

interaction. In connection to this, users’ acceptability of the proposed AMC will be analyzed

using the Technology Acceptance Model (TAM), in the following section.
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4.5 User Acceptability Analysis of the Assistive Mouse Con-

troller (AMC)

Users’ acceptance of a particular technology is driven by various psychological constructs, such

as ease-of-use, perceived usefulness, confidence while using it, etc. The Technology Acceptance

Model (TAM) is used in this regard to analyze the influence of these constructs on users’ attitude

towards that technology and their intention of adopting it as part of their lifestyle [53, 54, 69].

Prior studies [70,72–74,136–147] have utilized the TAM in this regard, pointing out key factors

and their relationship that influence acceptance of a technology. However, few of the studies were

related to the acceptance of wearable technologies in general. To the best of our knowledge, no

significant work has been reported on the analysis of the acceptance of a wireless head-mounted

Assistive Mouse Controller (AMC) for people with upper limb disability using the TAM. In

this section, a discussion on the theoretical background of TAM, followed by a brief literature

review, and our approach for analyzing the acceptance of the proposed AMC has been provided.

4.5.1 Theoretical Background

The development of newer wearable technologies, while solving various real-life scenarios, has

led to the research on numerous theoretical models for analyzing users’ acceptance of those

technologies. From a psychological perspective, any technology which is perceived as easy-

to-use, will be considered useful, generating a positive attitude towards its usage, thereby,

increasing its chances of being accepted by the users as a part of their lifestyle. The Technology

Acceptance Model (TAM), as proposed initially by Davis et al. [53, 54] in 1989, and later

extended by Venkatesh et al. [69] in 2000, has been widely used for analyzing users’ acceptance

of different technologies. Venkatesh and Davis [69], in their proposal of the TAM, primarily

explained the influence of different psychological constructs, such as -

• Perceived Usefulness (PU): “The degree to which a person believes that using a par-

ticular system would enhance his or her job performance” [53,54].

• Perceived Ease of Use (PEU): “The degree to which a person believes that using a

particular system would be free of effort” [53,54].

• Subjective Norm (SN): “The person’s perception that most people who are important

to him or her think s/he should or should not perform the behavior in question” [53,54].
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• Attitude Towards Usage (ATU): “An individual’s positive or negative feelings (eval-

uative affect) about performing the target behavior” [53,54].

• Behavioral Intention (BI): “A measure of the strength of one’s intention to perform a

specified behavior” [53,54].

The constructs, PU and PEU affect a user’s ATU and BI towards the acceptance of a tech-

nology [53,54]. In the subsequent theoretical extension of the TAM, proposed by Venkatesh [69]

and referred to as the TAM2, the influence of various external variables, such as – experi-

ence, output quality, job relevance, result demonstrability, etc. on the psychological constructs,

PU and PEU, of the original TAM model had also been considered. To generalize, for any

technology, the external variables directly or indirectly influence PEU and PU of a technol-

ogy. Increased PEU will enhance PU, generating positive ATU of that technology among the

users. These psychological constructs (PU and ATU) then influence the user’s BI to accept the

technology. An outline of the TAM2 model is depicted in Fig. 4.22.

Behavioral
Intention

Attitude
Towards Use

External
Variables

Actual use

Perceived
Usefulness

Perceived
Ease of Use

Figure 4.22: Outline of the Technology Acceptance Model 2 (TAM2).

The analysis of users’ acceptance of a technology using the TAM or the TAM2 framework

typically involves a self-administered, closed-ended, n-point (n = 4, 5, 6 or 7) Likert scale-

based survey questionnaire, which is divided into sections that represent different psychological

constructs (e.g., PU, PEU, SN, etc.) [69, 73, 146, 148, 149]. Each question corresponding to

a particular construct is normally referred to as a measurement item. Based on a theoretical

analysis of possible influence of one construct over another, alternative hypotheses are postulated

[69,72,135,150] and tested (rejected or accepted) later during data analysis. In studies related to

technology acceptance, involving TAM or TAM2 [70,72–74,135,141,150], data analysis typically

involves two steps, such as – 1) developing a measurement model and 2) developing a Structural

Equation Model (SEM) [73,135,137].
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4.5.1.1 Measurement Model

The measurement model is generally developed through Exploratory Factor Analysis (EFA)

or Confirmatory Factor Analysis (CFA) [73, 135, 151–153]. Detailed descriptions of EFA and

CFA are beyond the scope of this study, and the reader is requested to refer to the work of

Noora Shrestha [153] for better comprehension. However, before either EFA or CFA could

be conducted for developing the measurement model, it is necessary to check whether the

dataset under consideration is adequate for factor analysis. The adequacy test involves both

Bartlett’s test of sphericity and Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy

[152,153]. Bartlett’s test of sphericity is intended to test whether the items in the questionnaire

are correlated enough, such that the correlation matrix does not become an identity matrix.

This can be verified if the value of p, obtained from this test is less than 0.05, given that

95% confidence interval is considered [153]. The KMO measure on the other hand is used to

determine whether the sample size is large enough for factor analysis. The KMO value ranges

between 0 and 1, where values between 0.8 and 1.0, 0.7 and 0.79, and 0.6 and 0.69 indicate

the sample size is “adequate”, “middling”, and “mediocre”, respectively [153]. KMO values less

than 0.6 is considered inadequate for factor analysis, in which case, the sample size needs to

be increased [153]. The measurement model is developed with the aim to test the following

properties –

(a) Overall reliability of the questionnaire: Measured using the Cronbach’s Alpha (α)

(CA) test, where α > 0.7 is recommended for acceptable reliability [73,135].

(b) Internal consistency of the constructs: Generally measured using their respective

Composite Reliability (CR) [73, 135, 137, 151, 154, 155], where the typical value of CR

should be greater than 0.7 [73, 151]. However, CR> 0.6 and CR≤ 0.7 is also acceptable

[135,155].

(c) Individual item reliability: Measured using factor loadings (λ), where factors are

defined as latent or unobserved variables that affect a particular construct [72, 73, 137,

151, 152, 155]. Only the factors whose eigenvalues are greater than 1 are considered for

analysis [152, 153]. Although the typical value of λ should be greater than 0.7, values

between 0.5 and 0.7 are also acceptable [72,151].

(d) Convergent Validity (CV) of a construct: An indicator of high correlation between

the items that are thought to be theoretically related. Alternatively, CV ensures that



Chapter 4. Experimental Design and Result Analysis 88

the items intended for measuring a construct are indeed measuring that construct. For

ensuring CV of a construct, both CR and Average Variance Extracted (AVE) of that con-

struct are considered. Previous studies suggest that CR> 0.7 and AVE> 0.5 combined,

are indicators of good convergent validity [73, 153, 155–158]. However, if AVE< 0.5, but

CR> 0.6, the CV of the construct is still considered to be adequate [155].

(e) Discriminant Validity (DV) of a construct: Ensures that the constructs that should

not be related are, in fact, not related. In other words, DV is used to ensure that the

items of a particular construct are not measuring a different construct [73,151]. DV can

be ensured if the squared root of AVE for a construct (usually placed on the diagonal

of the construct correlation matrix) is greater than its correlation coefficients with other

constructs [70, 135, 137, 151, 152, 155, 159]. This approach of testing DV is also known as

the Fornell and Larcker criterion [159].

A summary of the constraints on different test parameters of the measurement model is

given in Table 4.21.

4.5.1.2 Structural Equation Model (SEM)

Structural Equation Modeling (SEM) is used to examine the hypotheses, postulated earlier

during the theoretical analysis of possible influence of one construct over another, relevant

to the acceptance of a technology [70, 72–74, 135, 141, 150, 151]. For example, if we consider

two constructs, CONS1 and CONS2, where CONS1 is hypothesized to have an influence on

CONS2; the influence is represented with an arrow, termed as a path, from CONS1 to CONS2.

The magnitude of the influence, otherwise known as path coefficient, is the standardized β

coefficient, which is estimated using any one of the following methods – Partial Least Square

(PLS) [73,135], Maximum Likelihood [141,151,160], Unweighted Least Squares (ULS) [161–163],

Generalized Least Squares (GLS) [162]. The statistical significance of the path coefficient (β) is

determined using bootstrapping [137,151,164] or t-tests [135], most commonly at a significance

level of 0.05, i.e., p < 0.05. Thus, from this explanation, the influence of CONS1 on CONS2

can be written as CONS2 = β × CONS1, which implies that a 1 unit change in CONS1 will

have β units of change in CONS2 and the change would be significant if p < 0.05 [72]. After

investigating all the hypotheses in this manner, the results are combined to generate a path

model as an outcome of SEM, which summarizes the following [73, 74, 135, 137, 139, 141, 147,

150–153,160,164,165] –
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(a) The paths that exist between constructs.

(b) The corresponding path-coefficients and their significance.

(c) The factor loadings of different items of each construct.

Although the path model gives an overview of the influences (significant or insignificant)

of one construct over another, it is important to investigate the relative fit of the data to the

model. For this purpose, many studies have recommended the following fit indices – the ratio of

chi-square to degrees of freedom (χ2/df), the Goodness-of-Fit Index (GFI), Adjusted Goodness-

of-Fit Index (AGFI), Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Normed Fit

Index (NFI), and Root-Mean-Square Error of Approximation (RMSEA) [72,150,152,166,167].

Detailed descriptions of these indices are beyond the scope of this study and the reader is

requested to refer to prior studies [72, 150, 166, 168–176], from which the recommended values

of these indices have been summarized in Table 4.22.
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Table 4.21: Summary of the constraints on different test parameters of the measurement model.

Property Metric(s) Condition Remark

Bartlett’s test of

Sphericity [152,153]
Large χ2 value at p < 0.05

Inter-construct correlation

matrix is not an identity

matrix

Kaiser-Meyer-Olkin (KMO)

measure of sample size

adequacy [152,153]

0.80 ≤ KMO < 1.00 Adequate

0.70 ≤ KMO < 0.79 Middling

0.60 ≤ KMO < 0.69 Mediocre

Adequacy Testing

of Sample Size for

Factor Analysis

KMO < 0.60 Inadequate

Cronbach’s Alpha

(α) [73,135]

0.90 ≤ α Excellent

0.80 ≤ α < 0.90 Good

0.70 ≤ α < 0.80 Acceptable

0.60 ≤ α < 0.70 Questionable

0.50 ≤ α < 0.60 Poor

Reliability of the

Questionnaire

α < 0.50 Unacceptable

Composite Reliability (CR)

[73,135,137,151,154,155]

CR ≥ 0.70 GoodInternal Consistency

of the Constructs 0.60 ≤ CR < 0.70 Acceptable

Factor Loading (λ)

[72,73,137,151,152,155]

λ ≥ 0.70 GoodIndividual Item

Reliability 0.50 ≤ λ < 0.70 Acceptable

CR, Average Variance

Extracted (AVE)

[73,153,155–158]

CR ≥ 0.70 and

AV E ≥ 0.50
Good

Convergent

Validity (CV)
CR > 0.60 and

AV E < 0.50
Acceptable

Discriminant

Validity (DV)

Average Variance

Extracted (AVE)

[70,73,135,137,151,152,155]

AVE of each construct

should be greater than its

correlation coefficient with

all other constructs

Good

Table 4.22: Recommended values of model fit indices in Structural Equation Modelling (SEM).

Fit Indices Recommended Value

χ2/df ≤3.00

Goodness-of-Fit Index (GFI) ≥0.90

Adjusted GFI (AGFI) ≥0.80

Comparative Fit Index (CFI) ≥0.90

Tucker-Lewis Index (TLI) ≥0.90

Normed Fit Index (NFI) ≥0.90

Root-Mean-Square Error of Approximation (RMSEA) ≤0.08
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4.5.2 Literature Review

Till date, several researchers have leveraged TAM for analyzing how the different psycholog-

ical constructs, under the influence of external variables, affect user’s acceptance of different

technologies. In this section, however, considering the relevance to this study, we elaborate on

studies related to TAM analysis of wearable technologies only.

In addition to the traditional components of TAM, Tsai et al. [73] conducted a study with

31 older patients with cardiovascular diseases and 81 older adults in general, to understand the

behavioral effects of TA, Perceived Ubiquity (PUB), and Resistance to Change (RC), on the

adoption of a wearable cardiac warming system in older adults. Their research findings state

that TA has negative effects on PEU and PUB, while PUB affects both PU and PEU of cardiac

warming system. On top of these, PU was found to have an indirect effect on BI through ATU.

Felea et al. [135] analyzed the influence of factors, such as – Perceived Enjoyment (PE), defined

as, “the level to which using a specific technology or service is seen as enjoyable”, and Visual

Attractiveness (VA), defined as, “an aesthetic product design expressed through shapes, colors,

and materials and user interfaces such as device menus and the mobile applications of wearable

devices”, on the adoption of wearable technologies among 192 Romanian students using the

TAM. Their analysis revealed that apart from the relation between the original constructs of

the TAM, VA positively affects PE and ATU, while PE positively affects PU, ATU, and BI when

it comes to adoption of wearable technologies. Ashfaq et al. [72] analyzed external factors, such

as – Perceived Irreplaceability, Perceived Credibility, Compatibility, etc., that might influence

elderly diabetic peoples’ intention to continue using digital health wearables through a survey

from 223 diabetic patients, aged 60 years and above. The findings of their study revealed

that all the factors mentioned above, had positive influence on the intention to continue using

digital health wearables. Lin et al. [70], have developed an instrumented wearable vest for

monitoring the quality of posture among elderly people. They identified Technology Anxiety

(TA) as a common psychological trait among elderly people when acceptance of new technology

is of concern. About 50 elderly people were recruited for their study and leveraging TAM,

they have analyzed the ATU and BI of their proposed technology under the influence of the

psychological constructs – TA, PU, and PEU. Hong et al. [140], Chuah et al. [141] and Kim et

al. [150], through a survey involving 276, 226 and 363 participants, respectively, utilized TAM

to empirically identify potential external factors, such as – Visibility (VIS), Affective Quality

(AQ), Relative Advantage (RA), Mobility (MB), Availability (AV), Subcultural Appeal (SA),
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Consumer Innovativeness (CI), etc. that might influence adoption of smartwatches. The results

of these studies suggest that the variables AQ and RA influenced PU, while MB and AV influence

PEU, and the variables, CI, SA and VIS, were found to be significant indicators of ATU and

BI of smartwatch adoption. Lunney et al. [74] deployed the TAM for gaining insights into a

user’s perception of Wearable Fitness Technologies (WFT) and to analyze the relation between

perceived health benefits and use of WFTs. From their analysis, it may be stated that WFTs

that have enhanced PU and PEU, are more likely to instigate increased positive ATU and BI

towards their adoption.

It is evident from the above discussion, while analyzing the factors that affect acceptance of

a technology by a user base, the extended TAM, or in other words the TAM2 has been widely

used by researchers, where the effect of various external variables on the generic constructs

of TAM, such as – PU, PEU, ATU, and BI [53, 54, 69], have been analyzed. Motivated by

prior studies, this research also aims to exploit the TAM2 for analyzing whether the proposed,

wireless head-mounted Assistive Mouse Controller (AMC), will be an acceptable technology

to the people with upper limb disabilities for human-computer interaction. In this regard, we

elaborate on the constructs and the associated hypotheses in the following section.

4.5.3 Hypothesis Development and Conceptual Framework

In this section, in addition to the original psychological constructs of the TAM2 (PU, PEU,

ATU, SN, and BI), we discuss some external constructs, such as – Personal Innovativeness (PI),

Technology Anxiety (TA), and Perceived Behavioral Control (PBC), that may influence the

acceptance of the proposed AMC technology by people with upper limb disability. Furthermore,

we also state our hypotheses regarding how each of the constructs may influence other constructs,

thereby, proposing our conceptual framework for validation.

4.5.3.1 Perceived Usefulness (PU)

Perceived Usefulness (PU) of a technology, according to the original proposal of TAM [53, 54]

and TAM2 [69], is considered as the extent to which an individual believes it will enhance

his/her performance. Given that an individual with upper limb disability is deprived of human-

computer interaction, a wearable head-mounted Assistive Mouse Controller (AMC), facilitating

such interaction, may improve their productivity, work-efficiency, etc., thereby, allowing them

to realize its PU. The consequences of such realization may have a positive impact on their

ATU and BI. TAM theorizes a direct positive effect of PU on the constructs ATU and BI [69].
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Furthermore, prior studies have also analyzed similar influences in the adoption of wearable

technologies, such as – smartwatches [140,141,150], wearable fitness technologies [72,74,145,159],

wearable posture monitoring vest [70], wearable cardiac warming systems [73], etc. However,

we have identified a gap in the literature regarding the analysis of how PU affects the ATU and

BI of users with upper limb disability in the adoption of a wearable AMC, which leads to the

postulation of the following hypotheses –

• H1: Perceived Usefulness (PU) has a significant influence on the Attitude Towards Usage

(ATU) of wearable Assistive Mouse Controllers (AMCs).

• H2: Perceived Usefulness (PU) has a significant influence on the Behavioral Intention

(BI) of wearable Assistive Mouse Controllers (AMCs).

4.5.3.2 Technology Anxiety (TA)

Technology Anxiety (TA) as proposed by Lin et al. [70] and Tsai et al. [73], is the perceived fear

involved with any technology. It may analogously be termed as perceived risk. It is intuitive

that any technology, whose adoption poses threat to its users, will make its usage difficult [73].

For the proposed wearable AMC technology, potential risks or anxiety factors could be the

device ergonomics, complexity of interaction techniques, hygiene issues. Although overlooked

most of the time, TA, if not taken into consideration, may have detrimental effects on users’

PEU of a technology [70, 73]. Alternatively stating, increased TA will compromise the PEU of

that technology, i.e., logically, TA should be negatively correlated with PU [70, 73]. Therefore,

to investigate the nature of the relation of TA with PEU for the proposed wearable AMC, the

following hypothesis is stated –

• H3: Technology Anxiety (TA) has a significant negative influence on the Perceived Ease

of Use (PEU) of wearable Assistive Mouse Controllers (AMCs).

4.5.3.3 Subjective Norm (SN)

As mentioned earlier, Subjective Norm (SN) is the measure of a person’s perception that his/her

demonstration of a particular behavior is dependent on the approval of people who are impor-

tant to him/her [69]. SN is considered to have a direct impact on the BI to accept a particular

technology, which is rational, as sometimes people may exhibit certain behavioral traits under

the influence of their peers even if that behavior is unfavorable for them, or they are unaware
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of the possible consequences. SN has been shown to have varying effects on different psycholog-

ical constructs. For example, some have found SN to have positive influence on PU [147, 164],

whereas some have found it to be insignificant [148,177]. Davis et al. [54] reported an insignif-

icant influence of SN on BI. Again, some studies suggest that SN is a determinant factor for

user acceptance when it comes to computer radiography systems [148] and wearable fitness

technologies [74]. However, to the best of our knowledge, the effect of SN on the acceptance of

a wearable Assistive Mouse Controller (AMC) has not been studied before, and therefore, we

state the following hypotheses –

• H4: Subjective Norm (SN) has a significant influence on the Perceived Usefulness (PU)

of wearable Assistive Mouse Controllers (AMCs).

• H5: Subjective Norm (SN) has a significant influence on the Perceived Ease of Use (PEU)

of wearable Assistive Mouse Controllers (AMCs).

• H6: Subjective Norm (SN) has a significant influence on the Attitude Towards Usage

(ATU) of wearable Assistive Mouse Controllers (AMCs).

• H7: Subjective Norm (SN) has a significant influence on the Behavioral Intention (BI)

of adopting wearable Assistive Mouse Controllers (AMCs).

4.5.3.4 Perceived Behavioral Control (PBC)

Perceived Behavioral Control (PBC) may be defined as, “the confidence concerning someone’s

ability to perform a special activity that highly influences that person’s behavior” [53, 54, 69].

As reported by previous studies [142, 144, 146, 164], the confidence while performing any task

may be considered as an important factor that may have a direct or indirect positive impact

on the constructs of TAM in different contexts such as adoption of e-Government, learning

with wearables, use of social media for innovation process, etc. However, to the best of our

knowledge, there are insignificant references of PBC in the context of users’ acceptability of

wearable Assistive Mouse Controllers (AMCs). Therefore, we state the following hypotheses for

investigating the influence of PBC in this regard –

• H8: Perceived Behavioral Control (PBC) has a significant influence on the Attitude To-

wards Usage (ATU) of wearable Assistive Mouse Controllers (AMCs).

• H9: Perceived Behavioral Control (PBC) has a significant influence on the Behavioral

Intention (BI) of adopting wearable Assistive Mouse Controllers (AMCs).
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4.5.3.5 Perceived Ease of Use (PEU)

Intuitively, any technology or system that is easy to interact with, motivates an individual to

adopt it for further use [54]. In other words, for any technology, the psychological construct

Perceived Ease of Use (PEU) has an intrinsic positive effect on the PU and ATU of that technol-

ogy [53,54,69,70]. In case of wearable interacting devices, ergonomics, simple interaction tech-

niques, etc., play a vital role [19, 38, 52, 141]. The proposed Assistive Mouse Controller (AMC)

incorporates minimal head rotations for mouse cursor movement and cheek muscle twitches

for mouse click actuation, which are intuitive and easy-to-understand interacting mechanisms.

Furthermore, an easy-to-use technology, will have greater influence on the confidence of using

that technology, in other words, the associated PBC [142]. Therefore, according to TAM, there

should be a significant positive influence of PEU on PU, PBC and ATU, to verify which, the

following hypothesis have been postulated –

• H10: Perceived Ease of Use (PEU) has a significant influence on the Perceived Usefulness

(PU) of wearable Assistive Mouse Controllers (AMCs).

• H11: Perceived Ease of Use (PEU) has a significant influence on the Perceived Behavioral

Control (PBC) while using wearable Assistive Mouse Controllers (AMCs).

• H12: Perceived Ease of Use (PEU) has a significant influence on the Attitude Towards

Usage (ATU) of wearable Assistive Mouse Controllers (AMCs).

4.5.3.6 Personal Innovativeness (PI)

From the perspective of technology acceptance, Personal Innovativeness (PI) may be defined as,

“the presence of characteristics, such as – willingness, curiosity, search for novelty, creativity,

etc. in an individual for adopting a technology” [136, 145, 159]. Highly innovative individuals

tend to be confident, enthusiastic, and therefore, require shorter time to accept a particular

technology [136, 137, 178]. Such individuals can realize the potential advantages or the PU

of adopting a novel technology, earlier than others, and therefore, gradually develop a sense

of increased positive ATU [137, 145, 147, 159]. This increase in ATU may have a consequent

positive impact on their BI to accept that technology [145]. Although researchers [179,180] have

assumed PI to be a potential factor that governs users’ acceptance of a novel technology under

specific circumstances, the conclusions of these works suggest that such effect of PI on different

psychological constructs of the TAM in different contexts, requires further investigation.
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In the context of this study, the proposed wireless head-mounted AMC may be considered

as a technological innovation for people with upper limb disability. Although there have been

significant works regarding the influence of PI on the psychological constructs – PU, ATU, and

BI, while adopting technologies, such as – fitness wearables [136, 145, 159], smartwatches [140],

smart meter systems [137], etc., to the best of our knowledge, the references of studies that

summarize the same, when it comes to the adoption of wearable AMCs, are insignificant. Thus,

there is a scope of analyzing whether the influence of PI on the adoption of the proposed wearable

AMCs is significantly positive, which leads to the postulation of the following hypotheses –

• H13: Personal Innovativeness (PI) has a significant influence on the Perceived Usefulness

(PU) of wearable Assistive Mouse Controllers (AMCs).

• H14: Personal Innovativeness (PI) has a significant influence on the Perceived Ease of

Use (PEU) of wearable Assistive Mouse Controllers (AMCs).

• H15: Personal Innovativeness (PI) has a significant influence on the Perceived Behavioral

Control (PBC) while using wearable Assistive Mouse Controllers (AMCs).

• H16: Personal Innovativeness (PI) has a significant influence on the Attitude Towards

Usage (ATU) of wearable Assistive Mouse Controllers (AMCs).

• H17: Personal Innovativeness (PI) has a significant influence on the Behavioral Intention

(BI) of adopting wearable Assistive Mouse Controllers (AMCs).

4.5.3.7 Attitude Towards Usage (ATU)

Attitude Towards Usage (ATU), defined as the positive or the negative feeling that an individual

possesses while performing a certain behavior [144], is characterized by the constructs PU,

PEU, PBC, PI, and SN. The need for analyzing users’ ATU of an Assistive Mouse Controller

(AMC), which consequently affects their BI of adopting the technology, is significant. Some

evidence of the influence of positive ATU on users’ BI to adopt different technologies exist in

the literature [54, 69, 70, 136, 141, 144, 150]. However, to the best of our knowledge, analysis of

the influence of ATU on the acceptance of wearable AMC have not been explored. Therefore,

with the intention to explore such influence using our proposed wearable AMC, we postulate

the following hypothesis –

• H18: Attitude Towards Usage (ATU) has a significant influence on the Behavioral Inten-

tion (BI) of adopting wearable Assistive Mouse Controllers (AMCs).



Chapter 4. Experimental Design and Result Analysis 97

4.5.3.8 Behavioral Intention (BI)

The ultimate objective of the Technology Acceptance Model (TAM) is to identify potential

factors that affect the users’ intention or willingness to accept a particular technology. The

constructs, Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN),

Personal Innovativeness (PI), Technology Anxiety (TA), Perceived Behavioral Control (PBC),

and Attitude Towards Usage (ATU), as described earlier, are considered as the antecedents

of Behavioral Intention (BI), whereas BI is considered as the antecedent of actual system or

technology usage [53, 54, 69]. In other words, all the psychological constructs of TAM converge

on users’ BI, identifying the dependencies of the constructs in the process.

4.5.3.9 Research Model

Eighteen hypotheses (H1-H18), as presented in section 4.5.3, “Hypothesis Development

and Conceptual Framework”, have been postulated for verifying the relationship among

eight psychological constructs of the Technology Acceptance Model 2 (TAM2), such as – Per-

ceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN), Personal Innova-

tiveness (PI), Technology Anxiety (TA), Perceived Behavioral Control (PBC), Attitude Towards

Usage (ATU), and Behavioral Intention (BI), concerning the acceptance of the proposed Assis-

tive Mouse Controller (AMC). Based on the description of these constructs and the postulated

hypotheses, a TAM2-based research model, specific to the adoption of the proposed AMC, is

presented in Fig. 4.23. The validity of these hypotheses will be analyzed next, to identify the

factors that are significant in determining users’ acceptability in the context of this study.
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Figure 4.23: Modified Technology Acceptance Model (TAM) of the proposed Assistive Mouse

Controller (AMC). PU: Perceived Usefulness, PEU: Perceived Ease of Use, SN: Subjective Norm, PI:

Personal Innovativeness, TA: Technology Anxiety, PBC: Perceived Behavioral Control, ATU:

Attitude Towards Usage, and BI: Behavioral Intention.

4.5.4 Methodology

4.5.4.1 Participants

The target respondents of this survey were individuals who possess basic computing knowledge

and have any form of upper limb disability. The survey was conducted online, and the corre-

sponding questionnaire was circulated among the respondents via email or social networking

sites. All the 15 participants from the previous experiments responded to the survey. However,

only 15 responses were insufficient for analyzing user acceptance using TAM. Furthermore, due

to the outbreak of COVID-19 at the time of this analysis and impending deadlines, it was not

possible to physically recruit more participants to ensure first-hand interaction with the AMC.

Therefore, as an alternative, a comprehensive explanation of the purpose of this study and the

different aspects of the AMC along with a video demonstration of interaction was accommo-

dated in the questionnaire. As a result, more participants were recruited online from known

acquaintances, local rehabilitation centers, and local NGOs. Along with the 15 individuals from

prior experiments, a total of 150 individuals with upper limb disability responded to the sur-

vey, among which 107 were Male (71.33%, Mean Age: 33.13± 5.38 years) and 43 were Female

(28.67%, Mean Age: 34.49± 4.12 years). The age distribution of the respondents is depicted in

Fig. 4.24.
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Figure 4.24: Age distribution of the 150 respondents, who participated in the survey.

4.5.4.2 Experimental Design

The survey questionnaire developed for this study consisted of eleven sections, where eight

sections addressed items corresponding to the different psychological constructs of the proposed

research model, as shown in Fig. 4.23, such as – Perceived Usefulness (PU), Perceived Ease

of Use (PEU), Subjective Norm (SN), Personal Innovativeness (PI), Technology Anxiety (TA),

Perceived Behavioral Control (PBC), Attitude Towards Usage (ATU), and Behavioral Intention

(BI). Two of the remaining three sections were developed for presenting a brief description on

the prospects of the proposed Assistive Mouse Controller (AMC) and for collecting demographic

data (name, age, and gender) of the respondents. However, as mentioned earlier, due to the

outbreak of COVID-19 at the time of this analysis and impending deadlines, it was not possible

to ensure first-hand interaction with the AMC for all the respondents of this survey. Therefore,

a short video was incorporated in the remaining one section to demonstrate the interaction

with the proposed AMC by real-life upper limb disabled people, facilitating a comprehensive

description of the AMC. The organization of the 11 sections of the questionnaire is depicted in

Fig. 4.25.
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Figure 4.25: Organization of the Technology Acceptance Model (TAM) questionnaire session of the

proposed Assistive Mouse Controller (AMC). PU: Perceived Usefulness, PEU: Perceived Ease of Use,

SN: Subjective Norm, PI: Personal Innovativeness, TA: Technology Anxiety, PBC: Perceived

Behavioral Control, ATU: Attitude Towards Usage, and BI: Behavioral Intention.

It is to be noted from this organization that the response to the items of the factors PU, PI,

and TA are recorded, before the video demonstration of device interaction and after the device

description, and that of the factors PEU, PBC, SN, ATU, and BI, after the video demonstration.

Such organization of the questionnaire was made with the following objectives in mind –

(a) To record their PI that might affect their ATU later on and to capture their initial

thoughts on the factors, PU and TA, from the device description.

(b) Since, first-hand interaction with the proposed AMC could not be accommodated, it was

necessary that they had a clear understanding of the working mechanism of the AMC

for analyzing their acceptance of the technology using the TAM. In connection to this,

the video demonstration of device interaction will assist them with the factors, PEU,

PBC, and SN, which in the end, would be reflected on their ATU and BI of accepting the

proposed AMC that facilitates human-computer interaction for the people with upper

limb disability.

In the context of this study, a total of 28 items were considered from prior studies for

developing the construct measures, where few items were adopted directly, some were adapted

to suit the context of this study, while some were newly developed specifically for this study.

As pointed out by Jonald L. Pimentel [149], Likert scales essentially quantifies bipolar opinions

(positive or negative) about a particular statement. However, the responses may be biased

due to several reasons, e.g., respondents’ tendency to avoid extreme opinions (central tendency

bias) [149]. To remove this type of bias, Likert scale items with even number of options (4-point

or 6-point), or in other words, items with no choice of neutrality are generally suggested for
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greater reliability of the responses [149,181–183]. In connection to this, a 4-point Likert scale was

used to quantify the responses to the psychological constructs of the proposed research model,

where the Likert scale representations were as follows – 1 – Strongly Disagree, 2 – Disagree, 3

– Agree, and 4 – Strongly Agree. The items corresponding to different psychological constructs

considered for this study, with references to prior studies, from which they were either adopted,

adapted, or newly developed, are summarized in Table 4.23.

Before the questionnaire could be deployed for online data collection, it was evaluated by a

panel of 10 reviewers, having experience with wearable technologies and no upper limb disability.

They were first briefed online about the purpose of this study and the survey, followed by

scrutinization of the understandability and ambiguity of the measurement items. They agreed

with the organization of the sections in the questionnaire and pointed out some minor formatting

issues about some items, which were then rephrased, and the questionnaire was deemed suitable

for data collection.
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Table 4.23: Measures of the constructs of Technology Acceptance Model (TAM).

Psychological Construct Items Descriptions

Perceived Usefulness (PU)

[54, 69,73,135,141,144,146–

148,150,151,164]

PU1 The ability to interact with a computer will improve work efficiency.b

PU2 The ability to interact with a computer will improve productivity.b

PU3 The ability to interact with a computer will make life more convenient.b

Technology Anxiety

(TA) [73]

TA1
I initially thought that the device would be uncomfortable as a wearable

technology.c

TA2 I initially thought that the device would be difficult to wear.c

TA3
I initially thought that the device would not be adjustable to fit my head

size.c

TA4 I initially thought that the device would pose ergonomic issues.c

TA5 I initially thought that the device would be costly.b

Subjective Norm (SN)

[69, 137,144,146–148]

SN1 People who are important to me think that I should use the device.a

SN2 People who influence my behavior think that I should use the device.a

Perceived Behavioral

Control

(PBC) [144,146,148]

PBC1
I am confident that I can easily interact with a computer using this

device.a

PBC2
I am confident that I can control my interaction with a computer using

this device.a

Perceived Ease of Use

(PEU) [54, 69,73,141,144,

146–148,150,151]

PEU1 The device is easy to put on and off.c

PEU2 The interaction mechanism of the device is adequate and easy.b

PEU3 The device requires very less physical and mental effort to use.b

PEU4 Overall, the device is easy-to-use.a

Personal Innovativeness

(PI) [137,138,140,145–147]

PI1
If I heard about a new interaction device, I would look for ways to

experiment with it.b

PI2 I like to experiment with the interaction devices that make my life easier.b

PI3
I like to experiment with the devices that make my computer interaction

interesting.b

Attitude Towards

Usage (ATU)

[73, 135,141,144,146,150]

ATU1
I think positively about the device when it comes to the possibility of

improving Health Related Quality of Life (HRQoL).c

ATU2
I think positively about the device when it comes to the possibility of

facilitating employment opportunities.c

ATU3
I think positively about the device when it comes to the possibility of

facilitating economically independence.c

ATU4
I think positively about the device when it comes to the possibility of

facilitating innovation process.c

ATU5
I think that the ability to interact with a computer, like a healthy person,

will have a positive effect on mental wellbeing.c

ATU6 Overall, I have a positive attitude towards the usage of this device.a

Behavioral Intention

(BI) [73, 135,137,141,

144–146,148,150,159]

BI1 I intend to use this device in the future.a

BI2 I intend to use this device for performing basic computational tasks.c

BI3 I intend to use this device for being self-reliant.c

a Items that were adopted from prior studies.

a Items that were adapted from prior studies.

c Items that were newly developed , specifically for this study.
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4.5.4.3 Data Processing

In this study, data analysis was done in python, leveraging the python library “semopy” for SEM

[184]. Prior to conducting Confirmatory Factor Analysis (CFA) for assessing the reliability and

the validity of the corresponding measurement model, an adequacy test was performed to verify

whether the sample size (n = 150) is suitable for CFA. Both Bartlett’s test of sphericity and

Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy [152,153] were used for this purpose.

Structural Equation Modeling (SEM) was then performed using the General Least Square (GLS)

method [162,184] for testing and validating the hypotheses (H1-H18) and generating the final

path model. The “semopy” library, that was used for SEM, utilizes Z-test to calculate p-

values [184]. Therefore, a hypothesis was accepted, if the z-value was either < −1.96 or > 1.96

and the p-value was less than 0.05, otherwise, it was rejected. The R2-values were used to

quantify the percentage of variance explained by the predictor variables in the proposed research

model. In connection to these analyses, a path model was generated, summarizing the results

of SEM. Finally, the relative fit of the data to the model was analyzed using the different fit

indices (e.g., χ2/df, GFI, AGFI, CFI, TLI, NFI, RMSEA) [72, 150, 152, 166, 167], mentioned

earlier.

4.5.5 Results

4.5.5.1 Sample Adequacy Test and Assessment of the Measurement Model

The adequacy test of the sample considered for this study, was conducted using both Bartlett’s

test of sphericity and Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy [152, 153].

The sphericity test (χ2 = 2016.17, p < 0.001) indicated that the inter-construct correlation

matrix was not an identity matrix, which is also evident from Table 4.26. The KMO value for

the sample (KMO = 0.8057) indicated that the sample size was “Adequate” for Confirmatory

Factor Analysis (CFA). A summary of the sample adequacy test results is given in Table 4.24.
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Table 4.24: Summary of the sample adequacy testing for Confirmatory Factor Analysis (CFA).

Test Recommended Value

Sample

Adequacy Test

Value

Remark

Bartlett’s test of

sphericity [152,153]
Large χ2value at p <0.05

χ2 =2016.17,

p <0.001

Inter-construct

correlation

matrix is not an

identity matrix.

Kaiser-Meyer-Olkin (KMO)

measure of sample size

adequacy [152,153]

Adequate (0.80 ≤ KMO < 1.00)

Middling (0.70 ≤ KMO < 0.79)

Mediocre (0.60 ≤ KMO < 0.69)

Inadequate (KMO < 0.60)

0.8057 Adequate

The results of the measurement model, obtained using CFA, as shown in Table 4.25,

indicated that the measurement items demonstrated strong psychometric properties. The in-

ternal reliability of the items in each of the psychological constructs, measured using Cronbach’s

Alpha (CA) [73,135], ranged between 0.7248 and 0.8969 and the overall reliability of the ques-

tionnaire was found to be 0.8801, which indicates “Good” reliability. In simple terms, the

items could quantify the constructs accurately. The internal consistency of all the psychological

constructs except for Perceived Behavioral Control (PBC), measured using Composite Relia-

bility (CR) [73,135,137,151,154,155], ranged between 0.7293 and 0.8224, which is indicative of

“Good” internal consistency. The value of CR for the construct PBC was found to be 0.6821,

which is also acceptable [135, 155]. The factor loadings (λ), as a measure of individual item

reliability, were obtained using Principal Component Analysis (PCA) method with “varimax”

rotation [151,153]. The values of λ for 50% of the items ranged between 0.5 and 0.7, while the

rest were above 0.7, both of which are permissible [72,73,137,151,152,155]. In connection with

these results, the reliability of the constructs can be ascertained.

The validity of the measurement model was tested using Convergent Validity (CV) and

Discriminant Validity (DV). For ensuring CV of the measurement model, both CR and Average

Variance Extracted (AVE) were considered [73, 153, 155–158]. Five out of the eight constructs

(PU, TA, PBC, PEU, and ATU), considered in this study exhibited “Acceptable” CV with

AVE ranging between 0.4384 and 0.5181, and CR ranging between 0.6821 and 0.8224. The

remaining three constructs (SN, PI, and BI) had AVE ranging between 0.5110 and 0.6690,
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and CR ranging between 0.7575 and 0.8109, suggesting “Good” CV. Overall, the model had

satisfactory convergent validity.

Table 4.25: Reliability and Convergent Validity (CV) of the measurement model of users’ acceptance

of the proposed Assistive Mouse Controller (AMC) (n = 150).

Psychological

Construct
Items

Reliability

Individual

Item

Reliability

Internal Consistency

and Convergent

Validity (CV)

Cronbach’s

Alpha

(CA)

Remark

on Relia-

bility

Factor

Loading (λ)

Composite

Reliability

(CR)

Average

Variance

Extracted

(AVE)

Remark

on CV

Perceived Usefulness

(PU)

PU1

0.7248

0.7924

0.7293 0.4789PU2 0.7170

PU3

Acceptable

0.5428

Acceptable

Technology

Anxiety

(TA)

TA1

0.7423

0.6373

0.8192 0.4759

TA2 0.6792

TA3 0.7141

TA4 0.7202

TA5

Acceptable

0.8073

Acceptable

Subjective

Norm (SN)

SN1
0.8969

0.8284
0.8016 0.6690

SN2
Good

0.8073
Good

Perceived Behavioral

Control (PBC)

PBC1
0.7379

0.7532
0.6821 0.5181

PBC2
Acceptable

0.6848
Acceptable

Perceived

Ease of Use

(PEU)

PEU1

0.7903

0.7876

0.7896 0.4858
PEU2 0.6269

PEU3 0.6654

PEU4

Acceptable

0.6980

Acceptable

Personal

Innovativeness

(PI)

PI1

0.7602

0.7859

0.8109 0.5890PI2 0.7992

PI3

Acceptable

0.7145

Good

Attitude

Towards

Usage

(ATU)

ATU1

0.8375

0.5126

0.8224 0.4384

ATU2 0.7233

ATU3 0.7110

ATU4 0.6519

ATU5 0.6883

ATU6

Good

0.6636

Acceptable

Behavioral

Intention

(BI)

BI1

0.8396

0.6776

0.7575 0.5110BI2 0.6861

BI3

Good

0.7767

Good

Overall Reliability 0.8801 Good Overall Convergent Validity Satisfactory
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The Discriminant Validity (DV) of the constructs were evaluated using the Fornell and

Larcker criterion [159], where DV is ensured if the squared root of AVE of each of the constructs,

usually placed on the diagonal of the correlation matrix, is greater than the corresponding

inter-construct correlations. The DV of the constructs of this study along with the Mean and

the Standard Deviation (SD) are summarized in Table 4.26. It can be seen from this table

that for each of the constructs, the corresponding squared root of AVE is greater than all the

corresponding inter-construct correlations, fulfilling the Fornell and Larcker criterion in the

process. Therefore, it can be stated that the model demonstrates discriminant validity.

Table 4.26: The Mean, Standard Deviation (SD) and Discriminant Validity (DV) of the

measurement model on users’ acceptance of the proposed Assistive Mouse Controller (AMC)

(n = 150).

Mean SD PU TA SN PBC PEU PI ATU BI Remark on DV

PU 3.63 0.55 0.6920 a - - - - - - - Good

TA 2.85 0.88 0.1680 0.6899 a - - - - - - Good

SN 3.22 0.87 0.3990 0.1550 0.8179 a - - - - - Good

PBC 3.57 0.59 0.3515 0.0246 0.2396 0.7198 a - - - - Good

PEU 3.27 0.70 0.4282 -0.0700 0.3005 0.4965 0.6970 a - - - Good

PI 3.63 0.60 0.3455 0.0649 0.2655 0.2886 0.1045 0.7675 a - - Good

ATU 3.60 0.56 0.5614 0.1398 0.4418 0.4981 0.4944 0.3504 0.6621 a - Good

BI 3.50 0.72 0.4560 0.1652 0.6435 0.4233 0.3255 0.3013 0.5581 0.7148 a Good

a Squared root of the Average Variance Extracted (AVE); values below the diagonal are inter-construct correlations.

4.5.5.2 Structural Equation Modeling (SEM) and Hypothesis Testing

In this study, Structural Equation Modelling (SEM) was used for hypothesis testing, following

the General Least Square (GLS) method [162,184]. As mentioned earlier, hypothesis testing was

conducted using Z-test to calculate p-values at a significance level of 0.05. From the results of the

analysis, it was observed that 13 (72.22%) of the 18 hypotheses were supported. The strength

of significance of a factor on another was determined from the corresponding standardized β co-

efficient. Considering the case of BI, the factor SN (β = 0.4847, p =< 0.0001) had the strongest

positive influence, followed by ATU (β = 0.2026, p = 0.0075) and PBC (β = 0.1705, p = 0.0083),

and therefore, the hypotheses H7, H18, and H9 were supported, respectively. These findings

are consistent with prior studies related to technology adoption [73, 135, 138, 142, 144, 145].

Therefore, it can be inferred that among all the factors influencing BI, a change of 1 unit of

social influence on a disabled person will dictate their intention to adopt the proposed AMC

by 0.4847 units. Although prior studies have reported PU to have a direct significant effect on

BI, the same was not observed for PU (β = 0.0658, p = 0.3423) in the context of this study,
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and therefore H2 was not supported. However, this is consistent as well, since prior studies

have reported similar occurrences [73]. Among the antecedents of ATU, it was observed that

PU had the strongest, significant positive influence (β = 0.2554, p = 0.0004), followed by PBC

(β = 0.2188, p = 0.0020), PEU (β = 0.2111, p = 0.0046), and SN (β = 0.1949, p = 0.0031),

supporting H1, H8, H12, and H6 in the process, respectively. As expected, all the constructs,

PEU (β = 0.3434, p =< 0.0001), PI (β = 0.2562, p = 0.0002), and SN (β = 0.2320, p = 0.0013),

were found to have significant positive influence on PU, which supported the hypotheses, H10,

H4, and H13. In the context of this study. Although insignificant, Technology Anxiety (TA)

was found to affect PEU (β = −0.1217, p = 0.1193) negatively, which is consistent with the

results of prior studies [70, 73] and the influence of PI (β = 0.0295, p = 0.7126) on PEU was

positive but insignificant, and therefore, H3 and H14 were not supported, respectively. Only

the psychological construct SN (β = 0.3129, p = 0.0001) had significant positive impact on

PEU, and therefore, H5 was supported. Interestingly, both PEU (β = 0.4766, p =< 0.0001)

and PI (β = 0.2405, p = 0.0004) had significant influence on PBC, which indicates that the

confidence of interacting with the AMC will be significantly driven by its ease-of-use and the

level of innovativeness of the corresponding user. Prior studies also have reported PEU as a

significant predictor of PBC [142], when technology acceptance is of concern. A summary of

the hypothesis test results is provided in Table 4.27 and the TAM path model of the proposed

research model using SEM analysis is given in Fig. 4.26.
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Table 4.27: Summary of hypothesis test results using Structural Equation Modeling (SEM)

(n = 150).

Influencing

Construct
Hypothesis Patha

Standardized

β co-efficient

Standard

Error
z-valuea p-valuea Supporta

PU
H1 PU→ATU 0.2554 0.0725 3.5382 0.004 Yes

H2 PU→BI -0.0658 0.0697 0.9497 0.3423 No

TA H3 TA→PEU -0.1217 0.0780 -1.5577 0.1193 No

SN

H4 SN→PU 0.2320 0.0704 3.2200 0.0013 Yes

H5 SN→PEU 0.3129 0.0807 3.8678 0.0001 Yes

H6 SN→ATU 0.1949 0.0646 2.9600 0.0031 Yes

H7 SN→BI 0.4847 0.0632 7.5402 <0.0001 Yes

PBC
H8 PBC→ATU 0.2188 0.0699 3.0913 0.0020 Yes

H9 PBC→BI 0.1705 0.0638 2.6417 0.0083 Yes

PEU

H10 PEU→PU 0.3434 0.0684 4.9161 <0.0001 Yes

H11 PEU→PBC 0.4766 0.0679 6.9835 <0.0001 Yes

H12 PEU→ATU 0.2111 0.0733 2.8306 0.0046 Yes

PI

H13 PI→PU 0.2562 0.0675 3.7101 0.0002 Yes

H14 PI→PEU 0.0295 0.0799 0.3683 0.7126 No

H15 PI→PBC 0.2405 0.0678 3.5241 0.0004 Yes

H16 PI→ATU 0.1293 0.0648 1.9578 0.0502 No

H17 PI→BI 0.0326 0.0611 0.5249 0.5997 No

ATU H18 ATU→BI 0.2026 0.0759 2.6737 0.0075 Yes

Total hypotheses 18

Number of hypotheses supported 13 (72.22%)

Number of hypotheses not supported 5 (27.78%)

aA path was considered significant if z-value was either < -1.96 or > 1.96 and p-value was less than 0.05.
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Figure 4.26: Final Technology Acceptance Model (TAM) of the proposed Assistive Mouse Controller

(AMC) using Structural Equation Modelling (SEM), showing standardized β-coefficients of the

significant influences only.

After the hypotheses were tested, the explanatory power of the research model was assessed

using the R2-values of regression analysis. Prior studies have stated that R2-values greater

than 0.67, 0.33, and 0.19 can be termed, “substantial”, “moderate”, and “weak”, respectively

[135]. It was found that the proposed model explained about 49.02% of the variation in users’

Attitude Towards Usage (ATU) and 53.71% of the variation in their Behavioral Intention (BI)

to accept the proposed Assistive Mouse Controller (AMC) for human-computer interaction.

The corresponding R2-values, along with the F -statistics and the corresponding p-value of the

other constructs, ATU, PU, PEU, and PBC are reported in Table 4.28 as well. It can be

observed from this table that all the predictions were significant at p ≤ 0.001. Furthermore, the

constructs TA, SN, and PI altogether, explained about 10.50% of the variation in PEU, with

SN being a significant predictor. Although the R2-value of PEU was very low compared to the

other constructs, it was statistically significant at p = 0.001 and exceeded the recommended

benchmark, which requires R2 being greater than 0.10 [140,159]. Moreover, it can be observed
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from Table 4.28 that the R2 values exhibited an increasing trend as the model proceeds

towards determining BI of accepting the proposed AMC, which indicated that the predictors of

the research model were adequate in the context of this study. In connection to this, it can be

established that the model explained an acceptable variation in the predicted constructs, such

as – BI, ATU, PU, PEU, and PBC. Furthermore, the relative fit of the structural model was

analyzed using various fit indices (e.g., χ2/df, GFI, AGFI, CFI, TLI, NFI, RMSEA), as shown

in Table 4.29. It is evident from this table that the values of all the indices were consistent

with their recommended threshold values, suggesting a good model fit.

Table 4.28: Summary of R2 statistic of the psychological constructs.

Predicted Construct Predictor Constructs R2-Value F -stat p-value

BI ATU a, PU, PBC a, SN a, PI 0.5371 33.4171 <0.0001

ATU PU a, PEU a, PBC a, SN a, PI 0.4902 27.6876 <0.0001

PU PEU a, SN a, PI a 0.3212 23.0332 <0.0001

PBC PEU a, PI a 0.3031 31.9698 <0.0001

PEU TA, SN a, PI 0.1050 5.7121 0.0010

a Significant predictors at p <0.05.

Table 4.29: Structural model fit analysis (n = 150).

Fit Indices Recommended Value Research Model Remark

χ2/df ≤3.00 1.1987 Good Fit

Goodness-of-Fit Index (GFI) ≥0.90 0.9610 Good Fit

Adjusted GFI (AGFI) ≥0.80 0.9070 Good Fit

Comparative Fit Index (CFI) ≥0.90 0.9930 Good Fit

Tucker-Lewis Index (TLI) ≥0.90 0.9833 Good Fit

Normed Fit Index (NFI) ≥0.90 0.9610 Good Fit

Root-Mean-Square Error of Approximation (RMSEA) ≤0.08 0.0365 Good Fit

4.5.6 Discussion

The main motivation behind this study was to investigate the key factors and their relationship,

significant or otherwise, that might influence the acceptance of the proposed wireless head-

mounted Assistive Mouse Controller (AMC) by people with upper limb disability for interaction

with a computer. In connection to this, different psychological constructs were considered, some

of which (e.g., perceived usefulness, perceived ease-of-use, attitude towards usage, and behavioral

intention) were consistent with the original framework of TAM [53,54,69], while the rest (e.g.,

technology anxiety, perceived behavioral control, subjective norm, and personal innovativeness),

were adapted from prior studies [70, 72–74, 136–147]. However, few of the studies were related
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to the acceptance of wearable technologies in general and not specific to the context of this

study. Thus, considering eight psychological constructs, we have analyzed the acceptance of the

proposed AMC using the Technology Acceptance Model (TAM) and developed a path model

that describes the significance of influence of one or more constructs, directly or indirectly, on

another.

From the results of this investigation, it was found that the constructs PU and PEU had

significant positive influence on the construct ATU. However, few prior studies [74, 141, 159]

have reported only the significant influence of PU on ATU, some have reported the significant

influences of both PU and SN [146], or only SN [143], while others [70,73,135,142,144,150] have

found both PU and PEU to have significant influences on ATU. Again, evidence of insignificant

influence of the constructs PBC and PI on ATU can also be found in the literature [146].

However, in the context of this investigation, the constructs PU, PEU, PBC and SN were found

to have significantly influenced users’ ATU, as evident from the path model of this research in

Figure 28.

Again, some studies have analyzed the effects of both PU and PEU on BI and found them

to be significant [72, 160], while some have considered the effect of only PEU [147] or only

PU [135,144] and found it to be significant. Meanwhile, insignificant influence of PU on BI has

also been reported in some cases [73,141,150]. Furthermore, for the effect of the constructs PBC,

SN, and PI on BI, some studies have considered only PBC [142], or only SN [72, 74, 138, 144],

or all three [145] and reported significant influence. In this investigation, however, the effects

of ATU, PU, PI, SN, and PBC on BI were considered, where PU and PI had insignificant

influences, ATU, SN, and PBC had significant influences, and the effect of PEU on BI was not

even considered in the proposed research model, as shown in Figure 28.

In line with previous studies [142, 144], the path model of this study suggests a significant

influence of PEU on PU and considering the constructs PI and SN, both were found to be

significant predictors of PEU and PU, as previously reported by Lu. et al. [147]. Although the

construct TA should logically have a significant negative influence on PEU, controversies exist

in the literature. For example, Lin et al. [70] found the effect of TA on PEU to be significant,

while Tsai et al. [73] found it to be significant in some cases and insignificant in the other.

In some cases, researchers have alternatively termed the construct Perceived Behavioral

Control (PBC) as Performance Expectancy [45]. Prior studies [142,145] have reported PEU and

PI to have significant effects on PBC, which also is the case for this investigation in particular.

To summarize, the findings of this study suggest that for the proposed AMC, in addition
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to perceived usefulness, ease-of-use, and positive social influence, a high level of confidence

owing to easier working mechanism of the device and highly innovative personality significantly

influences positive attitude towards using the device. Among the psychological constructs,

attitude, usefulness, ease-of-use, confidence, and subjective norm, the most influential construct

that determined users’ intention to accept the proposed AMC, facilitating human-computer

interaction, was found to be subjective norm. Therefore, the design of wearable AMCs should

be based on a user-centric approach, considering different subjective norms.

4.5.6.1 Research Implications

One of the major contributions of this study is the proposal of a novel theoretical model based on

TAM that analyzes the key factors and the inter-factor relationships that influence the adoption

of the proposed AMC. Prior relevant studies were not specifically dedicated to wearable AMCs.

In fact, the scope of TAM analysis in these studies spanned across the adoption of smartwatches,

wearable technologies in general, etc. To the best of our knowledge, this investigation is the first

of its kind that extensively analyzes the acceptance of a wearable Assistive Mouse Controller

(AMC) using the Technology Acceptance Model.

Some psychological constructs, considered in these studies, had consistent effects compared

to other studies, while some had controversial effects. Therefore, it can be inferred that the

results of the TAM analysis that are specific to this study and the respondents of the survey,

may not be consistent for a different wearable AMC technology in a different context; however, it

may serve as a starting point for future research on the development of newer AMC technologies.

The proposed model can explain about, 49.02% and 53.71% of the variation in users’ posi-

tive attitude and intention to adopt the proposed AMC, respectively. In connection to this, a

good starting point for future research could be to improve the explanatory power (R2-value)

of the exact model or a different model with the same or a newer AMC technology, by consid-

ering a larger sample size, or by including more psychological constructs, such as – perceived

enjoyment, perceived ubiquity, pricing, facilitating conditions, aesthetics, resistance to change,

compatibility, etc., that were not considered in this study, thereby, increasing the chances of

enhanced explanatory power of the model with different observations and path models, in the

process.

Due to the methodological approach of this study, few limitations exist. For example, due

to the onset of COVID-19 pandemic, the sample size considered for this study was a bare

minimum. More importantly, the respondents of the survey could not be provided with first-
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hand interaction of the device, in the case of which the results may have been different. These

limitations of the current study may lead to yet another avenue for a longitudinal study, where

participants can be given away prototypes of the AMC for interacting with a computer for a

given period, after which the TAM analysis can be conducted again to get an understanding of

the change in their intention to adopt or reject the AMC.
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Chapter 5

Discussion

5.1 Research Challenges

The development of a head-mounted assistive technology has its fair share of research challenges.

One of the most crucial steps in the development process of a wearable assistive technology is to

understand the requirements of its primary stakeholders. In connection to this, understanding

the requirements of people with upper limb disability is very crucial to the development of

a wearable Assistive Mouse Controller (AMC), facilitating human-computer interaction. To

understand these requirements, input from the stakeholders need to be incorporated in the

design and development process. In the context of this study, due to the onset of COVID-19,

it was challenging for us to recruit individuals or focus groups to carry out primary user-based

requirement analysis through face-to-face interview sessions. However, we were able to overcome

this challenge by analyzing prior studies [19, 38] for specific design principles as part of user

requirements in such contexts. Based on these requirements, once a working prototype of the

AMC was developed, it was essential to determine the feasibility of the prototype in facilitating

human-computer interaction for people with upper limb disability by evaluating its performance,

usability, user satisfaction, and acceptability. To ensure reliability of the evaluation, it was

necessary that such people interacted with the AMC first-hand, identifying potential design

and/or performance issues in the process. Again, due to the COVID-19 pandemic, it was

challenging to recruit many real-life users for this purpose. However, after communicating with

several local rehabilitation centers, local NGOs, and acquaintances, we managed to recruit only

15 people with upper limb disability for interacting with the AMC first-hand and to provide

their feedback on its performance, usability, and user satisfaction. An interesting observation

from our experiment sessions with these people was that though we explained about the purpose

of their recruitment, the features, functionalities and prospects of the AMC, majority of them

thought that they were recruited to be provided with some sort of employment opportunities

after testing the device first-hand. This gulf of expectation might hamper their responses to the

survey, which was a challenging task as well. For analyzing acceptability of the AMC using the

TAM model, however, only 15 responses were insufficient, and it was challenging to physically
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recruit more participants. Despite the challenges, apart from the 15 participants, we were able

to recruit an additional 135 participants online, for analyzing user acceptance of the proposed

AMC. To ensure that all the participants had a proper understanding of the prospects of the

AMC, regardless of their first-hand interaction with it, and to minimize bias in the survey

responses, we accommodated a comprehensive description along with a video illustration of

device interaction in the survey questionnaire. To minimize the bias in the responses further,

they were normalized prior to analysis.

Due to the differences in the form-factor of the human head, developing a generic design

for a wearable AMC that will fit all possible head shapes and sizes is a challenging task. In

connection to this, adjustability of such devices is a crucial factor, which we have facilitated

using adjustable straps. On the other hand, the eye wink gesture was initially intended for

actuating mouse clicks. However, it is not an ergonomic gesture for long term interaction with

a computer, as it can cause eye strain leading to headache [58]. Considering the long-term health

issues of the eye wink gesture, it was challenging for us to determine an alternative generic facial

gesture that could facilitate the actuation of mouse clicks, while ensuring ergonomic human-

computer interaction. After rigorous analysis and brainstorming sessions, and with motivation

from prior studies [102], we adopted cheek muscle twitches as the click actuating gesture for the

proposed AMC.

One of the main things to take into consideration while designing a microcontroller-based

device is the selection of its hardware components and modules. The same task can be ac-

complished using different components or modules, achieving different levels of performance

and accuracy. However, such performance and accuracy also come with associated extra cost.

Considering the socio-economic condition of our country and the target users for the device, we

had to establish a balance between the different hardware components used in the system. For

instance, using more sensors would result in a smoother performance due to the averaging done

in the filters and normal noises from different sensors cancelling each other. However, doing

so would also significantly contribute to the overall costing of the final device. Hence, from a

hardware perspective, the device is kept as minimal as possible without sacrificing adequate

performance and accuracy, and rigorous processing is done in the software end to offer a better

user experience.

Another challenge we faced while developing the driver for the AMC was the decision be-

tween a Plug and Play (PnP) driver or a custom-made one. Almost every modern operating

system and computer hardware have support for generic mice with up to five buttons, such as -
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left, right, middle and two thumb buttons. It is possible to make the AMC emulate the behav-

ior of a generic mouse, eliminating the necessity of an external driver required to be installed.

Albeit easy to connect, the approach has significant problems when it comes to a specially de-

signed device for special users, which led to the development of a custom driver software. For

the developed AMC, a handful of functionalities are required to perform properly under the

desired condition, which are not available in a generic mouse driver. For instance, it is required

to be able to control the sensitivity of the mouse cursor based on the extent of neck rotation,

which cannot be efficiently and smoothly done via a generic mouse driver. Moreover, it is also

necessary to have support for gestures, allowing the users to enable or disable the mouse on

the fly and having the option to customize or extend this gesture could result in overall better

user experience. In connection to this, a custom driver facilitates the scope required to imple-

ment such features and functionalities and keep the software open for future extension without

hindering the development process.

As we decided to build a custom driver for the AMC, the next decision we had to take was

the programming language and framework for driver implementation. Initially, we had chosen

python 3 as the programming language due to its ease-of-use and widespread use cases with

community support. However, python, being an interpreted language, is quite slow in terms

of processing speed and in our case, it failed to keep up with the data produced by the AMC

hardware. As a result, we had to shift from python 3 to C# and .NET framework. The rationale

behind the choice was manifold, some of which include but are not limited to - C# being a fast,

compiled, and cross-platform object-oriented language with native support for events, makes

the development of the driver easier and extensible. After doing some proof of concept, C#

and .NET proved to be fast and efficient enough to implement the driver.

5.2 Future Works and Conclusion

The purpose of this thesis work was to develop and evaluate a working prototype of an Assistive

Mouse Controller (AMC) to facilitate human-computer interaction for the people with upper

limb disability. As part of our research, we have tested out the performance of the developed

prototype in different tasks, such as – pointing and typing. Then we have evaluated the usability,

analyzed user satisfaction and acceptability of the device to the targeted user group.

However, the developed prototype is still far from our final envisioned device and requires a

significant amount of modification and tests before it can be used by the general mass. Though

the currently developed prototype supports a wide range of head sizes, it is still not adequate for
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supporting majority, if not all, possible head sizes. Despite having significantly less weight (365

grams) while compared with other head mounted devices, such as contemporary VR headsets

(around 400 − 1000 grams [185]), there is scope to reduce the form-factor of the proposed

AMC even more. The current prototype ships with basic gesture support as of now, which we

wish to extend to facilitate customizable gestures, enhancing the overall user experience. The

efficiency and user-friendliness of the driver can be enhanced, and support for different operating

systems and mobile devices can be incorporated as well. The device can be repurposed, and a

programmable API can be exposed to integrate it directly with external applications without

treating it like a mouse, which will open the possibility of various novel and innovative use cases,

subject to further investigation. Beside the development activities, once the prototype reaches

a state close to the final envisioned device, usability, user satisfaction and acceptability need to

be reevaluated and analyzed to get a better understanding of the AMC as a human-computer

interaction device.

Furthermore, how a user adapts to the device usage, needs to be analyzed as well. To

facilitate this, we plan to carry out a longitudinal cohort study, involving users with upper

limb disability, where the user has to repeat the same task several times using the proposed

AMC, during which the time required to complete that task will be recorded. The power law of

practice [186, 187] may be utilized in this case, to understand users’ adaptability to the device

interaction mechanism, while performing specific tasks with it. This analysis will also help us

figure out whether the device will have any detrimental effects on a user’s health, such as neck

pain, due to its long term usage.

We are actively working on the proposed AMC as of the time of writing this report to

incorporate the functionalities to ensure that we can offer a final device that is beneficial to

both the disabled community and the academic research body as well.
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