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Abstract

Identifying 3D objects with computer vision in a precise manner has been a chal-

lenging task in the field of autonomous driving. Partly because it requires proper

depth estimation. Until now, Li-DAR technology has been used to achieve this task

which is precise but also expensive. The introduction of pseudo Li-DAR promises

an alternative approach which is cheaper with fairly good precision. However,

pseudo Li-DAR can be replaced with 2D image representation with similar preci-

sion. Transformer is another technology which is widely used to process sequential

data. Recent studies show that transformer can also be used for object detection

purposes. In this literature, we look into the concept of pseudo Li-DAR, image

representation of depth and detection transformer(DETR). Later, we introduce a

new approach of using image based depth output with DETR to achieve accurate

object detection. Finally, we compare our results with other available methods used

for object detection in order to establish a benchmark.
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1 Introduction

1.1 Overview

Self-driving cars with stereo vision are becoming increasingly popular these days.

Over the last decade, the discipline of Computer Vision has exploded, particularly

in the areas of obstacle detection and Computer Vision using Deep Learning.

Obstacle detection techniques like YOLO[12] and RetinaNet[7] provide

2D Bounding Boxes that show where the obstacles are in the image. Most object

detection algorithms today use monocular RGB cameras and are unable to provide

the distance between each obstacle.

Engineers combine the camera with LiDAR (Light Detection And Ranging)

sensors, which employ lasers to return depth information, to return the distance of

each barrier. Sensor Fusion is used to combine the results of computer vision and

LiDAR.

The usage of LiDAR, which is costly, is a flaw in this strategy. Engineers utilize a

technique in which they coordinate two cameras and use geometry to define the dis-

tance between each obstacle: That new configuration is known as a Pseudo-LiDAR.

Accurate 3D identification and localization of cars, pedestrians, and other objects

are required for safe autonomous driving. This, in turn, necessitates precise depth

data, which LiDAR (Light Detection And Ranging) sensors can provide. LiDAR

sensors are famously expensive, even though they are highly precise and reliable: a

64-beam type can cost up to $75,000. (USD).Another option is to use affordable

consumer cameras to determine depth.
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Despite recent spectacular progress in stereo-based 3D object identification enabled

by pseudo-LiDAR (Wang et al., 2019)[16], A moral dilemma arises as a result of

the trade-off between cost and safety.

1.2 Problem Statement

The problem is to find a cost effective and efficient way of detecting 3D objects

with the help of stereo vision images that can perform on par if not better with

available 3D object detection sensor such as Li-DAR.

1.3 Motivation Scopes

We begin by looking at the depth estimate technique that is at the basis of today’s

stereo based 3D detection methods (Wang et al., 2019a)[16]. The fact that depth

is rarely computed directly contributes significantly to systematic depth bias.

Instead, one should make an initial assessment of the situation. Discrepancy

a pixel’s horizontal shift between the left and right pictures and inverts it. to

get pixel-by-pixel depth While deep neural networks have made a significant

improvement in disparity,an estimate ,Because of the reciprocal transformation,

establishing and learning networks to increase the accuracy of disparity estimation

overemphasizes nearby items.

A unit disparity error (in pixels) equals a 25cm depth error for a 15-meter-away

object: the length of a side mirror. On the other hand, the same disparity mistake for

a 60 meter away object becomes a 6.7-meter depth error: a objects length. Because

both errors are penalized equally, the network spends more effort correcting

subtle errors on nearby items than massive errors on faraway objects, resulting in
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deteriorated depth estimations and, as a result, poor identification and localization

for faraway objects.

We suggest modifying the stereo network architecture and loss function for

direct depth estimation. But this approach has some drawbacks, we cant use

contextual information from point cloud. so either we need some approach to fuse

coordinate information with image or a architecture which can fuse. But requires

a huge amount of effort and experiments to use any new approach. Using the

fundamental notion of convolutions as a jumping-off point.[? ]

Rethinking Pseudo LiDAR representation (Ma et al. 2020) [8] shows in the im-

portance of coordinate system transform. The following are the contributions

of this paper: First, they established by substantial experimental proof that it is

the coordinate system transformation, not the data representation, that makes the

pseudo-LiDAR representation effective[8]. Second, they discovered that using

pseudo-LiDAR representation to boost detection performance isn’t essential. Im-

age representation-based algorithms can also achieve competitive, if not higher,

performance when incorporating spatial coordinates. They obtained state-of-the-

art performance and demonstrate the promise of image representation based 3D

detectors owing to increasingly powerful picture-based deep learning algorithms.[8]
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1.4 Research Challenges

There’s some challenges in this task of 3D object detection. Every research

brings it’s challenges with it. In 3D object detection localizing a object in global

coordinate in hard task to do when you don’t have spatial information. For this

reason 2D detectors, which performs amazingly in localizing 2D objects in image,

performs poorly. for this reason researchers introduced Pseudo LiDAR[16] which

uses stereo images to generate spatial information but CNN or 2D object detectors

can use contextual information which can’t only be done using.

But this approach has some drawbacks, we cant use contextual information from

point cloud. so either we need some approach to fuse coordinate information with

image or a architecture which can fuse. But requires a huge amount of effort and

exeperiments to use any new approach.

• Incompleteness in data:

– Caused by occlusions between objects and cluttered background.

• Day and night lighting condition

– LiDAR performs way better in night condition compared to image based

methods.

• Limited dataset

– 3D detection required labeled orientation and bounding box,for precise

detection other sensor data is also needed.
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2 Background Studies

2.1 Depth Estimation

We can calculate an object’s distance using two cameras. This is the fundamental

geometry of stereo vision, and it is based on the notion of triangulation. It works

like this:

• Stereo Calibration: We have retrieve camera matrix from calibration files:

λ.


xc

yc

1

 =


fx 0 xc0

0 d yc0

0 0 1



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



Xw

Yw

1

 (1)

• Epipolar Geometry: Some constructive maths is used to get depth,width

and heigh in real world coordinates.

z = D(u.v)(depth) (2)

x =
(u− cU).z

fU
(width) (3)

y =
(v − cV ).z

fV
(height) (4)

• Disparity Mapping: Compute the Disparity Map

d = xL − xR (5)

here disparity d is the x axis difference between same point projected on

right image and left image.
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• Depth Mapping: from the last step we found disparities , now if we use

focal distances we can derive the depth in the following equation.

Z =
f.b

xL − xR
=

f.b

d
(6)

• Obstacle Distance Estimation: Find objects in 3D, and Match with the

Depth Map,The x axis difference between the identical point projected on

the right picture and the left image is called disparity d.

(a) Depth estimation network pat-
tern

(b) GC-net[5] (c) Psm-net[3]
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2.2 3D object detection

Specifically, we experiment on AVOD [16] and frustum-PointNet[10] , the two top

ranked algorithms with open-sourced code on the KITTI benchmark. In general,

we distinguish between two different setups:

• In the first setup we treat the pseudo-LiDAR information as a 3D point cloud.

Here, we use frustum Point-Net [10], which projects 2D object detections

into a frustum in 3D, and then applies PointNet[10] to extract point-set

features at each 3D frustum.

• From a top-down perspective, the 3D data is turned into a 2D image: depth

and width become the geometric dimensions, while height is stored in the

channels. Visual features and BEV LiDAR data are connected to 3D box sug-

gestions by AVOD, which then merges the two to conduct box classification

and regression.

18



2.3 Deep Learning Methods

2.3.1 Pseudo Li-DAR

3D Object detection on an image requires accurate depth information to superim-

pose bounding boxes. This depth information is usually obtained by two different

ways. First method is from optical imagery either from mono or stereo camera

system. Another method is from physical Li-DAR sensor. Li-DAR uses a 64 or 128

sparse rotating laser beams to create a 3D dot projection of the spatial environment.

Studies[16],[4],[3] shown that depth information obtained from stereo images are

more error prone than that of physical Li-DAR sensors.

Especially when there are objects far away. Stereo depth imagery groups

far away object pixels together. It makes depth estimation harder for further objects.

When 2D convolution is applied to these images the pixel representing the actual

object gets distributed in a wider space. The result is detection far away from the

actual position of the object (Fig.1). It is estimated that the poor performance of

the stereo image based depth estimation comes from poor information quality of

the images. However, Wang[16] argues that it is not the poor information quality

but poor representation of the information that causes this poor performance.

Wang[16] in their paper proposes a two step approach (Fig.2).

First, the depth map with a lot of pixels from the stereo images are back

projected into point cloud representation. This representation is named as pseudo

Li-DAR as it tries to mimic to output of a physical Li-DAR sensor. Then, this

point cloud information is used in available 3D object detection algorithms. This
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Figure 2: The pixels representing far away objects gets flattened after 2D convolution is applied.[16]

Figure 3: The model proposed for pseudo Li-DAR implementation. A depth map is generated
from stereo/mono images. Then back projecting 3D co-ordination for each pixel a point cloud is
generated. Finally, the point cloud is used for 3D object detection model.[16]

approach shows a phenomenal result. A 74% accuracy over the then state-of-the-art

22% on KITTI object detection benchmark. However, this method still struggles

with far away objects. Further work has been done to mitigate this weakness which

we will see in later part of this literature.

The approach is to take image output from two cameras. Let’s say they

are Il and Ir. There is a horizontal offset for both cameras which is b. If we assume

Il as reference then we record the amount of pixel shift on Ir on Y . This is the

disparity map. The horizontal focal length fU is known. With all these information
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we can calculate the depth map from the equation given below:

D(udistance, vdistance) =
fU .b

Y (udistance, vdistance)
(7)

Up until pseudo Li-DAR this depth information is concatenated as additional chan-

nels with the input image. On the contrary, pseudo Li-DAR uses this information

to find out precise 3D co-ordination for each pixel. The 3D co-ordination can be

found by the following equations:

z = D(u.v)(depth) (8)

x =
(u− cU).z

fU
(width) (9)

y =
(v − cV ).z

fV
(height) (10)

A combination of depth estimation algorithm is applied to generate pseudo Li-DAR

point cloud. Among them, Pyramid Stereo Matching Network (PSMNet)[3] proved

to be most accurate. Then the point cloud is used with Frustum PointNet[10] and

AVOD[6] 3D object detection algorithm.

These two algorithm is designed to use physical Li-DAR sensor data. In-

tersection over Union (IoU) is used to validate the output. With an IoU threshold

of 0.7 and moderate on car category of KITTI object detection benchmark pseudo

Li-DAR gives AP3D of 56.8% on AVOD and 51.8% on F-POINTNET. This is

a better result from stereo only approach such as MLF-Stereo[17] which only

gives AP3D of 19.5%. However, using physical Li-DAR still yeilds better result on

AVOD and F-POINTNET.
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2.3.2 Pseudo Li-DAR++

Although pseudo Li-DAR shows promising performance in easy and moderate

level of difficulty in KITTI object detection benchmark, it struggles with the hard

difficulty.

This means pseudo Li-DAR can not accurately identify far away or occluded

objects. The authors of pseudo Li-DAR++[18] shows that this weakness can be

overcome by introducing a stereo depth network (SDN) which takes account depth

correction instead of disparity correction for depth estimation.

A single pixel error in disparity indicates just a 0.1m error in depth at a

depth of 5 meters, but a 5.8m error at a depth of 50 meters when utilizing the

KITTI dataset’s parameters(Fig. 3). The SDN focuses less time on correcting

nearby object depth error and shifts attention to far away objects which are more

critical.

In addition to SDN, the authors also introduce a 4-beam physical Li-DAR

sensor. This sensor itself can not provide sufficient data for reconstructing a 3D

object in point cloud.

However, concrete depth measurement of certain points helps the stereo

based depth estimation algorithm fine tune its prediction. A graph assisted depth

correction (GDC) algorithm is introduced to diffuse the sensor data with the stereo

vision depth estimation.
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Figure 4: Cost volume of disparity (left) vs. cost volume of depth (right). From a bird’s eye view,
the 3D points generated from LiDAR (yellow) and stereo (pruple) corresponding to an automobile
in KITTI are shown in the figure (BEV). The disparity cost volume’s points are stretched out and
noisy, but the depth cost volume’s points correctly represent the automobile contour.

Error in depth increases in quadratic order in proportion to disparity. To

counter this issue, the stereo network directly optimizes the depth loss.∑
(u,v)ϵA

l(Zdistance(udistance, vdistance)− Z∗
distance

2(udistance, vdistance)) (11)

Here, Z represents the estimated depth and Z∗ represents ground-truth depth. Z

and Z∗ can be obtained from Y (udistance, vdistance) shown in Equation 1. This is

necessary but still insufficient to overcome the problem. Next step is to construct

a depth cost volume Cdepth which will encode features describing how likely

z from Z(u, v) is the depth of ImageP ixel(udistance, vdistance). A new tensor

Standarddepth is used to figure out the pixel depth with this information.

Zdistance(udistance, vdistance) =
∑
z

softmax(−Sdepth(udistance, vdistance, zdistance))∗z

(12)

The obtained depth is then corrected with graph assisted depth corection (GDN).

Both L(Li-DAR point cloud) and PL(pseudo Li-DAR) point cloud is taken. Then,
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the characteristic of local objects is determined through a K-Nearest Neighbour

(KNN) graph. The L points are projected onto the pixel location (udistance, vdistance)

and then the predicted distance values Zdistance(udistance, vdistance) from stereo net-

work is optimized.
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2.3.3 Rethinking Pseudo Li-DAR

It was assumed that the good performance of pseudo Li-DAR was due to the data

representation. Particularly, the point cloud generated from input images. Ma[8]

argues that the performance improvement from pseudo Li-DAR is not from data

representation but from co-ordinate transformation. When the image co-ordinates

are transformed into world co-ordinates they implicitly encode camera parameter

information which then contributes to proper depth estimation.

To prove this, they have built a new model named PatchNet-vanilla. The

inner workings of PatchNet-vanilla are same as pseudo Li-DAR. However, it

refrains from back projects depth information in a point cloud. rather, the authors

chose a image based representation technique. This approach allows them to use

PatchNet output on existing 3D Li-DAR based algorithms as well as extracting

deep features using 2D CNN algorithms (Fig. 4).

PachNet-vanilla takes monocular or stereo image as input and predicts depth map

for each pixel (u, v) with a stand alone CNN. Another CNN is used to generate 2D

region proposals. According to this proposal Region of Interests (RoI) are cropped

from the dpeth map. 3D co-ordinate for each pixel of RoIs in the depth map can

obtained by Equation 2,3 and 4. Instead of using this 3D co-ordination data as

point cloud PatchNet-vanilla organizes the (x, y, z) values as image representation.

Given the (x, y, z) values a CNN backbone extracts deep features from the

image and then filters with mask global pooling and generated mask (Fig. 5). Most
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Figure 5: PatchNet and pseudo-LiDAR-based approaches are compared. They both use off-the-shelf
models to produce intermediate tasks (a) and project the picture coordinates to world coordinates
(b). Pseudo-LiDAR algorithms treat these data as LiDAR signals and anticipate results using a
point-wise network (c). PatchNet, on the other hand, organizes them as visual representations for
later analysis (d).

Figure 6: The network architecture is depicted in this diagram. We first build a binary mask based
on mean depth from an input patch with x, y, and z channels, and then utilize it to guide the pooling
layer to extract the features related to the foreground item. Then, depending on how difficult it is to
anticipate, we assign examples to different head networks.
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strong CNN backbone can be used for this purpose. The authors used ResNet-18

with Squeeze-and-Excitation (SE)[4] block. The pooling layers of SE-ResNet-18

has been removed so that the output is the same size as input image patches. Then

mask global pooling is applied. However, unlike usual global polling only pixels

in the RoIs are considered to construct the feature vector. There are 3 branches

on this network according to difficulty. These 3 branches share the same network

architecture.

Thus, this does not improve any accuracy but provides scope to parallel process

multiple images at the cost of extra GPU power and memory. The performance

of PatchNet-vanilla is on par and sometimes better when using a strong backbone

than that of pseudo Li-DAR. The AP3D|R11 values of PatchNet-vanilla on KITTI

object detection benchmark are 28.7, 18.4 and 16.4 respectively on easy, moderate

and hard difficulty. On the contrary, pseudo Li-DAR scores 28.2, 18.5 and 16.4 on

easy, moderate and hard difficulty respectively. It proves that PatchNet-vanilla can

perform on par with pseudo Li-DAR solidifying the authors statement.
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2.3.4 Detection Transformer (DETR)

We now look into a new type of object detection architecture called detection

transformer[2]. Detection transformer considers the object detection problem as a

direct set prediction problem.

Unlike popular object detection methods, it does not require any post-processing

steps such as proposal or anchor generation based on known information. It

uses a small set of ground truth objects and classifies objects using bi-partite

matching. Direct set predictions in detection require two ingredients: (1) a

set prediction loss that forces unique matching between predicted and ground

truth boxes; (2) an architecture that predicts a collection of items and models

their relationship in a single run. The artchitecture of DETR comprises of

Figure 7: DETR learns a 2D representation of an input image using a traditional CNN backbone.
Before feeding data into a transformer encoder, the model flattens it and adds a positional encoding.
The encoder output is also attended to by a transformer decoder, which accepts as input a tiny fixed
number of learnt positional embeddings, which we call object queries. We feed each decoder’s
output embedding into a shared feed forward network (FFN), which predicts a detection (class and
bounding box) or a "no object" class.

three major components. A CNN backbone to extract compact feature vector

from input image. A transformer encoder and decoder. Finally, a simple Feed

Forward Network (FFN) that matches prediction boxes with ground truth boxes.
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The CNN backbones generates a feature map f ∈ RC×H×W from the initial

image input. Typically, C = 2048 and H,W = H0

32 ,
W0

32 where H0 and W0

represents initial height and width of the image. In the encoder the channel

dimension of the feature map is reduced from C to a smaller value d. Then, we col-

lapse the spatial dimensions into one dimension resulting in a d×HW feature map.

Fixed positional encoding are used at each layer of self attention module

of the encoder. At the decoder, N positional embedding are processed in parallel at

each attention. These are learnt embedding called object queries. The work of the

FFN is to transform these N embedding into box co-ordinates and classification

label. DETR performs really well against popular detection method such as

Faster-RCNN.
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3 Proposed Method

Objective of our method is to develop an end to end neural network that can detect

3d objects more accurately without using point cloud representation. 2D object

detectors came way ahead and their research field is vast. Surely, point cloud based

detectors works way better but to perform head to head using image based detector

we are using a different experimental representation of data on which we can use

somewhat tweaked 2D object detector. We have chosen DETR for our experiments

because it has more usable cases for traffic scenarios.

3.1 Why Transformer in 3D detection

For NLP tasks, we prefer Transformer. First, we’ll look at RNN. Vanish-

ing/exploding gradients are a well-known issue, implying that the model is bi-

ased.In the present phase, the most recent inputs in the sequence, or in other words,

earlier inputs, have almost no effect on the outcome.

LSTMs/GRUs primarily attempt to address this issue by incorporating a separate

memory (cell) and/or additional gates to learn when to let go of past/current

information.

Given this, information from previous steps must still transit through a series of

computations, and we must rely on these new gate/memory mechanisms to transfer

data from previous steps to the present one.

One of the key advantages of the transformer architecture is that we have direct

access to all other stages (self-attention) at each step, effectively eliminating infor-

mation loss in the message passing process. Furthermore, we can examine both

30



future and past elements at the same time, a feature of bidirectional RNNs that

eliminates the requirement for 2x processing. And, of course, everything happens

at the same time (non-recurrent), making both training and inference significantly

faster.

Because every other token in the input requires self-attention, the processing will

be on the order of O(N2) (glossing over specifics), which indicates that applying

transformers to long sequences will be more expensive than using RNNs. RNNs

probably still have an edge over transformers in this area.
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3.2 Data Representation

Our main experiment lies here,we are modifying the input data for DETR[] . From

Stereo Depth Estimation network (SDN) we get a Depth map. In Pseudo LiDAR

(Wang et al.)[] pipeline it was stated that that they converted the depth map using

the camera calibration parameter to a set of point cloud. which only consists of

(x,y,z) coordinates of the environment. But, in our experiment, we convert the

depth map to (x,y,z) coordinates. We also map the pixel position to its pixels

coordinate in global space.

Figure 8: Pixel coordinate fusion strategy we are using here. from Depth estimation network we
will get every pixels global coordinates (x,y,z). then we are separating the them into 3 channels like
x channel,y channel, z cannel and concatinating with the RGB image.
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3.3 Pre-processing

Data pre-processing is one of the most important steps in any network. In deep

learning, data augmentation is crucial, and picture augmentation, as an integral

aspect of target identification and image categorization, enhances the algorithm’s

performance greatly.

3.3.1 Fog and Rain Augmentaion

The data augmentation pipeline for camera pictures provided by Tremblay et al.

[14] is used to create augmented data. They utilize complex mathematical models

to simulate photo-realistic fog and rain on camera photos, attempting to capture the

effect of rain and fog in the actual world.

Tremblay et al.citetremblay2020 rain integrate the PBR(Physics Based Rendering)

and Rain is generated with a GAN-based rain generator by first translating the

picture to its rainy form with the GAN, then synthesizing the rain overlay onto the

resulting image with the P..[14]

3.3.2 Mosaic Augmentation

The Mosaic data augmentation algorithm in YOLOv4 picks four photographs at

random from the train set and merges their contents into a synthetic picture that may

be utilized for training. The model’s capacity to recognize complicated backdrops

can be improved using this data augmentation strategy.

The CutMix data augmentation algorithm, which is a further evolution of the

CutMix data augmentation method, is referred to as the Mosaic data augmentation

algorithm in YOLOv4[1]. Image flipping, scaling, and other operations on an
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Figure 9: Fog and rain augmentation from the paper implementation "Robustness of Object Detectors
in Degrading Weather Conditions" [9]

Figure 10: Mosaic Augmentation of 4 images, the number of images can vary

image are common ways of data augmentation, whereas CutMix data augmentation

involves splicing two images and transferring the spliced images straight to the
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neural network for training.

The Ground Truth denoting the target point will change as the size of the

original image changes, such as zooming in or out. As a result, if the object

changes, the real box will change as well. This algorithm’s adjustment on the real

box will alter in tandem with the target. The Mosaic data augmentation algorithm’s

coordinate processing constraint requirements are divided into the following

inequality groups:

ymin > cuty

xmin > cutx

ymax − ymin < m (13)

xmax − xmin < n

usually this augmentation is little tricky to use. If we cutmix multiple images it is

unlikely to have vehicles in the upper regions of an image. thus it won’t help in

that cases. We need to cautious whenever we use this augmentation strategy.
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3.3.3 Bag of Freebies

Bag of Freebies is a collection of approaches or methods for improving model

accuracy by changing the training strategy or cost.

These are many strategies that may be taken while offline training to improve

overall accuracy without raising overall inference cost.

• Photometric Distortions Eg: Brightness, Contrast, Hue, Saturation, Noise

• Geometric Distortions Eg: random scaling, cropping, flipping, and rotation

Figure 11: Automod libary to simulate different augmentation method mentioned in bag of freebies

basically we are not using all the augmentation techniques. The augmentaion which

may hamper our data representation are avoided.
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3.4 Proposed Network

• Transformer[15] can work with whole context at a time in parallel, so the

whole data can be processed at once just like 2D detection in DETR[2].

• Occlusions is dealt in a good way in DETR[2] paper which can be usefull

for 3D detection as well.

the model we sketched is just to replaced point cloud based detector with DETR.

with a transformer encoder decoder and use Bipartite loss function for training. We

are using pre-trained PSMNet[3] model for depth estimation.

depth estimation network we get Dispariy map, we convert that map to

depth map. After that, instead of converting the depth map to point cloud

representation we are calculating the calculating corresponding (x, y, z) global

points and storing it in a format like map.

Figure 12: our proposed network DETR-pixCoord which has a PSMNet[3] as SDN(Stereo Depth
Network and DETR[2] as Object Detector)
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we implemented Generalized IOU for this task especially. which is essential for

calculating 3D bipartite matching loss.

Figure 13: Bipartite matching in our proposed network,slightly modified

our proposed method used a DETR model for 3D detection. Usually DETR is used

for 2d object detection but we are attempting to use it on 3D detection task,first of

all the DETR model uses full image during training and inference at a sigle time

pass. so, the whole image context is preserved and attention mechanism can focus

on a section using the whole image as context.
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4 Experiments and Result Analysis

4.1 Datasets

In our research we are using KITTI 3D Object Detection Evaluation 2017. A

total of 80.256 labeled items are included in the 3D object detection benchmark,

which comprises of 7481 training photos and 7518 test images, as well as the

accompanying point clouds. Precision-recall curves are used to evaluate the system.

They compute average precision to rank the approaches. For all test pairings, we

require that all methods utilize the same parameter set.

They employ the PASCAL criteria, which are also used for 2D object detection,

to assess 3D object detection performance. As a result, far objects are filtered

based on their picture plane bounding box height. They point out that because

only items visible on the picture plane are labeled, the assessment fails to

account for detections that are not visible on the image plane, which might

lead to false positives. They want a 70 percentage 3D bounding box overlap

for autos, and a 50 percentage 3D bounding box overlap for cyclists and pedestrians.

The dataset they provide consists of:

• Pair of color images

• 3 temporarily proceeding frames.

• Velodyne point cloud if we want laser information

• Camera calibration matrix.
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Figure 14: Automod libary to simulate different augmentation method mentioned in bag of freebies

• Training label of object data.
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4.2 Training

Transfer Learning: We used pre-trained weights for our experiment. But results

are not satisfactory using pre-trained weights with transfer learning. The maximum

AP we got was 17.7 for frozen encoder and got 34.7. which is far from our expected

outcome.

(a) Frozen dencoder training (b) Frozen encoder training

Figure 15: In this figure we are experimenting with frozen layer,we are evaluating the average
precision on 120 epochs to see if the training is working.

so, we can see from the graph, transfer learning won’t work in our work. As,

he model was previously trained on Ms COCO dataset. It is not relevant to our work.

Image data format is different and the image objects are different as well.

Which cause the feature extraction sub optimal. Freezing layers won’t work for

this reason
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Training from scratch:

We trained the model with default parameter of DETR for 200 epochs. We set

the learning rate 10−5 . By this we got some satisfactory results. we have trained

Figure 16: Training loss and validation loss is shown in the grpah. after 200 epochs results seems to
be near 0.5 which is good for our model

the model 6 days to get the results. We could’ve done better and the graph shows

there’s a good change of getting better results. IN figure 16
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Figure 17: in the graph label,pose,coordinate,box and angle loss are shown. All of these are
decreasing.

4.3 Experiment on Standard Benchmark Datasets

PSEUDO-LIDAR (PL in short) is the name given to our combined technology for

3D object identification (SDN and GDC). We assess P-RCNN alone and together

in many circumstances to determine the contribution of each component.

Network with stereo depth (SDN): The backbone of our stereo depth estimation

network is PSMNET (Chang Chen, 2018)[3]. (SDN). By projecting the associated

LiDAR points onto photographs, we may determine the depth ground truth. We

also train a PSMNET for comparison in the same way, which reduces disparity

error.

3D object Detection: All of them make use of data from LiDAR and/or monocular
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pictures. Using all of the foregoing, we found that P-RCNN[13] produced the

best results. As a result, we’re using P-RCNN[13] to evaluate all pseudo LIDAR

approaches.

IoU=0.5 IoU=0.7

Detection algo input Easy Moderate Hard Easy Moderate Hard

3DOP s 46.0 43.6 30.1 6.6 5.2 4.1

OC-Stereo s + l 87.7 80.0 70.3 64.1 48.3 40.4

S-RCNN s + l 85.8 66.3 57.2 54.1 36.7 31.1

PL:P-RCNN s 88.0 73.7 67.8 62.3 44.9 41.6

PL:++:P-RCNN s 89.7 78.6 75.1 67.9 50.1 45.3

E2E-PL:P-RCNN s 90.4 79.2 75.9 71.1 51.7 46.7

DETR-pixCoord(Frozen layers) s 25.4 21.3 15.8 11.2 9.1 6.6

DETR-pixCoord s 85.0 73.7 67.8 59.3 41.4 39.6

Table 1: On the KITTI validation set, 3D vehicle detection results were obtained. We give the AP3D
(%) of the average precision of 3D vehicle detection. Methods are organized based on the input
signals: S for stereo pictures, M for monocular images. PSEUDO-LIDAR is the acronym for PL.
Our DETR-pixCoord results are shown in blue.

Now as we know car detection set is main criteria for evaluation so, we are showing

the results in table 1(a). we can see performing quite similar to PL:P-RCNN. but

comparing to others the result is not that much satisfactory. this might be the becuse

the DETR model was not converged properly. We needed to train it more.

Model Easy Moderate Hard

PL:P-RCNN 60.1 41.7 53.2

PL++:P-RCNN 60.4 44.6 53.4

E2E-PL: P-RCNN 64.8 43.9 66.5

LiDAR:P-RCNN 85.9 75.8 68.3

DETR-pixCoord 56.3 40.4 49.3

(a) Evaluation on validation only on Car class in AP%

Model Easy Moderate Hard

PL:P-RCNN 54.5 34.1 28.3

PL++:P-RCNN 61.1 42.4 37.0

E2E-PL: P-RCNN 64.8 43.9 38.1

LiDAR:P-RCNN 71.2 75.8 68.3

DETR-pixCoord 45.3 37.4 25.6

(b) Results on test set

Table 2: The results of the KITTI test set are displayed. We get the same consistent performance.
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Figure 18: side by side comparison of AP% of the models YOLOv4,DETR-
pixCoord(our),PL++,E2E PL, LIDAR:P-RCNN. The Results are devided into 3 categories
Easy,Medium,Hard.

On the test set, we didn’t see better result than the PL:R-CNN. But the results we

can see we get similar results in medium cases.
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4.4 Evaluation of Efficiency

Model Name Number of parameters Epochs Inference time (ms)

PL:P-RCNN 61M 120 1.25

E2E PL:P-RCNN 71M 120 0.97

PL++:P-RCNN 65M 120 1.50

DETR-pixCoord 41M 200 0.81

Table 3: The table shows model’s, (PL,PL++,E2E PL and DETR pixCoord(our)) number of
parameter and Inference time.

4.5 Qualitative Analysis

The best example of our model success we can see is to detect an occluded car

which can’t be detected using PL approach. DETR with it’s contextual information

can detect Occluded object as original paper suggests. that’s why in table 1 we can

see better results for medium difficulty detect ions. with better training we can get

better results than that.

(a) Inference Result of DETR pixCoord (Our) (b) Inference Result of Pseudo LiDAR

Figure 19: Inference result shown for DETR pixCoord which is detecting all the cars in image.
Especially the occluded car on the right.
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5 Future Works

In Our work so far, we just tried to experiment and prove the fact that we don’t

need point-cloud base architecture or point-cloud representation to get LiDAR near

level accuracy. We now want to work on following sections:

• We will try to make the training process End to End just like the paper E2E

Pseudo LiDAR[11] which will make the training process from sub optimal

to optimal.

• Planning to use different fusing techniques to improve the accuracy of the

mode

• Will test on various other benchmarks like Nuscences and Cityscapes. Which

further solidify the validity of our approach.
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