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Abstract

Nuclei instance segmentation is an important step for oncological diagnosis and

pathology research of cancer. HE stained images are considered the gold standard

for medical diagnosis. But before being used for segmentation, it is required to pre-

process them. There are two principle methods to preprocess them,formalin-fixed

paraffin-embedded samples (FFPE) and frozen tissue samples (FS). Even though

FFPE is widely used , it is a time consuming process whereas FS samples can

be processed very quickly. But analysis of FS-derived HE stained images can be

more difficult as rapid preparation, staining, and scanning of FS sections results in

degradation of image quality. Therefore, in this thesis, we explored various state

of the art segmentation architectures to create a model that will segment nuclei

of FS-derived HE stained images with a high quality feature extraction.

Here, we have been working on a novel dataset called CryoNuSeg that contains

30 FS-sectioned images of 10 human organs.It has a benchline score of DICE 80.3

± 4.3, AJI 52.5 ± 5.0, PQ 47.7 ± 6.1. U-Net is the first and most prominent

architecture for biomedical image segmentation. We are exploring various U-Net

architectures. We have trained Triple U-NET on the dataset using binary masks

in place of U-NET keeping all other parts of the instance segmentation algorithm

same such as Gaussian Filtering and Watershed Post processing.The results using

Triple U-NET crossed all the benchline scores. The triple U-Net architecture gives

a score of DICE 80.33, AJI 67.41 and PQ 50.56.

We have developed a deep learning model that performs highly accurate nuclei

segmentation of FS sections despite degraded image quality for fast oncological

diagnosis.
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1 Introduction

1.1 Overview

Cancer is one of the most common cause of death in the whole world, causing the

death of nearly 10 million people in 2020 alone [1]. Between 30 and 50% of cancer

cases can be prevented by quickly diagnosing and implementing existing evidence-

based prevention strategies. The rate of cancer can also be reduced through early

detection of cancer. Many cases of cancer patients have a high chance of recovery

if diagnosed early and treated appropriately. Sometimes, a surgeon must know

the abnormal cell condition of a patient in the middle of an operation. That’s

why it is vital to diagnose cancer very fast so that treatment can start as soon as

possible.

The domain of Computer Science most relevant to our research is Bioinformatics.

Bioinformatics is the study of the process of extraction of biological data, convert-

ing it into meaningful forms and finally the analysis of said data. A significant

portion of Bioinformatics research is focused on cancer diagnosis. Nuclei segmen-

tation of HE stained images is monumental to understand the morphology, shape

and count of nuclei which gives us important insights into abnormal cell patterns.

1.2 What is Nuclei Segmentation

A cell consists of three parts: the cell membrane, the nucleus, and, between the

two, the cytoplasm. The nucleus contains the majority of the genetic materials.

In the studies of cancer, a significant portion of research has usually been focused

on this “gene-centric view” of the nucleus. The whole process starting from the

identification of oncogenes and tumor-suppressor genes to the establishment of

the multiple cell mutations concept is now commonly accepted as a standard

requirement for cancer initiation and progression [2]

Nuclei segmentation is the process by which nuclei regions are segmented and

extracted from cell tissue images. It is performed on Hematoxylin and Eosin(HE)
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stained images. HE is the most popularly used stain in pathological diagnosis [3].

In this method, the nuclei is stained in the color of purplish blue due to the effect

of hematoxylin while the extracellular matrix and cytoplasm is stained in the color

of pink by Eosin , with other parts of the tissue cell taking on different shades,

hues, and combinations of blue and pink.

Examination and monitoring of Hematoxylin and Eosin (HE)-stained tissue sec-

tions reveals critical information about each cell and its functional situation [4].

That’s why, analysis of these images remains the “gold standard” [3] in diagnosing

almost all types of cancer. Nuclei morphology, shape, type, count, and density are

the key indicators of evaluation of HE-stained tissue cell images. To extract these

indicator features automatically with a digitized method, nuclei segmentation is

required.

Figure 1: Nuclei Segmentation of HE Stained Images

1.3 Tissue Processing Protocols

There are two types of protocols to process tissues before they are being stained ,

namely formalin-fixed paraffin-embedded samples (FFPE) and frozen tissue sam-

ples (FS). HE staining of FFPE samples is more widely commonly used. Here,

samples are processed with formalin and embedded in blocks of paraffin wax and
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hence, the name. Thin slices of these blocks are then stained and used for diagnos-

tic purposes. This procedure has better image quality so nuclei can be detected

in an easier way but the entire procedure is very time-consuming, taking hours

to days [?]. On the other hand, the preparation procedure of FS images is very

smooth, easy and time efficient . The entire procedure can be completed in be-

tween 5 and 20 minutes [5]. The samples are then rapidly frozen for preservation

of cell structure since paraffin was is not used here. Then a cryo-microtome is

used to slice the frozen tissues.

Even though FFPE-derived HE stained tissue parts are traditionally the most com-

monly used samples, FS samples derived from cryosectioned HE stained tissue cells

are more efficient for intra-operative surgical sessions as it can be performed fast.

During the surgery itself, the oncosurgeon might need a rapid diagnosis which is

not possible using FFPE as it takes days to be prepared. But a major problem

is that,since these protocols are extremely different from each other in terms of

processing, the resultant images will be widely different. Particularly, the nuclei

quality might be drastically different in the Whole Slide Images (WSIs) . Anal-

ysis of FS-derived HE stained images can be more difficult as rapid preparation,

staining, and scanning of FS sections may lead to degradation in image quality.

The nuclei and the other cell parts might not be clearly visible.

1.4 Motivation and Problem Statement

For rapid diagnosis of cancer, usage of FS stained images is revolutionary as it

decreases diagnosis time by multiple folds, bringing it down from days to a few

minutes. Therefore, its nuclei segmentation can be performed in the middle of an

operation too, where the surgeon might need crucial information about the nuclei

morphology of the abnormal cells.

The main challenge of using FS stained images is its deteriorated image quality.

That’s why, we propose to develop a deep learning model that performs highly

accurate nuclei segmentation of FS sections despite deteriorated image quality for

fast oncological diagnosis.
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2 Literature Review

In computer vision, image segmentation is the process of dividing the pixels of

images into various areas and labeling each area into a certain part. Each area

is called a segment.Each area has certain shared characteristics that differentiates

them from other areas.This is a significant procedure because it extracts regions

of interests and helps to analyze those regions. There are mainly two kinds of

approaches to perform segmentation:

1. Classical Non AI Based Approaches

2. AI Based Approaches

2.1 Classical Approaches to Image Segmentation

Variousimage segmentation algorithms have been developed in scientific research

from a very long time ago. Most renowned methods include thresholding [6],

histogram-based bundling, regiongrowing [7], k-means clustering [8], watersheds

[9], to more advanced algorithms such as active contours [10], graph cuts [11],

conditional and Markov random fields [12], and sparsity based [13]- [14]methods.

But they had very low accuracy and couldn’t perform multi object detection.

2.2 Deep Learning Approaches to Image Segmentation

CNN is of the most prominent architectures in the research and applications of

Computer Vision. The first CNN architecture was proposed by Fukushima in his

paper on the “Neocognitron” [16].

Long et al. [17] projected one amongst the primary deep learning works for se-

mantic image segmentation, employing a fully convolutional network (FCN). An

FCN includes solely cnn layers, in order that it will take a picture of random size

and manufacture a segmentation map of identical size. The authors changed exist-

ing CNN architectures, such as VGG16 and GoogLeNet by by exchange all fully-
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connected layers with the fully-convolutional layers.In this manner, they managed

variable sized input and output. As a result, the design shows spatial segmenta-

tion map and not classification scores. This work is taken into account a milestone

in image segmentation, demonstrating that deep networks are often trained for se-

mantic segmentation variable sized pictures.But it had some limitations:

1. Time consuming

2. Can’t understand semantic meaning and contextual relationship

3. Doesn’t work on 3D Images

Also, traditional CNN architecture doesn’t work on medical images due to

discrepancy in domain. Medical images required specialized highly precise seg-

mentations.

2.3 Medical Image Segmentation

U-Net [?]is the first ever architecture proposed for biomedical image segmenta-

tion.It was a strong variation of a typical convolutional network. It focuses on

precise localization of objects e.g. pixels with small number of data instead of the

normal classification task of CNN.

The main plan is to feature consecutive layers to a traditional contracting network,

wherever pooling operations area unit replaced by upsampling operations. Hence,

these changed increase the output resolution. This high resolution contains the

output from the contracting path area unit side to the upsampled output. Bup-

ported this info of options, a consecutive convolution layer will learn to supply a

a lot of precise output at the end. One vital modification is that a large range

of feature channels area unit contained by the upsampling layer, which permit

the network to send contextual data to higher resolution layers. Consequently,

the expanding path is bilaterally symmetric to the contracting path, and yields a

u-shaped network form and therefore the name.
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2.4 Dataset

This [18] paper introduces CryoNuSeg, the first fully annotated FS-derived cryosec-

tioned and HE-stained nuclei instance segmentation dataset. Nuclei segmentation

is the process by which nuclei regions are segmented and extracted from cell tissue

images. It is performed on Hematoxylin and Eosin(HE) stained images. HE is the

most popularly used stain in pathological diagnosis. In this method, the nuclei

is stained in the color of purplish blue due to the effect of hematoxylin while the

extracellular matrix and cytoplasm is stained in the color of pink by Eosin , with

other parts of the tissue cell having colors of various shades, hues, and combina-

tions of blue and pink. But before being employed for segmentation, it is needed

to pre-process them. There are 2 principle ways to preprocess them,formalin-fixed

paraffin-embedded samples (FFPE) and frozen tissue samples (FS). albeit FFPE

is wide used , it’s a time intense method whereas FS samples may be processed ter-

ribly quickly. However analysis of FS-derived HE stained pictures may be tougher

as fast preparation, staining, and scanning of FS sections ends up in decrease of

image quality.

The dataset was made by selecting 30 WSIs from 10 different human organs. There

were 3 WSIs per organ namely the lymph node,pancreas, pleura,,adrenal gland,

skin, testis,larynx, mediastinum, thymus, and thyroid gland. Samples were taken

from sampling centers with patients of various sexes, ages and races. Manual nuclei

segmentation was performed by two trained annotators, a biologist (Annotator 1)

and a bioinformatician (Annotator 2). This helps U.S.A. to look at inter-observer

variability. Moreover, one among the annotators re-labelled the complete dataset

in order that intra-observer variability may be measured.

U-Net architecture is enforced to separate foreground and background, whereas

distance U-Net is enforced to seek out out the distance maps for all nuclei. After

that a Gaussian smoothing filter is applied on these maps so that wrong local

maxima are not detected. The size of kernel of the filter is detected from the

U-Net results supported the average expected nuclei size. Finally, a a watershed-
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Figure 2: Sample FS-stained images from three human organs and their corre-

sponding segmentation masks (from Annotator 1). For each sample, we show

the raw image, the manually labelled nuclei, the binary segmentation mask,

the binary mask with touching borders removed, the distance map, and the

weighted map.

based rule is employed to merge the results from the 2 phases.

To assess the segmentation performance of the architecture on nuclei images,

three evaluation indexes were used, the Dice score, aggregate Jaccard index (AJI),

and panc optic quality (PQ) score. Because DICE score evaluates semantic results

while AJI and PQ measures instance segmentation results.

2.4.1 Results

Several experiments were performed using MonuSeg-FS and MonuSeg-FFPE as

training images respectively and CryoNuSEg as test. The results are shown in the

table below.
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Figure 3: Flowchart of the employed instance segmentation algorithm

In the next experiment, 10 cross-fold validation is implemented on the CryoNuSeg

dataset to obtain results. The results are given below.

In the next experiment, the inter-observer variability was found out. For this,
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manual segmentation masks of Annotator 2 were compared to those from Anno-

tator 1 (first round). Annotator 1 is considered the ground truth.

3 Proposed Methodology

In the proposed paper of the dataset the author introduced a U-NET based algo-

rithm They used a recently published SOTA Deep Learning instance segmentation

algorithm as the baseline segmentation model. Below the diagram shows a visual

walkthrough of the whole algorithm . The segmentation model consists of two

sub-models, which are trained independently. A U-Net based model (segmenta-

tion U-Net) is used to perform basic semantic segmentation, while a Unet model

focusing on the distance between centers of each nuclei is used to predict the

distance maps for all nuclei instances. Both sub-models contain an upsampling

part with five blocks of convolutional layers, dropout layers and max-pooling lay-

ers and a downsampling module with five blocks of convolutions layers, dropout

layers and transposed convolutional layers. Similar to the original U-Net imple-

mentation, both sub-models use skip connections,which connect different blocks

of the encoder path to the decoder path. The main differences between the two

sub-models are the last activation layer and the utilised loss functions. For the

segmentation U-Net, a sigmoid activation is used in the last layer while for the

distance U-Net, a linear activation is applied. They use a combination of Dice loss

and binary cross-entropy to train the segmentation U-Net, whereas mean squared

error loss function is used to train the distance U-Net.After training the two sub-

models, their results are merged to form the instance segmentation masks.To ob-

tain the final instance segmentation masks, they first apply a Gaussian smoothing

filter on the predicted distance maps to prevent false local maxima detection,

with the kernel size of the filter determined from the segmentation U-Net results

based on the average predicted nuclei size. Then, the local maxima are derived

from the smoothed distance maps and are used as points for a watershed algo-

rithm. They use the results from the segmentation U-Net as the labels for the

watershed method to determine all background pixels. To segment the nuclei with
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higher accuracy we propose to use better and latest versions of U-NET in place of

traditional U-NET and would also experiment with other different instance seg-

mentation methods if needed.We propose to use Triple U-NET in place of U-NET

in the proposed algorithm for instance segmentation.

Figure 6- Author’s proposed architecture
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3.1 Convolutional Neural Networks(CNN)

With the advent of image recognition tasks the need for better image suitable

neural networks were required. Traditional Feed Forward neural Networks could

not solve this problem with satisfatory accuracy. Thus the Convolutional Neu-

ral Network came into existense through thorough research.Convolutional Neural

Networks as the name suggests uses Convolution Operation on input data.This

helps in preserving the spatial information along with the contextual information

and also the temporal information. Thus it can be used for higher dimensional

data such as images which are generally 2-dimensional.The basic components of

a CNN are as follows: “filter” which have the same dimension as the input, it

performs the convolution operation on the input.Then there are “Pooling” Layers

that works towards downsampling the image so that the computational burden

decreases.Further there are regularization methods such as Dropout,Batch Nor-

malization.Other important terminologies are “strides” which is the number of

steps the filter will move across the input matrix,“padding” which is extra cells

added to the border of the input matrix,“kernel” which is the name given for

the filter.The filters have learnable parameters that are optimized during train-

ing through backpropagation,thus the feature extraction step of the model is also

learned through training. At the last layer the final feature map is flattened to

form a 1-dimensional vector and is passed through a Densely connected FeedFor-

ward Neural Network.This last layer gives the final classification output for the

required task.
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3.2 Fully Convolution Neural network(FCN)

Traditional Convolutional Neural Network architecture uses convolution opera-

tions an also pooling operations to down sample the image and learn a condensed

features map of the image given as input. This is done mainly to make the whole

algorithm to be computationally feasible to be implemented. This works fine and is

quite efficient for simple image classification tasks where we are not concerned with

the location of the objects and information about its presence is enough to accom-

plish our task.However for segmentation task localization information is necessary

to locate the object in the image but the down-sampling does not conserve the

localization information.To mitigate this problem and make image segmentation

feasible without making it computationally expensive a new design architecture

was proposed called “Fully Convolutional Neural Network”.FCN further adds an

Up-sampling part after the down-sampling part of traditional CNN,this allows for

using location information of objects in images along with the context.And allows

us to perform semantic segmentation on images efficiently.
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Figure-10 Fully Convolutional Neural Network
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3.3 U-NET

U-net is one of the most popular models for biomedical image segmentation.U-net

is built upon the architectural design of Fully Convolution Neural Networks(FCN).U-

net consists of an encoder and also decoder.The encoder usually down-samples the

image like any other CNN architecture and produces a condensed feature map of

the image.The condensed feature map is then passed onto the decoder which then

up-samples the image back again.The whole down-sampling is done using only

3x3 filters and 2x2 pooling layers.The feature maps are increased two folds at each

layer.The up-sampling or decoder network works in the fundamental principle of

transpose convolution which does the opposite task of convolution and increases

the sample size. The unique technique used in the U-net that sets it apart from

traditional FCN is the concatenation of feature map from encoder network to the

decoder network.The concatenation process provides the network to better under-

stand the representation during the training process. The activation function used

for the network is Rectified Linear Unit which is quite famous across all neural

network architecture and has proven its efficiency throughout multiple research

papers.
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3.4 Triple U-NET

This network contains three U-net branches that serve different purposes. The

RGB branch focuses on the raw features of the segmentation task. The H branch

focuses on the Hematoxylin-aware feature extraction of the nucleus which aids in

detecting the edges of the nuclei in the images and enhances the diffrentiating

ability of the network interms of overlapping regions in the images and helps in

getting more accurate segmentation maskd of the cryosectioned smaples of whole

slide images. The hematoxylin module is stable interms of inconsistent color of

the H and E stains so applying normalization is not necessary and was not done

as it may cause unnecessary information loss. The segmentation branch fuses

the RGB raw features and the Hematoxylin-aware contour features and then pre-

dicts the final segmentation results.In this architecture, the authors present a

Hematoxylin-aware Triple U-net for nuclei segmentation from WSI images, this

is quite a new approach used by the authors to exploit the properties of HE

stained images.The Concept of Beer Lamberts law has been used here, relating

to light absorption property of objects to extract the Hematoxylin component,

the proposed model is much more stable to color inconsistency, hence the color

normalization is no longer necessary.The Progressive dense feature aggregation

module also allows the model to learn features through merging them effectively.

Through ablation studies and robust experiments across three data-sets this ar-

chitecture has proved to be very effective in segmenting nuclei in whole slide im-

ages. Triple U-Net has shown promising results across a lot of standard data sets.

18



Figure-

12 Triple U-Net

3.4.1 Progressive Dense Feature Aggregation

Progressive Dense Feature Aggregation(PDFA).Tradition Unet Architecture usu-

ally concatenate features directly,but features from previous layer are progressively

combined with the later features This feature fusion technique is quite reason-

able,as it improves feature propagation and reuses the features effectively.Here

the encoding layer contains three layers in the PDFA module and the decoder

layer has four layers.
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Figure-13 PDFA Module

3.4.2 Hematoxylin Component Extraction

Hematoxylin and eosin stains have been used for a long time for differentiating

cellular contents in slides.Nucleus takes up blue colour whereas other cytoplasmic

contents are coloured pink when these stains are applied.This property has been

used to guide the network for the segmentation tasks.

3.5 Watershed Algorithm

Watershed is very popular image processing technique widely used for segmen-

tation purposes.It is very useful for differentiating between overlapping region in

segmentation tasks which is quite an important task for getting accurate seg-

mentation maps of images.The algorithm requires user-defined markers for it to

function. User defined markers can be defined using techniques such as threshold-

ing or morphological operations. The idea is to identify valleys and peak region

in an image.A peak is a region of high intensity and a valley is a region of low

intensity.Considering each valley region we fill it with water of some colour and
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put barriers at the point it may merge with other valleys.This barrier acts as the

separation between objects and the algorithm succeeds in separating different ob-

jects.

3.6 Gaussian Filter

Gaussian Filtering is a technique used in image processing to remove noise from

images.The Gaussian filter uses the Gaussian Weighted function to perform the

smoothing operation.The technique requires convolving the image with a gaussian

function.It is a type of low-pass filter that reduces the high frquency components

in the images. Below is the formula for gaussian filters:

P (x) =
1√
2πσ2

e
−x2

2σ2

P (x, y) =
1√
2πσ2

e
−x2+y2

2σ2

When the formula is applied on an image it produces contours which forms con-

centric circles from the gaussian distribution.We obtain a convolution matrix using

the values from the distribution that is used to convolve with the images. For each

pixel a weighted average is calculated and then placed as the pixels values. The

further the pixel the lower the weight it gets.Gaussian blur or filtering provides

benefits of removing high frequency components and removes sharp edges

3.7 Implementation and training details

The whole experiment was performed using Google COLAB.The Deep Learn-

ing Framework used for the experiments was Pytorch.Gpu used was Nvidia Tesla

K80.During training process the input images were augmented using various trans-

formations techniques such as elastic transformation,random cropping,mirror ro-

tation and flipping.The original images were resized to 256x256 pixels. During

training learning rate was varied from 0.001-0.002 and learning rate schedulers

were tried such as Exponential LR reduce on Plateau,Cosine annealing,Cosine an-

nealing restarts.
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3.8 Evaluation Metrics

We used three types of evaluation metrics- AJI(Average Jaccard Index), DICE,

PQ.

AJI refers to Average Jaccard Index. The Jaccard index is also known as inter-

section over union. The Jaccard similarity coefficient is a statistic for measuring

the similarity and differences among samples. As the equation shows, Jaccard

Similarity depends on two sets. It basically calculates how much overlap there is

between the two sets. Many sophisticated machine learning or deep learning tasks

can use Jaccard Index- mainly for image or object classification or segmantation

tasks.

The dice coefficient is pretty much similar to Average Jaccard Index. Similar to

Average Jaccard index, it also considers area of overlap, but the difference is here,

the overlap is multiplied by two.n Then this result of multiplying the overlap by

two is further divided by the union of the two sets. The union of two sets can also

be thought of as the total number of pixels in the two region, since we are dealing

with images in this paper. Dice coefficient is very similar to Intersection over

Union. Dice coefficient is positively correlated to Intersection over Union. This

means if Intersection over Union decides that a certain model is better than the

other then at segmenting an image then dice score will make the same decision.

Similar to intersection over union, dice score also ranges from 0 to 1, where 1

denotes the greatest similarity between predicted region and the ground truth

region.

The PQ (Panoptic Quality) is used to evaluate the performance of medels in

Panoptic Segmentation tasks. In the equation of Panoptic Quality, the numerator

sums up all the intersection over union ratios for all true positive values that have

been detected. The denominator is calculated by summing true positives, false

positives and false negatives. However, the false positive and false negative values

are halved. The PQ score can be imagined as having two parts- a Segmentation

Qality part, that evaluates how closely our segments matched with the ground
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truths. When the SQ value comes closer to 1, it means that the true positive

values are more closely matching with ground truths. But, no bad predictions are

taken into account.

Our proposed model works significantly better than the baseline model, in terms

of all kinds of evaluation metrics. Among them, the AJI score has increased

substantially. The results are shown in following tables.
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AJI Score

Fold Baseline Our Model

Thyroid 0.5349 0.6682

Thyroid 0.5349 0.668186

Thymus 0.5970 0.720366

Testes 0.5354 0.72661

Skin 0.5410 0.639007

Pleura 0.4484 0.637411

Pancreas 0.4649 0.62711

Mediastinum 0.4784 0.707169

Lymph node 0.5049 0.684007

Larynx 0.5646 0.657913

Adrenal Gland 0.582 0.673637

AVERAGE 0.525 0.6741416

Table-3 Comparison of AJI scores

From the table above it can be observed that the proposed model shows significant

improvement in terms of AJI score. The proposed model shows improvement in

results for the images of all the organs involved in the experiment.
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PQ Score

Fold Baseline Our Model

Thyroid 0.550355 0.4830

Thyroid 0.4830 0.550355

Thymus 0.5450 0.543708

Testes 0.5079 0.499412

Skin 0.5073 0.480857

Pleura 0.3775 0.480179

Pancreas 0.4002 0.457219

Mediastinum 0.4078 0.512735

Lymph node 0.4751 0.477618

Larynx 0.5283 0.4807

Adrenal gland 0.5348 0.572905

AVERAGE 0.477 0.5055688

Table-3 Comparison of PQ scores

The proposed model also shows promising results. There is an overall improvement

of about 3 percent. AJI score sometimes over penalizes the overlapping region. To

avoid this problem Panoptic Quality (PQ) is used for evaluating the segmentation

performance.
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Dice Score

Fold Baseline Our Model

Thyroid 0.7817 0.796866

Thymus 0.8165 0.83687

Testes 0.8156 0.841115

Skin 0.8487 0.779416

Pleura 0.7431 0.778141

Pancreas 0.7549 0.770692

Mediastinum 0.7475 0.828457

lymph node 0.8427 0.807039

larynx 0.8590 0.792724

Adrenal gland 0.8181 0.801589

AVERAGE 0.803 0.8033

Table-3 Comparison of DICE scores

Our proposed model shows competitive performance compared to the original

model in terms of DICE score. Even though the performance is competitive, our

proposed model performed slightly better than the original model.

3.8.1 Comparing AJI and DICE

As stated in the previous section our proposed model performs significantly better

than the original model in terms of AJI score as compared to the DICE score.

In this section we will provide some comprehensive analysis of AJI and DICE

scores in terms of the ways in which these scores are calculated. And eventually

reach a conclusion stating which method evaluates a model more strictly.

The equation of AJI is given below:

AJI =
∑n

i=1 Gi∩Pj∑n
i=1 Gi∪Pj+

∑
k Pk
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The equation of PQ is given below:

PQ =
2×|Gi∩Pj |
|G|+|P |

The equations of AJI and PQ scores have been diagrammatically represented for

better understanding.

Below the visual representation of AJI score has been displayed.

Figure -14 Visual representation of AJI score equation

The yellow region represents the ground truth and the dark green region represents

the predicted pixels. Below same color represents union between the ground truth

and the predicted region. The intersection is represented by blue color. AJI

divides the intersection region with the union of the pixels.

Below the visual representation of DICE score has been displayed.
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Figure -15 Visual representation of DICE score equation

In the figure above the yellow region represents the ground truth and the dark

green region represents the predicted pixels.The light blue region represents the

intersection between the predicted and the ground truth pixels, which is then

multiplied by 2. Below, the total number of pixels are added, i.e the summation

of ground truth pixels and the predicted pixels are taken. Finally the doubled

intersection is divided by the summation of ground truth pixels and the predicted

pixels.

3.8.2 Why is AJI more strict metric than DICE

In dice score we are multiplying the correct classification in numerator of the

equation by 2 and then dividing it by the sum of prediction results and ground

truths. AJI is similar to dice except for the fact that we are not multiplying

the correct classification by 2. The effect of this is that the rate at which/the

magnitude by which AJI penalizes wrong predictions is more drastic than dice as

dice score awards correct prediction more than it penalizes incorrect predictions.

Therefore, AJI has the tendency of over penalizing, and thus can be considered a

more strict scoring method. The AJI score in our implementation out performs

the baseline model by a large margin.
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4 Results and Discussion

Authors from Cryonuseg dataset set the baseline segmentation benchmark using

the dataset. For the first step we implemented the author’s algorithm using the

same dataset by coding it in python and obtaining the following results.

All the sub-models have been trained for 30 epochs. When trained, the starting

learning rate was 0.01. It is to note that the training was done using a learn-

ing rate scheduler. As training progressed, the learning rate was halved after 8

epochs. Size of each batch was set to 8 and many different types of augmentation

techniques were applied in the while training which includes flipping horizontally

and vertically randomly and with a probability 0.5. There were rotations of 90

degrees, 180 degrees and 270 degrees in a random manner again having probabil-

ity of 0.5. Shifting of brightness and contrast were done with contract shift and

brightness limits of 0.15 having a probability 0.40. We also did histogram equal-

ization, which was random and adaptive and images were also cropped randomly

having a size of 512 × 512 pixels. Finally, during inference stage, we apply two

post processing steps on the final segmentation results which removing instances

from the segmentation masks, by small instances we mean objects with areas less

than 20pixels. We then fill the holes within the objects detected.

Some of our experimentations using authors’ weights are given below.
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fold PQ DICE AJI

Thyroid 0.515696 0.795297 0.666902

Thymus 0.51138 0.815816 0.691043

Testes 0.442313 0.777187 0.637739

skin 0.496141 0.801158 0.669015

pleura 0.493488 0.818558 0.692998

pancreas 0.459 0.767039 0.622113

mediastinum 0.4834 0.809779 0.680553

lymph node 0.487128 0.796483 0.66873

larynx 0.462777 0.756264 0.610017

adrenal gland 0.590263 0.822044 0.700428

AVERAGE 0.4941586 0.7959625 0.6639538

Table-4 Segmentation Results with Metrics: epochs=15,lr=0.0001

scheduler=StepLR where training is performed with triple unet authors weights)
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fold PQ DICE AJI

Thyroid

Thymus 0.539165 0.856029 0.748777

Testes 0.453209 0.780814 0.640752

skin 0.498672 0.785637 0.647387

pleura 0.421398 0.733676 0.580131

pancreas 0.476078 0.768886 0.624723

mediastinum 0.476596 0.816135 0.689519

lymph node 0.461268 0.778346 0.643527

larynx 0.48074 0.801207 0.670525

adrenal gland 0.566073 0.790254 0.658103

AVERAGE 0.485911 0.7901093333 0.6559382222

Table-5 Segmentation Results with Metrics:

epochs=15,lr=2e-6,Scheduler=Cosine anealing Restarts where training is

performed with triple unet authors weights)
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fold PQ DICE AJI

0 0.550355 0.796866 0.668186

1 0.543708 0.83687 0.720366

2 0.499412 0.841115 0.72661

3 0.480857 0.779416 0.639007

4 0.480179 0.778141 0.637411

5 0.457219 0.770692 0.62711

6 0.512735 0.828457 0.707169

7 0.477618 0.807039 0.684007

8 0.4807 0.792724 0.657913

9 0.572905 0.801589 0.673637

AVERAGE 0.5055688 0.8032909 0.6741416

Table-6 Segmentation Results with Metrics:

epochs=20,lr=0.0001,Scheduler=StepLR where training is performed with triple

unet authors weights)

By using the same dataset and running it on the Triple U- architecture we imple-

mented , we managed to improve the baseline results.

Our accuracy scores on Triple U-net were Dice 80.33%, AJI 67.41% and PQ of

50.56%.

4.1 Performance Analysis

Paper Model AJI DICE PQ

Ronneberger et

al.

U-Net 0.5250 0.4770 0.8030

Our Work Triple U-Net + water-

shed algorithm

0.6741 0.5056 0.8033

Table-4 Performance Comparison of Proposed Architecture with the Baseline

Model
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Our proposed architecture outperforms the baseline model by all evaluation

criterions. Amongst them , AJI has the highest improvement with over with al-

most 30 percent increase in score.

Triple U-net predicts precise nucleus boundary which a simple U-Net archi-

tecture is not good enough to do. It performs edge detection with high accuracy.

It also predicts contour-aware boundaries more accurately. The PDFA allows the

network to learn features and merge their information from various domains of

the nuclei. Moreover, this model does not need any kind of color normalization.

Thus, it saves computational power too.

Therefore, our proposed architecture provides a state-of-the-art solution to

high precision nuclei instance segmentation of frozen sectioned tissues.

4.2 Error Analysis

Among all the organs,our model gave relatively lower dice scores for the Skin,Larynx,Lymph

Node samples.This is partially due to the small sample size for each organs avail-

able for training. These organs have complex tissue cells, the nuclei are harder to

detect because of their smaller size. Also, cancer in these organs are quite rare as

well. Thus, after it is frozen, the image quality degrades even more. That’s why,

more samples are required for these particular organs to get better results.

5 Conclusion

We proposed a state of the art architecture for high precision nuclei instance seg-

mentation of cryosectioned H E stained frozen sectioned tissues.This will help

to analyze nuclei morphology, size, density and detect any kind of abnormality.

Therefore, it will help to diagnose cancer in a patient in a very short time. Early

diagnosis can help to save a patient’s life. It will also help surgeons take intra-

operative decisions with confidence.
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We further conducted an in-depth error analysis on the performance of our pro-

posed architecture,which can be pioneering for future research work in this domain.

In future, we want to extend this work by incorporating our experimental setup

with a larger dataset with the latest augmentation techniques and modification of

the proposed Triple U-Net architecture.
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