
Islamic University of Technology (IUT)

Department of Computer Science and Engineering (CSE)

SDN-based Time Series Traffic Flow Forecasting in

VANET

Authors

Ali Abir Shuvro, 170041003

Mohammad Shian Khan, 170041046

Monzur Rahman, 170041047

Supervisor

Md. Sakhawat Hossen

Assistant Professor, Department of CSE,

Islamic University of Technology (IUT)

A thesis submitted to the Department of CSE

in partial fulfillment of the requirements for the degree of B.Sc.

Engineering in CSE

Academic Year: 2020-2021

9th May, 2022

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the analysis and ex-

periments carried out by Ali Abir Shuvro, Mohammad Shian Khan and Monzur Rahman under

the supervision of Md. Sakhawat Hossen, Assistant Professor of the Department of Computer

Science and Engineering (CSE), Islamic University of Technology (IUT), Dhaka, Bangladesh.

We are very grateful to our supervisor Md. Sakhawat Hossen, Department of Computer Science

and Engineering, Islamic University of Technology (IUT), for his supervision, knowledge and

support, which has been invaluable for us.

It is also declared that neither of this thesis nor any part of this thesis has been submitted any-

where else for any degree or diploma. Information derived from the published and unpublished

work of others has been acknowledged in the text and a list of references is given.

Authors:

Ali Abir Shuvro

Student ID: 170041003

Mohammad Shian Khan

Student ID: 170041046

1

Monzur Rahman

Student ID: 170041047

Supervisor:

Md. Sakhawat Hossen

Assistant Professor

Department of Computer Science and Engineering

Islamic University of Technology

2

Acknowledgement

We would like express our gratitude towards IUT authority for granting us the fund and providing

assistance required to implement our proposed system. We are indebted to our supervisor, Md.

Sakhawat Hossen for providing us with insightful knowledge and guiding us at every stage of our

journey, Finally, we would like to express our heartiest appreciation towards our family members

for their continuous support, motivation, suggestions and help, without which we could not have

achieved this progress in our work.

3

Abstract

Intelligent Transportation Systems(ITS) provides services for proper traffic
assistance. Vehicular Ad-hoc Network(VANET) provides internet connectivity
to vehicles and helps in traffic guidance. In this paper, traffic flow predic-
tion is done using a modified transformer architecture for time-series vehicular
data. Sequences are generated from the dataset for capturing temporal de-
pendencies. The transformer model has been engineered to capture inter-
feature correlations along with inter-sample correlations. Our transformer
model has performed much better than other models like LSTM. We also
propose a holistic networking model where the vehicles will be connected to
Road-side Units(RSUs) and the backbone network will be Software Defined
Network(SDN). The traditional design principles, that incorporates data, con-
trol and management planes together in a network device, are incapable to
adapt with this much data growth, bandwidth, speed, security, scalability
compared to SDN as it provides with centralized programmable mechanism
reliably. The trained parameters learned using the transformer model will be
passed throughout the network for traffic guidance. Similar sized packets are
passed using a simulator to demonstrate the time required for the propagation
of the parameters.

Keywords: Vehicular Ad-hoc Network, Transformer, Sequence length, Encoders, Attention

mechanism, Traffic flow, Software-defined Network

4

Contents

1 Introduction 8

1.1 Overview . 8

1.2 Research Challenges . 9

1.3 Contribution . 9

2 Background Study 10

2.1 VANET . 10

2.2 SDN . 12

2.3 SDN-based VANET or SDVN . 16

2.4 Traffic Flow Forecasting . 17

2.5 Some notable work done on traffic prediction 19

2.5.1 ASTGCN: Attention Based Spatial-Temporal Graph Convolutional

Networks for Traffic Flow Forecasting 20

2.5.2 Spatial-Temporal Transformer Networks for Traffic Flow Forecasting 21

3 Problem Formulation 21

4 Methodology 22

4.1 Model Architecture . 22

5 Implementation 24

5.1 Dataset . 24

5.2 Preprocessing . 24

5.3 Creating Sequence . 25

5.4 Training . 26

5.4.1 The Encoder . 26

5.4.2 Multi-Head Attention Layer of Transformer Architecture 27

5.4.3 Multi-Head Attention Layer of Our Architecture 29

5.4.4 Position-Wise Feed Forward Network 31

5.4.5 The Decoder . 31

5.4.6 Generating Feature Weights . 32

6 Experiment 32

6.1 Environment and Configuration . 32

6.2 Evaluation Metrics . 33

5

6.2.1 MSE . 33

6.2.2 RMSE . 33

6.2.3 MAE . 33

6.3 Experimental Results . 33

6.4 Result Analysis . 35

6.4.1 Impact of sequence length . 35

6.4.2 Impact of number of encoders . 36

6.5 Integrating into an SDN environment . 37

6.5.1 SDN over traditional network . 37

6.5.2 SDN experimental setup . 40

6.5.3 SDN simulation and results . 42

7 Future Works 43

7.1 Dataset modification . 43

7.2 Resource allocation . 44

8 Conclusion 44

List of Figures

1 The framework for ASTGCN . 20

2 The framework for STTN . 21

3 Architecture Overview . 22

4 Data flow of the traffic flow prediction model . 23

5 Processing sequences in the dataset . 25

6 Data flow through the internal architecture of the model 27

7 Multi-Head Attention Mechanism . 28

8 Extended Multi-Head Attention Mechanism . 29

9 Comparison between different sequence lengths of our model and LSTM 36

10 Impact of number of encoders in MSE . 36

11 Traditional Networking vs SDN [1] . 38

12 Comparison of performance between traditional and SDN network [2] 40

13 Network Topology Visualization in Floodlight Controller web interface 43

6

List of Tables

1 Related works on VANET . 12

2 Related works on SDN . 14

3 Related works on SDN-based VANET or SDVN 16

4 Related works on traffic flow forecasting . 17

5 Related works on traffic prediction using Transformer 19

6 Variables along with their unique frequencies existing in the dataset 24

7 Shape of train and test dataset with respect to sequence number 26

8 Environment and Configuration for the experiment 32

9 Hyperparameters used for the experiment . 33

10 MSE, RMSE and MAE values obtained from the predictions (Normalization range

[0,100]) . 34

11 Time needed for data transmission in the topology based on file size 42

7

1 Introduction

1.1 Overview

Intelligent Transportation Systems (ITS) technologies provide services to better traffic and

transportation information. It makes transportation smarter by providing meaningful insights

to traffic data which are captured by highly advanced traffic detection sensors, and in essence,

makes the roads safer and more coordinated. Traffic data is captured via detectors/sensors, so

traffic forecasting has been critical to the development of ITS.

Traffic data can be spatial-temporal data, which means it contains information about the time

and space of the vehicles at a given time. Additional data might be present as the average speed,

occupancy, etc. which will help us in forecasting the traffic flow. LSTM models have a higher

performance in comparison to models which incorporate algorithms like HTM [3]. Short-term

prediction of traffic conditions is necessary for overcoming traffic congestion. [4]

Time-series traffic data is the new and improved way of predicting traffic as it can utilize the

sequential data to provide proper prediction. Perfect use of sequential machine learning models

can also be implemented. Transformers have seen to produce remarkable results in this regard.

VANETs play a key role in ITS. VANET stands for vehicular ad hoc network. Safety and road-

side equipment communication of vehicles is a key factor when it comes to VANET. It ensures

vehicle-to-vehicle and vehicle-to-infrastructure communication which makes it easier for ITS to

communicate and collect more information. When VANET is implemented with SDN, in the

architecture there are SDN components (SDN controller, SDN wireless nodes, SDN RSU) which

are incorporated with VANET. Software-Defined VANET can operate differently based on the

degree of control of the SDN controller. SDVN also provides some benefits which can be utilized

to provide many services. [5]

SDN-based VANETs overcome the problems in simple VANET as it decreases the load on the

overall system by the separation of the data plane and the control plane. Software-Defined

Networking is such a field that breaks this vertical integration separating the control logic from

routers, switches and providing flexibility, dynamicity, optimality, and centralized logical control

over the system . [1]

SDN enables better network configuration and monitoring as it focuses on bringing all the net-

work configurations under a remote controller which is connected with a range of switches that

form the data layer. It is in the control layer where all sorts of network configuration and pro-

gramming take place. SDN makes the configuration of a VANET structure much more efficient

and makes network monitoring easier. So SDN can improve network management issues like

8

frequent changes in network conditions and states, providing support for network configuration

in a high-level language, providing better visibility, and performing network diagnosis and trou-

bleshooting. [6] Bringing SDN architecture to wireless mobile networks for leveraging mobile

improvements even better than existing technology [7]

Traffic prediction is quite a challenge to tackle as spatial-temporal data is needed to be handled.

[8] . Traffic prediction data can be represented with graph and Graph Neural Network along

with RNN can be used for prediction of data.[9].

However, there are some limitations to it due to the continuous nature of time and the adja-

cent behavior of space. The use of RNN is limited due to temporal dependencies for exploding

and vanishing node problems. GRU and LSTM overcome this shortcoming of RNN. Therefore,

several algorithms combining Traffic Transformer has emerged as it works well with sequential

data. [9]. A combination of GCN and transformer has outperformed several other models mainly

consisting of RNN in the past. [8].

Traffic data is in time-series format, so through a transformer-based learning model, we have

tried to forecast traffic data with better performance, and a computationally efficient model.

Furthermore, we suggest a holistic model which incorporates gathering data from the RSUs,

learning using the SDN controllers and finally passing those learned weights to the RSUs and

eventually to the vehicles.

1.2 Research Challenges

We faced several challenges during the research work. There is not much data available globally

on traffic. The dataset that we collected provided periodic data which was large in size as it was

collected for over months. So training our model on such a big dataset was a challenge. We ran

into a GPU capacity shortage as the dataset was too big to be trained on some limited GPU

that google collab provided. The model that we used was transformer-based but as a matter of

fact, transformers are designed mostly for processing strings, words of natural language. So we

had to tweak the transformer model to take time-series data as input. Meanwhile simulating

the VANET based traffic condition over Mininet software was a challenge as virtual networks

had to be created and optimal controller was needed to chosen.

1.3 Contribution

Training a time-series dataset on a learning model is especially challenging as it involves mak-

ing some adjustments to predict long-term dependencies in case of time, and not fixed spatial

dependencies. Following are the contributions we made through our thesis work:

9

1. We improved the performance of traffic flow prediction.

2. Using multivariate models, we ensured inter-feature dependencies by modifying trans-

former attention mechanism

3. We simulated weight propagation in an SDN-enabled environment.

4. We are providing a holistic model for traffic guidance in an up-and-coming SDN-based

VANET.

2 Background Study

2.1 VANET

Vehicular Ad Hoc Networks is a potential field of research and has caught lot of interest. It is this

much eye catching because of its potential to provide vehicle road safety, to increase efficiency of

traffic and to provide convenience and comfort to for passengers and drivers. Mobile Vehicular

Cloud and review cloud applications can be considered as significant technology to develop

intelligent transportation [10]. Vehicular ad hoc networks(VANET) refers to the creation of

mobile ad-hoc network created in the domain of vehicle which support communications among

vehicles, road side unit and base station to provide safe and efficient transportation. Every

single node in VANET is responsible for participating and acting as router of the network. They

communicate through intermediate nodes which are within their own transmission range. There

are three types of architecture in VANET and those are pure cellular wireless local area network,

pure ad-hoc networks and hybrid networks [11]. There are basic characteristics of Vehicular

networks. There are many applications associated to this field. There are requirements which

comes with many challenges. Solutions are also there which can be considered to overcome

theses challenges. [12] With the advancement of technology and the establishment of smart

cities, there is an increasing need for Intelligent Transport system (ITS). Safety, communication

and traffic related issues are one of the major concerns of ITS. There are machine learning

techniques which can address these issues in feasible manner and overcome such challenges [13].

Security is a concern in case of routing of the VANET nodes. In this paper they provide a secure

position-based routing scheme of which security overhead is low and the scheme is deployable.

They considered enhancing network robustness, defense mechanisms [14]. As per security is

concerned, blockchain technology has been incorporated with VANET to secure ride-sharing

applications. The Proof of Driving (PoD) in a blockchain-based ride-sharing service in VANET,

which consumes fewer resources than Proof of Work (PoW), maintain fair selection than Proof

10

Of Stake (PoS) as well as the randomness of consensus nodes in a public distributed network of

vehicles. They also introduced a filtering technique that is based on Service Standard Score to

detect and eliminate malicious nodes and efficiently choose nodes. There is another consensus

protocol beside PoW and PoS which is called Practical Byzantine Fault Tolerant (PBFT) which

scales to only tens of nodes. For this their goal of such design of their work is to make PBFT

usable in public blockchain network by introducing PoD in VANET [15].

11

Table 1: Related works on VANET

Title of the paper Published

year

Main Contribution

Machine learning models and

techniques for VANET based

traffic management - Implemen-

tation issues and challenges - [13]

2021 Discusses various Machine Learning tech-

niques which can facilitate and work well

with VANET architecture.

Towards secure and practical

consensus for blockchain based

VANET - [15]

2021 Proof of Driving (PoD) proof variant was

introduced in a blockchain-based ride-

sharing service in VANET.

A Review of Vehicle to Vehi-

cle Communication Protocols for

VANETs in the Urban Environ-

ment - [11]

2018 Discusses VANET along with the pure cel-

lular, pure ad-hoc, and hybrid structures.

Vehicular Cloud Computing- [10] 2012 Mobile Vehicular Cloud and cloud appli-

cations can be considered significant tech-

nologies to develop intelligent transporta-

tion.

Vehicular Networking: A Survey

and Tutorial on Requirements,

Architectures, Challenges, Stan-

dards and Solutions - [12]

2011 Talks about basic characteristics, applica-

tions, requirements, challenges, and rel-

evant solutions regarding vehicular net-

working.

Secure Position-Based Routing

for VANETs - [14]

2007 Provides a secure position-based routing

scheme where security overhead is low and

is deployable.

2.2 SDN

The widespread IP network is very complex and difficult in case of management, to configure

according to predefined policies as well as reconfiguring according to faults, loads and changes.

These networks are vertically integrated which means the control and data plane are bundled

together. Software Defined networking is such field that breaks this vertical integration sep-

arating the control logic from routers, switches and provides flexibility, dynamic, optimal and

centralized logical control over the system [1]. There are variety of high quality services such

12

as mobile devices, virtualization, high automation and security, efficient Big-Data management.

There are other advance user requirements which the current traditional networks can not handle

efficiently and provide such services as it is not dynamic compared to SDN. SDN is software-

based whereas traditional networking is hardware-based. Due to design limitations, traditional

network is unable to make users interact with the traffic or shape their own traffic policies. Once

the flow management (forwarding policy) has been determined, the only way to adjustment will

be by changing the configuration of the devices which has restricted the network operator who

wants to scale their networks on traffic demands. The traditional design principles, that incor-

porates data, control and management planes together in a network device, are incapable to

adapt with this much data growth, bandwidth, speed, security, scalability compared to SDN as

it provides with centralized programmable mechanism [16]. SDN decouples the switch or router

and its data-routing instructions by adding application programming interface. The centralized

control abstracts the underlying network devices from applications and network services. In this

ONF whitepaper they have introduced three layers which depicts the structure of SDN. These

layers are: Infrastructure layer, Control layer and Application layer [17]. Northbound API in

the Control layer is used to program the network and request services from the Application

layer by the applications and overall management system. An OpenFlow protocol which is often

used as southbound API is used between Control layer and Infrastructure layer. It uses a set of

commands that allows forwarding of data and determines the behaviour and condition based on

application requests sent via northbound APIs [18]. Wireless sensor networks is a low rate net-

work with little resources and short communication ranges and when it expands it faces network

management and heterogeneous-node networks challenges. Here SDN can be incorporated with

wireless sensor networks to bring efficiency and sustainability and it is called Software Defined

Wireless Sensor Networks (SDWSN). This model can also play a critical role in incorporating

SDN with Internet of Things (IoT) [19]. IoT is a network which is open, geographically dis-

tributed, and consists of heterogeneous networking infrastructures. Managing these in dynamic

situation is an important challenge. This challenge can be overcome by using SDN with IoT.

In this paper, they have designed SDN for IoT for dynamically achieving quality to different

IoT tasks in heterogeneous wireless networking [20]. For smart cities an IoT-SDN structure can

be incorporated with Black SDN for higher security. In this paper, they also introduced Net-

work Function Virtualization (NFV) to bring benefits like energy savings, network scalability

and load balancing [21]. SDN faces many challenges in its way and to achieve the goal what

it shows, the challenges must be resolved. In this study, they discussed about these challenges

in the area of performance, scalability, security, and interoperability [22]. The rapid growth of

13

internet and mobile communication technlogy has led us to more complexity. Now these needs

to be efficiently organized, managed and optimally maintained. This is why more intelligence

are needed to be incorporated and traditional networks failed to do so. For its inherently dis-

tributed features, machine learning is very difficult to apply. But SDN brings the chance to use

machine and deep learning and provide this much needed intelligence in the networks in this

Big-Data world for its logically centralized control, global view of the network, software-based

traffic analysis and dynamic updating of forwarding rules [23]. So SDN can improve network

management issues like frequent changes in network conditions and states, providing support for

network configuration in high level language, providing better visibility and performing network

diagnosis and troubleshooting [6]. Bringing SDN architecture to wireless mobile network for

leveraging mobile improvements even better than existing technology [7].

Table 2: Related works on SDN

Title of the paper Published

year

Main Contribution

Software-Defined Networking:

The New Norm for Networks -

[17]

2014 This ONF whitepaper has introduced

three layers that depict the structure of

SDN. These layers are: Infrastructure

layer, Control layer, and application layer.

DistBlockBuilding: A Dis-

tributed Blockchain-Based

SDN-IoT Network for Smart

Building Management - [21]

2020 1. SDN, IoT and Blockchain is used to-

gether.

2. Smart building scenario is considered.

A Software Defined Net-

working Architecture for the

Internet-of-Things - [20]

2014 This paper has designed SDN for IoT for

dynamically achieving quality for different

IoT tasks in heterogeneous wireless net-

working.

DistBlackNet: A Distributed

Secure Black SDN-IoT Archi-

tecture with NFV Implemen-

tation for Smart Cities - [24]

2019 1. They incorporated an IoT-SDN struc-

ture for smart cities with Black SDN for

higher security for smart cities.

2.They also introduced Network Function

Virtualization(NFV) to bring benefits like

energy savings, network scalability and

load balancing.

14

Are We Ready for SDN? Im-

plementation Challenges for

Software-Defined Networks -

[22]

2013 1. Discussed the architecture of SDN

2. Benefits and necessity of SDN (perfor-

mance, flexibility, scalability, security)

3. Challenges faced by SDN

Software-Defined Networking:

A Comprehensive Survey - [1]

2014 This survey paper tells how SDN has more

facilities than traditional network and de-

tails about basic SDN architecture.

A Survey on Software-Defined

Wireless Sensor Networks:

Challenges and Design Re-

quirements - [19]

2017 This survey paper tells about how SDN

can be incorporated with Wireless Sensor

Network to provide efficiency, sustainabil-

ity which is called SDWSN.

A Survey of Machine Learn-

ing Techniques Applied to

Software Defined Networking

(SDN): Research Issues and

Challenges - [23]

2018 The work focused on implementing ma-

chine learning knowledge and technologies

for improving the performance, security,

scalability, and efficiency of the SDN.

Improving Network Manage-

ment with Software Defined

Network - [6]

2013 Tells about how SDN can improve network

management issues like frequent changes

in network conditions, providing support

for network configuration in high level

language, which provides better visibility

and performs network diagnosis and trou-

bleshooting.

Software Defined Networking

- [18]

2013 This survey paper describes working pro-

cedure inside SDN architecture.

New Networking Era - Soft-

ware Defined Networking -

[16]

2013 This survey paper describes why SDN is

better than traditional networking in de-

tailed manner.

An Architecture for Software

Defined Wireless Networking -

[7]

2014 This paper worked for bringing SDN ar-

chitecture to wireless mobile network for

leveraging mobile improvements even bet-

ter than existing technology.

15

2.3 SDN-based VANET or SDVN

For rapid growth of road side accident, to ensure passengers’ safety, an ad hoc network that is

vehicular ad hoc network is being encouraged. To prevent from the limitations and complexities

of basic VANET structures by handling the whole network from a single remote controller,

Software Defined Networking (SDN) is used along with VANET which is called SDN-VANET

[25]. Common VANET has some problems that can be overcome by incorporating the technology

of software-defined networks. The adaptability, controllability, versatility of controlling the

network as a whole of SDN helps to build an effective and secure VANET with simplified

network control [26] When VANET is implemented with SDN, in the architecture there are

SDN components (SDN controller, SDN wireless nodes, SDN RSU) which are incorporated with

VANET. Software Defined VANET can operate differently based on the degree of control of

the SDN controller. SDVN also provides some benefits which can be utilized to provide many

services [5]. A global optimal route can be found to efficienty propagate message from source

to destination with dynamic network density in SDVN. Centralized Routing Protocol is the

SDN-based routing framework that uses modified Dijkstra’s algorithm for efficiently message

propagation in VANET and outperforms some other traditional protocols [27].

Table 3: Related works on SDN-based VANET or SDVN

Title of the paper Published

year

Main Contribution

Software defined network

based VANET. [25]

2021 Depicts SDN-based VANET, its working,

benefits, challenges and services, applica-

tions, and security attacks.

Architectures for building se-

cure vehicular networks based

on SDN technology. [26]

2017 Proposes secure architecture of VANET

utilizing the adaptability, controllability,

versatility of controlling the network as a

whole using SDN.

Towards software-defined

VANET: Architecture and

services. [5]

2014 Proposes an SDN-based architecture of

VANET and its operational modes, ben-

efits and services.

16

SDN-based routing for effi-

cient message propagation in

VANET. [27]

2015 Proposes Centralized Routing Protocol

(CRP) which is the SDN-based routing

framework that uses modified Dijkstra’s

algorithm for efficiently message propa-

gation in VANET and outperforms some

other traditional protocols.

2.4 Traffic Flow Forecasting

SDVN can be used to detect and predict traffic collaborating with machine learning. From ma-

chine learning, K-means clustering can be used to detect and LSTM with RNN can be used to

then predict the traffic condition [28]. HTM can be used alongside LSTM for short-term arte-

rial traffic prediction.Several Machine learning techniques have been deployed to predict traffic

state. LSTM models have a higher performance with comparison to models which incorporate

algorithms like HTM [3].Short term prediction of traffic condition is necessary for overcoming

traffic congestion [4]. Results by applying self adjusted Neural Network(NN) has been satisfac-

tory as well [29]. Several models revolving around graph convolutional network has also been

effective in predicting short term traffic data. Temporal Graph Convolutional network yields

decent performance when it comes to solving this particular problem of traffic prediction [30]. In

this paper, they propose a long short-term memory (LSTM) based regression model to predict

24-hour traffic counts data. They didn’t talk about the algo or any technical differences they

made in details. They didn’t show any calculation or what type of data they took or what are the

features and what is the traffic output. They just told they had dataset, they trained, tested etc

etc and compared with logistic regression (Scikit). Steps: Collecting data, constructing Stacked

LSTM Model to implement regression, found efficiency comparing with logistic models [31]

Table 4: Related works on traffic flow forecasting

Title of the paper Published

year

Algorithms

used

Datasets used

An evaluation of htm and

lstm for short-term arterial

traffic flow prediction. [3]

2015 HTM South Australian Department

of Planning, Transport and

Infrastructure (DPTI) has

provided the data.

17

SDN-based real-time urban

traffic analysis in VANET

environment [28]

2020 LSTM Obtained by simulation using

NS-3 and SUMO

Research on campus traf-

fic congestion detection us-

ing BP neural network and

Markov model - [4]

2016 Markov,

NN

Collected in Wuhan Univer-

sity of Technology from 7:00

am to 6:30 pm by cameras.

Video data is collected where

speed and densities are mea-

sured and stored.

Traffic prediction using a

self-adjusted evolutionary

neural network -[29]

2019 NN (self ad-

justed)

For three days, 1500m length

highway road of six-lane sec-

tions are used to collect the

data

Stacked LSTM Deep

Learning Model for Traffic

Prediction in Vehicle-to-

Vehicle Communication -

[31]

2017 LSTM, ve-

hicle count

prediction

In this paper, they pro-

pose a long short-term mem-

ory (LSTM) based regression

model to predict 24-hour traf-

fic counts data.

Traffic Flow Prediction

With Big Data - A Deep

Learning Approach - [32]

2014 Traffic flow

prediction,

NN

Caltrans Performance Mea-

surement System (PeMS)

T-GCN; A Temporal

Graph Convolutional Net-

work for Traffic Prediction

- [30]

2019 T-GCN SZ-taxi dataset and Los-loop

dataset

Traffic flow forecasting

with Particle Swarm Op-

timization and Support

Vector Regression - [33]

2014 SVR, PSO 6 days of traffic flow data in

2nd Ring Road of Beijing.

Traffic prediction is quite a challenge to tackle as spatial-temporal data is needed to be

handled [8]. Traffic prediction data can be represented with graph and Graph Neural Network

along with RNN can be used for prediction of data [9]. However, there are some limitations

to it due to the continuous nature of time and adjacent behaviour of space. Use of RNN is

18

limited due to temporal dependencies for exploding and vanishing node problems. GRU and

LSTM overcomes this shortcoming of RNN. Therefore, several algorithms combining Traffic

Transformer has emerged as it works well with sequential data [9].

A combination of GCN and transformer has outperformed several other models mainly consisting

of RNN in the past [8].

Table 5: Related works on traffic prediction using Transformer

Title of the paper Published

year

Weaknesses Datasets

used

Attention Based Spatial-

Temporal Graph Convolu-

tional Networks for Traffic

Flow Forecasting-[34]

2019 Additional factors like

weather and social events

has not been taken into

account for traffic prediction.

PeMSD4 and

PeMSD8

Spatial-Temporal Trans-

former Networks for Traffic

Flow Forecasting - [9]

2020 Does not perform good in

compared to other algorithms

while trying to predict short-

term traffic.

PeMSD7(M),

PEMS-BAY

Traffic transformer - Cap-

turing the continuity and

periodicity of time series

for traffic forecasting - [8]

2020 A drawback of this paper is

that it only accounts for tem-

poral attention mechanism.

METR-LA,

PEMS-BAY

Time series data with proper sequencing can be used to provide a suitable solution to some

of the existing problems. The short-term traffic condition will be addressed in a more efficient

manner if time series data is used to train the model.

2.5 Some notable work done on traffic prediction

As the attention mechanism has emerged to provide significantly better result [35], the use of

this is seen in many sectors. There has been a few notable work done on traffic prediction and

forecasting using transformers. In the following sub-sections, we will analyze some of the related

works done on this field where notable results are seen.

19

2.5.1 ASTGCN: Attention Based Spatial-Temporal Graph Convolutional
Networks for Traffic Flow Forecasting

Guo et al. suggested a transformer-based model for traffic flow detection in VANET. Previous

models cannot capture spatial-temporal correlation inside the data. Long-term dependencies

were not properly addressed as well. Correlation between vehicle traffic in hourly, weekly, and

daily manner was not addressed which resulted in various problems during forecasting. They

used an attention mechanism to capture the spatial-temporal correlation.

Figure 1: The framework for ASTGCN

Spatial attention captures all the special spatial relations while temporal attention captures all

the timed relations. Again, Graph Convolution Network is used to achieve an idea about neigh-

boring areas. Finally, hourly, daily, and weekly models are fused to finally find out its loss.

But there are some limitations in the work. A transformer model with time series data can

be used which would result in the model understand the temporal correlations much better.

Furthermore, an encoder-based model can also be used to increase efficiency and reduce compu-

tation. Simulated analysis in the SDN environment can be explored. Dynamic changes in the

VANET can be easily utilized using SDN.

20

2.5.2 Spatial-Temporal Transformer Networks for Traffic Flow Forecasting

Xu et al. talked about the Dynamic process inside the Graph Convolutional Network. By in-

troducing transformers with GCN, they have achieved such results. Traffic anomalies have been

resolved. Bigger datasets with more features were inefficient in training which their model was

able to cope with while the model has been developed for bidirectional traffic. Dynamic Graph

Convolutional Network is used to capture unprecedented incidents. Fixed Graph Convolution

captures all the static data relations. Again, Spatial and Temporal transformers are merged

to create a spatial-temporal block. Finally, a prediction layer is introduced to get the required

output.

Figure 2: The framework for STTN

Their research work also has some limitations and gaps. Dependencies across specific periodic

intervals can be addressed intuitively using transformers and converting the dataset into time

series data. Simulated analysis in the SDN environment can be explored. Analysis of the impact

of attention mechanisms for their model can be done.

3 Problem Formulation

Our goal is to forecast the average occupancy of a station at a certain time given an already

observed time series dataset. Basically, given the station, number of samples, percent observed,

total flow, average speed and some other parameters, we need to find the average occupancy of

that region.

21

At a particular time t, Given Xt[x1t , x2t , x3t , x4t , x5t , x6t , x7t] we need to predict x6t+1 or Yt+1

which contains the average occupancy of time t+1.

Here, x1, x2, x3, x4, x5, x6 and x7 are station number, station length, number of samples,

percent observed, total flow, average occupancy and average speed respectively.

4 Methodology

After analyzing the problem at hand, we came to the conclusion that time-series data is needed

to be used for formulating a proper solution. By training a model on this data, we will be able

to produce near to accurate predictions of the condition of traffic in the future. We will also be

able to produce predictions at specific time intervals through this methodology. We needed to

preprocess the data so that, we obtain the desired time series data using which we might pass

down accurate predictions. Different deep learning models were used which have been proved in

the past to have worked phenominally well in terms of time-series mode of data.

4.1 Model Architecture

Figure 3: Architecture Overview

As shown in figure 3, the proposed system is consisted of three segments. They are Data Col-

lection, Traffic Flow Prediction Model and SDN Architecture.

Now, the traffic flow prediction model can be expanded to show its data flow including the

sequence generation.

22

Figure 4: Data flow of the traffic flow prediction model

We collected data from the Caltrans Performance Measurement System (PeMS)[36]. The

data is collected from nearly 40,000 detectors across the freeway system of several major metropoli-

tan areas of California. After collection of the data, we pre-processed the data for enhancing

the performance of the model, the steps involve cleaning, reduction, and transformation of data.

Through the data collection process, we have obtained the necessary traffic data for training our

model. We needed to generate time-series data from the pre-processed data.

For transforming the traffic data into time-series data, the data had to undergo sequence gener-

ation. We generate this sequence using the sequence generator. We split the data into two parts,

the train set and the test set. Train set helps the prediction model to make proper parameters

along with parametric weights which are later evaluated by the test set. This sequential data

enters the model, which starts the next phase of our architecture. This traffic data undergoes

through state-of-the-art deep learning model for future prediction of traffic data. During train-

ing, the model gradually starts to get probabilistic and holistic view of the situation and keep

tuning its parametric weights accordingly.

The model block in Figure 4 can be further expanded for proper visualization and understand-

ing. The data flow of this figure will be discussed further in Section 5.4.

After training is done, we enter the next phase of our architecture which is feeding the SDN

architecture with the trained weights obtained from the prediction model. SDN consists of the

control plane and the data plane, we convey the weights to the base stations in such a way

that the vehicles have the proper real time prediction available based on the current state of the

traffic.

Therefore through our model, the vehicle receives real-time traffic guidance regarding important

23

factors like congestion, speed of traveling via that street etc though the prediction model. After

that, it gets delivered rapidly in real-time through the road side base station that are connected

via an SDN architecture, in this way through the constant feedback loop the vehicles receive

better traffic guidance.

5 Implementation

The segments mentioned in section 4.1 that needs to be implemented are described in this

section. Along with that, we also talk about the dataset that we have used for our experiment.

Lets look at the environment used for conducting the experiment.

5.1 Dataset

The dataset we used was obtained from Caltrans Performance Measurement System(PeMS) [36].

Nearly 40,000 traffic sensors are deployed in almost all notable streets in the state of California

and traffic data is collected everyday. We have used hourly data from PeMS from district 7 .

We have taken the hourly data for the whole year of 2021.

We will be using multivariate time-series data. For that reason we have taken the following

variables from the collection:

Table 6: Variables along with their unique frequencies existing in the dataset

Feature Name Number of unique feature values

station number 194

station length 115

samples 886

percent observed 90

total flow 10410

average occupancy 5679

average speed 788

5.2 Preprocessing

At first, we collected the raw data from the PeMS website. The data was in an hourly fashion.

We selected a year and collected that year’s full data. We had to pick a district which had busy

streets so that the stations will be able to give us data that varies.

After analyzing the PeMS website and the stations along with the positions and traffic load, we

decided on the dataset that we want to work on. We removed some of the parameters that will

24

not impact on the outcome of our experiment. This ensured that the experiment remained light

and we would not be creating a bloated model to fit the data.

Next, we use mean normalization on the dataset so that the values are in the range of [0, 100].

This ensures that none of the parameters are ignored by the model.

5.3 Creating Sequence

In order to convert regular dataset into time-series data, sequences are needed to be created.

This essentially means making a sequential copy of a portion of the data and each time intro-

ducing 1 more sample. The sequence generation is important so that the model gets an idea

of past and present situation in different spatial and temporal perspective in that area which

has impact on future condition. The model gets the whole sequence of data and predicts just

the single sample while the next time, again a sequence will be fed and the next sample will be

predicted by the model.

Figure 5: Processing sequences in the dataset

While creating sequences, the data is arranged in such a way that data of (n-1)th sample of

all other variables will be along with nth data of the target variable. This is made like this so

that when any prediction algorithm is used, it genuinely picks the future target variable based

on the present values of the other variables.

The sequence number that is picked determines the final size of the dataset. For a large sequence

25

length, the dataset will become large as well and vice-versa. In fact, the dataset size will be

exactly the multiple of the sequence number.

After doing an 80-20 train-test split the shape of the datasets obtained:

Table 7: Shape of train and test dataset with respect to sequence number

Sequence Length

4 8

Train dataset shape 1529305 ×36 1529305 ×72

Test dataset shape 169924 ×36 169924 ×72

The process of creating sequences took around 2-5 minutes on average.

5.4 Training

The training part is the heart and soul of the experiment and it comprises mostly of how the

data is being interpreted by the model. We have used one of the latest architectures which is

the Transformer Architecture which has opened a new era in Natural Language Processing field.

Transformer Architecture is mainly used in NLP and used for word generation/translation which

is similar to category prediction or logistic regression. For regression of a continuous data, the

basic transformer architecture has been made aligned to regression model which can fit the re-

gression data properly.

After setting every module of the architecture properly, the training data is passed to the Data

Generator which generated batch-wise data. This batch-wise data is at first fed to Embedding

layer and then to Positional Encoding layer. The encoded data carries information about the

relative order of a sequence sample in the input sequence. The encoded data makes it possible

for the Transformer to use feature and positional information about the order of the sequence

sample. The encoded data generated from this module is passed to the Encoder. The exact

same process is used to represent the input to Decoder as well.

5.4.1 The Encoder

The Encoder consists of N Encoder Layers which are identical and stacked upon each other.

Each of the encoder layers consists of 2 sub-layers namely Multi-Head Attention and Position-

Wise Feed Forward Network. Multi-Head Attention layer is based on self-attention mechanism

in multiple head and Positional Feed Forward network that consists of fully connected Neural

26

Networks which is applied to each of the position identically. The output of the first encoder

layer is feed to next encoder layer and so on. Finally the output from the last encoder layer goes

to decoder layer for further attention mechanism.

Figure 6: Data flow through the internal architecture of the model

5.4.2 Multi-Head Attention Layer of Transformer Architecture

As per figure 7, the encoded data from previous layer is used to calculate query, key and value.

These are calculated after the input is being fed to linear layer. The weights, calculated using

backpropagation, of the linear layer are used to calculate query, key and value.

query = LinearQ(s) (1)

27

key = LinearK(s) (2)

value = LinearV (s) (3)

This query represents each of the sequence vectors whereas the key and value represents all the

sequence vectors.The query and key value is multiplied to calculate the score matrix. This

multiplication finds out the connection of a sequence vector with all other sequence vectors. So

it will produce a single vector per sequence vector. So for sequence length, the output vector

will have row of sequence length. It determines how much focus a sequence should put on other

sequences. Each sequence will have a score that corresponds to other sequence in that time

step. It is divided by square root of dk which represents number of features per head. It is to

allow more stable gradients so that multiplying values does not put any exploding effect in the

calculation. After that a softmax operation is applied to the score matrix which generates the

attention weights.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (4)

Then the attention weights are being used to do weighted sum of the value to generate the

output vector. The higher the attention weights the more the value will persist thus drowning

out the irrelevant sequence samples. Then the output vector is being fed to final linear layer

with a residual connection to produce an output which is ready to go to next layer.

Figure 7: Multi-Head Attention Mechanism

28

There are several attention heads inside the multi-head attention mechanism which has the

self-attention mechanism individually. The theory behind it is to give the model more represen-

tational power. That means it will be able to learn from different point view generalizing more

form of representation thinking that each head will learn something different.

5.4.3 Multi-Head Attention Layer of Our Architecture

In case of traffic flow, there are several factors which need to be considered. These factors are

responsible for traffic condition in given time step. This is why sequence of multiple features is

needed in case of such time series traffic flow forecasting.

As multiple features are included in such situation, the standard self-attention mechanism of

transformer is not enough to focus on each and every possible features along with focusing on

sequence of samples.

Figure 8: Extended Multi-Head Attention Mechanism

29

As per figure 8, this self-attention mechanism needs two kinds of six linear layers. First

type of linear layer is focused on features and the other is on sequence. The encoded data from

previous layer is used to calculate f_query, f_key and f_value. These are calculated after

the input is being fed to feature focused linear layer.

f_query = LinearQF
(s) (5)

f_key = LinearFK
(s) (6)

f_value = LinearFV
(s) (7)

The f_query and f_key is multiplied to calculate the f_score matrix. It determines how

much focus a feature should put on every other features. This is feature to feature calculation.

Each feature will have a score that corresponds to other features in that time step. It is divided

by square root of dk which represents number of features per head to ensure stability mitigating

exploding effect.

The f_score matrix is used to generate new query, key and value with the help of sequence

focused linear layer. The f_score matrix is fed to sequence focused linear layer resulting

sf_query, sf_key, sf_value. These three outputs will represent the sequence as well as

implicitly keeping attention information among the features.

sf_query = LinearQSF
(f_score) (8)

sf_key = LinearKSF
(f_score) (9)

sf_value = LinearVSF
(f_score) (10)

Then the sf_query and sf_key will be multiplied to calculate the sf_score matrix which

will undergo a softmax operation generating the attention weights. These weights denote the

self-attention among each and every sequence as well as features.

Attention(QF ,KF , VF) = (softmax(
QSF ∗KT

SF√
dk

)VSF)VF (11)

Then the attention weights are being used to do weighted sum of the sf_value followed by

another weighted sum operation using f_value to generate the output vector. Thus important

values will get the priority. Then the output vector is being fed to final linear layer with a

residual connection to produce an output which is ready to go to next layer.

There are several attention heads inside the multi-head attention mechanism which has the

30

self-attention mechanism individually. The theory behind it is to give the model more represen-

tational power thinking that each head will learn something different.

5.4.4 Position-Wise Feed Forward Network

This sub-layer of an encoder layer is nothing but a fully connected feed forward network with a

residual connection. If input is x then:

PFFN(x) = ReLU(xW1 + b1)W2 + b2 (12)

The fully-connected layer is applied which has weights W1 and biases b1. ReLU non-linearity,

max with zero, is applied on it followed by another fully-connected layer with weights W2 and

biases b2.

5.4.5 The Decoder

The concept is similar to encoder.The decoder consists of N Decoder Layers which are identical

and stacked upon each other. Each of the decoder layers consists of 3 sub-layers namely Masked

Multi-Head Attention, Encoder-Decoder Multi-Head Attention and Position-Wise Feed Forward

Network. There are three differences between the encoder and the decoder.

1. There is a linear layer and softmax layer inside which the output of the decoder layer is

passed which produces the impact factor of every features on the predicted value.

2. Decoder has a sub-layer which is called Masked Multi-Head Attention which prevents

seeing into the future.

3. Decoder has a sub-layer which is called Encoder-Decoder Multi-Head Attention.

First the data is passed through the Embedding and Positional Encoding block to first decoder

layer. In case of training the decoder uses ”teacher forcing” method. The encoded data then

passed to Masked Multi-Head Attention mechanism where decoder layer uses mask to prevent

”cheating” by masking the input passed to decoder layer so that it cannot see the values which

it is not supposed to see while teacher forcing method is used. Here the self-attention among

the outputs of decoder is measured. Then the output of this layer goes to next sub-layer which

is Encoder-Decoder Multi-Head Attention.

The calculation is same as encoder layer’s one but the input to this layer is from encoder layer,

31

contains information about self-attention of the original input, and the output of first sub-layer

of the decoder layer. So the calculation here denotes how each sequence is connected to other

sequence between the input and output of the model. The calculation finds out the holistic

attention weights between original input and output. Then the output is forwarded to Position-

Wise Feed Forward Network followed by the next decoder layer if not the last.

5.4.6 Generating Feature Weights

The output from the last decoder layer is passed on to the Generator. The Generator basically

has a Linear layer and a Softmax layer. It produces the impact factor of each feature to produce

the target "Average Occupancy". This denotes the contribution of each feature on the target

value. The weighted sum of the features will be the target output value. In training phase the

prediction is compared with the actual value and loss is being computed. After that, the loss

is backpropagated using Loss Backward and Optimizer. There, the parametric weights of the

model are updated which are used later for inference and finally to calculate the predicted value.

6 Experiment

6.1 Environment and Configuration

Table 8: Environment and Configuration for the experiment

Environment Google Colab Pro
RAM 25GB
GPU 16GB

Storage 200GB

We have used both Google Colab and Google Colab Pro for our experiment. As the experi-

ment is a very resource heavy one, in most cases, Google Colab Pro has been our go-to notebook

environment. Google Colab Pro proves a heavy RAM option which gives an average of 25GB

RAM to its users. A Tesla P100 GPU with 16GB memory and a storage capacity of around

200GB.

The reason for using Google Colab Pro is that while creating sequences, the size of the dataset

multiplies with the sequence number. So, even a small dataset after generating sequences gets

quite large.

32

6.2 Evaluation Metrics

6.2.1 MSE

MSE or Mean Squared Error is an error calculating method. It is mainly used to show how

close a regression line is to a set of predictable points. If Y be the actual output and Ŷ be the

predicted output then we get:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (13)

6.2.2 RMSE

RMSE or Root Mean Squared Error is an error calculating method. It is more popular in its

use at it is measured in the same unit as the response variable. RMSE basically tells us about

the average deviation between the predicted points and the actual points. If Y be the actual

output and Ŷ be the predicted output then we get:

RMSE =

√∑n
i=1(Yi − Ŷi)2

n
(14)

6.2.3 MAE

MAE or Mean Absolute Error is another error calculating method. It is the absolute difference

between the paired observations. It is used to measure accuracy for continuous variables. If Y

be the actual output and Ŷ be the predicted output then we get:

MAE =
1

n

n∑
i=1

| Yi − Ŷi | (15)

6.3 Experimental Results

The model was trained for around 30 minutes on the Google Colab Pro environment and the

following hyper-parameters were provided:

Table 9: Hyperparameters used for the experiment

Hyperparameter Value

Batch Size 200

Learning rate 0.001

Number of Encoders 5

Dropout 0.2

33

The batch size refers to the number of training examples used by the model in each iteration.

Generally, larger batch size yields better results. The batch size here has been picked to be 200

considering the memory constraint. Learning rate is the step size of each iteration. Basically,

the percentage of change in the weight due to the error in the training sample is determined by

the learning rate. The learning rate has been picked to be 0.001 by trial-and-error method which

properly works for our dataset. Iterative processing of the input is done in each layer of the

encoder. By increasing the number of encoders, the model will be able to catch more deviations

and feature contributions to the result. By keeping the memory contraint in mind, the number

of encoders have been chosen to be 5.

We have used the target variable as Average Occupancy and with different sequence lengths.

We measured the model in terms of MSE, RMSE and MAE. Each of the models were trained

for around 30 minutes. The results that were obtained:

Table 10: MSE, RMSE and MAE values obtained from the predictions (Normalization range
[0,100])

MSE RMSE MAE

Our Model (Sequence length = 8) 23.29139 4.82612 3.17355

Our Model (Sequence length = 4) 27.37812 5.23241 3.60564

Our Model (Sequence length = 2) 38.26981 6.18625 4.18914

LSTM (Sequence length = 8) 29.65757 5.44588 3.70243

This shows the variation of different types of errors on the basis of the change of sequence

lengths. Both the sequence length 4 and 8 have produced better results compared to LSTM

model of sequence length = 8. In the case of our models, we have kept the training time to

about 30 mins each while the LSTM model was trained for around 2 hours. We have kept the

batch size as 200 for this portion and learning rate of 0.001. The number of encoders have been

kept the highest value possible i.e. 5 to achieve minimum error.

Varying the number of encoders, the errors also fluctuate. Now, let us look at how encoders

have impacted the learning by observing the variation in MSE for different number of encoders:

34

Sequence Length

4 8

4*
No. of

Encoders
2 93.6362 67.17477

3 30.67938 27.05175

4 26.87737 24.83311

5 27.37812 23.29139

It is evident that the number of encoders have a direct impact on the model’s learning. With

the increase in the number of encoders, the model seems to learn better and give a lesser error.

6.4 Result Analysis

6.4.1 Impact of sequence length

It is seen that with the increase of sequence length, all the errors (MSE, RMSE and MAE) seem

to decrease. This is because the sequence length necessarily defines how much of the time-series

data are taken together for correlation at a time. So, if the sequence length increases, more data

is taken together as a sequence and correlation is much more evident by the model.

Similar results are also showed by our transformer model where increasing the sequence

length decreased the error upto a certain extent. We have taken sequence lengths 2, 4 and 8

where 4 has given a better result than 2, and 8 has given a better result than 4.

35

Figure 9: Comparison between different sequence lengths of our model and LSTM

If we look at the radar chart in Figure 9, we will see that our model of sequence lengths 4

and 8 has outperformed the LSTM model of sequence length = 8 in all three metrics.

6.4.2 Impact of number of encoders

The number of encoders directly help in improving the performance of the model. As the number

of encoders increases, the model is able to learn much more correlation among the features. Let

us see how the number of encoders have made the model improve in performance:

Figure 10: Impact of number of encoders in MSE

(a) MSE for sequence number = 4 (b) MSE for sequence number = 8

36

Our experiment shows that increasing the number of encoders from 2 to 5 have decreased

the MSE by around 70% which is for sequence length = 4 as shown in figure 10a. Similar results

are seen in the case of sequence length = 8. The MSE has decreased by around 66% as shown

in figure 10b.

6.5 Integrating into an SDN environment

Software-Defined Network (SDN) architecture is being chosen for deploying our traffic prediction

model and for controlling and managing the vehicular network communication. SDN is the new

norm of networking where the control plane and data plane is separated, therefore ensuring that

the control of the network is separated from data forwarding.

It is an emerging networking paradigm that has principles focusing on centralized view of net-

work, better management and programmability of the network. Moreover, vehicular communi-

cation can be more efficient if it is implemented in a SDN environment [25]. Therefore it can

be deduced that, SDN architecture ensures better connectivity and performance for vehicular

communication over traditional network, and upon experimentation, similar results have been

achieved. In this section we will put some light upon why SDN is being chosen over traditional

network for integrating the vehicular communication, the experimental setup that is being con-

ducted on Mininet emulator, and we will discuss the simulation results.

6.5.1 SDN over traditional network

One of the key concepts of SDN is the decoupling of data and control plane. In the case of

traditional network, routing devices perform duties of both control plane and data plane. In

SDN as shown in the figure 11, a controller-switch architecture is observed for the decoupling of

the control and data plane. Controllers act as the control layer and switches just forward the

data.

37

Figure 11: Traditional Networking vs SDN [1]

Traditional networks can’t provide flexibility and efficiency in data transmission and network

topology changes due to the coupling of control and data layer. Data layer performs forwarding

of data packets and control layer builds the network topology and routing traffic. Therefore,

each router has their own routing protocols that decides the route that the packets has to take

for successful data transmission. Configuration of such a network is difficult especially if the

network is very dynamic. Moreover the routing protocols in traditional network scenario are

based on destination based routing. That means, the route for packets to travel are based on the

destination rather than parameters like, QoS (Quality of Service) etc. Therefore it becomes very

difficult to configure the network or change important components of how the network should

work. In other words, it becomes difficult to change the current state of the network in the

traditional way of network architecture. Moreover the networking devices in traditional network

are proprietary. Therefore, the scope of development of networking devices and protocols with

new features is limited. When it comes to big data, for example, data in the data centers, the

traditional network cannot fully utilize the true potential of the network infrastructure due to

its limitations, therefore many of the features that, we want from our network are not available

in a traditional network. The old way of managing a network is getting cumbersome, as there is

38

a lot of manual debugging in it and addition of any new device in the existing network requires

people to work on it. In other words as the traditional network is vertically integrated, configu-

ration and managing change is very complex and the complexity increases with the scale of the

network. [1]

When it comes to vehicular communication, a common issue is the lack of balance in the seem-

ingly multi-path topology and poor network usage of the traditional network. [10] The network

asks for an increased bandwidth as well, due to the dynamic nature of the networking nodes.

Accuracy of transmission of data is also a critical factor in vehicular communication, therefore

reliability is considered to be important because this communication is so dynamic in nature.

Reliability is therefore, an important parameter to judge the effectiveness of the network used

in such communication. As said earlier, human input is needed to configure the network for

handling new changes to it, but the vehicular network is so dynamic that the system has to

configure itself and a centralized view of the system is needed, therefore a centralized network

can do well regarding to such communication as it is open and dynamic in nature.

SDN, that stands for Software-Defined Network, meets the requirements which are necessary

for the network. It is a new paradigm that is both open-source and highly configurable, so this

paradigm enables the network to be open and flexible. It overcomes the vertical integration of

the traditional network through the separation of the control plane and the data plane. The

control plane is responsible for network control which is achieved through an SDN enabled con-

troller, and the data plane comprises of switches which are nothing but mere data forwarding

devices. Therefore the brain of the network is being separated from the hands and legs of the

network. The controller is said to be the brain of the network and the switches and other data

forwarding devices are said to be the working body of the network. Above the controller we have

a application layer which can be user defined networking apps that can improve the network

capability and enable new features, the data layer resided below the controller. Between the

controller and the switches are the south bound APIs and the north bound APIs connect the

application layer with the control layer. Additionally, there might be east-west protocols that

connect controllers with other controllers as well. So, this is a brief description of how the SDN

architecture looks like.

There is a multitude of reasons behind choosing SDN over traditional network. The first reason

is to have the network control and management separated from the data transmission, which

ensures a centralized view of the network. It leads to better network management and ensures

dynamic configuration of the network. Again, new features can be added to the network through

designing networking applications and binding them to the controller through the north bound

39

protocols. Network reliability is greatly increased in the SDN paradigm as we have the overall

view of the network through the controller, granular control over the network is also ensured in

SDN. Additionally, user experience is also enhanced in the SDN paradigm due to better relia-

bility of data transmission in the network.

Figure 12: Comparison of performance between traditional and SDN network [2]

Finally when it comes down to network performance, there are a number of parameters that

are considered. Latency, Packet Delivery Ratio, CPU utilization, packet switching etc. are the

key indicators of measuring network performance. SDN enabled network has been found to

outperform traditional network in terms of the above mentioned criteria [2]. In the figure 12,

a comparison between processing delay between traditional network and SDN shows that, SDN

clearly outperforms traditional network after the initialization of the network.

6.5.2 SDN experimental setup

The experiment is conducted in Mininet Emulator with Floodlight Controller. The Mininet

emulator resided in a Ubuntu 14.04 OS. Mininet creates virtual networks that can emulate a lot

of devices without the need of actual hardware. It takes advantage of process-based virtualization

and network namespaces. Process based virtualization refers to the encapsulation of the OS to

enable multiple virtual networks to run on the same system. Again if the system fails in the

case, the workload will fail as well. Furthermore, network namespace refers to the logical copy

of the underlying network stack from the host system. It is therefore a Linux Kernel feature

that enables to isolate networks through the process of virtualization. Mininet mainly deals

with hosts, switches and controllers. There is a powerful CLI that enables mininet to perform

a number of features. For example, the Linux kernel commands can run on the virtual hosts

40

as though they were the real hosts. The switches in mininet are Openflow enabled. They are

software based switches namely, Open vSwitch and Openflow enabled switches. The choice of

controller has to be made based on the network requirements. There is a default controller

provided by Mininet, but we might also use remote controllers to simulate, visualize and also

run a number of networking apps over the network. Beside the CLI they provide, a powerful

python library is also being provided, using this library we can configure custom topology and

use other features as well.

The floodlight controller is being used as the remote controller of the network. It is an open-

source, Java openflow controller. The core advantage of using this controller is the ability to

use REST API. It is a centrally multi-threaded controller. As it is developed in Java, so the

advantages of multi-threading is being taken. The north bound API is a RESTful API and

the controller is licensed under Apache Licensing. There is no consistency and fault detection

mechanism in this controller. The primary reason for choosing floodlight is, it has been designed

for highly concurrent systems so to achieve the higher throughput needed for the network and

it is one of the earlier prominent version of SDN controllers. Through multi-threaded design it

can make use of CPU’s parallel computation.

The custom topology that has been built to emulate real world scenario consists of 4 switches and

4 hosts. They are being viewed by the controller, the network brain is therefore, the Floodlight

controller. The custom topology has been built by the code using the mininet library in python.

python """Custom topology MyTopo is passed as the topology of 4 switches and 4 hosts, one

host connected to each of the switches """

from mininet.topo import Topo

class MyTopo(Topo): "Custom Topology."

def build(self): "Create custom topo."

Add hosts and switches switches = []

for i in range(1,4): switches.append(self.addSwitch(’s

hosts = []

for i in range(1,9): hosts.append(self.addHost(’h’+str(i)))

Add links self.addLink(switches[0], switches[1]) self.addLink(switches[0], switches[2]) self.addLink(

switches[1], switches[3]) self.addLink(switches[1], switches[2])

for i in range(0,4): for j in range(0,2): self.addLink(switches[i], hosts[i])

topos = ’mytopo’: (lambda: MyTopo()) After booting the controller, the network is being

connected with the floodlight controller. So the controller has the visualization of the underlying

network. The hosts represent the RSU of the vehicular network. Through the experimentation

41

in the simulation, we have measured on how much time it usually takes for the model data to

be transmitted to the other devices. That is we have transmitted the model data output to the

hosts and measured the time needed for the other devices to receive the data. Various sample

of data is being gathered as to how much time it takes for the full data to go from the devices,

in the SDN network.

6.5.3 SDN simulation and results

Finally we have found the results for the experimentation in terms of time needed for transmit-

ting the data to the other devices. We have sample data from 100kb to 500kb and transmitted

them over the network, the time that is required for the data transmission is being presented in

the table below. We also have been able to showcase the topology in the floodlight controller as

shown in the figure.

Table 11: Time needed for data transmission in the topology based on file size

Data size (in KB) Time required (in seconds)

100 0.001

200 0.001

300 0.005

400 0.007

500 0.008

Though this experiment, we are being able to show that, how fast and reliable data trans-

mission is in the SDN topology. Therefore, we have been able to experiment to produce such a

network which simulates the vehicular data in an SDN environment.

42

Figure 13: Network Topology Visualization in Floodlight Controller web interface

Additionally it was being made possible to simulate the network and the floodlight con-

troller was able to generate a visualization of the network topology. It is being made possible

through RESTful API which is present in the floodlight controller. Through this REST API,

the controller was being able to show us the network in the web.

7 Future Works

7.1 Dataset modification

Each of the stations in the dataset have a specific area coverage. This coverage varies from station

to station. Because of this reason, some of the stations which have a smaller coverage might

have less traffic present even though it is closer to some heavy traffic. This sort of cases make

the model fail to recognize correlations among the stations with its positions and neighboring

stations.

In order to make the model perform better, these smaller stations can be merged with their

nearest larger stations. This modification in dataset will yield a much better result as the model

will be able to understand the spatial correlations.

43

7.2 Resource allocation

Larger sequence lengths and batch sizes would generally yield a better result. Even though

sequence length of 16 performed worse in our experiment, but that can be alleviated with large

number of encoders. To sum up, bigger sequences, batches and more encoders would yield a

much better result. This could be ensured if there was a larger RAM available.

Again, a larger dataset would mean that the model is learning from more samples which gen-

erally also produces a much better results and avoid bias. A larger storage could be used and

better GPU with computational power would help in this regard.

8 Conclusion

It is seen from the experiments that our transformer model has performed extraordinarily on

the dataset. This proves that the transformer based models will be very effective in predicting

traffic flow. Since the transformer architecture supports large amount of data, so the dependen-

cies across distant areas and lengthy time periods can also be accomodated.

The ad-hoc nature of VANET blends perfectly with the SDN structure. Fast moving vehicles

would require a faster transmission rate and also proper control mechanism which can be ensured

by the centralized decision making process of SDN.

It can be concluded that the combination of VANET and SDN along with accurate prediction

using a transformer model would perform better and be more efficient in predicting traffic flow.

44

References

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,

“Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103,

no. 1, pp. 14–76, 2014.

[2] M. I. Lali, R. Mustafa, F. Ahsan, M. Nawaz, and W. Aslam, “Performance evaluation of

software defined networking vs. traditional networks,” The Nucleus, vol. 54, no. 1, pp. 16–22,

2017.

[3] J. Mackenzie, J. F. Roddick, and R. Zito, “An evaluation of htm and lstm for short-term

arterial traffic flow prediction,” IEEE Transactions on Intelligent Transportation Systems,

vol. 20, no. 5, pp. 1847–1857, 2018.

[4] X. Yu, S. Xiong, Y. He, W. E. Wong, and Y. Zhao, “Research on campus traffic congestion

detection using bp neural network and markov model,” Journal of information security and

applications, vol. 31, pp. 54–60, 2016.

[5] I. Ku, Y. Lu, M. Gerla, R. L. Gomes, F. Ongaro, and E. Cerqueira, “Towards software-

defined vanet: Architecture and services,” in 2014 13th annual Mediterranean ad hoc net-

working workshop (MED-HOC-NET), pp. 103–110, IEEE, 2014.

[6] H. Kim and N. Feamster, “Improving network management with software defined network-

ing,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, 2013.

[7] C. J. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L. M. Contreras, H. Jin, and

J. C. Zúñiga, “An architecture for software defined wireless networking,” IEEE wireless

communications, vol. 21, no. 3, pp. 52–61, 2014.

[8] L. Cai, K. Janowicz, G. Mai, B. Yan, and R. Zhu, “Traffic transformer: Capturing the

continuity and periodicity of time series for traffic forecasting,” Transactions in GIS, vol. 24,

no. 3, pp. 736–755, 2020.

[9] M. Xu, W. Dai, C. Liu, X. Gao, W. Lin, G.-J. Qi, and H. Xiong, “Spatial-temporal trans-

former networks for traffic flow forecasting,” arXiv preprint arXiv:2001.02908, 2020.

[10] M. Gerla, “Vehicular cloud computing,” in 2012 The 11th annual mediterranean ad hoc

networking workshop (Med-Hoc-Net), pp. 152–155, IEEE, 2012.

[11] I. A. Abbasi and A. Shahid Khan, “A review of vehicle to vehicle communication protocols

for vanets in the urban environment,” future internet, vol. 10, no. 2, p. 14, 2018.

45

[12] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil, “Vehicu-

lar networking: A survey and tutorial on requirements, architectures, challenges, standards

and solutions,” IEEE communications surveys & tutorials, vol. 13, no. 4, pp. 584–616, 2011.

[13] S. Khatri, H. Vachhani, S. Shah, J. Bhatia, M. Chaturvedi, S. Tanwar, and N. Kumar,

“Machine learning models and techniques for vanet based traffic management: Implemen-

tation issues and challenges,” Peer-to-Peer Networking and Applications, vol. 14, no. 3,

pp. 1778–1805, 2021.

[14] C. Harsch, A. Festag, and P. Papadimitratos, “Secure position-based routing for vanets,” in

2007 IEEE 66th Vehicular Technology Conference, pp. 26–30, IEEE, 2007.

[15] S. Kudva, S. Badsha, S. Sengupta, I. Khalil, and A. Zomaya, “Towards secure and practical

consensus for blockchain based vanet,” Information Sciences, vol. 545, pp. 170–187, 2021.

[16] F. Alam, I. Katib, and A. S. Alzahrani, “New networking era: Software defined networking,”

International Journal of Advanced Research in Computer Science and Software Engineering,

vol. 3, no. 11, 2013.

[17] O. N. Fundation, “Software-defined networking: The new norm for networks,” ONF White

Paper, vol. 2, no. 2-6, p. 11, 2012.

[18] K. Kirkpatrick, “Software-defined networking,” Communications of the ACM, vol. 56, no. 9,

pp. 16–19, 2013.

[19] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey on software-defined wireless

sensor networks: Challenges and design requirements,” IEEE access, vol. 5, pp. 1872–1899,

2017.

[20] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A software

defined networking architecture for the internet-of-things,” in 2014 IEEE network operations

and management symposium (NOMS), pp. 1–9, IEEE, 2014.

[21] A. Rahman, M. K. Nasir, Z. Rahman, A. Mosavi, S. Shahab, and B. Minaei-Bidgoli, “Dist-

blockbuilding: A distributed blockchain-based sdn-iot network for smart building manage-

ment,” IEEE Access, vol. 8, pp. 140008–140018, 2020.

[22] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,

M. Miller, and N. Rao, “Are we ready for sdn? implementation challenges for software-

defined networks,” IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

46

[23] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey of machine

learning techniques applied to software defined networking (sdn): Research issues and chal-

lenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 393–430, 2018.

[24] M. J. Islam, M. Mahin, S. Roy, B. C. Debnath, and A. Khatun, “Distblacknet: A dis-

tributed secure black sdn-iot architecture with nfv implementation for smart cities,” in

2019 International Conference on Electrical, Computer and Communication Engineering

(ECCE), pp. 1–6, IEEE, 2019.

[25] G. A. Qadir, S. Askar, et al., “Software defined network based vanet,” International Journal

of Science and Business, vol. 5, no. 3, pp. 83–91, 2021.

[26] M. O. Kalinin, V. Krundyshev, and P. Semianov, “Architectures for building secure vehicu-

lar networks based on sdn technology,” Automatic Control and Computer Sciences, vol. 51,

no. 8, pp. 907–914, 2017.

[27] M. Zhu, J. Cao, D. Pang, Z. He, and M. Xu, “Sdn-based routing for efficient message

propagation in vanet,” in International Conference on Wireless Algorithms, Systems, and

Applications, pp. 788–797, Springer, 2015.

[28] J. Bhatia, R. Dave, H. Bhayani, S. Tanwar, and A. Nayyar, “Sdn-based real-time urban

traffic analysis in vanet environment,” Computer Communications, vol. 149, pp. 162–175,

2020.

[29] S. Rahimipour, R. Moeinfar, and S. M. Hashemi, “Traffic prediction using a self-adjusted

evolutionary neural network,” Journal of Modern Transportation, vol. 27, no. 4, pp. 306–316,

2019.

[30] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, “T-gcn: A tem-

poral graph convolutional network for traffic prediction,” IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 9, pp. 3848–3858, 2019.

[31] X. Du, H. Zhang, H. Van Nguyen, and Z. Han, “Stacked lstm deep learning model for traffic

prediction in vehicle-to-vehicle communication,” in 2017 IEEE 86th Vehicular Technology

Conference (VTC-Fall), pp. 1–5, IEEE, 2017.

[32] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with big data: a

deep learning approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 16,

no. 2, pp. 865–873, 2014.

47

[33] J. Hu, P. Gao, Y. Yao, and X. Xie, “Traffic flow forecasting with particle swarm opti-

mization and support vector regression,” in 17th international ieee conference on intelligent

transportation systems (itsc), pp. 2267–2268, IEEE, 2014.

[34] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-temporal graph

convolutional networks for traffic flow forecasting,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 33, pp. 922–929, 2019.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in neural information processing

systems, pp. 5998–6008, 2017.

[36] C. Chen, Freeway performance measurement system (PeMS). University of California,

Berkeley, 2002.

48

	 Introduction
	 Overview
	 Research Challenges
	 Contribution

	 Background Study
	 VANET
	 SDN
	 SDN-based VANET or SDVN
	 Traffic Flow Forecasting
	 Some notable work done on traffic prediction
	 ASTGCN: Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
	 Spatial-Temporal Transformer Networks for Trafﬁc Flow Forecasting

	 Problem Formulation
	 Methodology
	 Model Architecture

	 Implementation
	 Dataset
	 Preprocessing
	 Creating Sequence
	 Training
	 The Encoder
	 Multi-Head Attention Layer of Transformer Architecture
	 Multi-Head Attention Layer of Our Architecture
	 Position-Wise Feed Forward Network
	 The Decoder
	 Generating Feature Weights

	 Experiment
	 Environment and Configuration
	 Evaluation Metrics
	 MSE
	 RMSE
	 MAE

	 Experimental Results
	 Result Analysis
	 Impact of sequence length
	 Impact of number of encoders

	 Integrating into an SDN environment
	 SDN over traditional network
	 SDN experimental setup
	 SDN simulation and results

	 Future Works
	 Dataset modification
	 Resource allocation

	 Conclusion

