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Abstract

Lung cancer is one of the deadliest diseases of the world to this date with

the highest mortality rate amidst all other forms of cancer. Detection of can-

cer in early stages is crucial for cancer treatment. Progress in cancer detection

has been increasingly made based on gene expression levels, giving insight

into making correct and successful treatment decisions, thanks to recent ad-

vances in high-throughput sequencing technology such as RNA-seq and the

use of several machine learning approaches. However, most of the work on

cancer detection uses micro-array data and machine learning models. This

paper presents a new methodology based on RNA-seq data which is better

at detecting transcripts than micro-array along with Deep Neural Network

(Tabnet) to classify human lung cancer.
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1 CHAPTER 1: INTRODUCTION

1 Chapter 1: Introduction

1.1 Overview

One of the key cause of death in the world is Cancer. In 2020, cancer had caused

around 10 million deaths worldwide, accounting for roughly 1 in every 6 deaths.

Human body contains trillions of cell, cancer can form anywhere in those cells. Hu-

man cells normally grow and multiply through a process known as cell division [1] to

form new cells as the body requires them. Cell death [2] occurs when cells become

old or damaged, and new cells replace them. This systematic process breaks down

from time to time, allowing abnormal. and damaged cells to grow and grow when

they should not. These cells coalesce to form a tumor, a mass of tissue. Tumors

may be cancerous or non cancerous. Through infestation of nearby tissues cancer-

ous tumors form new tumors, this process is called metastasis. This is the main

reason of death of cancer patients. [3] These cancerous tumors are also referenced as

malignant tumors. Unlike many cancers, blood cancer(leukemia) do not form solid

tumors. [4] The tumors that do not metastasize are the Benign tumors. Removing

benign tumors ensure they do not reappear, whereas cancerous tumors every so of-

ten do. [5]. Regardless, the benign tumors can grow quite large at times. This can

prove to be fatal in some scenarios such as, benign brain tumor. There are almost

291 cancers reported so far. [6]Lung cancer is the leading cause of cancer morbidity

and accounts for about 2 million diagnoses and 1.8 million deaths worldwide. As

reported by the most recent GLOBOCAN conjecture, 2,094,000 new cases of lung

cancer were identified worldwide in 2018, making lung cancer take the position of

leading cause of cancer death worldwide. In men, Lung Cancer is only second to

prostrate cancer, with an estimated 1,369,000 cases. Similarly, for women it closely

follows breast cancer, with 725,000 cases. The accumulated lifetime risk of lung can-

cer diagnosis after age-normalization, is 3.8 percent for men and and 1.77 percent in

women. [7, 8] Histology or cytology can be used to make a pathologic diagnosis of
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1 CHAPTER 1: INTRODUCTION

lung cancer. This review is primarily concerned with the histology of lung cancer.

Histologic evaluation for lung cancer diagnosis can be done using using a range of

biopsy specimens , in particular, bronchoscopic or needle biopsies. Another proce-

dure is surgical biopsy, such as thoracoscopy, excisional wedge biopsy, lobectomy, or

pneumonectomy. In almost all cases, the diagnosis of lung cancer is done using light

microscopy, with only a few histologic types requiring histochemical stains or im-

munohistochemistry. The World Health Organization (WHO) and the International

Association for the Study of Lung Cancer (IASLC) have proposed an international

standard for histologic classification of lung tumors. [9]Squamous cell carcinoma,

adenocarcinoma, small cell carcinoma (SCLC), and large cell carcinoma are the four

major histologic types of lung cancer. These types can be subdivided more explicitly

into subtypes, as for example the bronchioloalveolar carcinoma (BAC) adenocarci-

noma. [9]Adenocarcinoma is accountable for more than 30 percent cases among all

other lung cancers.[10]

1.2 Motivation and scope of research

Lung cancer claims the lives of more people each year than breast, colorectal, and

prostate cancer combined. One of the main reasons for lung cancer’s high mortality

rate is that it is diagnosed at later stage than rest of the cancer types. Early

lung cancer detection makes it possible to fully treat it, this detection is crucial

for survival. Patients with initial stage small lung cancer can cured at a rate of 80

percent to 90 percent.1. As the tumor progresses and infests lymphatic tissues or

other areas of the body, the chances of it being cured drop dramatically. Therefore,

detection of lung cancer is a critical topic in medicine.

Cancer is a congenital disease, any change of how genes control cell functions,

to be precise the way they divide and grow is what causes cancer. The technique

through which a gene is turned on in cells to construct RNA and different proteins
1https://www.cancer.net/blog/2018-06/just-diagnosed-with-lung-cancer-answers-expert
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2 BACKGROUND STUDY/LITERATURE REVIEW

is known as gene expression.By analyzing the RNA, the proteins generated from

the RNA, or the functionalities of the proteins in the cells, gene expression can

be determined. Gene expression monitoring can help with the accurate detection

of deferentially expressed genes and early lung cancer detection. The study and

interpretation of differences in gene transcript abundance within a transcriptome is

known as differential gene expression. We created a binary classifier that determines

whether lung tissue is cancerous or not using differential gene expression levels and

a deep neural network.

The following is our contribution to this work:

1. Work on one of the most accurate datasets available for cancer study.

2. Detection of relevant genes that play a part in lung cancer.

3. Development of a classifier that employs relevant genes to determine whether

or not a patient has lung cancer.

2 Background study/Literature Review

2.1 Transcriptome

The whole set of messenger RNA, or mRNA molecules expressed from the genes

of an organism, is a transcriptome.[11] There are two techniques to analyze the

transcriptome. The term "transcriptome" can also refer to the particular cell or

tissue generated collection of mRNA transcripts. In contrast to the genome, which

is stable, the transcriptome is constantly changing. In fact, the transcriptome of

an organism varies depending on a variety of factors, including developmental stage

and environmental conditions. RNA Seq and microarray are two techniques used to

analyze the transcriptome.

3



2 BACKGROUND STUDY/LITERATURE REVIEW

2.2 Transcriptome analysis methods

2.2.1 DNA microarray, a hybridization-based technique

Microarray is one the most contemporary progress in research study of caner; it

aids in the pharmacological procedure to treat a variety of diseases, oral lesions

inclusive. Significant amount of both previously recorded samples or new sam-

ples can be analyzed with the microarray technology.It can also be used to check

the presence of a explicit marker in tumors.[12]It is also useful in identifying can-

cer related chromosome-type abnormality, for example, it is particularly useful for

association mapping and the linkage study to segregate chromosomal regions asso-

ciated with a specific disease. This array can also be used to identify cancer-related

chromosomal aberrations, such as allelic imbalance segments identified by loss of

heterozygozity.[13]

The foundation of gene microarray technology is the "chip"- a small glass slide with

tens of thousands of various DNA sequences.. TThe various strands of DNA are ar-

ranged in a tabular structure ( in rows and columns), this makes it easy to recognize

each fragment by its location on the array. Microarrays are classified into two types:

gene expression microarrays and tissue microarrays (TMA). Methods, for instance,

reverse trancriptase-polymerase chain reaction(RT-PCR) along with Northern blot

permit the use of only a few genes for testing per experiment. Nevertheless, global

expression profiling or "microarray" not only examines higher number of genes than

previously possibly, it also caters to the fact that it does not get influenced by gene

selection. selection.[12]

Tumor formation requires contemporaneous alterations in hundreds of cells as well

as genetic variations. Microarray is a blessing to the researchers as it allows con-

current testing of a large number of gene specimens. It is particularly useful in

the identification of single-nucleotide polymorphisms (SNPs) and mutations, tumor

classification, identification of tumor suppressor target genes, identification of cancer
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2 BACKGROUND STUDY/LITERATURE REVIEW

biomarkers, identification of genes associated with chemoresistance, and drug discov-

ery. For example, we can compare the patterns of gene expression levels in a group of

cancer patients and a group of normal patients to identify the gene associated with

that specific cancer. Comparative genomic hybridization has been accomplished us-

ing gene microarrays. This technique uses fluorescently labeled genomic DNA to

detect the presence of gene loss or amplification.[14, 15, 16] Genetic deformity in

various types of cancers, such as breast carcinoma,[16], bladder carcinoma[17], fal-

lopian tube carcinoma[18], gastric carcinoma[19], melanoma[20] and lymphoma[21]

have been mapped by the array-based comparative genomic hybridization(aCGH).

Whereas routine histopathologic examination does not allow for sub-classification,

gene expression data can distinguish bunch of cases with substantially diverse re-

sults.

2.2.2 RNA-seq, a sequence-based approach

Sequencing in place of microarrays, in a matter of years, the measurement of trasncrip-

tome wide gene expression convincingly shifted. RNA sequencing(RNAseq) provides

an open and quantifiable system for portraying transcriptional results on a grand

scale, allowing for numerous applications, comprising basic science studies, medical

care, and agricultural research.

RNA-seq starts with a biological sample(cells, tissues) from which RNA is ex-

tracted. After that, particular protocols are used to separate batches of RNA

molecules, for instance, the poly-A selection method for enhancing polyadenylated

transcripts or for removing ribosomal RNAs using the ribo-depletion protocol. Fol-

lowing that, reverse transcription converts the RNA to complementary DNA(cDNA)

and then cDNA end fragments are bounded with sequencing adaptors. Through

PCR amplification RNA-Seq library becomes ready for sequencing.. The process is

shown in figure 1.
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Islolated cell or tissue population

Extract total RNA

Long ncRNA

Small ncRNA

rRNA

mRNA
AAAAA

AAAAA

AAAAA
AAAAA AAAAA

AAAAA

Poly-A selection Ribo depletion Size selection

Convert to cDNA

cDNA

Construct sequencing library

PCR amplification and sequencing

Figure 1: Overview of RNA-Seq.

2.2.3 Comparison between RNA-seq and Microarray

When the target sequences move beyond known genomic sequences, the differences in

the capabilities of each technique become clear.Microarray and other hybridization-

based approaches are confined within the transcripts in the chips. As excellent as

the bioinformatic information for both the genome annd transcriptome of the model

oraganism is, the microarray will be the same. Novel sequences, splice variants are

detected by RNA-Seq along with elucidated transcripts.[22]. Experimental data can

be used by RNA-Seq to characterize exon junctions, detecting ncRNA[23], to detect

single nucleotide polymorphisms, and also fusion genes[24]. Furthermore, as new
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sequences are annotated, existing data sets can be re-evaluated[25]. Microarrays are

capable of detecting single nucleotide polymorphisms, mapping exon junctions, and

detecting fusion genes, but only with arrays designed for those purposes. Before non-

coding RNA can be accurately distinguished by microarray, it must be annotated

and included on specialized chips. To detect non-coding RNA (small RNA) by

RNA-Seq, sample preparation procedures must be modified to exclude larger RNA

sequences prior to cDNA generation. Finally, microarray chips have to be updated

in order to include the latest sequence data, dissimilar to RNA-Seq.

2.2.4 Study on Microarray data classifiers

First paper we found, used leukemia data which had 72 patient samples and color

tumor data 62 patient samples. They used Signal to Noise ratio for feature selection

and finally performed SVM on the selected genes. The classifier showed an accuracy

of 94.1 percent on leukemia dataset and 90.3 percent on colon dataset.[26]

Another paper used lymphoma data which contained 4026 genes and 47 samples

and colon data which contained 2000 genes and 62 samples. They used Genetic

Algorithm for feature selection and then performed KNN to create a classifier which

had 84.6 percent accuracy for lymphoma data and 94.1 percent accuracy for colon

data. [27]

Third paper used the same dataset as the first one and second one which are

leukemia data with 72 samples, lymphoma data with 47 samples and colon data

with 62 samples. They performed Partial Least Square for dimentionality reduction

and used Logistic discriminant and Quadratic discriminant analysis as classifiers.

The Logistic Discriminant classifer showed an accuracy of 95.9 percent, 96.9 percent

and 93.5 percent for Leukemia, Lympho and Colon datasets respectively. Whereas,

Quadratic discriminant analysis classifier showed an accuracy of 96.4 percent, 97.4

percent and 91.9 percent for the same datasets.[28, 29]

Another paper used breast cancer data and performed Functional Link Artifical
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Neural Network(FLANN) for classification which had an accuracy of 63.34 percent

and integrated Particle Swarm Optimization(PSO) with FLANN together to form

a classifier which had an accuracy of 92.36 percent.[30]

Another paper used Breast cancer dataset, Colon cancer dataset, Leukemia

dataset, Lung cancer dataset and CNS dataset. They performed Best Agglomera-

tive Ranked Subset(BARS) and Fast Correlation-Based Filter(FCBF) for selecting

relevant genes. After selecting relevant genes, they used Logistic Regression (LR)

and Evolutionary Generalized Radial Basis Function(EGRBF) neural network to

create a classifier which had an accuracy of 91.08 percent.[31]

Another paper used lung carcinoma dataset which had 254 sample each having

8359 genes, lukemia dataset having 72 samples and each sample having 8359 genes

and finally blue cell tumor dataset having 83 samples each having 2308 gene expres-

sion level. They performed partial least square for selecting relevant gene and used

SVM, LDA as classifier which had accuracy of 95.5 and 98.0 percent respectively.[32]

Another paper proposed using Bayes classification for gene selection and classi-

fication which was experimented on lung cancer dataset resulting in an accuracy of

100 percent, and an accuracy of 96.3 percent on breast cancer dataset.[33]

2.2.5 Study on RNA-seq data classifiers

Another paper used three set RNA-seq data basically LUAD cancer, STAD cancer

and BRCA. They used DESeq for finding out the differentially expressed genes.

After selecting the DEG’s they used 5-fold stacking of kNN, SVM, DT, RF and

GBDT to create a multi-model ensemble which had an accuracy of 98.8 percent for

LUAD, 98.78 percent for STAD and 98.41 percent for BRCA.[34]

8



3 DATASET

3 Dataset

The Genomic Data Commons (GDC) data portal provided us with the data that

we required2. The dataset included the raw RNA Sequence gene expression data

for LUAD cancer. There were 592 samples in the dataset, with 533 being primary

tumors, two being recurrent tumors, and 59 being solid tissue normal (the control).

Raw read counts for 26208 genes were included, as well as 88 other important details

about the patients, such as their age, gender, smoking status, and so on.

The dataset was found in SummarizedExperiment format. The SummarizedEx-

periment class stores rectangular matrices of experimental findings, which are often

generated by sequencing and microarray studies. Each object contains observations

of one or more samples, as well as meta-data that describes both the observations

(features) and the samples (phenotypes). The synchronization of meta-data and

assays while subsetting is a crucial feature of the SummarizedExperiment class.

If we want to exclude a certain sample, for example, we can do so for both the

meta-data and the assay in one operation, ensuring that the meta-data and ob-

served data are in sync. This is a particularly desired quality because improperly

accounting for meta and observational data has led in a lot of inaccurate results and

retractions.SummarizedExperiment is a matrix-like container with rows representing

features of interest (genes, transcripts, exons, and so on) and columns representing

samples. Each assay is represented as a matrix-like object in numeric or other mode

in the objects. A SummarizedExperiment object’s rows represent the features that

are of interest.
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Figure 2: Structure of SummarizedExperiments

4 Methodology

4.1 Obtaining relevant genes and read counts of relevant genes

To ascertain which genes are more relevant to cause lung cancer Differential Gene

Expression (DGE) was used.For statistical genomics, two packages of Bioconduc-

tor [35] which is an ‘R’ based open-source software, were considered for finding

DGEs. The packages considered were DESeq2 and LIMMA.

4.1.1 DESeq2

RNA-seq data analysing for differential gene expression is feasible using the DESeq2

tool. DESeq2 is a package that utilizes negative binomial generalized linear models

to check for differential expressions. It estimates priors for log fold change and
2https://portal.gdc.cancer.gov/
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TCGA data

LIMMA

PCA

LDA

Tabnet

Database

Feature
Selection

Feature
Reduction

Classifier

Figure 3: Brief overview of methodology

dispersion, as well as posterior estimates for these quantities, using empirical Bayes

techniques [36].

Multiple steps are involved in differential expression analysis with DESeq2, as

shown in the figure 4 below. DESeq2 will model the raw counts using normalization

factors (size factors) to account for library depth discrepancies. It will then estimate

gene-wise dispersion and decrease these estimates to obtain more accurate dispersion

estimates to simulate the counts. Finally, using the Wald test or the Likelihood Ratio

Test, DESeq2 will fit the negative binomial model and perform hypothesis testing.

4.1.2 LIMMA

LIMMA is an R package for analyzing RNA sequencing data for differential ex-

pression. Following pre-processing as well as normalization, the package is set up so

that data from all technologies can be analyzed using the same analysis pipeline. All

11
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Read Counts 
Associated with

genes

Normalization

Unsupervised
Clustering Analysis
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Shrinking log2 fold
changes

Testing for differential
expression

Estimate Size factors

Estimate gene-wise dispersions

Fit curve to gene-wise dispersion estimates

Shrink gene-wise dispersion estimates

GLM fit for each gene

Figure 4: DESeq2 working principles

downstream tools that were previously available only for microarray data are equally

available for RNA-seq data too thanks to LIMMA. [37]. We found that LIMMA was

more precise in detecting genes that are more differentially expressed [38]. There-

fore, we chose LIMMA for our work. With the help of the LIMMA library, we were

able to identify the top 100 differentially expressed genes. We were also able to get

normalized read counts of the relevant 100 genes for all of our samples with the help

of LIMMA. These normalized read counts were used to train our machine-learning

model.

LIMMA effectively incorporates a number of statistical principles for compre-

hensive expression research. It works with expression values represented in a matrix

12
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format. Each row refers to a gene or a genetic trait appropriate to the present

study. Whereas, columns refer to samples of RNA. On the one hand, LIMMA ac-

commodates a linear model in every row of data thus using the flexibility of the

model in a variety of manners, hypotheses that are highly acquiescent.Conversely,

the extremely parallel structure of the gene data is leveraged to adopt potency from

gene-specific samples, this allows variableness among genes also among samples thus

increasing the the reliability of statistical inferences considering there is small num-

ber of samples. So, LIMMA package includes statistical methods that

• Allow information adaptation employing the empirical Bayes procedure to

procure posterior variance estimators;

• Incorporate the observed weights to justify discrepancies in data traits;

• Allow variance modelling to account for methodological even biological het-

erogeneity;

• Pretreatment technique to reduce noise, for instance, dispersion stabilization.

Quantitative Weighting

Information Borrowing

Variance Modelling

Data pre-processing

Gene-wise 
linear 

models 
E(yg) = X g 

var(ygj) = g
2/wgj

limma delivers
powerful inference for
differential
expression analysis

g , 

s 2g  

Estimated gene-specific
parameters used for gene 
prioritization and gene set
testing 

Matrix of expression
values

Figure 5: LIMMA Working Principles
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Table 1: Top 20 DEG’s after using LIMMA on LUAD dataset

external_gene_name logFC AveExpr t P.Value adj.P.Val B
SLC6A4 -7.66278056220821 -7.66278056220821 -39.5943360911668 6.77083924428858e-169 1.77450154914315e-164 375.709084553734
AL606469.1 -5.93088026783627 -5.93088026783627 -36.6768156365474 7.41536657771113e-155 9.71709636343266e-151 342.7687871881
SERTM1 -7.28837535777598 -7.28837535777598 -35.2448377834483 8.38255042671611e-148 7.32299605277919e-144 327.092974502947
AC095050.1 -4.94432947433946 -4.94432947433946 -34.8039014672513 1.3061178573449e-145 8.55768420132377e-142 321.131049715356
FABP4 -6.18288771340686 -6.18288771340686 -34.7244772632855 3.2504743356942e-145 1.70376862779747e-141 321.360724356119
ITLN2 -7.34232500720104 -7.34232500720104 -33.6741311110166 5.98499839255015e-140 2.6142472978659e-136 309.20407336794
GPM6A -5.93088707374936 -5.93088707374936 -33.1922425747045 1.62218100942596e-137 6.07344569929081e-134 303.663894182379
RTKN2 -4.52761770637662 -4.52761770637662 -32.8227806384383 1.20979608778243e-135 3.96329198357524e-132 299.386569171872
LINC02016 -5.97876260090301 -5.97876260090301 -32.4613553993777 8.32760192541761e-134 2.42499768068161e-130 294.604436160873
STX11 -3.27506315749025 -3.27506315749025 -31.6880609492471 7.4429260760633e-130 1.95064206601467e-126 286.078958203958
CD300LG -6.34162649098624 -6.34162649098624 -31.1398692690256 4.8748630580548e-127 1.16145828205e-123 279.50410352453
FAM107A -5.00890272636113 -5.00890272636113 -31.0704428793236 1.11043458539587e-126 2.42518913450459e-123 278.789546143889
AL354714.1 -5.40820129177685 -5.40820129177685 -31.0129135734276 2.19735966439084e-126 4.42987708341194e-123 277.578606910039
AC128709.3 -4.69443829476841 -4.69443829476841 -30.9512918105351 4.56604102654795e-126 8.54762880169777e-123 276.60656229849
LINC01996 -5.80698975892672 -5.80698975892672 -30.5898561743343 3.3542033572819e-124 5.86046410584294e-121 272.760535854988
TEK -3.48853838937666 -3.48853838937666 -30.4892925661661 1.11090467323096e-123 1.81966185475231e-120 271.895560105551
SCUBE1 -4.3268074881509 -4.3268074881509 -30.0258767087029 2.80019419626607e-121 4.3169111468083e-118 266.374588604504
UPK3B -5.79774705180907 -5.79774705180907 -29.8952232768386 1.33556605841655e-120 1.9445841810545e-117 264.81933617824
LGI3 -6.8249958028128 -6.8249958028128 -29.6910268251678 1.53903855696842e-119 2.12290118426466e-116 262.379780249971

4.2 Dimensionality reduction

The normalized read count of 100 relevant genes along with patient sex and age

were considered to train the machine learning model. A number of dimensionality

reduction techniques were considered for compressing the number of features. Two

techniques were used in our work, Principle Componenet Analysis(PCA) along with

Linear Discriminant Analysis(LDA).

4.2.1 Principal Component Analysis

PCA is a multi-faceted method for analyzing tabular data where observations are

defined as set of interconnected quantifiable response variables. Its objective is to

derive the key value present in the table, and showcase it as a group of new normal

elements, called principal components.Afterwards, exhibit similar patterns between

the observed values and the variables as if they are points on a map. [39]. The

objectives of PCA are to:

• Determine major details from the tabular data;

• Reduce the amount of data package by retaining solely the major detail;

• Make portrayal of the data package more concise;

• Examine observations’ as well as variables’ configuration.
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PCA estimates fresh variables, known as priciple components, these are derived

as linear composition of the initial variables. The first principal component de-

mands the greatest likely deviation (inertia), as a result, this factor will “explain"

or “extract" the majority of the data table’s inertia. The second component is com-

puted with the requirements of being orthogonal to the first and having the greatest

achievable inertia. The remaining constituents are calculated in the same way. Fac-

tor scores are the geometric interpretations of the observations’ projections upon

the primary constituent, the resultant values are the latest variables for the data.

4.2.2 Linear Discriminant Analysis

The dimensionality reduction method employed to solve problems with supervised

classification is Linear Discriminant Analysis (LDA). Class variations are modelled

with the LDA, for instance, multi-class division. LDA projects higher dimensional

features to lower-dimensional space. The case where internal frequencies of a class

are unequal, as well as, their behavior examined by generated test data is at random,

is easily addressed using Linear Discriminant Analysis. Peak seperability is ensured

by maximizing the relative size of in class variance to within-class variance. [40].

The objectives of LDA are:

• Determine variance between the classes, which is seperation between distinct

classes (i.e the mean difference between seperate classes)

• Determine mean square deviation within-class, which is the difference of mean

with each class samples.

• Construct a lower-dimensional space, it has to maximize mean square deviation

between the classes while minimizing it within-class.
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4.2.3 Using PCA and LDA for dimensionality reduction

Because of various challenges, it is widely assumed that it is impractical to directly

use LDA solution for large data. [41]. As a result, before LDA can be used, another

procedure must first be used to reduce dimensionality. We used Principal Compo-

nent Analysis (PCA) and Linear discriminant analysis(LDA) to trim the dimension

as these two methods are popular and widely used together [42]. In order to regu-

larize the input and avoid over-fitting we performed Principal Component analysis

first. We then used Linear Discriminant Analysis to gain the required low dimen-

sional features and data to train our machine learning model. The most significant

distinction between LDA and PCA is that PCA focuses on feature classification

while LDA focuses on data classification. On one hand, using PCA the configura-

tion of the original data sets change when the data sets are transformed to another

space. On the other hand, LDA only allows for class distinction along with drawing

a decision boundary among the classes [40].

4.3 Classifier network

We considered decision tree (DT) and deep neural network (DNN) for our classi-

fier. DT is predictive pattern that utilizes ramification series of Boolean tests to

make additional summarized conclusions premised on evidences. A DNN is a neural

network with a high level of complexity, usually at least two layers. DNNs were

chosen over DTs primarily because they perform better with large datasets [43].

Furthermore, unlike tree learning, DNNs allow for end-to-end learning for tabular

data using gradient descent, which is advantageous [44]. Deep learning’s ability to

conceal unrefined data inside significant depictions is a prime reason for its triumph

in in images, natural language, and audio. Backpropagation algorithm-based end-to-

end training can effectively encrypt delineated data, thus shortening or completely

removing the demand for feature handling. [45].
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We used the Attentive Interpretable Tabular Learning neural network (TabNet)

to create our classifier because our dataset is tabular. From a wide range of tabular

datasets based on non-performance saturation, Tabnet surpasses other DNN vari-

ants. [44]. TabNet outperforms DTs while benefiting from their advantages because

of careful design that:

• employs data-driven sparse instance-wise feature selection;

• develops a multi-step sequential architecture, with each stage appertaining to

the chosen features contributes a part in ruling.;

• progresses the learning ability by processing selected features in a nonlinear

way;

• does ensembling with higher dimensions and more steps [44].

4.3.1 Tabnet Encoder

The TabNet encoder design is primarily made up of some common elements at each

decision step, they are the feature transformer, attentive transformer, as well as fea-

ture masking, as shown in Figure 6. The tabular data consists of both categorical

and numerical data. TabNet maps category features to numerical features using ini-

tial statistical data along with educable embedding [46]. Each stage of decision uses

identical B ×D feature matrix, here B represents the batch volume and D repres-

nets the dimension of the features. Multilevel sequential manipulation is followed

in Tabnet’s ciphering. The ith step takes treated data from its previous (i − 1)th

step, and and uses it to determine the features that need to be employed and also

yields the refined feature model, which is then accumulated into the entire decision.

Top-down attention in successive format was inspired when it was needed to look

for small section of appropriate evidence from multifaceted entry, during the appli-

cation of the same thing in processing visual and text data [47], and reinforcement

learning [48].
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Figure 6: Tabnet Encoder Architecture

4.3.2 Feature Selection

Each decision step’s Mask module is responsible for feature selection. The deci-

sion step’s Attentive transformer determines the function to be implemented. The

following steps occur in the Attentive Transformer Layer:

1. The preceding decision step’s Feature transformer produces the tensor, after-

wards transmits it to the Split unit.

2. In step 1 of the Split module, the tensor is split and a[i - 1] is obtained.

3. The hi level constitutes of fully connected (FC) layer along with a BN layer,

it is traversed by a[i - 1]. The purpose of hi is to attain a linear amalgamation

of features, which enables extraction of multi-faceted as well as conjectural

features.

4. The preceding value p[i - 1] of the preceding judgment step is multiplied with

the result obtained from the hi level. The preceding scale depicts how features

were used in previous decision-making phases. With the increments in the
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quantity of features employed in the prior decision step the weight in the

current decision step decrements.

5. Later Sparsemax [49] is employed to construct M[i]. This method to learn a

mask is portrayed by the equation:

M [i] = Sparsemax(P [i− 1]× hi(a[i− 1]))

Sparsemax foments sparsity thus making feature selection more sparse through

shifting the Euclidean projection atop the stochastic simplex. If D is the di-

mension of the features then Sparsemax can make
∑D

j=1M [i]b,j = 1. Sparse-

max sets for all characteristics of every sample‘s total weights as 1, along with

perfroming weight allocation of each feature j, of every sample b. This enables

Tabnet to exercise the primary features for the model in all decision steps.

The sparsity of the specified characteristics are adjusted using the following

sparese regular term:

Lsparse =

Nsteps∑
i=1

B∑
b=1

D∑
j=1

−Mb,j[i]

NstepstimesB
log(Mb,j[i] + ϵ)

The sparsity of feature selection can give superior inductive bias for conver-

gence to a higher accuracy rate when the majority of the data set’s features

are redundant.

6. To update P[i] the following equation is used:

P [i] =
i∏

j=1

(r −M [j])

7. The feature selection of the ongoing phase is achieved by the product of M[i]

and feature components.

8. The selected features are then sent into the current decision step’s feature
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transformer, and a spiral of fresh decision step is initiated.
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Figure 7: Structure of Attentive Transformer Layer

4.3.3 Feature Processing

Mask filters the features and passes them to the feature transformer layer in feature

processing. The split module divides the processed features into two parts: one

functions as the result of the working decision step and the remaining one is utilized

as entry data for the following decision step. It is shown as:

[d[i], a[i]] = fi(M [i]× f)

Feature transformer layer has 3 layers of its own, they are : BN, gated linear unit as

well as FC layers. Figure 8 depicts the structure. The Feature transformer layer is

divided into two portions as can be observed.The initial one-half portion of the pa-

rameters are reciprocal, it implies that in all steps they are trained together.However,

for the other half parameters are not reciprocal, also in all steps they are trained

individually. Because the input for every stage are the common features, we may
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employ the identical layer for the general component of the computational features’

as well as distinct layers for the feature section of every step. Because of this config-

uration, this model shall be able to learn in a robust and high-capacity manner. In

the layer, the residual connection is employed, and to guarantee network soundness

it is multiplied with
√
0.5.

4.3.4 Tabnet Decoder

Figure 9 shows the encoded form without the FC layer, which is the encoders’

vector sum. The decoder receives the encrypted depiction as input. The decoder

reconstructs the representation vector into a feature using the Feature transformer

layer. We produced the reconstructed feature after adding many steps.

5 Results and Discussion

5.1 Experimental Setup

R along with python were used in our work. R studio was used to operate LIMMA

in order to obtain top 100 differentially expressed genes as well as their normalized

values. After getting the read counts of 100 genes of all samples, we shifted to

train our model in Python environment in Google Colab. Our samples were split
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Figure 9: Tabnet Decoder Architecture

randomly into 80% for training and 20% for testing.

5.2 Evaluation Metrices

5.2.1 Accuracy

The percentile representation of the ratio of all true predictions to all predictions

made is called Accuracy. If N is the overall amount of correct predictions made,

with M representing the overall amount of samples, then accuracy can be defined

as:

Accuracy =
N

M
× 100%

The accuracy of a model is calculated using samples from the test set, which are not

visible to the model during training. It provides a better estimate of the model’s

generalization capability.

5.2.2 Precision

The amount of true positives divided by the cumulative total of positive predictions,

accross all classes is precision. Precision is utilized in a multiclass problem to eval-

uate the accurately classified samples of each class among all the samples that were
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categorized as belonging to that class. Positive Predictive Value(PPV) is another

name for precision. f X is the amount of samples properly labeled in a class C, with

Y representing the amount of samples incorrectly classified within C then precision

of C is:

PrecisionC =
X

X + Y

5.2.3 Recall

The amount of true positives divided by the cumulative total of true positives and

false negative predictions, across the classes is known as recall. In a multiclass

problem, recall is used to determine how many samples were correctly classified out

of all those that should have been. Sensitivity is another name for recall.If X is the

number of samples correctly classified in a class C and Y is the number of samples

incorrectly classified in the other class then recall of C can be defined as:

RecallC =
X

X + Y

5.2.4 ROC-AUC

For measuring performance of classification tasks at different cut-off values, the

AUC-ROC curve is used. On one hand, AUC portrays extent or standard of dis-

connectedness, on the other hand, a feasibility curve is represented by ROC. It

demonstrates the degree of effectiveness of the model to differentiate among the

classes. AUC indicates how well 0s and 1s can be predicted as 0s and 1s by the

model. By way of analogy, patients with or without disease can be discerned by the

model with the higher AUC count.

To ROC curve is plotted by putting True Positive Rate (TPR) on the vertical

(y) axis, along with the False Positive Rate (FPR) on the horizontal (x) axis.
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5.2.5 Specificity

The amount of true negatives divided by the cumulative total to true negatives and

false positive predictions, across all classes is known as Specificity. It is determined

by the following way:

specificity =
X

X + Y

Here, X indicates the amount of true negatives, and Y represents the amount of

false positives.

5.2.6 Results

Our model could accurately predict between cancer and non-cancer 97.48 percent

of the time. Precision of our model is 98.61 percent, recall is 97.22 percent and

Specificity is 100 percent.

Figure 10: ROC-AUC curve
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6 Conclusion

Cancer is a major public health issue all over the world. Many machine learning

models have been used for cancer prediction and all of them performs almost equally.

Here in this paper, we used a deep learning model for cancer prediction. We used

gene expression data obtained from lung tissue. We used the top hundred differen-

tially expressed genes obtained from normal and tumor phenotypes using LIMMA

technique as feature for our deep learning model. In order to prevent overfitting

in our model, we used PCA and LDA to reduce the dimensionality of our data.

Finally, we used TabNet as our classifier. The accuracy of our classifier is almost

equal to other classifiers, which used gene expression data of thousands of genes.

We achieved almost similar results using data of only hundred genes.
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