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Abstract

The critical challenge for an efficient islanding operation of a distribution system having Distributed

Generation (DG) is preserving the frequency and voltage stability. Contemporary load shedding

schemes are inefficient and do not adequately assess the optimum amount of load to shed which

results in either excessive or inadequate load shedding. Appropriate installation of renewable

energy-based distributed generation units (RDGs) is one of the most important challenges and

current topics of interest in the optimal functioning of modern power networks. Due to the

intermittent nature of renewable energy sources, optimal allocation and sizing of RDGs, particularly

photovoltaic (PV) and wind turbine (WT), remains a critical task. Additionally, maintaining

frequency and voltage stability is crucial for optimal functioning of an islanded network connected

to DGs. Conventional load shedding schemes do not effectively identify the optimal amount of load

to shed, culminating in either excessive or insufficient load shedding. Hence, the first part of this

work presents an optimal load shedding technique using Chaotic Slime Mould Algorithm (CSMA)

with sinusoidal map in order to achieve greater efficiency. A constrained function with static

voltage stability margin (VSM) index and total remaining load after load shedding was applied

to accomplish the evaluation. A total of three islanding scenarios of IEEE 33 bus and IEEE 69

bus radial distribution systems were used as test systems to assess the efficacy of the proposed

load shedding approach using MATLAB software. To identify performance enhancements, the

developed method was compared to Backtrack Search Algorithm (BSA) and the original SMA.

According to the results, CSMA outperforms both BSA and SMA in terms of remaining load and

voltage stability margin index values in all the test systems. Moreover, the second part of this

work proposes Chaotic Equilibrium Optimizer (CEO) with iterative map to achieve an optimal

solution for multiple DG sizing and placement in distribution networks, as well as an optimal load

shedding approach. Regarding DG placement, the objective function was to minimize total active

power loss and voltage deviation of the network nodes. The proposed method was compared with

Modified moth flame optimization (MMFO), Teaching learning based optimization (TLBO) and

the original Equilibrium optimizer (EO). Moreover, to assess the optimal load shedding technique, a

constrained function with total remaining load and static voltage stability margin (VSM) index was

used. In addition, the proposed CEO algorithm is compared with some of the recent metaheuristics

algorithms applied in this domain such as Grasshopper optimization algorithm (GOA), Backtrack

search algorithm (BSA) and the original Equilibrium optimizer (EO). In the last part of the work,

based on a new metaheuristic known as the Artificial hummingbird algorithm (AHA), this work

provides a novel approach for addressing the problem of RDG planning optimization. Considering

various operational constraints, the optimization problem is developed with multiple objectives

vi



including power loss reduction, voltage stability margin (VSM) enhancement, voltage deviation

minimization, and yearly economic savings. Furthermore, using relevant probability distribution

functions, the ambiguities related with the stochastic nature of PV and WT output powers are

evaluated. The proposed algorithm was compared to two of the recent metaheuristics applied in this

domain known as improved harris hawks and particle swarm optimization algorithm (HHO-PSO)

and hybrid of phasor particle swarm and gravitational search algorithm (PPSOGSA). The IEEE

33-bus and 69-bus systems are assessed as the test systems in this study. According to the findings,

AHA delivers superior solutions and enhances the techno-economic benefits of distribution systems

in all the scenarios evaluated.
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Chapter 1

1 Introduction

1.1 Optimal Load-Shedding in Distribution System

Due to increasing load uncertainties and multiple DGs including renewable energy sources, one

of the vital issues of contemporary power networks is appropriate load shedding (LS) scheme as

a contingency plan. Under frequency load shedding (UFLS) and under voltage load shedding

(UVLS), two significant LS strategies that leverage frequency and voltage stability as determining

factors for balanced functioning of an electrical system are frequently employed for analysis purposes[1].

Steady state voltage instability is generally caused by overloading of the network nodes or an

accidental interruption of a cable or power source, which can lead to increased reactive power

demand and subsequently a blackout. Moreover, steady state voltage stability indicates the ability

of the system to thrive with balanced voltages at all the nodes when the network is subjected

to a substantial disturbance under typical operating conditions. UVLS is the most appropriate

countermeasure for avoiding voltage collapse if the fault could be foreseen and only implemented as

a last alternative in severe circumstances to avert a high-scaled voltage breakdowns [2]. Therefore,

UVLS strategy formulation is essential to recognize appropriate load shedding techniques in order

to prevent system voltage collapsing, which is a crucial objective in the development of such

defense mechanisms. Additionally, numerous operational constraints emerges in a DG integrated

distribution system if the utility supply is interrupted and the system becomes islanded. Among

these operational constraints, sustaining the voltage stability of the islanded system is the most

significant issue and load shedding is regarded as the most efficient method of addressing the

challenge.

Numerous works have suggested several optimum load-shedding strategies using conventional

optimization algorithms and machine learning approaches including artificial neural network (ANN),

deep reinforcement learning, fuzzy logic, etc to accomplish the most stable operating point for

electrical networks with the least amount of load curtailment while fulfilling suitable criteria [3-10].

To illustrate further, the authors in [11] suggested a novel technique employing genetic algorithm

(GA) to address the steady state load-shedding phenomenon in distribution networks with DG

during generation shortage scenarios, with the objective of minimizing total curtailed load and

system losses. Moreover, the work in [12] proposed an adaptive strategy in which the frequency

of the system after a disruption is anticipated using the particle swarm optimization (PSO)
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algorithm. Consequently, the amount of load that must be shed in order to keep the frequency

of the system within the allowable limits is identified. In addition, M.Talaat et al. introduced

grasshopper optimization algorithm (GOA) approach in order to reduce the amount of load shed

while maximizing the lowest swing frequency [13]. Furthermore, the work in [14] exhibited the

efficiency of a bacterial foraging optimization algorithm (BFOA) in an electrical network for

optimum load shedding, with the fitness function defined by total power losses and voltage stability

index. Moreover, differential evolution (DE) algorithm, which takes into consideration inequality

constraints not only on the current operating condition, but also in the forecasted next sequence

load, was used for instantaneous load shedding to ensure precise load shedding at selected buses

under emergency circumstances in order to prevent voltage instability. The locations for load

curtailment were selected depending on the intensity of the load flow’s smallest eigenvalue to load

restriction [15]. Additionally, the significance of demand prioritization on power system operation

during emergencies was studied to justify the alliance algorithm’s substantial benefits over current

heuristic approaches in steady-state load-shedding[16]. Besides, an UVLS optimization technique

termed as evolutionary particle swarm optimization (EPSO) was adopted in order to identify the

best remaining load quantity while reducing power loss, voltage variation, and load shedding cost

[17]. In addition, the study in [18] was focused on the development of an efficient load shedding

technique in an islanded distribution network using BSA.

The optimal UVLS method is a complicated non-linear approach and finding a globally optimal

solution in a vast solution space is a difficult undertaking because it necessitates a resilient and

widely applicable optimization technique. The significance of optimization in this domain cannot

be overstated, as it would be advantageous if additional load could be provided with the assistance

of a novel or modified optimization method that also assures a better voltage profile of the system.

Hence, the objective of this work is to focus on improving under-voltage load shedding schemes by

maintaining the system’s maximum possible load while ensuring voltage stability. In this context,

sinusoidal chaos has been integrated with a recently developed meta-heuristic algorithm known as

Slime Mould Algorithm (SMA) in order to explore performance enhancement. The suggested SMA

approach includes an atypical mathematical model with dynamic weights that replicates bipolar

feedback of the dispersion wave of the slime moulds in order to identify the optimum path for

adhering food with a high exploitation potential and exploratory aptitude. In addition, integrating

the sinusoidal chaos with SMA can vastly enhance search speed and efficiency. Accordingly, the

performance of the recommended chaotic slime mould algorithm (CSMA) is evaluated and its

effectiveness over the original SMA and BSA [19] is verified by comprehensive statistical analysis.
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1.2 Optimal Sizing and Placement of Multiple DG Units

The extensive use of fossil fuels, severe environmental implications, and increased transmission

and distribution losses in traditional power networks have drawn attention to non-conventional

energy sources. DGs are currently playing a key role in reducing power losses, enhancing voltage

stability, and increasing dependability of power networks. However, unplanned and unregulated

installation of DGs can cause major issues and challenges for power systems. These concerns

include the likelihood of bidirectional power flow as well as the critical challenges including higher

power losses, voltage drop, reactive power management and power quality issues. Furthermore,

integrating DGs above a particular threshold has a detrimental impact on the overall power system

protection mechanism [20]. Under voltage load shedding (UVLS) is one of the most important load

shedding (LS) schemes that uses voltage stability as a determinant in the proper governing of an

electrical network [21]. Besides, under normal operating conditions, voltage stability signifies the

network’s capability to maintain balanced voltages when the system experiences a major disruption.

Furthermore, if the power source is interrupted and the network becomes islanded, distribution

network encounters a number of operating restrictions. Among these restrictions, the fundamental

problem is maintaining the voltage stability and UVLS is recognized as the feasible mitigation

strategy for avoiding high-scaled voltage breakdowns [22].

Numerous studies have been conducted in recent years to determine the best techniques for

allocating DGs in the most efficient manner with varying types, sizes, and numbers of DGs. The

studies suggested in [23-26] directs researchers and power system engineers to various methodologies

and models for systematically and qualitatively assessing the best distributed generation (DG)

deployment in power distribution networks. To illustrate, particle swarm optimization (PSO)

was proposed by the authors of [26] for optimum deployment of various types of DG sources

in power systems with the objective of lowering total energy loss. Moreover, to allocate DGs

in the most optimum locations, [27] suggested a hybrid grey wolf optimizer, which is a hybrid

meta-heuristic algorithm. This article found the placement of the DGs by reducing total actual

power loss while maintaining certain constraints. The authors of [28] introduced fuzzy logic

controller (FLC) approaches and the ant-lion optimization algorithm (ALOA) paired with particle

swarm optimization (PSO) in order to assign multi-DGs at different sites to provide an optimum

solution. Furthermore, properly sized DG units were installed at optimal locations in the works

of[29] by utilizing a chaotic differential evolution approach by considering power loss, annual

economic loss, and voltage deviation as multi-objective fitness function. The authors of [30] offer

a modified Moth Flame Optimization approach for determining the best position and size of DGs

by minimizing running costs while also minimizing total active power and voltage deviation. The

3



authors of the work [31] developed a decision-making technique for the challenge of optimum size

and location of DG units. The method is centered on improving voltage profiles and lowering

overall real and reactive power losses. Additionally, binary particle swarm optimization suggested

in [32] results in optimal configuration of multiple DG units by placing DGs in suitable places to

reduce power loss and enhance voltage profiles. The research in [33] provides an analytical index

for optimizing the appropriate size and placement of DG based on loss sensitivity factor, voltage

stability margin, and reliability based parameters. To decrease distribution system losses, [34]

proposed a hybrid approach combining the grasshopper optimization algorithm (GOA) and the

cuckoo search (CS) technique to identify the position and size of DGs. [35] offers a multi-objective

system that employs binary particle swarm optimization and shuffled frog leap algorithms (BPSO-SLFA)

to determine the appropriate size and position of DG in order to improve voltage profiles by

decreasing power losses. Furthermore, the study in [36] provides an enhanced Harris Hawks

Optimizer for determining optimal placement of DG at various operational power factors in order

to decrease active power loss and voltage deviation.

Similarly, several studies have proposed various optimal load-shedding techniques based on

traditional optimization algorithms and machine learning algorithms. [37] presents an load shedding

method based on the grasshopper optimization algorithm (GOA) that reduces the amount of load

to be shed while maintaining highest swing frequency possible at all phases. [38] introduces a

constrained multi-objective function that integrates the voltage stability margin index with the

amount of load curtailment. This objective function was optimized by employing an optimum

load shedding technique based on the backtrack search algorithm (BSA). Furthermore, to avoid

voltage instability, the differential evolution (DE) algorithm was utilized for instantaneous load

shedding at particular nodes [39]. The study in [40] proposes bacterial foraging optimization

algorithm (BFAO) for optimal load shedding by reducing total power loss and total costs as well

as improving the stability of system. In addition, in order to show the alliance algorithm’s benefits

in typical load-shedding, the influence of load precedence on electrical system performance during

emergencies was investigated [41]. Moreover, an optimal approach termed as evolutionary particle

swarm optimization (EPSO) is used in [42] to find the suitable residual load while lowering voltage

fluctuation, energy losses, and load shedding expense.

The aforementioned works reveal that both the optimal DG placement as well as optimum

load shedding for distribution systems are continuous challenges. The implication of optimization

approaches in this research domain cannot be overstated, since it would be beneficial if substantial

improvements could be accomplished using an unique or updated optimization methodology that

also enhances the network’s voltage profile. Hence, the objectives of this work are identified
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as follows. Firstly, appropriate placement and sizing of DGs with the objective of

minimizing active power loss and preserving system voltage stability. Secondly, the

emphasis was on enhancing the UVLS scheme by keeping the system at its maximum

feasible load while assuring voltage stability. In this regard, this study adopts a recently

developed algorithm called Equilibrium Optimizer (EO) and modifies it with the incorporation

of iterative map in order to identify the optimal solution with high exploitation potential and

exploratory aptitude. The algorithm is based on dynamic source and sink frameworks based

on physics, which are utilized to generate equilibrium states derived from natural mathematical

concepts. Moreover, combining iterative chaos with EO can significantly improve efficiency and

search speed. The proposed chaotic equilibrium optimizer’s (CEO) performance is evaluated,

and its superiority over Teaching Learning Based Optimization (TLBO) [43], modified Moth

Flame Optimization (MMFO) , and Equilibrium Optimizer (EO) is validated through extensive

statistical analysis for optimal DGs sizing and placement. Furthermore, for optimal load shedding

optimization, the performance of the proposed CEO is investigated, and its efficiency is compared

with some of the recent metaheuristics algorithms applied in this domain such as GOA ,BSA[44]

, and EO. The IEEE 33-bus and 69-bus systems are assessed as the test systems in this study.

1.3 Optimal Planning of Multiple Renewable Energy-Integrated

Distribution System with Uncertainties

The demand for electricity is increasing all around the world due to advancements in science and

technology. The existence of industrial activities and social structures relies mostly on low cost and

uninterrupted supply of electrical energy [45]. Although fossil fuels are the primary source of power

generation, their resources are rapidly depleting, putting the future of fossil fuels in jeopardy. As

a result, the current tendency is to use renewable energy sources such as solar energy, wind energy,

water energy, and nuclear energy to generate electricity. Optimal integration and planning of RDG

unit installation (such as WTs and PVs) in distribution networks can be a feasible solution to the

difficulties associated with conventional energy source scarcity.

Various studies have been conducted over the years investigating the potential benefits, challenges

and scopes of RDG implementation on distribution networks. For instance, the authors of [46]

highlight the major concerns, possibilities, and constraints of integrating distributed generation into

electric power networks. Renewable energy sources are now the most convenient and profitable

source of DGs. Moreover, [47] depicts the future prospects and scientific developments to harness

renewable energy sources. Various sources of renewable energy and their benefits, growth, investment

and deployment have been illustrated. Along with these works, many of the studies like [48-51]

5



have explored the integration of renewable energy sources into electric power systems and smart

power grids, taking into account the availability of renewable energy sources. RDGs are gaining

attraction as a solution for high power demand to reduce dependency on diminishing coal, fossil

fuels, and natural gas. For instance, the authors of [52] suggest a comprehensive review of

grid-integrated DG planning. Additionally, depending on certain factors such as generator type,

penetration level, and grid features, the influence of RDGs on the distribution grid has been

demonstrated in [53]. It should be noted that electricity generated from renewable energy sources

is heavily influenced by external factors such as temperature, weather, wind speed, and humidity.

The work in [54] discusses the financial issues as well as the broader economic and societal effects of

distributed energy generation. Besides, the authors of [55] explore the environmental advantages

of dispersed energy resources and their influence on lowering greenhouse gas emissions. The

authors of [56] established RDG planning and scheduling approach using uncertainty modeling

methodologies to provide techno-economic and environmental benefits. Furthermore, [57] creates

an efficient operational schedule for multi-grid distribution systems while taking into account

the uncertain environment of energy storage systems. Moreover, the works in [58] present a

planning framework to increase the resilience of power-water distribution networks, with the goal

of lowering the investment costs associated with the suggested techniques. In order to optimize

techno-economic benefits, the authors of [59] utilize an algorithm for optimum integration of DGs

in active distribution system (ADS) networks.

The energy provided by RDG sources is heavily influenced by factors like weather, temperature,

site location, and time. The primary research problem in this subject is to deal with uncertainty

in DG integrated power system networks. Furthermore, unregulated and inappropriate RDG unit

penetration in distribution networks may impair system performance. Several studies have been

conducted in the field of optimal sizing and allocation or placement of multiple and multi-type

DGs in distribution systems employing optimization techniques. For instance, [60] discusses some

approaches which can handle uncertainties like monte carlo simulation (MCS), scenario-based

analysis (SBA), point estimate method (PEM) etc. A monte carlo simulation (MCS) based

probabilistic method has been designed in [61] to examine the impact of wind power and PV

power generation on distribution networks. Besides, [62] takes the help of MCS and particle

swarm optimization (PSO) for optimal sizing of renewable energy systems considering stochastic

behaviour of energy resources. The authors in [63] proposed improved harris hawks based particle

swarm optimizer (HHO-PSO) for integrating renewable energy sources into distribution networks

incorporating PV and WT generation uncertainties. Furthermore, [64] suggests a hybrid mix of

phasor particle swarm optimization and gravitational search algorithm (PPSOGSA) for integrating
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renewable energy sources into distribution networks while accounting for PV and WT generation

and load uncertainties. In [65], an optimization technique called ant lion optimization algorithm

(ALOA) has been introduced for optimal sizing and allocation of RDGs in a radial distribution

network. Besides, in many of the works [66-72], backtrack search optimization algorithm (BSOA),

artificial bee colony (ABC) algorithm, hybrid grey wolf optimizer, bacterial foraging optimization

algorithm (BFOA), intelligent water drop (IWD) algorithm, stud krill herd algorithm (SKHA),

and combined genetic algorithm-particle swarm optimization (GA-PSO) algorithm techniques were

proposed for optimal DG sizing and placement. Moreover, optimization methods like mixed-integer

non-linear programming (MINLP), multi-objective opposition based chaotic differential evolution

(MOCDE) and evolutionary programming (EP) based technique have been suggested for optimal

placement and sizing of DGs aiming loss minimization, and other techno-economic benefits [73-75].

The research in [76] employs the diagonal band Copula and the sequential monte carlo approach

to optimally locate stochastic RDGs in imbalanced distribution power networks. Besides, [77]

proposes a weighted aggregation PSO approach for tackling the selection of solar and wind RDGs

based on their stochastic nature. Furthermore, the authors presented a bi-level metaheuristic

method in [78] to solve the complex modelling approach of renewable energy sources and EV

management in order to accomplish autonomous microgrids. In addition, [79] proposes an optimization

technique for determining the ideal placements and sizes of solar and wind generation systems

while also managing EVs to assemble an autonomous microgrid. [80] presents quasi-reflection

based slime mould algorithm (QRSMA) for solving optimal allocation and sizing problems of

capacitors and distribution generations. Moreover, the authors in [81] have discussed optimal

allocation of renewable distributed generation (RDG) into distribution systems considering seasonal

uncertainties of solar-wind load demands. [82] proposes a new approach for optimal scheduling

of renewable-based multi-energy microgrid (MEM) systems which focuses on robust optimization

with flexible energy conversion and storage devices. A multi-objective probabilistic approach has

been adopted in [83] for smart voltage control of wind-energy integrated systems. Furthermore,

[84] presents comprehensive research on multi-objective optimization of multiple energy integrated

stations for improving energy conversion and utilization efficiency.

The RDG planning research domain also includes realistic distribution networks that use

real-time data. For instances, in the works of [85], the whale optimization technique (WOA)

algorithm was evaluated on IEEE 15-bus, 33-bus, 69-bus, and actual distribution networks like

85-bus and 118-bus test systems to determine the optimal DG-units size. Furthermore, the authors

of [86] introduced a robust and effective technique called hybrid particle swarm optimization

combined with gravitational search algorithm (PSOGSA) and MMFO for determining the optimal
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location and capacity of RDG units for minimizing system power losses and operating costs while

improving voltage profile and voltage stability. For simulation purposes, MEDN 15-bus and

Moscow 111-bus practical test scenarios were analyzed. Besides, the authors of [87] proposed

the power voltage sensitivity constant (PVSC) as a solution to the RDG allocation problem. A

new metric is also proposed, which takes into account the amount of DG penetration as well

as the percentage decrease in real power losses. The suggested technique’s findings have been

validated on a conventional IEEE 33 bus system and a 130 bus actual distribution system in

Jamawaramgarh, Jaipur. Additionally, the indicators of loss sensitivity factors and bus voltage

magnitudes are included in [88] to construct a set of fuzzy expert rules for asserting the preliminary

buses for distributed generator placement. The suggested backtracking search technique (BSA)

approach enables the fuzzy decision-maker to select the best option among the pareto-optimal

choices available. On 33- and 94-node radial distribution networks with varied situations, the

key aspects of the BSA technique are evaluated. Moreover, in the works of [89], the efficacy

of an appropriate control mechanism is demonstrated with case studies for deterministic RDG

placement on base configurations of IEEE 30-bus and 57-bus systems utilizing the SHADE-EC

algorithm. The SHADE-EC method is also used to solve the single-objective and multi-objective

stochastic instances.

1.3.1 Problem statement

Uncontrolled and excessive RDG unit penetration in distribution networks can have a negative

impact on system performance. The prospect of bidirectional power flow, as well as difficulties such

as higher power losses, voltage drop, reactive power management, and power quality issues, are

among these concerns. Therefore, integration of RDG units in distribution networks necessitates

much attention and proper planning to ensure the performance of the electrical network, such as

system reliability, power quality, total active power loss reduction, and economic efficiency can be

met. Besides, the power generated from RDG sources is mostly dependent on uncertainties like

weather, temperature, location of site and time. The key challenge is to cope with uncertainties

in DG integrated power system networks. Several studies have been conducted in the field of

optimal sizing and allocation or placement of multiple and multi-type DGs in distribution systems

employing different optimization techniques. The majority of these works are aimed at improving

the distribution network’s technical parameters in terms of power loss reduction and voltage

stability. Besides, the preceding studies indicate that determining the appropriate RDG location

for distribution networks is a continuous challenge. The significance of optimization techniques in

this research domain cannot be overestimated, as it would be advantageous if major improvements
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could be achieved utilizing a novel or modified optimization technique.

Research gaps

Based on the aforementioned literature review, the following findings may be formed:

• Very limited works have been published on optimal RDG allocation and size when PV and

WT generation uncertainties are combined with load uncertainties.

• The majority of previous studies have ignored the techno-economic assessment of the proposed

techniques.

• The voltage stability margin index (V SMsys) has yet to be investigated in this research

domain.

• AHA is unexplored in the research domain of RDG sizing and allocation when load and

generation uncertainties are considered.

Main Contribution

The objective of this research is to evaluate the location and sizing of RDGs in order to minimize

active power loss, maximize system voltage stability margins, minimize voltage deviation, and

maximize overall yearly energy savings costs. The following is a list of the current work’s major

contributions:

• PV and WT power generation, as well as load variation, are all factored into the RDG sizing

and allocation problem.

• The stochastic characteristics are achieved by using appropriate probability density functions

(PDFs).

• The Artificial hummingbird algorithm (AHA), a recently developed algorithm, is used to

determine the optimal solution with high exploitation potential and exploration aptitude.

• The performance of the suggested AHA is assessed, and its superiority over two of the

most recent metaheuristics used in this domain known as hybrid phasor particle swarm

optimization and gravitational search algorithm (PPSOGSA) and improved harris hawks

based particle swarm optimizer (HHO-PSO) is demonstrated.

• Several scenarios of PV and WT penetration are explored to test the algorithm’s efficacy,

including and excluding uncertainties.

• In all the scenarios evaluated, AHA provides superior solutions and improves the techno-economic

aspects of distribution networks.
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Chapter 2

2 Optimization Algorithm

2.1 Optimal Load-Shedding in Distribution System

2.1.1 Slime Mould Algorithm

The slime mould algorithm (SMA) proposed in [90] is a new meta-heuristic method that is used

in this study to optimize the total remaining load and voltage profiles of islanded DG integrated

distribution networks during load shedding. The technique is based on the slime mould’s inherent

oscillation pattern of food accessing in regard to air fragrances. The flowchart of the algorithm is

depicted in Figure 2.2. The first step of SMA, like other meta-heuristic optimizations, is to create

a random population set. The procedure may be stated as follows:

X = rand(UB − LB) + LB (1)

where LB and UB signifies the lower and upper limits of each parameter in the parameter set,

and rand represents uniform random numbers between [0,1]. The next step is to compute fitness

for each of the parameter sets and update the initial locations Xinitial(j = 1, 2, . . . , n).

S = fitness(X) (2)

[Smellorder, Smellindex] = sort(S) (3)

Slime mould is highly reliant on the biological oscillator’s propagation wave to regulate cytoplasmic

flow in veins, placing them in a better position for food acquisition. To simulate the variations in

venous width of slime moulds, fine tuning parameters
−→
W ,

−→
vb and −→vc are employed to materialize the

changes.
−→
W mimics the oscillation rate of slime mould near various food contents, allowing slime

mould to pursue food more rapidly when they find higher quality food, hence enhancing slime

mould’s efficiency in discovering the optimal sources of food. The weight of the food concentration

−→
W is denoted by the following expression:

−−−−−−−−−−−−−→
W (smellindex(l)) =


1 + rand ∗ log(BF−S(j)

BF−WF + 1), condition

1 − rand ∗ log(BF−S(j)
BF−WF + 1), others

(4)

10



0 200 400 600 800 1000

Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1: Chaotic sinusoidal map

where, BF is the best fitness value achieved so far and WF is the worst fitness value acquired in

the current iteration. Eq.(4) analytically replicates the bipolar feedback between the vein thickness

of the slime mould and the meal intake, where condition denotes that S(j) belongs to the weights

of the top half of the population. When the food concentration is increased, the region’s weight

begins to grow; when the food level is low, the region’s weight reduces, leading to the exploration

of other regions. The synergistic interplay of the other two fine-tuning factors,
−→
vb and −→vc, mirrors

slime mould’s food selecting behavior. The formula for
−→
vb and −→vc is mentioned as follows:

−→
vb = [−a, a] (5)

a = arctan(1 − t

max t
) (6)

−→vc = [−b, b] (7)

b = (1 − t

max t
) (8)

The array of
−→
vb is uniformly distributed randomly between [−a, a] and gradually approaches

zero as the number of iterations increases. The value of −→vc is also uniformly distributed between

[−1, 1] and consequently reaches zero. Slime mould determining whether to pursue the food source

or seek alternative food sources is simulated by the uniform distribution of
−→
vb. The location

updating parameter p is used to boost SMA’s flexibility in various search phases, which increases

the algorithm’s versatility. .

p = tanhS(j) −DF (9)
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Figure 2.2: Slime mould algorithm

where j = 1, 2, ..., n, S(j) reflects X’s fitness, and DF represents the highest fitness acquired

across all iterations. To emulate the whole contraction mode which was inspired by the dispersion

and foraging behavior of slime mould, the following equation reflects its food approaching behavior:

−−−−−→
X(t + 1) =


rand.(UB − LB) + LB, rand < z

−→
X b(t) +

−→
vb.(

−→
W.

−−−→
XA(t) −

−−−→
XB(t)), rand < p

−→vc.
−−→
X(t), rand ≥ p

(10)

Where, t denotes the immediate iteration,
−→
Xb represents the position with the highest smell

concentration in immediate iteration,
−→
X represents slime mould position,

−→
XA and

−→
XB symbolize
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two positions chosen at random from the slime mould and the value of z is kept constant as

0.03 as the probability keeps the balance between exploration and exploitation. The searching

individual
−→
X ’s position may be updated depending on the best location

−→
Xb in each iteration, and

the fine-tuning parameters
−→
W ,

−→
vb and −→vc can change the individual’s position. The inclusion of rand

in the formula permits individuals to generate search vectors at any direction. Therefore, Eq.(10)

allows the searching individual to explore in all feasible directions towards the ideal solution,

imitating slime mould’s circular sector shape while approaching food.

2.1.2 Chaotic Slime Mould Algorithm

The proposed algorithm mentioned in this work follows slime mould algorithm’s Eq.(1) to Eq.(9)

initially, however, in equation Eq.(10), instead of utilizing rand which is a random number, a

chaotic local search approach based on search strategy is presented to increase the performance

of SMA in achieving the optimal solution. The proposed approach speeds the search process and

drives it to progress to a location where the optimal solution is more likely to be reached, boosting

the ability of algorithm exploitation. Chaos is a prevalent event in natural nonlinear systems,

and it’s ergodic quality, notably traversing all states within a specified range without recurrence,

is widely employed as a supplementary method to escape from local optimums. The sinusoidal

chaotic map is employed in this study to produce appropriate chaotic sets. The map was generated

as follows:

Ck = 2.3Ck−1sin(pi ∗ Ck−1) (11)

The chaotic map’s initial value is set as 0.8 in this case and it’s distribution along the iterations

is illustrated in Figure 2.1.

2.2 Optimal Sizing and Placement of Multiple DG Units

2.2.1 Equilibrium optimizer

The EO is based on the property of mass-balance of a well mixed control volume which was first

proposed in [91]. The general behaviour of mass-balance phenomenon can be expressed as a first

order ordinary differential equation (ODE). Deducting the amount of mass leaving the system from

the summation of quantity of mass entering the system and the amount being generated results in

the change in mass over time, which can be equated as:

V
dC

dt
= QCeq −QC + G (12)
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The symbol C stands for the concentration in the control volume. V dC/dt is the rate at

which the mass in the control volume changes. The inward and outward flow rate is denoted by Q.

When there is zero generation inside the experimental volume,that is referred to as concentration

at equilibrium state and is denoted by Ceq.

Solving for C results in:

C = Ceq + (C0 − Ceq)F +
G

λV
(1 −

−→
F ) (13)

Where

−→
F = e−

−→
λ (t−t0) (14)

The exponential term is an important factor affecting the main concentration updating. An

optimum value of this term results in EO to have greater balance between exploration and exploitation.

t in Eq.(14) is directly related with the number of iterations and thus can be formulated as a

function of iterations which decreases with iteration number.

t = (1 − Iter

Max iter
)a2

Iter
Max iter (15)

The current and maximum number of iterations are represented as Iter and Max iter, respectively.

a2 is a constant number that is utilized to control exploitation potential. By reducing the search

speed, the convergence is guaranteed and at the same time it improves the exploration and

exploitation capability of the technique.

Again,the term to in Eq.(14) can be expressed as:

−→
t 0 =

1

λ
ln(−a1sign(−→r − 0.5)[1 − e

−→
λ t]) + t (16)

Exploration ability is directly governed by the constant a1. Higher the value of a1 means greater

exploration capability but lower exploitation possibility and vise versa. Another factor affecting

the exploration and exploitation is the sign(−→r − 0.5). The range of r is between [0-1]. Replacing

the expression of to in Eq.(14) results in :

−→
F = a1sign(−→r − 0.5)[e

−→
λ t − 1] (17)
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The initial concentration are assumed on the basis of the total number of particles and dimensions

coupled with uniform random initialization in the following manner:

Cinitial
i = Cmin + randi(Cmax − Cmin) i = 1, 2, ...n (18)

The equilibrium state is reached when the algorithm converges, and it tends to the global

optimum. Firstly, four possible candidates are assumed for providing a search pattern for the

particles. Another particle is selected by taking the average of the four particles. The first four

candidates mostly controls the global search while the fifth one assists the local search thus the

equilibrium pool and candidates are formed.

−→
C eq,pool = {

−→
C eq(1),

−→
C eq(2),

−→
C eq(3),

−→
C eq(4),

−→
C eq(ave)} (19)

Furthermore, an optimum “generation rate” is proved to enhance the ability of EO for exploring,

exploiting, and local minima avoiding which can be described as a first order exponential decay

process as:

−→
G =

−→
G0e

−
−→
k (t−t0) (20)

−→
G0 denotes the initial value, whereas k denotes the decay constant. To achieve a more regulated

and systematic search pattern and to limit the number of random variables, k is taken as λ and

thus the equation becomes:

−→
G =

−→
G0e

−
−→
λ (t−t0) =

−→
G0

−→
F (21)

where

−→
G0 =

−−−→
GCP (

−→
Ceq −

−→
λ
−→
C ) (22)

−−−→
GCP =


0.5r1 r2 ≥ GP

0 r < p

(23)

Where r1 and r2 are taken arbitrarily in the range of [0-1] and the
−−−→
GCP vector is obtained by

repeating the values obtained from Eq.(23).
−−−→
GCP (Generation rate Control Parameter) includes

the potential of a generation term’s contribution to the process of updating. Ultimately, The EO

updating procedure will be as follows:
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−→
C =

−→
C eq + (

−→
C −

−→
C eq).

−→
F +

−→
G

−→
λ V

(1 −
−→
F ) (24)

The first term in Eq.(24) is an equilibrium concentration, where the second and third terms

reflect the concentration fluctuations. The second term mainly explores the entire space globally

for the best population whereas the third term seeks to improve the accuracy of the solutions.

2.2.2 Chaotic Equilibrium optimizer

The suggested approach in this work is based on the EO initially from Eq.(12) to Eq.(22). However,

in Eq.(23), rather than employing r2, which signifies a random value, a chaotic local search

technique is introduced to improve the efficiency of EO in order to achieve the optimal solution.

Chaos is a typical norm in dynamical nonlinear systems, and its stochastic property of spanning

all phases within a given boundary without recurrence is widely used as an alternate technique for

escaping from local optimums. The suggested technique accelerates the search strategy and directs

it to a region where the best solution is prevalent. In this work, iterative chaotic map has been

used to generate suitable chaotic sets. The map was developed in the following manner:

Ck = sin(pi ∗ a)/Ck−1 (25)

In this context, the chaotic map’s starting value and the value of a are set to 0.7, and its

distribution across iterations is seen in Figure 2.3. Hence, the Eq.(23) can be combined with chaos

in the following manner:

−−−→
GCP =


0.5r1 Ck ≥ GP

0 r < p

(26)

The pseudo code of CEO is illustrated in Table 1.

2.3 Optimal Planning of Multiple Renewable Energy-Integrated

Distribution System with Uncertainties

2.3.1 Artificial Hummingbird Algorithm

A hummingbird explores aspects such as the nectar amount and quality of certain flowers, as well

as the nectar-refilling mechanism in order to pick a suitable source from a variety of food sources.

Hummingbirds’ unique flying skills and precise foraging methods for accessing food sources inspired
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Table 1: Chaotic Equilibrium Optimizer pseudo code

Algorithm : Pseudo-code of Equilibrium Optimizer

Define popsize and Max Iter
Define higher bound and lower bound of the population
Initialize the population of particles
while iter < maxiter

Assign t using Eq.(15) and generate r and
−→
λ

for each candidate of
−→
C eq,pool

Construct
−→
F using Eq.(14)

Construct
−−−→
GCP using Eq.(26)

Construct
−→
G0 using Eq.(22)

Construct
−→
G using Eq.(21)

Update
−→
C using Eq.(24)

end

Calculate each particles fitness value and update
−→
C eq,pool

Return the best
−→
C eq(1)

Iter= Iter+1
end
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Figure 2.3: Iterative chaos map

this algorithm, which varies from prior algorithms in terms of search domain diversity. The different

flying patterns ensure that the algorithm has a high exploitation probability and exploration

ability. Besides, a unique component called the visit table is also included in order to simulate

the hummingbird’s memory for identifying suitable food sources. Hummingbirds employ three

foraging approaches and three flying skills to collect food from sources [92]. The three different

flying patterns are known as axial, diagonal, and omnidirectional, as well as the three different

search strategies are known as guided foraging, territorial foraging, and migration foraging. The

following section includes three mathematical models that simulate three hummingbird foraging

habits.

Initialization

A swarm of n hummingbirds is arbitrarily assigned to n food sources, as follows:
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xw = LB + rand(UB − LB) w = 1..., n (27)

where LB and UB , respectively represent the upper and lower bounds of a d-dimensional

problem. rand is a random vector in the range [0, 1] and the location of the wth food supply that

provides the solution to the particular objective is represented by xw. The visit table of the source

of food can be specified as :

V Tw,e =


0, if w ̸= e w = 1..., n

null, if w = e e = 1..., n

(28)

when w = e, the value of V Tw,e becomes null which means that a hummingbird is collecting

its food from its particular source. Moreover, when w ̸= e the value of V Tw,e becomes zero which

implies that the eth food source has been very recently searched by the wth hummingbird in the

current iteration.

Guided Foraging

Every hummingbird has a general tendency for foraging the source of food with the most

nectar volume, which implies that an intended source must possess a high replenishing rate of

nectar and a lengthy interval without any visit. Three flying methods: omnidirectional, diagonal,

and axial flights are utilized by providing a direction switch vector during foraging. This vector is

utilized to determine if one or more d-dimension space directions are accessible. Most birds can

fly omnidirectionally, but hummingbirds can also glide axially and diagonally. The axial flight can

be expressed as:

D(w) =


1, if w = randi([1, d]) w = 1, ..., d

0, else

(29)

The diagonal flight can be expressed as:

D(w) =



1, if w = Pp(j), j ∈ [1, k]

Pp = randperm(Kp)

Kp ∈ [2, [r1 · (d− 2)] + 1]

0, else w = 1, ..., d

(30)

The omnidirectional flight can be expressed as :
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Table 2: Artificial hummingbird algorithm pseudo code

Algorithm : Pseudo-code of AHA

Define Npop = n = Population size
Define Niter,max

Define higher and lower bound of the population
Initialize the population using Eq.(27)
while tp ≤ Niter,max

for Each population calculate direction switch vector D
if rand ≤ 1/3
Follow diagonal flight using Eq.(30)
else if rand≤ 2/3
Follow omnidirectional flight using Eq.(31)
else Follow axial flight using Eq.(29)
end if
end for

for Each population update foraging behaviour
if rand ≤ 0.5
Follow guided foraging using Eq.(29) to Eq.(34)
else if Follow territorial foraging using Eq.(35), Eq.(36)
end if
if tp = 2n
Follow migration foraging using Eq.(37)
end if
end for

Update positions
Return the best fitness value
tp= tp+1
end while

Dw = 1 i = 1, ...., d (31)

where, an arbitrary integer between 1 and d is returned by randi. An arbitrary permutation

sequence of integers between 1 and Kp is generated by randperm(Kp). r1 is a random value

between 0 and 1. Therefore, a food source is upgraded in terms of the target food source, which is

identified from the current sources. Hence, the equation to replicate directed foraging is as follows:

vpw = xw,tar(tp) + a.D.(xw(tp) − xw,tar(tp)) (32)

a ∼ N(0, 1) (33)

xw(tp) defines the location of the wth source of food at current iteration tp, xw,tar(tp) is the

location of the source of food that the wth hummingbird plans to consume from, and that denotes a

normal distribution with a mean value of zero and a standard deviation of one. Moreover, Eq.(32)

allows each present source to modify its location with relation to the intended source of food and
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replicates guided foraging in hummingbirds using various flying patterns. Hence, the location of

the wth food source is updated as follows:

xw(tp + 1) =


xw(tp) if f(xw(tp)) ≤ f(vpw(tp + 1))

vw(tp + 1), if f(xw(tp)) > f(vpw(tp + 1))

(34)

where f signifies the fitness value of the function. According to Eq.(34), if the candidate food

source’s nectar-refilling rate is greater than the present one, the hummingbird leaves the present

source of food and consumes from the candidate food source following Eq.(32). The visit table

is a key component of the AHA algorithm that retains the information about the visit to the

sources of food. The visit table records how long each food source has been undiscovered, and

a long undiscovered period indicates a high degree of visit. Through Eq.(32), every bird of the

swarm accesses its desired source of food. When a bird undergoes guided foraging utilizing Eq.(32),

keeping in mind of its targeted source of food during each iteration, the visit levels of all the other

sources are increased by one.

Territorial Foraging

When the nectar of the flower has been exhausted, a hummingbird prefers to seek out a new

source of food than it is to visit other current food sources. As a result, a hummingbird might

easily migrate to an adjacent location within its own region, where a new food supply may be

discovered. The mathematical equation for modelling hummingbirds’ territorial foraging behaviour

is as follows:

vpw(tp + 1) = xw(tp) + bp.D.xw(tp) (35)

bp ∼ N(0, 1) (36)

The territorial factor, bp, has a mean value of zero and a standard deviation of one and follows

a normal distribution. By using its specific flight talents as Eq. 35, every hummingbird can swiftly

identify a new source of food in its nearby surroundings.

Migration Foraging

If the number of iterations surpasses the previously specified migration coefficient value, the

bird which is at the source of food with the lowest replenishing rate of nectar will arbitrarily look

for a new source of food within the territory. A hummingbird’s migratory foraging to a destination

might be described as follows:
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xwor(tp + 1) = LB + rand(UB − LB) (37)

Here, xwor is the source of food with the lowest replenishing rate of nectar. The following is a

preferred definition for the migration coefficient in terms of population size (n):

tp = 2n (38)

According to Eq. (32), in the initial stages of iterations, exploration is stressed due to the

significant distance between food sources, but as the number of iterations increases, the distance

iteratively reduces, and therefore exploitation is prioritized.
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Chapter 3

3 Modelling and Problem Formulation

3.1 VSM

Voltage stability margin (V SM) [93] correlates voltage collapse and branch loading of a distribution

network. Fig. 3.4 represents a radial feeder with a number of k branches whose loading indices,

Lk can be formulated as:

Lk = (2
Vv

Vq
cosδqv − 1)2 (39)

G

g h

q v

branch,k

Figure 3.4: Radial feeder

The voltage magnitudes of bus q and bus v are represented by Vq and Vv, respectively, whereas

δqv specifies the phase angle difference between these buses. Now, V SM can be calculated as the

product of all loading indices for all branches of the given radial feeder.

V SM =
∏
l=Ω

Lk (40)

where Ω covers up all the branches of the radial feeder from the starting bus g to the ending

bus h. If there are several feeders in a system, then V SMsys is calculated as the V SM of the

feeder with the minimum value.

V SMsys = min(V SM1, V SM2, V SM3, ...;V SMssf ) (41)

where ssf represents the system’s total number of feeders.

3.2 Operational Constraints

Some operational constraints should be maintained during the whole optimization. To represent

these constraints, following conditions are adopted for our works which are presented next.

i. Power flow balance : Total real power generation (Pgen) and reactive power generation

(Qgen) should be equal to the sum of real power loss (Ploss) and reactive power loss (Qloss) and
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real and reactive load demand (Pload, Qload), respectively.

NG∑
n=1

Pgen =

NL∑
i=1

Pload +

NLine∑
l=1

Ploss (42)

NG∑
n=1

Qgen =

NL∑
i=1

Qload +

NLine∑
l=1

Qloss (43)

where NG represents number of generators and NL denotes total number of load buses, and

NLine represents the total number of branches of the network,

ii. Voltage limit : Voltage (Vi) at each bus should be kept within a permitted range, as

illustrated in in Eq.(44). Generally, within 10% from the nominal voltage value is allowed.

Vi−min ≤ Vi ≤ Vi−max (44)

iii. Voltage stability margin(VSM) limit : The V SMsys value of a system should lie

between 0.67 to 1.

0.67 ≤ V SMsys ≤ 1 (45)

iv.Power flow limit : The transmitted apparent power through branch, l of distribution

system must not exceed maximum thermal limit.

Sl ≤ Sl−max (46)

v. Load priority limit : Load priority limit, Pload−limit represents the minimum amount

of load that must be kept in an islanded distribution system after load-shedding. This can be

described as follows:

Pload−limit(i) = Pi ∗ (%)Loadlevel ∗ PLim(i) (47)

where, PLim(i) denotes the minimum percentage of load that must be maintained in each of

the buses throughout 24 hours. These values were chosen at random prior to the optimization.

Therefore, the remaining load Prem−i at each bus can’t be less than Pload−limit(i), as stated below:

Pload−limit(i) ≤ Prem(i) ≤ Pi (48)

vi. DG penetration limit : Each DG must have a minimum and maximum active and

reactive output power limit value, as stated value:
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Pmin
DGi ≤ PDGi ≤ Pmax

DGi
(49)

Qmin
DGi ≤ QDGi ≤ Qmax

DGi
(50)

However, for the purpose of this study, the minimum and maximum rating of each DG has

been considered as 0.1 MVA to 1.48 MVA with a constant power factor of 0.9 per unit (p.u).

vii. RDG Capacity Constraints The active power capacity of each RDG farm is limited to

a specific maximum.

NRDGi ∗ PRDGi ≤ NRDGimax ∗ PRDGi (51)

where NRDGi is the number of elementary RDG units which comprises the RDG farm at

location i; PRDGi is the rated power of elementary RDG unit at location i; and NRDGimax is the

maximum number of elementary RDG units at location i.

3.3 Optimal Load-Shedding in Distribution System

3.3.1 Fitness Function

The fitness function of this study aims to evaluate the optimal load shedding technique in islanded

systems by maintaining the maximum allowable loads along with system’s acceptable voltage

profile. Hence, the fitness function is written as:

fitness = max(
Prem

Pgen
+ V SMsys) (52)

Prem =

i∑
i=1

Prem(i) (53)

where, i denotes individual bus numbers and Pgen denotes total real power generation of a

particular island. Remaining load, Prem of a particular bus is the amount of load that will be

present at that bus after load shedding.

The solution set considered for the purpose of optimization is the remaining load (Prem(i)) array

which includes the amount of load maintained for each bus and has the same size as the number of

buses in the islanded system under investigation. The Prem

Pgen
term in fitness function has been used

to assure that the quantity of remaining load is maximized with respect to total power generation,

leading in the least amount of total shedded load while satisfying all the operational constraints.
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V SMsys, which is a voltage stability indicator, can identify the critical load in an islanded network

by utilizing the voltage profile of the buses. The initial population set is generated as follows:

Prem(i) = rand(Pi − Pload−limit(i)) + Pload−limit(i) (54)

where Pi denotes the base load at ith bus before load shedding and Pload−limit(i) denotes the

minimum amount of load that must be maintained in ith bus during load shedding.

Hence, the position update Eq.(10) is modified with chaotic sinusoidal map as follows:

−−−−−→
X(t + 1) =


rand(Pi − Pload−limit(i)) + Pload−limit(i), rand < z

−→
X b(t) +

−→
vb.(

−→
W.

−−−→
XA(t) −

−−−→
XB(t)), C(k+1) < p

−→vc.
−−→
X(t), C(k+1) ≥ p

(55)

Where Pi is considered as the higher bound of the population while Pload−limit(i)) is considered

as the lower bound. For the purpose of this work, BSA, original SMA and the proposed CSMA

technique is conducted to demonstrate performance enhancements of CSMA.

3.3.2 Islanding scenarios of IEEE 33 and 69 bus distribution

system

This article analyzes the IEEE 33 bus and the IEEE 69 bus radial distribution system for three

islanding cases. Figure 3.5 and Figure 3.6 depict the islanding scenarios and DG placements for

Island-1 and Island-2, which were developed for IEEE 33 bus system. For Island- 1 and Island-2,

four DG units are taken into account, two of which are constant generators (DG2 and DG4) while

the other two are photovoltaic (PV) generators. With a total load demand of 3.715 MW and

2.3 MVar for the IEEE 33 bus radial distribution system in non islanded scenario, the maximum

supply capacity of all four DG units is 1.83 MW.

Furthermore, Island-3 was developed for IEEE 69 bus distribution system. The baseload power

demand for IEEE 69 bus is 3.8019 MW and 2.6946 MVar without islanding . Three DG units are

designated as constant generators (CG) for Island-3 as shown in Figure 3.6, with a total generation

of 1.747 MW when all DG units are operational. Table 3 and Table 4 displays the rated maximum

power of all the DGs under consideration. As shown in Figure 3.8, the individual load profiles

along a typical day of all the islands are assumed to be the same. The PV generator’s daily power

generation over the course of 24 hours is depicted in Figure 3.9. It is also assumed that all PV’s

power generating characteristics over 24 hours are of the same type with varied ratings.
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Figure 3.5: One-line Diagram of Island-1 for IEEE 33 bus system

2928 3130 32 3326 27

21 43 5 6 8 97 10 1211 1413 15 16 1817

2119 20

2523 24

22

DG

3
DG

4

DG

1

Island 2

DG

2

Figure 3.6: One-line Diagram of Island-2 for IEEE 33 bus system

3.4 Optimal Sizing and Placement of Multiple DG Units

3.4.1 Fitness Function

Optimal DG sizing and placement

The objective of the fitness function adopted in this work is to identify the optimal positioning

and sizing of DGs in order to minimize total active power loss and total voltage deviation while

satisfying all the operational constraints mentioned above.

fitness = minimize(
PLoss

Pbase−Loss
+ Vdeviation) (56)

PLoss =

l∑
l=1

|Il|2Rl (57)

26



2

3

4

5

6

7

37

39

43

45

46

47

44

38

42

40

41

36
48 49 50

2928 3130 32 33 35 3634 37

8

9

10

11

12

13

14

15

51

53 61

16 18 19 20 21 22 23 24 25 26 2717

6054 55 595756

52

62 63 64 65

66 67

68 69

1

DG 

3

DG

2

DG 

1

Island 3

Figure 3.7: One-line Diagram of Island-3 for IEEE 69 bus system
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Figure 3.9: Daily PV generation

Vdeviation =

i∑
i=1

|Vi − VM | (58)
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Table 3: IEEE 33 Bus system DG specifications

Island 1 and island 2
Name Type Location Active power rating (MW)
DG1 PV 4 .03
DG2 CG 7 .8
DG3 PV 25 .6
DG4 CG 30 .4

Table 4: IEEE 69 Bus system DG Specifications

Island 3
Name Type Location Active power rating (MW)
DG1 CG 11 .259
DG2 CG 18 .551
DG3 CG 61 .937

Where, Pbase−Loss represents the amount of loss in the absence of DGs, PLoss signifies the

amount of loss after penetrating DGs, VM equals 1.0 p.u and Vi represents the voltage magnitude

(p.u) at ith bus, and Il and Rl denotes the current flow and the resistance of the lth branch.

Load shedding optimization

The fitness function used for optimal load shedding strategy determines the ideal shedded load

while preserving the maximum amount of loads and the appropriate voltage profile of the islanded

network. Therefore, the fitness function is expressed as follows:

fitness = maximize(
Srem

Sgen
+ V SMsys) (59)

Srem =

i∑
i=1

Srem(i) =

i∑
i=1

Si − Ss(i) (60)

Prem(i) = pf(i) ∗ Srem(i) (61)

Qrem(i) =
√

(Srem(i))2 − (Prem(i))
2 (62)

where i indicates individual bus numbers, pf(i) denotes the power factor at ith bus, Sgen

signifies total apparent power generation of an island, Srem(i) signifies the remaining apparent load

at ith bus, Prem(i) represents the remaining real load at ith bus and Qrem(i) denotes the remaining

reactive load at ith bus.

The optimal solution set evaluated is the shedded load (Ss(i)) array, which contains each node’s

amount of load to be shed. Furthermore, Si denotes the total apparent load demand at ith

bus before load shedding. The maximum quantity of remaining apparent load, Srem has been
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employed to ensure that the remaining load quantity is maximized, culminating in the minimal

amount of total load to be shed, Ss while agreeing all the operational constraints. Notably, the

(1 − Sload−limit(i)) term is regarded as the solution set’s upper bound. Moreover, V SMsys can

detect the susceptible branch of an islanded network by analyzing the voltage magnitudes of each

of the buses. Section 3.1 covers through the detailed expression for V SMsys. The initial population

was initiated as follows:

SS(i) = rand(1 − Sload−limit(i)) (63)

3.5 Optimal Planning of Multiple Renewable Energy-Integrated

Distribution System with Uncertainties

3.5.1 Modelling

Renewable power is primarily affected by weather conditions such as solar irradiation, temperature,

wind speed, etc. As a result, before planning the integration of RDG units into electrical networks,

the uncertainties and unpredictable behaviour of renewable output power should be assessed

extensively. Monte carlo simulation method is a probabilistic approach is the most used method to

characterize power system uncertainties. Besides, weibull and beta functions were used to model

the uncertainty of wind speed and solar irradiance, respectively. For the purpose of this study,

historical weather information for one year has been collected to obtain a typical annual profile for

stochastic behaviour pattern of solar irradiance and wind speed [94].

Modelling of WT

A wind turbine’s power generated, PWT , can be formulated as :

PWT (v) =



0 for v ≤ vci

v−vci
vn−vci

∗ PWTR for vci < v ≤ vn

PWTR for vn < v ≤ vco

0 for v ≥ vco

(64)

The stochastic nature of wind resources in a specific location can be evaluated by utilizing the

following weibull probability density function:

fv(v) = K/C ∗ (v/C)K−1 ∗ e−(v/C)K (65)

The weibull function’s cumulative distribution function can be expressed as Eq.(66) while wind
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Figure 3.10: Wind speed test data [94]

speed can be determined from its inverse as shown in Eq.(67).

Fv(v) = 1 − e−(v/C)K (66)

v = C ∗ [−ln(r)](1/K) (67)

where, k and C are the shape factors whose expected values can be found using the average

and standard deviation (std) of the wind speed measurements in a period t can be expressed as

Eq.(68) and Eq.(69).

Kt = (σt
v/µ

t
v)−1.086 (68)

Ct = µt
v/Γ(1 + 1/Kt) (69)

Weibull PDF can be expressed in discrete form by sub-dividing the considered time interval t

into Nv states. By considering g as the inverse of Nv, Eq.(65) and Eq.(68) can be re-written and

the forecasted WT power can be formulated as Eq.(70).

PWT = [

Nv∑
g=1

PWTg ∗ fv(vtg)]/[

Nv∑
g=1

fv(vtg)] (70)

where, v = vtg and fv (vtg) refers to the probability of wind speed at tth time interval for the

gth state.

Modelling of PV

Power generated from PV units significantly depends on solar irradiance and it can be formulated
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Figure 3.11: Solar irradiance test data [94]

as:

PPV (G) =


(PPV R ∗G2)/(GSTC ∗R) for G < Rc

(PPV R ∗G)/GSTC for G > Rc

(71)

The beta probability density function is used to achieve realistic PV unit modelling by considering

the stochastic behaviour of solar irradiation.

fs (G) =


[Γ(α + β)/(Γ(α) ∗ Γ(β))] ∗G(α+1) ∗ (1 −G)(β−1)

for 0 ≤ G ≤ 1, α ≥ 0, β ≥ 0

0 otherwise

(72)

where α and β are the shape factors of beta function which can be determined by considering

the average and standard deviation of the solar irradiance as shown in Eq.(73) and Eq.(74).

βt = (1 − µt
G) ∗ [(µt

G ∗ (1 + µt
G)/(σt

G)2) − 1] (73)

αt = (µt
G ∗ βt)/(1 − µt

G) (74)

Beta PDF can be taken into discrete form by sub-dividing the considered time interval t into Ns

states. Thus, re-writing the Eq.(72) while considering g from 1 to Ns, the forecasted PV generated

power can be formulated as Eq.(75).

PPV = [

Ns∑
g=1

PPV g ∗ fs(St
g)]/[

Ns∑
g=1

fs(S
t
g)] (75)

where, fs(G
t
g) refers the solar irradiance probability at tth time interval for gth state.

Load Modelling

The normal probability distribution function can be used to define load patterns for each hour

of a specified daily load.
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Figure 3.12: IEEE reliability test system (RTS) load data [95]

fL(L) =
1√

2πσL

e
− (L−µL)2

2σ2
L (76)

fL(L) = (1/2) (1 + erf((L− µL)/
√

2σL) (77)

L = µL +
√

2σL ∗ erf−1(2r − 1) (78)

where L is a random variable that represents load, and µL, σL represent the average and std of

L, correspondingly. erf(.) and erf−1(.) signify the error and inverse error functions, respectively,

and r is a random number between 0 and 1.

Hour, t is divided into NL states for convenience, and the associated load and probability value

for each state can be determined using Eqs.(77) and (78), accordingly. L can be reformulated as :

Lt =

NL∑
g=1

LgfL(Lt
g)/

NL∑
g=1

fL(Lt
g) (79)

where Lt
g refers the load of state g at hour t; Lg is the load level at state g and fL(Lt

g) is

the probability of the load level of the state g at hour t. The load data for different seasons are

collected from [95].

3.5.2 Fitness Function

The fundamental objective of this work is to maximize the techno-economic benefits of RDGs

in distribution networks. Several aspects are explored to comprehend the simulation, including

active power loss minimization, bus voltage improvement, network voltage stability margin (VSM)

enhancement, and yearly economic loss reduction. Using the weighted sum approach, these four

evaluation criteria can be integrated into a single objective function.
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OF = min (ω1 ∗OF1 + ω2 ∗OF2+

ω3 ∗OF3 + ω4 ∗OF4)

(80)

where, OF1, OF2, OF3, OF4 denotes the reduction in total active power losses, strengthening

bus voltages by minimizing voltage deviation, improvement of VSM of the network, increasing the

amount of total annual energy saving, respectively. ω1, ω2, ω3, ω4 represents the weighted factors

assigned to OF1, OF2, OF3, OF4 respectively and total sum of absolute values of ω1, ω2, ω3, ω4

is considered to be equal to 1. It should be noted that all weighted factors are considered to be

the same with a value of 0.25. Furthermore, all the values of Eq.(80) are in per unit (p.u.) values.

The four components of OF can be expressed mathematically like following equations.

OF1 = Ploss =

NBR∑
b=1

Ploss,b (81)

OF2 = VD =

NB∑
i=1

|Vi − V ref
i | (82)

VD is considered as the total voltage deviation while Vi denotes the actual voltage magnitude

(p.u) at ith bus and V ref
i represents 1.0 (p.u) of voltage magnitude.

OF3 =
1

V SMsys
(83)

OF4 =
1

TAES
(84)

where,

TAES = AELT,no DG −AELT,DG (85)

AELT,noDG = Ploss,no−DG ∗ CE ∗ 8760 (86)

AELT,DG = Ploss,RDG ∗ CE ∗ 8760

+[(CDG ∗
NDG∑
m=1

PDG,m)/CRF ]
(87)

CRF = [R ∗ (1 + R)TDG ]/[(1 + R)TDG − 1] (88)
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3.5.3 Control Variables

Positions, or indices of connected buses, and the number of elementary RDG units that should be

connected at these buses are the control variables in this optimization problem. Considering these

two variables, the RDG farms’ optimum rated power can be determined as:

PRDGF = NRDG ∗ PRDG (89)

where PRDGF is the RDG farms’ total rated power, NRDG is the number of elementary RDG

units that make up an RDG farm (WT farm or PV farm), and PRDG is the rated power of an

elementary RDG unit.

3.6 Test Systems Description

IEEE 33 bus and IEEE 69 bus distribution systems are employed as test systems in this work.
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Figure 3.13: IEEE 33 bus distribution system

The one-line schematics for the IEEE 33 and IEEE 69 buses are shown in Fig. 3.13 and

Fig. 3.14, respectively. The total load demand of the IEEE 33 bus system is 3.715 MW and 2.3

MVAr, whereas the total load demand of the IEEE 69 bus system is 3.802 MW and 2.695 MVAr.

Furthermore, under normal operating conditions, total active power loss is 202.5 kW for the 33

bus system and 220.3 kW for the 69 bus system.
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Figure 3.14: IEEE 69 bus distribution system
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Chapter 4

4 Results Analysis

4.1 Optimal Load-Shedding in Distribution System

The proposed optimal load shedding technique employing the Chaotic slime mould algorithm

(CSMA) is simulated and evaluated against original SMA and BSA employing identical methodologies.

The purpose of this research is to develop a chaotic optimization method for optimal load shedding

and compare it to SMA and BSA in order to demonstrate the superiority of the proposed approach.

To ensure a fair comparison, the total number of iterations (1000) and initial population size (50)

are maintained constant across all three methods for each island. Moreover, the stopping criterion

for the algorithms is set to be the maximum number of iterations. A comparative study of CSMA,

SMA, and BSA in terms of elapsed time and best fitness values obtained while maximizing the

objective function is presented in the following section. Additionally, for nonparametric statistical

analysis purposes, each algorithm is evaluated 30 times for Island-1, with the average, best and

the worst results being reported.

4.1.1 Comparative results of the algorithms

Table 5 shows each algorithm’s fitness value, remaining load, VSM, and computational time

required for each of the islands considered. It appears that, for all the islanding scenarios, slime

mould based optimization technique performs superior to BSA. More notably, the suggested chaotic

slime mould method surpasses the fitness values achieved in SMA in each islanding instance,

indicating that using chaos instead of random numbers leads to a superior fitness value with less

computing time for load shedding optimization. Furthermore, the findings in Table 5 show that

CSMA assures greater remaining load in the system with higher voltage stability margin values

than SMA and BSA. In Island-1, CSMA outperforms BSA and SMA by a small margin, whereas on

Island-2 and Island-3, CSMA performs significantly better. Hence, it has been discovered that as

the number of buses on an island increases, the fitness value difference between the algorithms grows

and CSMA performs far effectively. In addition, it was revealed that the time disparities among

the algorithms are insignificant for Island-1, which has the smallest network among all the islands.

Furthermore, in terms of elapsed time, BSA outperforms SMA, while CSMA remains the best of

the three optimization approaches in Island-1. Likewise, CSMA’s fitness value outclasses BSA and

SMA on the other two islands, with 33 and 40 buses on Island-2 and Island-3, respectively. The
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computational time disparities between the algorithms rose considerably and CSMA outperformed

both BSA and SMA.

Table 5: Fitness values and corresponding elapsed time

Algorithm Parameter Island-1 Island-2 Island-3
Fitness Value 1.9164 1.9232 1.9782

Remaining load (MW) 0.8229 1.8179 1.7157
BSA VSM 0.9250 0.9299 0.9994

Elapsed time (s) 49.70 84.93 103.77
Fitness Value 1.9234 1.9250 1.9872

Remaining load (MW) 0.8239 1.818 1.728
SMA VSM 0.9308 0.9316 0.9981

Elapsed time(s) 53.23 74.84 89.57
Fitness Value 1.9265 1.9320 1.9915

Remaining load (MW) 0.8243 1.8201 1.7347
CSMA VSM 0.9334 0.9373 0.9986

Elapsed time (s) 49.94 70.30 83.31

To adequately compare the algorithms, 30 independent runs of each algorithm were performed

on Island-1 with the same number of iterations and the same initial population. Table 6 shows the

average, best, and worst values of each scheme in terms of fitness value and computing time. The

recommended CSMA had a better average and best fitness value throughout the independent runs

compared to BSA and SMA. Moreover, it is found that, the worst CSMA fitness (1.9200) is much

better than the best BSA fitness (1.9164) and it also equals the average SMA fitness (1.9200).

In terms of elapsed time, BSA outclasses SMA only in Island-1 while CSMA remains the best

amongst the three in every test system. Moreover, Table 5 depicts that as the network becomes

more intricate and larger, time consumption becomes an even more important factor in favoring

CSMA over the other two algorithms.

Table 6: Comparative results of 30 runs in Island-1

Parameter Algorithm Elapsed Time(s) Fitness Value
BSA 49.70 1.9164

Best result SMA 50.50 1.9234
CSMA 48.28 1.9265
BSA 52.46 1.9115

Average result SMA 52.96 1.9200
CSMA 50.57 1.9220
BSA 57.56 1.9039

Worst result SMA 56.39 1.9164
CSMA 55.64 1.9200

4.1.2 Nonparametric Statistical Analysis

For further investigation, the three algorithms are subjected to non-parametric statistical analysis

among the 30 independent runs each for Island-1.

The one-sample Kolmogorov–Smirnov (KS) test is utilized where the null hypothesis, H0 implies

that the samples have a normal distribution. The opposing hypothesis, H1, implies that the samples
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do not conform to a normal distribution at a significance level of 0.05. The results of the one-sample

KS test are shown in Table 7. CSMA-based algorithm outperforms the BSA and SMA in terms

of mean value. Evidently, the standard deviation result demonstrates that CSMA is much closer

to the optimal result than BSA, though standard deviation value of SMA is same as CSMA. The

p-values for CSMA, SMA, and BSA are all less than 0.05 (nearly equal to zero), indicating that

the data samples do not fit the normal distribution due to the rejection of H0 and acceptance of

H1.

Table 7: One sample KS test results

Parameters BSA SMA CSMA
N 30 30 30

Mean 1.9115 1.9200 1.9220
SD 0.003 0.0015 0.0015

Most extreme differences -0.0104 -0.007 -0.0065
KSSTAT 0.9715 0.9723 0.9726

Additionally, the paired t-test is used to explore differences between the algorithms. With a

0.05 significance level, p value less than .05 implies that the mean of data sets is equal, whereas p

value more than .05 denotes that the mean of data sets is dissimilar. The test findings in Table 8

demonstrate that the three optimization algorithms are substantially different from one another,

with paired p values less than 0.05. The standard deviation value proves that CSMA and SMA

results are comparatively closer than the other pairs. Thus, from the other results depicted in

Table 8, it can be concluded that the three pairs are considerably different to one another at 95%

confidence level.

Table 8: Paired ttest results

Parameter BSA-CSMA BSA-SMA CSMA-SMA
Mean -0.0103 -0.0085 0.0018

p 0 0 0
tstat -14.2893 -12.1661 4.2397
SD 0.0039 0.0038 0.0023

4.1.3 Optimal load shedding for Island-1

For simulation purposes, the performance at hour 16:00th is examined for all three island scenarios,

with 100 % load demand and PVs operating at full capacity. The load demand at 16th hour is

1.4050 MW and total generation is 0.83 MW, representing a power mismatch of 40.9%. After

completing optimization for Island-1, BSA has a fitness value of 1.9164, whilst SMA and CSMA

achieves 1.9234 and 1.9265, respectively. The optimization procedure requires 52 seconds for SMA

and 49 seconds for CSMA and BSA. It has been observed that CSMA has a higher fitness value
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Figure 4.15: Buswise remaining load after optimization in Island-1
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Figure 4.16: Voltage profile of Island-1 after optimization

than BSA and SMA and is faster in terms of computing time. After load shedding, BSA results in

0.822 MW of remaining load implying that 0.583 MW load is curtailed after optimization, whereas

in the cases of SMA and CSMA, the remaining load is 0.823 MW and 0.824 MW. It has been

found that CSMA curtails 2 kW and 1 kW less load than BSA and SMA, indicating CSMA’s

superior performance in maintaining the highest proportion of remaining load after optimum load

shedding. Furthermore, CSMA distributes the remaining loads more evenly amongst the nodes of

the network as shown in Figure 4.15, which makes the algorithm more coherent in terms of load

shedding optimization.

Figure 4.16 illustrates the voltage profiles for all algorithms in Island-1 which demonstrates

that CSMA also outperforms SMA and BSA in terms of voltage profiles. The voltage stability

margin (VSM) of CSMA is 0.9334, while that of BSA and SMA is 0.925 and 0.9308, respectively.

Hence, as far as voltage stability is concerned, which is an essential parameter in this study, CSMA

is preferable to BSA and SMA.

4.1.4 Optimal load shedding for Island-2

Similar to Island-1, the simulations are done for the 16th hour with total load demand of 3.715

MW, while total generation is 1.83 MW with all the DG’s operating. Following the application
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of the optimal load shedding strategies discussed previously, the CSMA-based algorithm retains

1.8201 MW as remaining load, curtailing 1.8949 MW load from Island-2, whereas SMA and BSA

, curtails 2.1 kW and 2.2 kW more than CSMA respectively as shown in Table 3. Similar to

Island-1, CSMA outperforms SMA and BSA in determining the ideal amount of remaining load

and ensuring voltage stability, as the primary goal of this study is to maximize the amount of load

preserved. Figure 4.17 depicts the load remaining after optimization in kW at each bus for CSMA,

SMA, and BSA, corresponding to the load priority limits considered.
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Figure 4.17: Buswise remaining load after optimization in Island-2
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Figure 4.18: Voltage profile of Island-2 after optimization

CSMA-based algorithm exceeds SMA and BSA in terms of fitness value and VSM while

requiring less computational time. Notably, the voltage stability indicator V SMsys value is

significantly higher in CSMA, which makes the algorithm more efficient. Voltage profiles are

also improved in the CSMA-based method, as seen in Figure 4.18. Though SMA or BSA provides

superior results for particular buses, CSMA performs better in the overall circumstances with even

distribution of the loads.

4.1.5 Optimal load shedding for Island-3

The optimization techniques are used for Island-3 in the same approach that they were used for

Island-1 and Island-2. The mentioned island has a total demand of 2.674 MW and all the DG’s
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Figure 4.19: Buswise remaining load after optimization in Island-3
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Figure 4.20: Voltage profile of Island-3 after optimization

total generation provides 1.747 MW with a power mismatch of 34.6%. The result indicates that

CSMA outperforms SMA and BSA in terms of achieving the highest amount of remaining load

after optimum load shedding. In addition, CSMA is quicker and has a higher fitness value than

SMA and BSA. BSA provides a total of 1.715 MW load with less VSM value, whereas SMA and

CSMA provide 13 kW and 20 kW more loads respectively to the networks as shown in Figure 4.19.

Figure 4.20 depicts the voltage profiles of the buses after load shedding done by CSMA, SMA,

and BSA. Though BSA provides superior voltage profiles for specific buses, CSMA provides the

best overall performance including remaining load. After studying all three islanding scenarios, an

intriguing conclusion can be drawn: as the size of the island network grows, the acceptability and

performance of CSMA over SMA and BSA becomes more pronounced.

4.1.6 Convergence characteristics and hourly performance

of CSMA

Figure 4.21 illustrates a 24-hour simulation of the proposed algorithm while maximizing the

objective function. The figure indicates that the hourly performance of CSMA is quite impressive.

It has been observed that, CSMA is efficient in utilizing the total power generation in an effective

way by allocating optimal remaining loads throughout the network. Furthermore, the difference
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between power generation and remaining load is minimal, indicating that the algorithm adequately

utilizes the total power generation. Moreover, in terms of algorithm convergence characteristics,

Figure 4.22 depicts Island-2’s convergence curve for all the three algorithms. In addition, Figure

4.23 depicts a zoomed-in representation of the convergence curve, allowing each algorithm’s differences

of fitness values to be distinguished. As shown in the figure, CSMA converges faster than BSA

and SMA, making the algorithm more suitable for load shedding optimization, as fast convergence

characteristics of the algorithm is one of the most important criteria in load shedding optimization.
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Figure 4.21: 24 hour basis CSMA performance on Island-1
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Figure 4.22: Convergence curve for Island-2
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4.2 Optimal Sizing and Placement of Multiple DG Units

In this work, IEEE 33 bus and 69 bus radial distribution systems are being used as test systems.To

assess the efficacy of the suggested CEO algorithm, the system performances are evaluated and

compared to TLBO, MMFO, and the original EO algorithm using MATLAB. The next section

compares CEO, EO, MMFO, and TLBO in terms of overall computational time and fitness

values achieved. To achieve a valid comparison, the initial population set size (50) and total

iteration number (100) are kept identical for all the four algorithms. Furthermore, the algorithms’

termination condition is set to the maximum number of iterations. Furthermore, each technique

is evaluated 30 times for 3 and 4 DG penetration scenarios for nonparametric statistical analysis ,

with the best, mean and the worst outcomes presented.

4.2.1 Comparative analysis of the algorithms

Table 9 shows the best, average, and worst results of fitness values and elapsed time duration for

independent 30 runs of each method in the case of 3 DG and 4 DG placement in IEEE 33 and 69 bus

systems. It appears that, in terms of fitness value, CEO outperforms rest of the three algorithms.

In some of the cases, worst fitness result of CEO is better than the best result of MMFO. Also it

has been observed that, MMFO is faster than TLBO although TLBO performs better than MMFO

in terms of fitness value. Moreover, EO and CEO beats TLBO by a fair margin regarding elapsed

time as TLBO has the highest computational time among all the algorithms. Notably, CEO beats

EO in terms of average, best, and worst fitness values, regardless of whether CEO outperforms EO

by a small margin in terms of computing speed. Hence, it has been established that CEO trumps

all other algorithms in both of fitness function value and computational speed.

4.2.2 Nonparametric statistical analysis

The non-parametric statistical analysis was conducted for 30 individual runs to better assess the

performance of the aforementioned four methods. Following that, each method is subjected to the

one-sample Kolmogorov–Smirnov (KS) test and the results are illustrated in Table 10. At a level

of significance of 0.05, the null hypothesis, H0, indicates that the data are normally distributed,

whereas the second hypothesis, H1, indicates that the data do not fit to a normal distribution.

It has been observed that, CEO outperforms TLBO, MMFO and EO for 3 DG and 4 DG

placement scenarios of IEEE 33 and 69 bus radial distribution system in terms of mean value.

Furthermore, the standard deviation (SD) values presented in the following table represents that

CEO is significantly nearer to the optimal solution due to it’s low SD value than TLBO, MMFO

and EO. In addition, for all scenarios of DG placement, the most extreme difference is smallest for
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Table 9: Comparative results

System DG Parameter Algorithm Fitness Elapsed Time(s)
TLBO 0.1779 19.4862

Best result MMFO 0.2432 9.4949
EO 0.1772 8.0346
CEO 0.1686 7.9545
TLBO 0.2125 19.9466

3 DG Average result MMFO 0.2572 8.5760
EO 0.1918 8.7512
CEO 0.1831 8.6425
TLBO 0.2444 21.1554

Worst result MMFO 0.3065 9.4782
EO 0.2383 9.9108
CEO 0.2295 9.8609

33 Bus TLBO 0.1185 18.6736
Best result MMFO 0.1254 8.9809

EO 0.1196 8.3477
CEO 0.1149 8.0447
TLBO 0.1321 20.5070

4 DG Average result MMFO 0.1898 8.9374
EO 0.1343 9.1064
CEO 0.1242 8.7730
TLBO 0.1740 25.1213

Worst result MMFO 0.2431 9.4153
EO 0.1630 10.0943
CEO 0.1323 9.2473
TLBO 0.1579 45.8670

Best result MMFO 0.1802 19.0329
EO 0.1454 19.4216
CEO 0.1441 18.7133
TLBO 0.1649 50.8927

3 DG Average result MMFO 0.2437 21.1875
EO 0.1593 21.5526
CEO 0.1528 21.0240
TLBO 0.1884 55.7464

Worst result MMFO 0.3622 22.9471
EO 0.1901 23.1049
CEO 0.1706 22.3797

69 Bus TLBO 0.0957 46.3230
Best result MMFO 0.1255 19.7123

EO 0.1094 19.0122
CEO 0.0927 18.6655
TLBO 0.1198 50.6832

4 DG Average result MMFO 0.2077 21.7933
EO 0.1368 22.4092
CEO 0.1160 22.4059
TLBO 0.1540 58.0237

Worst result MMFO 0.2667 23.3013
EO 0.1901 23.2928
CEO 0.1427 26.4638

CEO.

The paired t-test is also utilized to investigate discrepancies of the algorithms and results are

shown in Table 11. With a level of significance of 0.05, p value lesser than 0.05 indicates that the

average of the data sets is identical, however a p value greater than 0.05 indicates that the average

of the data sets is different. It has been observed that, TLBO and EO results are closer for the 4

DG case of the IEEE 33 bus and 3 DG case of the IEEE 69 bus system, while TLBO and CEO are
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Table 10: KS test results (One sample)

System DG Parameters TLBO MMFO EO CEO
N 30 30 30 30
Mean 0.2125 0.2572 0.1918 0.1831

3 DG SD 0.0208 0.0139 0.0178 0.0097
Most extreme
difference

-0.0665 -0.0632 -0.0611 -0.0609

33 bus KSStat 0.5706 0.5961 0.5703 0.5669
N 30 30 30 30
Mean 0.1321 0.1898 0.1343 0.1242

4 DG SD 0.0119 0.0287 0.0117 0.0051
Most extreme
difference

-0.0555 -0.1177 -0.0434 -0.0174

KS stat 0.5472 0.5499 0.5476 0.5457
N 30 30 30 30
Mean 0.1649 0.2437 0.1593 0.1528

3 DG SD 0.0073 0.0441 0.0111 0.0073
Most extreme
difference

-0.0305 -0.1820 -0.0447 -0.0265

69 bus KS stat 0.5627 0.5715 0.5578 0.5573
N 30 30 30 30
Mean 0.1198 0.2077 0.1368 0.1160

4 DG SD 0.0138 0.0395 0.0190 0.0103
Most extreme
difference

-0.0583 -0.1412 -0.0807 -0.0500

KS stat 0.5381 0.5499 0.5435 0.5369

Table 11: Paired ttest result

System DG Case Mean p tstat SD
TLBO-MMFO -0.0448 1.4310e-11 -10.6871 0.0230
TLBO-EO 0.0206 0.0010 3.6542 0.0309

3 DG TLBO-CEO 0.0294 4.6143e-08 7.3195 0.0220
MMFO-EO 0.0654 2.2091e-14 13.9351 0.0257
MMFO-CEO 0.0741 5.5520e-20 22.6409 0.0179
EO-CEO 0.0087 0.0360 2.1992 0.0218

33 bus TLBO-MMFO -0.0577 1.1532e-11 -10.7863 0.0293
TLBO-EO -0.0023 0.4465 -0.7718 0.0160

4 DG TLBO-CEO 0.0079 0.0021 3.3716 0.0128
MMFO-EO 0.0555 1.9886e-11 10.5369 0.0288
MMFO-CEO 0.0656 3.4541e-13 12.4829 0.0288
EO-CEO 0.0101 7.2931e-04 3.7776 0.0147
TLBO-MMFO -0.0787 1.0850e-10 -9.7823 0.0441
TLBO-EO 0.0056 0.0403 2.1468 0.0143

3 DG TLBO-CEO 0.0120 1.6243e-06 5.9929 0.0110
MMFO-EO 0.0843 1.0066e-10 9.8149 0.0471
MMFO-CEO 0.0907 6.8267e-12 11.0297 0.0451
EO-CEO 0.0064 0.0289 2.2991 0.0152

69bus TLBO-MMFO -0.0879 7.9853e-13 -12.0625 0.0399
TLBO-EO -0.0169 0.0014 -3.5333 0.0262

4 DG TLBO-CEO 0.0038 0.2870 1.0847 0.0193
MMFO-EO 0.0709 2.7574e-09 8.4262 0.0461
MMFO-CEO 0.0917 1.1704e-13 13.0407 0.0385
EO-CEO 0.0207 1.9416e-06 5.9279 0.0192

comparable for the 4 DG case of the IEEE 69 bus system. Furthermore, the remaining pairings

have p values less than 0.05, indicating that they are significantly different from one another.

‘
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Figure 4.24: Three DG units installation

4.2.3 Three DG units

The CEO simulation results are compared to other techniques for locating and sizing three DG

units in Table 12. Particularly, for demonstration purposes, only the best result out of the 30

independent runs are presented here for each algorithm. In terms of reducing power loss and

voltage deviation, it appears that the suggested CEO algorithm outperforms all other algorithms

evaluated when three DG units are used in IEEE 33 bus systen. It has also been observed that,

for 33 bus system, CEO minimizes the active power loss by 90.3% to the base loss, which is the

best of all the algorithms compared. Furthermore, CEO provides 0.7% , 4.5% and 0.8% less power

loss compared to EO, MMFO and TLBO. Similarly, in the IEEE 69 bus system, CEO reduces

active power loss to the base loss by 92.7%, which remains the superior of all the algorithms.
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Table 12: Results obtained for three DG units installation

System Algorithm DG 1 DG 2 DG 3 Loss (kW) Voltage
Deviation

Fitness Elapsed
Time (s)

Size(MVA) Bus Size(MVA) Bus Size(MVA) Bus
TLBO 1.1428 12 1.3028 24 1.4307 30 21.1 0.0739 0.1780 19.4862

33 Bus MMFO 0.8218 13 1.3942 30 0.7205 7 28.7 0.1015 0.2432 9.4949
EO 1.1365 12 1.4148 30 1.3108 24 20.9 0.074 0.1772 8.0346
CEO 1.3438 24 1.4579 30 0.9581 13 19.6 0.0718 0.1685 7.9545
TLBO 0.9299 57 1.4346 63 0.8293 14 19.4 0.0699 0.1579 45.8670

69 Bus MMFO 0.8331 14 1.0165 58 1.234 64 21.3 0.0835 0.1801 19.0329
EO 0.9701 63 1.1154 13 1.0512 61 16.1 0.0723 0.1453 19.4216
CEO 1.0801 61 0.8821 14 1.0029 62 14.1 0.0801 0.1441 18.7133

Table 13: Results obtained for four DG units installation

System Algorithm DG 1 DG 2 DG 3 DG 4 Loss(kW) Voltage
Deviation

Fitness Elapsed
Time (s)

Size(MVA) Bus Size(MVA) Bus Size(MVA) Bus Size(MVA) Bus
TLBO 0.6089 15 1.1176 7 1.0157 24 1.0362 31 14.1 0.0489 0.1185 18.6764

33 Bus MMFO 1.052 24 0.9789 6 1.2342 30 0.646 14 14.1 0.0558 0.1254 8.9800
EO 1.0252 25 1.2383 30 0.9247 8 0.5371 15 14.5 0.048 0.1196 8.3477
CEO 1.2333 30 0.8036 7 1.1388 24 0.6477 15 13.6 0.0477 0.1140 8.0447
TLBO 1.0777 62 0.4004 20 0.955 61 0.7515 67 10.4 0.0485 0.0960 46.3230

69 Bus MMFO 1.2965 61 0.2838 23 1.04 66 0.6586 62 12 0.071 0.1254 19.7123
EO 0.562 17 1.1037 61 0.8985 62 0.7504 51 10.7 0.0608 0.1093 19.0122
CEO 0.9434 62 1.0488 61 0.9095 10 0.3636 23 10.4 0.0455 0.0926 18.6655

Moreover, CEO generates the best fitness value of all the algorithms in the 69 bus system. It has

also been observed that, for both the systems, CEO is the fastest of all the algorithms in terms of

computational time. Moreover, as seen in Figure 3.9b, CEO and EO converge significantly faster

than TLBO and MMFO for 69 bus system. Figures 4.24a depict the effect of adding three DG

units on the voltage profile while utilizing the considered algorithms. As indicated, CEO appears

to provide the optimal voltage profile for the 33 bus system. However, for 69 bus systems, TLBO

outperforms CEO in terms of voltage profile, but CEO remains the best approach due to greater

fitness value, 3 kW less active power loss, and faster computational time.

4.2.4 Four DG units

Table 13 compares the CEO simulation results to different approaches for locating and sizing four

DG units. Notably, only the best result of 30 separate runs for each algorithm are presented for

illustrative purposes. In order to minimize power loss and voltage deviation, the suggested CEO

algorithm appears to outperform rest of the algorithms investigated when using four DG units, as

it does with three DG units. According to the findings obtained for both the test systems, CEO has

the best fitness value and the shortest computing time, demonstrating the algorithm’s superiority

over alternative optimization methodologies. For 33 bus system, CEO reduces active power loss by

93.2% relative to the base loss, which is the best of all the algorithms tested. Furthermore, when

compared to EO, MMFO, and TLBO, CEO delivers 0.9 KW, 0.5 KW, and 0.5 KW less power loss.
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Additionally, CEO minimizes active power loss to base loss by 95.2 % in the IEEE 69 bus system,

which is superior compared to the other methods tested. Furthermore, among the algorithms for

each test system, the voltage deviation value for CEO was found to be the lowest. For the 69

bus system, however, CEO and TLBO both have the same amount of active power loss, but CEO

has a significantly higher overall fitness value because of it’s lower voltage deviation. In terms of

computational time, CEO has been found to be the quickest of all the algorithms for both systems.

In terms of convergence, CEO converges substantially earlier than EO, TLBO, and MMFO for

each of the systems, as shown in Figure 4.25b. Moreover, Figures 4.25a shows the impact of using

the suggested CEO for adding four DG units to the voltage profile. As illustrated, CEO appears to

provide the optimal voltage profile for each test system, which makes the algorithm more efficient

for optimal DG sizing and placement.

4.2.5 Optimal Load shedding

The suggested optimal load shedding methodology, which employs the chaotic equilibrium optimizer

(CEO), is evaluated and compared with the original EO, BSA, and GOA. A comparative analysis

of CEO, EO, BSA and GOA in terms of computational speed and fitness function values is

demonstrated in the next section. To achieve a valid comparison,, the total iterations (300) and

initial population set size (50) are kept identical for all the four algorithms. Furthermore, the

algorithms’ stopping criterion is the maximum number of iterations.

Table 14: Fitness values and corresponding elapsed time

Algorithm Parameter 33 Bus 69 Bus
Fitness Value 1.7561 1.7225

BSA Remaining load (MVA) 2.5058 2.0217
VSM 0.9856 0.9945

Elapsed time (s) 25.7916 64.9805
Fitness Value 1.8667 1.7615

GOA Remaining load (MVA) 2.7914 2.1375
VSM 0.9827 0.9918

Elapsed time(s) 70.7301 166.6762
Fitness Value 1.8700 1.9710

EO Remaining load (MVA) 2.7932 2.7375
VSM 0.9864 0.9853

Elapsed time (s) 23.5935 55.7042
Fitness Value 1.8802 1.9801

CEO Remaining load (MVA) 2.8023 2.7492
VSM 0.9917 0.9896

Elapsed time (s) 23.6989 53.6316

Optimal load shedding for 33 Bus

The island of IEEE-33 bus was obtained by tripping the main generator from the grid and

connecting it with 2 DGs obtained from CEO with optimal DG placement. The simulations are
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Figure 4.25: Four DG units installation

done for 100% load level with the total load demand being 4.369 MVA, while the total power

generation is 2.847 MVA with DG 1 (1.3678 MVA) operating at 10th bus and DG 2 (1.48 MVA)

operating at the 30th bus. According to the results obtained , the CEO-based algorithm retains

2.802 MVA as remaining apparent load, curtailing 1.567 MVA load , whereas BSA, GOA, and EO

curtails 296.5 kVA, 10.9 kVA, and 9.1 kVA more than CEO respectively as shown in Table 14. As

the key objective of this part of the work is to maximize the amount of remaining load, it appears

that CEO outperforms GOA, EO, and BSA while calculating the optimal quantity of remaining

load and preserving voltage stability. Figure 4.26b depicts the remaining load after optimization

throughout the network for CEO, EO, GOA and BSA, according to the load priority limits for each

bus. Regarding fitness value and VSM, the CEO-based approach outperforms the other algorithms
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while needing less computing time. Moreover, the V SMsys value in CEO is significantly greater.

Voltage profile of the network has also enhanced in the CEO-based approach, as shown in Figure

4.26a. Moreover Figure 4.26c depicts convergence curve for all four approaches. CEO converges

considerably faster, as illustrated in the figure, making the algorithm more convenient in terms of

optimal load shedding.

Optimal load shedding for 69 Bus

Similar to the 33-bus system, the island of IEEE-69 bus was obtained by tripping the main

generator from the grid and connecting it with 2 DGs obtained from CEO with optimal DG

placement. The simulations are done for 100% load level with total load demand of 4.66 MVA

(3.802 MW and 2.695 MVAr ), while total generation is 2.777 MVA with DG 1 (1.2977 MVA)

placed at 13th bus and DG2 (1.48 MVA) placed at the 64th bus. After optimization, CEO has

a fitness value of 1.9801, whereas BSA, GOA, and EO have fitness values of 1.7225, 1.7615, and

1.9710, respectively. CEO has a greater fitness value than the other algorithms and is quicker in

terms of computational time. It has been observed that BSA results in 2.021 MVA of remaining

apparent load, implying that 56.6 % of the total load is shed during optimization, whether in

the instances of GOA, EO, and CEO, the total remaining load is 2.1375 MVA, 2.7375 MVA, and

2.7492 MVA, respectively, corresponding to 54.2%, 41.3%, and 41% load shedding. According to

the findings, CEO offers 11.7 kVA, 611.7 kVA, and 727.6 kVA more remaining load than EO,

GOA, and BSA, demonstrating CEO’s better results in preserving the maximum portion of total

remaining load after optimization. Furthermore, as illustrated in Figure 4.27b, CEO allocates the

remaining loads more equitably throughout the buses. Figure 4.27c depicts convergence curve of

the algorithms and similarly to the 33 bus system CEO converges considerably faster. The voltage

profile of the algorithms are depicted in Figure 4.27a. In addition, CEO has a voltage stability

margin (VSM) of 0.9896, whereas BSA, GOA, and EO have VSMs of 0.9935, 0.9918, and 0.9853,

respectively.

4.3 Optimal Planning of Multiple Renewable Energy-Integrated

Distribution System with Uncertainties

IEEE 33 bus and 69 bus radial distribution systems are employed as test systems in this work. The

flowchart of the algorithm is depicted in Fig. 4.29. The system performances are analyzed and

compared to HHO-PSO and the PPSOGSA algorithms using MATLAB software to analyze the

efficiency of the proposed AHA algorithm. The Newton-Raphson power flow method is adopted

in this study. In addition, two types of simulations were investigated to check the validity of

the proposed algorithm. Firstly, optimal RDG sizing and placement problem are simulated by
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Table 15: IEEE 33 bus optimal size and location of RDG farms

Algorithm Farm
Location
bus

NRDG PRDGF

PPSOGSA PV 13 5 1
WT 29 9 1.8

HH0-PSO PV 33 8 1.6
WT 13 5 1

AHA PV 11 7 1.4
WT 6 6 1.2

Table 16: IEEE 33 bus optimised results of economical and technical metrics for ten years

Index PPSOGSA HHO-PSO AHA
Energy loss (MWh) 8074.1245 9539.465 7700.4135
Average VD 0.096 0.14 0.093
Average VSM 0.921 0.912 0.932
TAES 591969.3 518682.64 610682.342

considering the effect of uncertainties in RDG generation and seasonal load profiles. Secondly,

under a constant power load, ideal RDG size and location are simulated without considering

uncertainties. To provide a valid comparison, the initial population set size (50) and total iteration

number (100) for all three algorithms are maintained constant. Furthermore, the termination

condition of the algorithms is set to the maximum number of iterations.

Table 17: IEEE 69 bus optimal size and location of RDG farms

Algorithm Farm
Location
bus

NRDG PRDGF

PPSOGSA PV 61 9 1.8
WT 13 5 1

HH0-PSO PV 61 9 1.8
WT 69 6 1.2

AHA PV 61 9 1.8
WT 17 3 0.6

4.3.1 RDG Sizing and Placement Considering Uncertainties

The objective is to achieve the optimum size and location for one WT farm and one PV farm in

the IEEE 33 and 69-bus system. For both WT and PV generation, PRDGi is set as 200 kW with

unity power factor, while NRDGimax is chosen as 10.

The wind speed and solar irradiation measurements originate from [94 ], which are recorded with

a sample period of 5 minutes for the whole year of 2016. The year is considered to be divided into

three seasons: spring (August, September, and October), summer (March, April, May, June, and

July), and winter (November, December, January and February). The mean values and standard

deviations of wind speed and solar irradiation are determined for each hour of a typical day based

on the collected data, which was further utilized to generate the discrete PDFs of wind speed and
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Table 18: IEEE 69 bus optimised results of economical and technical metrics for ten years

Index PPSOGSA HHOPSO AHA
Energy loss (MWh) 5585.996 6018.714 5241.7885
Average VD 0.0639 0.1125 0.0622
Average VSM 0.951 0.933 0.958
TAES 803566.442 782101.18 821007.1

Table 19: Input parameters for RDG sizing and placement without considering uncertainties

Parameter Value

Niter,max 100
Npop 50
Nruns 50

Bus voltage limits (p.u.) ±5%
RDG size limits (MVA) 0 ≤SDG,max≤ 2

Total generation (MVA)
∑NDG

m=1 SDG,m ≤ 3
RDG PF limits pfPV =1 & 0.65≤pfWT ≤ 1
CDG ($/kW ) 30
TDG (years) 10
CE ($/kWh) 0.05

R(%) 10

solar irradiance for each hour. Using typical day patterns for seasons, the projected power of WT

and PV is evaluated for each year over a 10-year planning horizon. Table 15 shows the optimal

size and location of RDG farms on the IEEE 33 bus using the three algorithms.

Table 16 illustrates the optimized outcomes of economic and technical metrics throughout a

ten-year period. As compared to PPSOGSA and HHO-PSO, AHA yields 5.3% and 26% reduced

energy losses. Furthermore, AHA outperforms PPSOGSA and HHO-PSO in terms of average

voltage deviation (VD) for each hour by 3.2% and 50.5%, respectively. In addition, as compared

to the other algorithms, AHA achieved the maximum V SMsys and overall energy savings value.

Besides, AHA appears to require the fewest amount of elementary RDGs while still providing the

optimum solution. The findings are compared with AHA results for demonstration purposes and

presented in a bar diagram in Fig. 4.28.

Table 17 shows the optimal size and placement of RDG farms using the three methods for

the IEEE 69 bus system. Table 18 presents the optimized outcomes of economic and technical

metrics throughout a ten-year period. In comparison to PPSOGSA and HHO-PSO, AHA delivers

6.5% and 14.8% reduced energy losses, respectively. Besides, AHA employs the fewest number

of elementary RDGs. Additionally, AHA’s average voltage deviation (V D) for each hour is 2.7%

lower and 80.8% lower than that of PPSOGSA and HHO-PSO, respectively. Furthermore, AHA

outperforms all the other algorithms in terms of V SMsys and overall energy savings. In a bar

diagram, Fig. 19 illustrates the findings compared in percentage with respect to AHA.
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Table 20: IEEE 33 bus optimal results for RDG placement without uncertainties

Case Algorithm Optimal result Loss (kW) Deviation VSM TAES
Bus Size (MVA) p.f.

2 PV HHO PSO
32
18

1.5273,
1.2363

1
1

135.3 0.2863 0.9355 29420.13

PSO PGA
32
13

1.6524
1.3476

1
1

123.2 0.1808 0.9396 34724.09

AHA
13
31

1.3421
1.6577

1
1

119.5 0.174 0.9398 36338.3

3 PV HHO PSO
32
13
33

0.2417
1.25211.2323

1
1
1

111.9 0.2601 0.9351 39691

PSO PGA
15
31
28

1.65234
1.5644
0.4132

1
1
1

114.4 0.1896 0.9414 38600.06

AHA
10
32
16

0.8607
1.5285
0.609

1
1
1

111.1 0.1594 0.9393 40010.3

2 WT HHO PSO
12
33

0.8873
1.9953

0.7352
0.8791

63.9 0.2715 0.9462 60860.957

PSO PGA
30
11

1.5849
1.361

0.9671
0.9499

53.3 0.1344 0.945 64677.555

AHA
29
12

1.7785
1.1715

0.9315
0.9403

46.8 0.1312 0.947 68378.5

3 WT HHO PSO
11
19
32

1.8961
0.2196
0.8653

0.95
0.6516
0.9284

59.7 0.2679 0.9393 62530

PSO PGA
29
6
12

1.8383
0.1166
0.9686

0.8497
0.9767
0.9123

35.4 01548 0.9253 73200

AHA
8
29
16

0.9836
1.5377
0.4739

0.9094
0.8843
0.8625

30.3 0.0993 0.9171 75426.2

4.3.2 RDG Sizing and PlacementWithout Considering Uncertainties

To validate the suggested algorithm’s efficiency in contrast to previous optimization techniques,

the problem of RDG sizing and placement for dispatchable RDG units is investigated. Multiple

PV and WT penetration levels are simulated and assessed. The PV induces solely active power,

whereas the WT can accommodate both active and reactive power. Furthermore, it is anticipated

that only one RDG unit can be penetrated on the same bus at a time. A potential solution set, for

example, can be represented as a vector composed of three variables such as PV/WT locations, size,

and the power factor of RDG units at these locations. The first variable determines the placement

of RDGs on network buses. The second variable represents the power generation of RDGs at the

given load level, with actual values ranging from 0 to the maximum capacity of the related RDG.

Each of the third variable has a value ranging from 0 to 1 and indicates the optimal power factor

of the installed WT-DG units. However, when PV-type DG units are installed, the values of that

variable are always 1. Besides, it has been assumed that the load model is constant and PV’s

and WT’s generation is not affected by natural uncertainties. The fundamental purpose of the

optimization is to identify the most appropriate size and location of RDGs in order to improve the

distribution system’s techno-economic efficiency.

Table 19 displays the input data and cost parameters for the optimum planning problem. Two

scenarios of RDG integration, including two and three PV/WTs, are investigated to demonstrate

the beneficial impacts of appropriate allocation on system performance. Table 20 compares the
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Table 21: IEEE 69 bus optimal results for RDG placement without uncertainties

Case Algorithm Optimal result Loss (kW) Deviation VSM TAES
Bus Size (MVA) p.f.

2 PV HHO PSO
65
13

1.7056
1.2327

1
1

108.7 0.2604 0.977 48872.69

PSO PGA
65
13

1.69
1.31

1
1

110.1 0.2391 0.977 48255.15

AHA
14
64

0.9827
1.9862

1
1

95.1 0.177 0.977 54845.48

3 PV HHO PSO
68
27
65

1.0746
0.3007
1.6229

1
1
1

103.6 0.2999 0.977 51111.28

PSO PGA
65
60
23

1.0443
1.3383
0.6172

1
1
1

92.7 0.1528 0.9733 55887.59

AHA
19
64
61

0.6833
0.4941
1.792

1
1
1

91.2 0.1307 0.9758 60934.07

2 WT HHO PSO
64
20

1.8665
0.9951

0.9809
0.9756

59.6 0.3317 0.9771 70370.8863

PSO PGA
15
64

0.7282
1.9971

0.8687
0.784

23.7 0.152 0.9722 86089.27

AHA
14
63

0.9937
1.9984

0.6746
0.8991

18.7 0.0906 0.9772 88298.91

3 WT HHO PSO
46
65
27

0.3136
1.3817
0.8725

0.9201
0.9746
0.8119

70.7 0.2679 0.959 65527.04

PSO PGA
65
45
22

1.9565
0.1405
0.7262

0.8611
0.8699
0.8373

47.1 0.2106 0.9722 75841.93

AHA
18
63
58

0.6726
1.4962
0.8242

0.7213
0.7827
0.7936

11.8 0.0899 0.9772 91328.73

results of the AHA simulation to other algorithms for identifying and sizing numerous RDG units

in an IEEE 33 bus system. In comparison to HHO-PSO and PPSOGSA, AHA provides 15.8 KW

and 3.7 KW reduced power loss with 2 PV integration, respectively. Furthermore, when compared

to HHO-PSO and PPSOGSA, AHA provides 0.8 KW and 3.3 KW reduced power loss with 3 PV

integration, accordingly. Furthermore, in contrast with HHO-PSO and PPSOGSA, AHA provides

13.1 KW and 10.6 KW reduced power loss for 2 WT integration, respectively. Moreover, as

compared to HHO-PSO and PPSOGSA, AHA provides 29.6 KW and 3.9 KW reduced power loss

for 3 WT integration. It is significant to mention that the voltage deviation and VSM values in

WT installation scenarios are substantially better due to the reactive power support. Moreover,

AHA exceeds the other algorithms in terms of overall yearly energy savings value.

For IEEE 69 bus system, Table 21 compares the results of the AHA simulation to the other

methods for locating and sizing several RDG units. In order to reduce power loss and voltage

variation, the proposed AHA algorithm appears to outperform the rest of the algorithms studied

for the 69-bus system, just as it did for the 33-bus system. In addition, AHA outperforms the

other algorithms in terms of yearly energy savings and VSM value. According to the results

obtained for both test systems, AHA has the lowest energy loss, lowest voltage deviation, maximum

voltage stability margin, and maximum yearly energy savings, which demonstrates the algorithm’s

superiority over other optimization approaches.

Fig. 4.31 depicts the impact of RDG with optimal placements and sizes on the network voltage
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Table 22: Statistics of PPSOGSA, HHO-PSO and AHA

Case Method Best (kW) Worst (kW) Mean (kW) Mean elapsed time (s)

HHO-PSO 70.7 76.4 72.6 10.8
3 WT PPSOGSA 47.1 54.2 51.4 9.7

AHA 11.8 16.4 12.8 7.8
HHO-PSO 103.6 109.6 104.7 7.4

3 PV PPSOGSA 92.7 101.6 94.8 7.1
AHA 91.2 93.4 92.1 5.7

profile. The voltage deviation is clearly minimized with proper RDG unit connections, where

the voltage magnitude on each bus is within allowed ranges of 0.95-1.05 p.u. Also, it has been

identified that AHA provides the optimal solution for each case with the minimum amount of total

voltage deviation. Besides, WTs provide a superior voltage profile and significantly improve the

system voltage stability compared to PVs because of their ability to supply reactive power. As

illustrated in Fig.4.32 , AHA converges significantly faster than HHO-PSO and PPSOGSA for

each of the systems. The findings reveal that the AHA accelerates to the near optimal solution

swiftly and with consistent convergence characteristics when compared to the other two algorithms.

Table 22 compares the best value, worst value and the mean value of the results along with the

computational time obtained by PPSOGSA, HHO-PSO, and proposed method over 50 runs in the

scenarios of 3 WT and 3 PV installation in IEEE 69 bus system. AHA appears to surpass the other

two algorithms in terms of power loss value. In most circumstances, the worst AHA result is better

than the best HHO-PSO and PPSOGSA results. Furthermore, AHA outperforms HHO-PSO and

PPSOGSA in terms of elapsed time, with HHO-PSO having the longest computing time of all

the methods. These statistical indicators strongly suggest that the proposed method outperforms

PPSOGSA and HHO-PSO in terms of providing better and more consistent results.

The tested results are obtained using various scenarios in order to demonstrate the algorithm’s

effectiveness. The suggested technique, known as the Artificial Hummingbird Algorithm, has been

found to be more beneficial than previous algorithms for RDG sizing and placement, regardless of

whether weather or load uncertainty is included. For added information, the test is completed by

considering DGs as dispatchable units ( 2PV, 3 PV, 2WT, 3 WT) for both the IEEE 33 and IEEE

69 bus systems. Furthermore, AHA gives superior solutions and enhances the techno-economic

aspects of distribution networks in all the scenarios evaluated.

4.3.3 Algorithm parameters variation

The robustness of the AHA algorithm parameters is verified by varying the probability (0 ∼ 1)

values of the flight and foraging techniques. Fig. 4.33 depicts how the algorithmic parameters

affect the power loss values of 3 PV and 3 WT RDG allocation and sizing in a 69 bus test system.

The guided foraging technique probability and the diagonal flight probability were adjusted in this
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analysis to detect the variance in the results. The findings reveal that modifying the algorithmic

parameters has little effect on the OF1 values. According to the findings, the OF1 results had

an average standard deviation of 0.247 and 0.513 for 3 WT and 3 PV installments, respectively.

Besides, during the simulation, it was also observed that changing the algorithmic parameters

slows down the optimization process. As a consequence, it is possible to infer that the algorithmic

settings should be kept as default in order to achieve the best results.
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Figure 4.26: Optimal load shedding results for IEEE 33 bus
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Figure 4.27: Optimal load shedding results for IEEE 69 bus
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Figure 4.28: Optimal results comparison considering uncertainties for IEEE 33 bus (% differences
with AHA)
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Figure 4.29: Flowchart of RDG planning optimization55555
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Figure 4.30: Optimal results comparison considering uncertainties for IEEE 69 bus (% differences
with AHA)
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Chapter 5

5 Conclusion

5.1 Optimal Load-Shedding in Distribution System

This work provides a novel technique for steady state load shedding optimization in DG integrated

islands while considering voltage stability. The objective of attaining appropriate load shedding

scheme can be identified by assessing two aspects: total remaining system load and voltage stability

margin, V SMsys. Obtained results using CSMA have been compared to BSA and SMA in terms

mean, standard deviation, best value, worst value, total of elapsed time and convergence of the

fitness values. It was observed that CSMA surpasses both BSA and SMA by offering more

remaining load and assuring higher voltage stability margin index values. Furthermore, when the

network is vast and complicated, CSMA performs significantly better and quicker than BSA and

SMA. The advantage of the CSMA approach is that its implementation is simple, with hardly any

mathematical complexity, and it provides a better optimum result. Hence, the suggested optimal

load shedding scheme can be deployed in a real-world power distribution system that incorporates

DGs.

5.2 Optimal Sizing and Placement of Multiple DG Units

This work presents a unique approach for optimal DG size and placement in distribution networks,

as well as an optimal load shedding technique in DG incorporated islands that considers voltage

stability. The optimal DG sizing and placement was determined by minimizing two criteria: voltage

deviation and total active power loss. Furthermore, the objective of achieving an effective load

shedding scheme was defined by evaluating two criteria: total remaining load and V SMsys. In

terms of DG placement, CEO results were compared to TLBO, MMFO, and EO in terms of average,

standard deviation, best result, worst result, computational speed, and convergence characteristic.

Moreover, CEO has been compared to GOA, BSA, and EO for optimal load shedding. According to

the findings obtained for DG placement, CEO outperforms all the algorithms by minimizing total

active power loss and voltage deviation with better computational speed and early convergence

characteristics. Furthermore, in terms of optimal load shedding results, CEO provides higher

remaining load and assures greater voltage stability margin values with less computational time

and early convergence properties. Therefore, the proposed method can be used in a real-world

electrical system.
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5.3 Optimal Planning of Multiple Renewable Energy-Integrated

Distribution System with Uncertainties

This work proposes a novel method for determining the appropriate size and location of RDGs in

distribution networks. Four criteria were used to determine the optimal DG size and placement:

minimization of voltage deviation, minimization of total active power loss, maximization of voltage

stability margin value and maximization of total annual energy savings. The results of the proposed

AHA algorithm were compared to those of two recent algorithms, HHO-PSO and PPSOGSA.

Two simulation types were considered: with uncertainties and without uncertainties. According

to the findings obtained, AHO outperforms all the algorithms for all the objectives with early

convergence characteristics for both the simulation types. Therefore, the suggested technique may

be recommended for optimal location and sizing of RDGs in real distribution systems considering

both weather and load uncertainties. The implications of concurrent installation of PV and WT

on existing distribution networks may be studied in the future using real-time load and weather

data. Besides, the weighted factors of the techno-economic indices of the objective function can be

modified to assess the results variation of the suggested techniques. Moreover, future works may

include energy storage technologies for distribution systems.
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[5] Ma lkowski, R. and Nieznański, J., 2020. Underfrequency Load Shedding: An Innovative

Algorithm Based on Fuzzy Logic. Energies, 13(6), p.1456.

[6] J. Sasikala, M. Ramaswamy, Fuzzy based load shedding strategies for avoiding voltage collapse,

Applied Soft Computing, Volume 11, Issue 3, 2011, Pages 3179-3185, ISSN 1568-4946,

https://doi.org/10.1016/j.asoc.2010.12.020.

[7] Olabambo Ifeoluwa Oluwasuji, Obaid Malik, Jie Zhang, and Sarvapali Dyanand Ramchurn.

2018. Algorithms for fair load shedding in developing countries. In Proceedings of the 27th

International Joint Conference on Artificial Intelligence (IJCAI’18). AAAI Press, 1590–1596.

[8] Alqunun, K., Guesmi, T. Farah, A. Load shedding optimization for economic operation cost

in a microgrid. Electr Eng 102, 779–791 (2020). https://doi.org/10.1007/s00202-019-00909-3

[9] G. S. Grewal, J. W. Konowalec and M. M. Hakim, ”Optimization of load-shedding scheme in

an integrated process plant,” in IEEE Transactions on Industry Applications, vol. 35, no. 4,

pp. 959-967, July-Aug. 1999, doi: 10.1109/28.777206.

[10] V. Tamilselvan, T. Jayabarathi, A hybrid method for optimal load shedding and improving

voltage stability, Ain Shams Engineering Journal, Volume 7, Issue 1, 2016, Pages 223-232,

ISSN 2090-4479, https://doi.org/10.1016/j.asej.2015.11.003.

64



[11] Malekpour, A. and Seifi, A., 2009. An Optimal Load Shedding Approach for Distribution

Networks with DGs Considering Capacity Deficiency Modelling of Bulked Power Supply.

Modern Applied Science, 3(5).

[12] Ketabi, A. and Hajiakbari Fini, M., 2017. Adaptive underfrequency load shedding using

particle swarm optimization algorithm. Journal of Applied Research and Technology, 15(1),

pp.54-60.

[13] Talaat, M., Hatata, A., Alsayyari, A. and Alblawi, A., 2020. A smart load management system

based on the grasshopper optimization algorithm using the under-frequency load shedding

approach. Energy, 190, p.116423.

[14] Wan Afandie, W., 2016. Comparative Analysis of Bacterial Foraging Optimization Algorithm

and Evolutionary Programming for Load Shedding in Power System. International Journal of

Simulation: Systems, Science Technology,.

[15] Arya, L., Singh, P. and Titare, L., 2012. Differential evolution applied for anticipatory

load shedding with voltage stability considerations. International Journal of Electrical Power

Energy Systems, 42(1), pp.644-652.

[16] V. G. Calderaro, V.;Lattarrulo,V.;Siano,P.;, ”A new algorithm for steady state load-shedding

strategy,” in 2010, 12th International Conference on Optimization of Electrical and Electronic

Equipment (OPTIM) Basov, 2010, p. 48.

[17] Usman, M., Amin, A., Azam, M.M., Mokhlis, H., 2018. Optimal under voltage load shedding

scheme for a distribution network using EPSO algorithm, in: 2018 1st International Conference

on Power, Energy and Smart Grid (ICPESG). Presented at the 2018 1st International

Conference on Power, Energy and Smart Grid (ICPESG), IEEE.

[18] Khamis, A., Shareef, H., Mohamed, A., amp; Dong, Z. Y. (2018). A load shedding scheme

for DG integrated islanded power system utilizing backtracking search algorithm. Ain Shams

Engineering Journal, 9(1), 161–172. https://doi.org/10.1016/j.asej.2015.10.001

[19] Civicioglu, P., 2013. Backtracking Search Optimization Algorithm for numerical optimization

problems. Applied Mathematics and Computation, 219(15), pp.8121-8144.

[20] Acharya, N., Mahat, P. and Mithulananthan, N., 2006. An analytical approach for DG

allocation in primary distribution network. International Journal of Electrical Power Energy

Systems, 28(10), pp.669-678.

65



[21] Walling, R., Saint, R., Dugan, R., Burke, J. and Kojovic, L., 2008. Summary of Distributed

Resources Impact on Power Delivery Systems. IEEE Transactions on Power Delivery, 23(3),

pp.1636-1644.

[22] Xu, Y., Shi, Z., Wang, J. and Hou, P., 2013. Discussion on the Factors Affecting the Stability

of Microgrid Based on Distributed Power Supply. Energy and Power Engineering, 05(04),

pp.1344-1346.

[23] H. Bevrani, A. G. Tikdari, T. Hiyama., 2010. Power system load shedding: Key issues and new

perspectives. World Academy of Science, Engineering and Technology; vol. 65, pp. 199-204,

May 2010

[24] Larik, R., Mustafa, M. and Aman, M., 2019. A critical review of the state-of-art schemes for

under voltage load shedding. International Transactions on Electrical Energy Systems, 29(5),

p.e2828.

[25] P. S. Georgilakis and N. D. Hatziargyriou, ”Optimal Distributed Generation Placement

in Power Distribution Networks: Models, Methods, and Future Research,” in IEEE

Transactions on Power Systems, vol. 28, no. 3, pp. 3420-3428, Aug. 2013, doi:

10.1109/TPWRS.2012.2237043.

[26] Kansal, Satish Kumar, Vishal. (2013). Optimal placement of different type of DG sources in

distribution networks. International Journal of Electrical Power Energy Systems. 53. 752–760.

10.1016/j.ijepes.2013.05.040.

[27] R. Sanjay, T. Jayabarathi, T. Raghunathan, V. Ramesh and N. Mithulananthan, ”Optimal

Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer,” in IEEE Access,

vol. 5, pp. 14807-14818, 2017, doi: 10.1109/ACCESS.2017.2726586.

[28] Samala, R.K., Kotapuri, M.R. Optimal allocation of distributed generations using hybrid

technique with fuzzy logic controller radial distribution system. SN Appl. Sci. 2, 191 (2020).

https://doi.org/10.1007/s42452-020-1957-3

[29] Kumar, S., Mandal, K. and Chakraborty, N., 2019. Optimal DG placement by multi-objective

opposition based chaotic differential evolution for techno-economic analysis. Applied Soft

Computing, 78, pp.70-83.

[30] Elattar, E. and Elsayed, S., 2020. Optimal Location and Sizing of Distributed Generators

Based on Renewable Energy Sources Using Modified Moth Flame Optimization Technique.

IEEE Access, 8, pp.109625-109638.

66



[31] Vita, V., 2017. Development of a Decision-Making Algorithm for the Optimum Size and

Placement of Distributed Generation Units in Distribution Networks. Energies, 10(9), p.1433.

[32] Rani, B. and Reddy, A., 2019. Optimal Allocation and Sizing of Multiple DG in Radial

Distribution System Using Binary Particle Swarm Optimization. International Journal of

Intelligent Engineering and Systems, 12(1), pp.290-299.

[33] Memarzadeh G, Keynia F. A new index-based method for optimal DG placement in

distribution networks. Engineering Reports. 2020;e12243. https://doi.org/10.1002/eng2.12243

[34] M.C.V. Suresh, J. Belwin Edward,A hybrid algorithm based optimal placement of DG

units for loss reduction in the distribution system, Applied Soft Computing,Volume

91,2020,106191,ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2020.106191.

[35] Hassan, A., Sun, Y. and Wang, Z., 2020. Multi-objective for optimal placement and sizing

DG units in reducing loss of power and enhancing voltage profile using BPSO-SLFA. Energy

Reports, 6, pp.1581-1589.

[36] A. Selim, S. Kamel, A. S. Alghamdi and F. Jurado, ”Optimal Placement of DGs

in Distribution System Using an Improved Harris Hawks Optimizer Based on Single-

and Multi-Objective Approaches,” in IEEE Access, vol. 8, pp. 52815-52829, 2020, doi:

10.1109/ACCESS.2020.2980245.

[37] Talaat, M., Hatata, A., Alsayyari, A. and Alblawi, A., 2020. A smart load management system

based on the grasshopper optimization algorithm using the under-frequency load shedding

approach. Energy, 190, p.116423.

[38] Khamis, A., Shareef, H., Mohamed, A., amp; Dong, Z. Y. (2018). A load shedding scheme

for DG integrated islanded power system utilizing backtracking search algorithm. Ain Shams

Engineering Journal, 9(1), 161–172. https://doi.org/10.1016/j.asej.2015.10.001

[39] Arya, L., Singh, P. and Titare, L., 2012. Differential evolution applied for anticipatory

load shedding with voltage stability considerations. International Journal of Electrical Power

Energy Systems, 42(1), pp.644-652.

[40] Wan Afandie, W., 2016. Comparative Analysis of Bacterial Foraging Optimization Algorithm

and Evolutionary Programming for Load Shedding in Power System. International Journal of

Simulation: Systems, Science Technology,.

67



[41] V. G. Calderaro, V.;Lattarrulo,V.;Siano,P.;, ”A new algorithm for steady state load-shedding

strategy,” in 2010, 12th International Conference on Optimization of Electrical and Electronic

Equipment (OPTIM) Basov, 2010, p. 48.

[42] Usman, M., Amin, A., Azam, M.M., Mokhlis, H., 2018. Optimal under voltage load shedding

scheme for a distribution network using EPSO algorithm, in: 2018 1st International Conference

on Power, Energy and Smart Grid (ICPESG). Presented at the 2018 1st International

Conference on Power, Energy and Smart Grid (ICPESG), IEEE.

[43] Mohanty, B. and Tripathy, S., 2016. A teaching learning based optimization technique for

optimal location and size of DG in distribution network. Journal of Electrical Systems and

Information Technology, 3(1), pp.33-44.

[44] Khamis, A., Shareef, H. and Mohamed, A., 2015. Islanding detection and load shedding

scheme for radial distribution systems integrated with dispersed generations. IET Generation,

Transmission Distribution, 9(15), pp.2261-2275.

[45] VK Mehta & Rohit Mehta (2005). Principles of Power System: Including Generation,

Transmission, Distribution, Switchgear and Protection: for BE/B. Tech., AMIE and Other

Engineering Examinations. S. Chand Publishing.

[46] Lopes, João Abel Peças et al. “Integrating distributed generation into electric power systems:

A review of drivers, challenges and opportunities.” Electric Power Systems Research, 77

(2007): 1189-1203.

[47] Omar Ellabban, Haitham Abu-Rub and Frede Blaabjerg. ”Renewable Energy Resources:

Current status, future prospects and their enabling technology.” Renewable and Sustainable

Energy Reviews, 39 (2014), 748–764.

[48] Stefan Weitemeyer, David Kleinhans et al. ”Integration of renewable energy sources in future

power systems: The role of Storage.” Renewable Energy, 75 (2015), 14–20.

[49] M. Liserre, T. Sauter and J. Y. Hung. ”Future Energy Systems: Integrating Renewable Energy

Sources into the Smart Power Grid Through Industrial Electronics”, in IEEE Industrial

Electronics Magazine, vol. 4, no. 1, pp. 18-37, March 2010.

[50] Falkoni, Anamarija Krajacic, Goran Puksec, Tomislav Duic, Neven (2015). The integration of

renewable energy sources and electric vehicles into the power system of the Dubrovnik region.

Energy, Sustainability and Society, 5(1).

68



[51] Dudiak, Jozef and Michal Kolcun. “Integration of renewable energy sources to the power

system.” 2014 14th International Conference on Environment and Electrical Engineering

(2014): 148-151.

[52] Paliwal, Priyanka Patidar, N.P. & Nema, R.K., 2014. ”Planning of grid integrated distributed

generators: A review of technology, objectives and techniques,” Renewable and Sustainable

Energy Reviews, Elsevier, vol. 40(C), pages 557-570.

[53] Ndamulelo Mararakanye, Bernard Bekker (2019). ”Renewable energy integration impacts

within the context of generator type, penetration level and grid characteristics.” Renewable

and Sustainable Energy Reviews, 108, 441–451.

[54] Grant Allan, Igor Eromenko, Michelle Gilmartin, Ivana Kockar, Peter McGregor (2015).

”The economics of Distributed Energy Generation: A Literature Review.” Renewable and

Sustainable Energy Reviews, 42, 543–556.

[55] Mudathir Funsho Akorede, Hashim Hizam, Edris Pouresmaeil (2010). ”Distributed Energy

Resources and benefits to the environment.” Renewable and Sustainable Energy Reviews,

14(2), 724–734.

[56] Zubo, R. H. A., Mokryani, G., Rajamani, H.-S., Aghaei, J., Niknam, T., amp; Pillai, P. (2017).

”Operation and planning of distribution networks with integration of renewable distributed

generators considering uncertainties: A Review.” Renewable and Sustainable Energy Reviews,

72, 1177–1198.

[57] Esmaeili, S.; Anvari-Moghaddam, A.; Jadid, S. Optimal Operational Scheduling of

Reconfigurable Multi-Microgrids Considering Energy Storage Systems. Energies 2019, 12,

1766.

[58] Najafi, J., Peiravi, A., Anvari-Moghaddam, A., Guerrero, J. M. (2019). ”Resilience

Improvement Planning of power-water distribution systems with multiple microgrids against

hurricanes using clean strategies.” Journal of Cleaner Production, 223, 109–126.

[59] Hassan, A. S., Othman, E. S. A., Bendary, F. M., amp; Ebrahim, M. A. (2020).

”Optimal integration of distributed generation resources in active distribution networks for

techno-economic benefits.” Energy Reports, 6, 3462–3471.

[60] Jordehi, A. R. (2018). ”How to deal with uncertainties in Electric Power Systems? A Review.”

Renewable and Sustainable Energy Reviews, 96, 145–155.

69



[61] Soroudi, A., Aien, M., amp; Ehsan, M. (2012).” A probabilistic modeling of photo voltaic

modules and wind power generation impact on distribution networks.” IEEE Systems Journal,

6(2), 254–259.

[62] Maleki, A., Khajeh, M. G., Ameri, M. (2016). ”Optimal sizing of a grid independent

hybrid renewable energy system incorporating resource uncertainty, and load uncertainty.”

International Journal of Electrical Power and Energy Systems, 83, 514–524.

[63] Elkadeem, M. R., Abd Elaziz, M., Ullah, Z., Wang, S., Sharshir, S. W. (2019). ”Optimal

planning of renewable energy-integrated distribution system considering uncertainties.” IEEE

Access, 7, 164887–164907.

[64] Radosavljevic, J., Arsic, N., Milovanovic, M., amp; Ktena, A. (2020). ”Optimal placement and

sizing of renewable distributed generation using hybrid metaheuristic algorithm.” Journal of

Modern Power Systems and Clean Energy, 8(3), 499–510.

[65] Ali, E. S., Abd Elazim, S. M., amp; Abdelaziz, A. Y. (2016). ”Optimal allocation and

sizing of renewable distributed generation using Ant Lion Optimization algorithm.” Electrical

Engineering, 100(1), 99–109.

[66] El-Fergany, A. (2015). ”Optimal allocation of multi-type distributed generators using

backtracking search optimization algorithm.” International Journal of Electrical Power and

Energy Systems, 64, 1197–1205.

[67] Abu-Mouti, F. S., amp; El-Hawary, M. E. (2009). ”Modified artificial bee colony algorithm

for optimal distributed generation sizing and allocation in distribution systems.” 2009 IEEE

Electrical Power and Energy Conference (EPEC).

[68] Sanjay, R., Jayabarathi, T., Raghunathan, T., Ramesh, V., Mithulananthan, N. (2017).

”Optimal allocation of distributed generation using Hybrid Grey Wolf optimizer.” IEEE

Access, 5, 14807–14818.

[69] Mohamed Imran A, amp; Kowsalya M. (2014). ”Optimal size and siting of multiple

distributed generators in distribution system using bacterial foraging optimization.” Swarm

and Evolutionary Computation, 15, 58–65.

[70] Rama Prabha, D., Jayabarathi, T., Umamageswari, R., Saranya, S. (2015). ”Optimal

allocation and sizing of distributed generation unit using Intelligent Water Drop algorithm.”

Sustainable Energy Technologies and Assessments, 11, 106–113.

70



[71] ChithraDevi, S. A., Lakshminarasimman, L., amp; Balamurugan, R. (2017). ”Stud krill herd

algorithm for multiple DG placement and sizing in a radial distribution system.” Engineering

Science and Technology, an International Journal, 20(2), 748–759.

[72] Moradi, M. H., amp; Abedini, M. (2012). ”A combination of genetic algorithm and particle

swarm optimization for optimal distributed generation location and sizing in distribution

systems with fuzzy optimal theory.” International Journal of Green Energy, 9(7), 641–660.

[73] Kaur, S., Kumbhar, G., Sharma, J. (2014). ”A MINLP technique for optimal placement of

multiple DG units in Distribution Systems.” International Journal of Electrical Power and

Energy Systems, 63, 609–617.

[74] Kumar, S., Mandal, K. K., Chakraborty, N. (2019). ”Optimal DG placement by

multi-objective opposition based chaotic differential evolution for techno-economic analysis.”

Applied Soft Computing, 78, 70–83.

[75] Khatod, D. K., Pant, V., Sharma, J. (2013). ”Evolutionary programming based optimal

placement of renewable distributed generators.” IEEE Transactions on Power Systems, 28(2),

683–695.

[76] Abdelaziz, A. Y., Hegazy, Y. G., El-Khattam, W., Othman, M. M. (2015). ”Optimal allocation

of stochastically dependent renewable energy based distributed generators in unbalanced

distribution networks.” Electric Power Systems Research, 119, 34–44.

[77] Kayal, P., Chanda, C. K. (2015). ”Optimal mix of solar and wind distributed generations

considering performance improvement of Electrical Distribution Network.” Renewable Energy,

75, 173–186.

[78] Ali, Abdelfatah Mahmoud, Karar Lehtonen, Matti. (2021). ”Optimal planning of

inverter-based renewable energy sources towards autonomous microgrids accommodating

electric vehicle charging stations.” IET Generation, Transmission and Distribution. 16.

[79] A. Ali, K. Mahmoud and M. Lehtonen. ”Optimization of Photovoltaic and Wind Generation

Systems for Autonomous Microgrids With PEV-Parking Lots.” IEEE Systems Journal.

[80] Biswal, S. R., Shankar, G., Elavarasan, R. M., Mihet-Popa, L. (2021). ”Optimal

allocation/sizing of dgs/capacitors in reconfigured radial distribution system using

quasi-reflected slime mould algorithm.” IEEE Access, 9, 125658–125677.

[81] Zellagui, M., Belbachir, N., Ziad El-Bayeh, C. (2021). ”Optimal allocation of RDG in

distribution system considering the seasonal uncertainties of load demand and solar-wind

71



generation systems.” IEEE EUROCON 2021 - 19th International Conference on Smart

Technologies.

[82] Lekvan, A. A., Habibifar, R., Moradi, M., Khoshjahan, M., Nojavan, S., & Jermsittiparsert,

K. (2021). ”Robust optimization of renewable-based multi-energy micro-grid integrated with

flexible energy conversion and storage devices.” Sustainable Cities and Society, 64, 102532.

[83] Galvani, S., Bagheri, A., Farhadi-Kangarlu, M., & Nikdel, N. (2022). ”A multi-objective

probabilistic approach for smart voltage control in wind-energy integrated networks

considering correlated parameters.” Sustainable Cities and Society, 78, 103651.

[84] Geng, J., Zheng, T., Cao, J., Yang, Y., Jin, Y., Fu, J. (2022). ”Research on multi-objective

Operation Optimization of Multi Energy Integrated Service stations based on Autonomous

Collaborative Control.” Energy Reports, 8, 278–284.

[85] Dinakara P et al (2018).” Optimal renewable resources placement in distribution networks

by Combined Power Loss Index and whale optimization algorithms.” Journal of Electrical

Systems and Information Technology, 5(2), 175–191.

[86] Tolba, M., Rezk, H., Tulsky, V., Diab, A., Abdelaziz, A., Vanin, A. (2018). ”Impact of

optimum allocation of renewable distributed generations on distribution networks based on

different optimization algorithms.” Energies, 11(1), 245.

[87] Nawaz, S., Bansal, D. A. K., Sharma, D. M. (2017). ”A novel approach for multiple DG

allocation in real distribution system.” International Journal of Engineering and Technology,

9(2), 963–968.

[88] El-Fergany, A. (2015). ”Multi-objective allocation of multi-type distributed generators along

distribution networks using backtracking search algorithm and Fuzzy Expert Rules.” Electric

Power Components and Systems, 44(3), 252–267.

[89] Biswas, P. P., Suganthan, P. N., Mallipeddi, R., Amaratunga, G. A. J. (2019). ”Optimal

reactive power dispatch with uncertainties in load demand and renewable energy sources

adopting scenario-based approach.” Applied Soft Computing, 75, 616–632.

[90] Li, S., Chen, H., Wang, M., Heidari, A. and Mirjalili, S., 2020. Slime mould algorithm: A new

method for stochastic optimization. Future Generation Computer Systems, 111, pp.300-323.

[91] A. Faramarzi, M. Heidarinejad, B. Stephens et al., Equilibrium

optimizer:A novel optimization algorithm, Knowledge-Based Systems (2019),

doi:https://doi.org/10.1016/j.knosys.2019.105190

72



[92] Zhao, W., Wang, L., amp; Mirjalili, S. (2022). ”Artificial Hummingbird Algorithm: A

new bio-inspired optimizer with its engineering applications.” Computer Methods in Applied

Mechanics and Engineering, 388, 114194.

[93] M. H. Hauqe, ”A linear static voltage stability margin for radial distribution systems,”

2006 IEEE Power Engineering Society General Meeting, 2006, pp. 6 pp.-, doi:

10.1109/PES.2006.1708954.

[94] Open data sets. ”IEEE PES Intelligent Systems Subcommittee”. Available: https://site.

ieee.org/pes-iss/data-sets/ (accessed Feb. 3, 2022).

[95] Power Systems Test Case Archive. ”Reliability test system”. Available :http://labs.ece.

uw.edu/pstca/rts/pg_tcarts.htm (accessed Feb. 3, 2022).

73

https://site.ieee.org/pes-iss/data-sets/
https://site.ieee.org/pes-iss/data-sets/
http://labs.ece.uw.edu/pstca/rts/pg_tcarts.htm
http://labs.ece.uw.edu/pstca/rts/pg_tcarts.htm

