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Abstract 

 
To ensure the stable and reliable operation of a power system, load forecasting is required. 
Accurate forecasting leads to efficient dispatch, unit commitment, and energy security. Smart 
power management in the generating, transmission, and distribution network, as well as the 
accompanying energy demand, can be realized with accurate forecasting approaches. This 
paper analyses the short-term load forecasting of the Bangladesh power system. Various deep 
neural network models- XGBoost, LSTM, Stacked LSTM, CNN, CNN-LSTM, Time 
Distributed MLP, and Encoder-Decoder are used to forecast the load. The load is predicted 
based on previous load data and various features like temperature, Weekdays, Weekends, and 
Peak Business Hours are taken to ensure the accuracy of the results. This study reports the 
advantages and disadvantages of each model. 
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Chapter 1 
 

1 Introduction 
 

Forecasting electrical load is crucial for developing power system planning and operating 
strategies. Unit commitment and economic dispatch are dependent on accurate demand 
predictions. It allows an electricity supplier in determining which generators should run at what 
hours and at what levels to meet the demand. Maintaining the balance between load and 
generation is one of the most difficult tasks for the power system. Because it is uneconomical 
to store electric energy. Power should be generated on-demand. As a result, in order to provide 
proper planning and reliable operation of the power system, the customer's load requirements 
must be predicted in advance. There are three methods of load forecasting in general. Short-
term load forecasting predicts load for the next few hours to a few weeks, midrange load 
forecasting for a week to a year, and long-term load forecasting for more than a year. 
 

1.1 Motivation 
 
Only a few reports have been released to estimate Bangladesh Power System's future load 
demand. Some reports are focused on specific regions [1]. There are reports on the island of 
Bangladesh [2]. But there is not any proper forecasting model for the entire country that is 
focused on Bangladesh Power System. Although some reports forecast the entire country, these 
are based on daily peak demand [3]. To develop a reliable power system and reduce cost per 
unit, it is essential to have a solid short-term forecasting model that is focused on the 
Bangladesh power system. 
 

1.2 Objectives 
 

Our primary goal is to forecast short-term load demand using multiple data and information. 
Many neural network models exist for forecasting future data. Our goal is to create a load 
forecasting model that is both efficient and optimum. 
 
 

1.3 Problem Statement  
 

Our goal is to find a model with the least amount of error using datasets native to Bangladesh. 
More relevant features, such as weather, temperature, and business hours, are being added to 
our model. This also aids our neural network model in detecting the trend in the load data curve, 
reducing inaccuracy. Furthermore, we will examine the advantages and downsides of several 
Neural Network models for our datasets. This will aid in the smoothing of any future research 
approaches. 
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Chapter 2 

 

2 Literature Review 

 
As modern society progresses, the demand for power and a variety of electrical loads changes 
regularly. Electrical load demand is influenced by a variety of factors, including weather, 
industrial processes, and human activities. Researchers have tried a variety of approaches to 
developing a prediction system for electrical load demands over the years. The utility 
industry's constant advancements and structural developments lead to load forecasting systems 
being highly important. Kalman filtering [4], dynamic linear filtering [5], and other key STLF 
techniques can be found in the previous literature. Previous studies have employed nonlinear 
models [6], as well as other load forecasting optimization techniques [5]. Support Vector 
Machines (SVMs) [7], artificial neural network (ANN) [8], ANN structure optimization using 
genetic algorithms [9] are also of interest to researchers. Several studies employed time series 
forecasting models like Auto-Regressive Integrated Moving Average (ARIMA) [10], Seasonal 
ARIMA (SARIMA), or Auto-Regressive Fractionally Integrated Moving Average (ARFIMA) 
[11] to forecast the load. The variance of available information and the projected time period 
heavily influence the model selection. However, because the ANN technique is primarily 
concerned with reducing experience risk by employing the empirical risk reduction principle 
based on the Statistical Learning Theory, it cannot provide faultless outcomes or quantitative 
analysis (SLT). SVM, on the other hand, makes use of the Structural Risk Minimization (SRM) 
method. SRM approach lowers the generalization error rather than minimizing the empirical 
error [12], [13]. Furthermore, the SVM regression method, a sophisticated forecasting 
methodology, is based on statistical learning theory and the structural risk minimization 
concept. Deep learning has recently become one of the most popular technologies in several 
fields of research. In contrast to shallow Deep learning is the process of stacking numerous 
layers of neural networks and relying on stochastic optimization to solve problems. Activities 
involving machine learning A varied level of abstraction can be achieved by using a different 
number of layers to increase learning ability and task performance [14]. In the field of sequence 
learning, the long short-term memory (LSTM) recurrent neural network (RNN), which was 
first described by Hochreiter et al. [15], has gotten a lot of attention. In several fields, such as 
natural language translation [16], picture captioning [17-19], and speech recognition [7], 
effective applications based on LSTM networks have been documented. In this study, it is 
aimed to implement several deep learning methods. There are comparison reports of two 
models such as ARIMA and SVM [20]. This research aims to compare more models and 
discuss the advantage and disadvantages of the models. 
 

 
 

 

 



3 
 

Chapter 3 

3 Methodology 
 

Over the years, numerous methods and models have been used to forecast or predict Electrical 
load data. The overall method that we’ve used can be summarized in figure 3.1. Firstly, 
historical Load data and weather data were collected. Then the data is passed through the Data 
Pre-Processing stage. After that, the data is divided into input and test Data. Then, suitable deep 
neural network model is selected and the data is fit into the model. Comparing the outcomes 
using selected evaluation methods, the best model is selected. The model is then improved by 
tweaking the model parameters such as numbers of input layers, hidden Layers, output Layers, 
activation function, loss metrics, optimizer learning rate, number of epochs and batch size.  

  

Figure 3. 2: Basic Structure 

 

3.1 Data Pre-Processing 
 

3.1.1 Data Acquisition, removing NaNs and duplicate values 
 

Electrical Load data and weather data of every hour for the years 2017, 2018 and 2019 were 
used to train the models. Which equates to about 26280 individual data points. The data 
includes parameters such as date and time, maximum temperature, minimum temperature, total 
snowfall, sun hour, uv index, moon illumination, moonrise time, moonset time, sunrise time, 
sunset time, dewpoint, feels like temperature, heat index, windchill, wind gust, cloud cover, 
humidity, precipitation, pressure, temperature, visibility, wind direction, wind speed, location 
and load data. The weather data were collected from the https://www.worldweatheronline.com/ 
[21] and the electrical load data were collected DPDC.  

 

 

Table 3. 1: Overview of Dataset 
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After data acquisition, the data is processed in order to be fitted into neural network models. 
Real world data may contain noises, missing values, duplicate values or data type which are 
not suitable for certain models. Data preprocessing is necessary to make the data suitable for 
machine learning model which helps to increase the accuracy and efficiency of the model.  

 

3.1.2 Detecting and removing outliers  
 

Outliers are data that significantly vary with the trend of the rest of the data. This can be 
caused by measurement error, human error or instrument error. Some common methods to 
remove outliers are:  

 Boxplots 
 Z-score 
 Inter Quantile Range (IQR) 

Boxplot is used to detect and visualize the existing outliers. After detection the Inter Quantile 
Range method is applied to remove the outliers in order to get correct median value of overall 
data. In figure 3.2 and figure 3.3, we can see the outliers in windspeed and wind gust 
parameters.  

  

Figure 3. 3: windspeed including outliers       Figure 3. 4: wind gust including outliers 
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In Inter quantile range method the data which lies 1.5 times of IQR above Q3 and below Q1 
are considered as outliers.  

 

 

Figure 3. 5: Inter quantile range method 

 

Figure 3. 6:  windspeed without outliers               Figure 3. 7: wind gust without outliers        

 

 

 

3.1.3 Data Visualization 
 

To understand the trend and behavioral characteristics of the data that is being used, 
visualization is necessary.  

In figure 3.7, the actual total load of first 2 weeks is shown. The electrical load follows a 
periodical trend oscillating in a daily manner.  
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Figure 3. 8: Actual load (First 2 weeks) vs time graph 

Here we've plotted the actual hourly loading from 27/05/2018 up to 10/06/2018, comprising 
two weeks’ worth data. Numerous patterns and periodicities can be observed, including: 

There is a weekly cyclic pattern as business days have higher loads, and weekends and 
especially Sundays, have lower loads. Loads peaks during the day and falls during the night. 
In some cases, the loads drop for a short time between 01:30PM and 04:30PM, most probably 
because of the lunch break between those hours. 

 

Figure 3. 9: Actual hourly load (zoomed – 2 weeks) vs time graph 
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In the figure 3.9, we can see the resampled version (monthly basis) of the actual loads and it’s 
lagged 1-year samples. The spikes in certain month tell us that incorporating a new month 
feature would greatly boost our model’s performance. The same spike would not be visible if 
the figure showed actual loads on a daily or weekly basis in its 1 year lagged timestamp. 

 

 

Figure 3. 10: Actual loads and 1 – year lagged loads vs time graph 

 

Figure 3.10 shows the percentage change of hourly basis in the load. It shows how that load 
data changes compared to the previous hour.  

 

 

Figure 3. 11: Percentage of hourly change in actual loads 
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Figure 3.11 compares between the actual hourly load and weekly rolling mean. 

 

Figure 3. 12: Actual hourly load and Weekly rolling mean 

 

3.1.4 Decomposition and stationarity tests 
 

 

 

Figure 3. 13: Load distribution over the range 

 

As we can see in the above figure, the actual load roughly follows a normal distribution, so 
standardization is feasible. We must also check if our time series needs transformation or not. 
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The time series of loads will be visually decomposed into its component time series, and then 
we will check whether they are stationary. 

 

Time series have 3 main elements: 

1. Seasonality 
2. Trend 
3. Noise 

 

Figure 3. 14: Additive decomposition 

 

As a general rule, most ML algorithm assume that input features and outputs have a static 
relationship. Having constant parameter values for inputs and outputs is called a static 
relationship. As a result, algorithms are most effective when their inputs and outputs are 
stationary. Time series forecasting does not follow this rule. Seasonality and trends are among 
the unique properties that can be found in distributions that change with time. Therefore, the 
mean and variance of the series fluctuate, leading to difficulties in modeling their behavior. 
Thus, it is essential to make a distribution stationary when forecasting time series. 
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We are performing two particular stationarity tests for our dataset. they are: 

1. Augmented Dickey-Fuller (ADF) test 
2. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test 

 

Augmented Dickey-Fuller (ADF) test: Through this test, we can find out how much the 
trend is dominating the time series: 

 Null Hypothesis: For the null hypothesis to be rejected, the p-value < 0.05 because 
unit root is assumed. Based on this, we can say that the time series is stationary. 

On our Time Series Data, this is the ADF test results: 

Table 3. 2: ADF Test Results 

ADF Statistic -8.256870 
p-value 0.00000 
Lags used 48 
Critical Value (1%) -3.430610 
Critical Value (5%) -2.861655 
Critical Value (10%) -2.566831 

 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, a test that is not to be confused with ADF 
test as it does quite the opposite operations. 

 Null Hypothesis: The test statistic must be greater than the critical values in order to 
reject the null hypothesis. Hence, a low p-value would be automatically generated if it 
is actually higher than the critical value. As a result, kpss will be greater than 5% if the 
p-value < 0.05. 

On our Time Series Data, this is the KPSS test results: 

Table 3. 3: KPSS Test Results 

KPSS Statistic 6.453684 
p-value 0.010000 
Lags used 86 
Critical Value (10%) 0.347000 
Critical Value (5%) 0.463000 
Critical Value (2.5%) 0.574000 
Critical Value (1%) 0.739000 
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3.1.5 Autocorrelation, partial autocorrelation and Pearson correlation matrix 
 

Autocorrelation Function (ACF) 

Correlation between time series with a lagged version of itself. Observations at current time 
spots and observations at previous time spots have a positive correlation. It starts with a lag 0, 
which is a comparison of the time series with itself, resulting in a correlation of 1. 

Partial Autocorrelation Function (PACF) 

Each successive lagged term explains additional correlation. If we consider the two 
observations to be correlated with observations at other time points, the correlation between 
observations at two different time spots will be high. The partial autocorrelation at lag k is the 
autocorrelation between Xt and Xt−k that is not accounted for by lags 1 through k−1. 

 

 

Figure 3. 15: Autocorrelation and Partial Correlation 

 

 

Observations done at time steps t-1,2,24,25 demonstrate increasing partial autocorrelation and 
diminishing thereafter. For our models, we will use the first 25 values of each time series. 

Correlation helps figuring out how one variable is dependent on another variable. In any data 
there might be numerous variables. Not all variables affect the outcome similarly. Pearson 
coefficient are linear correlation coefficients that capture distinct degrees of probabilistic 
dependence but not necessarily causation. In figure 3.15, Pearson correlation matrix is used to 
observe the features that are highly correlated to each other.  



12 
 

 

 

Figure 3. 16: Pearson Correlation matrix 
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Table 3. 4: Pearson Correlation Coefficients 

Feature Highly Related Feature(s) Correlation Coefficient 
maxtempC uvIndex 0.751072 
mintempC DewPointC 

FeelsLikeC 
HeatIndexC 

0.859587 
0.831510 
0.829710 

uvIndex maxtempC 0.751072 
DewPointC mintempC 

humidity 
0.859587 
0.754922 

FeelsLikeC mintempC 
HeatIndexC 
WindChillC 
tempC 

0.831510 
0.998397 
0.920138 
0.920292 

HeatIndexC mintempC 
FeelsLikeC 
WindChillC 
tempC 

0.829710 
0.998397 
0.917135 
0.917182 

WindChillC FeelsLikeC        
HeatIndexC        
tempC             

0.920138 
0.917135 
0.998566 

WindGustKmph windspeedKmph     0.935152 
humidity DewPointC         0.754922 
tempC FeelsLikeC        

HeatIndexC        
WindChillC        

0.920292 
0.917182 
0.998566 

windspeedKmph WindGustKmph      0.935152 
 

 

3.2 Feature Engineering 
 

3.2.1 Feature generation 
 

Electrical load depends on weather. After taking all the necessary weather data into account, it 
can be seen that electrical load also depends on features like weekday, weekend, and business 
hour. These parameters were generated and implemented in the data along with other weather 
features. We will also generate an important feature - the business hours. Due to lunch break 
in between, not all businesses follow the 9AM-5PM working day. Hours of operation are 
usually Sunday-Thursday, 9:30AM-4:00PM, and then 6:00PM-10PM. 'Temp_range' is a 
feature which is the difference between the minimum and maximum temperature ('temp_max') 
and is used in dimensionality reduction and thus acquiring new insights. 
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3.2.2 Feature Selection 
 

Feature selection is the process of eliminating irrelevant features from a set of data. The number 
of input variables should be reduced to lower the computational cost of modeling and, in some 
situations, to increase the model's performance. 

The dataset is then divided into Training set, validation set and Test set. Distribution is as 
follows: 

 Training set: 70% 
 Validation set: 20% 
 Test Set: 10% 

 

Figure 3. 17: Model input divisions 

 

3.3 Implemented Models 
 

3.3.1 LSTM 
 

The hidden layer of the LSTM is recurrent. This layer contains special units which are called 
memory units. Memory cells contain information about the network’s temporary state. Another 
part, which is called the gate, dictates the amount of information that can enter or exit through 
the memory blocks. Entry of input activation into the memory cell is determined by the input 
gate. There is also an output gate. Its job is to control the flow of cell activations. But these 
memory blocks cannot process continuous input streams. To resolve this issue, forget gate was 
added. 

The forget gate resets the memory of a cell before it does its recurrent function. Furthermore, 
the contemporary LSTM architecture includes peephole connections between internal cells and 
gates within the same cell to learn accurate output timing. [22] 
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Let us consider an input sequence 𝑥 = (𝑥 ,…,𝑥 ) to an output sequence 𝑦 = 𝑦 ,…,𝑦  . The 
network unit activations are calculated using the equations given below iteratively from t = 1 
to T. 

 

𝑖 = 𝜎(𝑊 𝑥 + 𝑊 𝑚 + 𝑊 𝐶 + 𝑏 ) 
𝑓 = 𝜎 𝑊 𝑥 + 𝑊 𝑚 + 𝑊 𝐶 + 𝑏  
𝑐 = 𝑓 ⨀𝑐 + 𝑖 ⨀𝑔(𝑊 𝑥 + 𝑊 𝑚 + 𝑏 ) 
𝑜 = 𝜎(𝑊 𝑥 + 𝑊 𝑚 + 𝑊 𝐶 + 𝑏 ) 
𝑚 = 𝑜 ⨀ℎ(𝑐 ) 
𝑦 = ∅(𝑊 𝑚 + 𝑏 ) 

 

(3.1) 
(3.2) 
(3.3) 
(3.4) 
(3.5) 
(3.6) 

 

Here, the 𝑊 term dictates wight matrices. The 𝑏 variable dictates bias vectors, 𝜎 is logistic 
sigmoid function and 𝑖, 𝑓, 𝑜 are input gate, forget gate, output gate.  𝑚 is the cell output 
activation vector. 𝑔 and ℎ denotes cell input and cell output. The network output activation 
function is denoted by 𝑡𝑎𝑛ℎ and ∅ respectively. 

 

Figure 3. 18: Structure of LSTM 

3.3.2 Stacked LSTM 
 

The main reason for stacking LSTM is to increase the intricacy of the model. In a simple 
feedforward network, layers are piled on top of each other in order to generate a hierarchical 
presentation of input data. It is same for stacked LSTM. Between every input and out layers, 
several nonlinear mapping layers are used. The output of hidden layer is used as the input of 
the next hidden layer of the LSTM, as seen in Figure 3.18. 
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Figure 3. 19: Stacked LSTM Structure  

 

3.3.3 CNN 
One type of neural network is convolutional neural networks (CNNs). One or more 
convolutional layers are present. It's frequently employed in classification, image processing, 
and correlation. CNN is structured similarly to how nerve cells in our bodies communicate with 
connected neurons. They are distinguished from other neural networks by the convolutional 
process, which applies filters to every component of the previous input to extract patterns and 
feature maps.

Figure 3. 20: CNN Algorithm 

There are three layers (Input layer, hidden layer and output layer) in CNN. In hidden layer there 
are Convolutional layers, pooling layers and fully connected layers. 

Convolutional Layers: it is the main layer of CNN. It convolves the input and contains the 
parameter that is needed for the training. 
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Pooling Layers: After the convolutional layers, there are pooling layers. It summarizes the 
features extracted from convolutional layer output. It reduces the parameters by reducing the 
dimension. 

Fully Connected Layers: in this layer every neuron of every layer is connected.  

 

3.3.4 CNN-LSTM 
 

In a CNN-LSTM model, CNN and LSTM layers are coupled. CNN captures the features from 
the input data, and LSTM anticipates the sequence. CNN LSTMs were proposed to manage 
issues enhanced data time series prediction. From visual sequences, it may produce written 
descriptions. 

 

 
Figure 3. 21: CNN- LSTM Algorithm 

 

 

3.3.5  MLP 
 

The multi-layer perceptron (MLP) is one kind of feed-forward neural network. There are three 
layers as well. They are input layer, hidden layer and output layer. The input layers take the 
input signal and the output layer is for guessing and classification. There are multiple number 
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of hidden layers. Data goes from input layers to output layers. Back propagation is used to train 
the neurons. MLPs are equipped to deal with tasks that are not at all differentiable and can 
estimate any continuous function. MLP's most typical uses include pattern identification, 
recognition, prediction, and approximation. 

 

Figure 3. 22: MLP Algorithm 

 

 

3.3.6 XGBoost 
 

Extreme Gradient Boosting (XGBoost) is a distributed gradient-boosted decision tree (GBDT) 
machine learning toolkit. It can be scaled. It is a tool for regression and classification. It 
contains parallel boosted trees.  
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Figure 3. 23: XGBoost Algorithm 

 

Where, 

αi= regularization parameters of ith tree 

ri= residuals computed with ith tree 

hi= function that is trained to predict residuals, ri using X for ith tree 

 

3.3.7 Encoder- Decoder 
 

Encoder decoder models enable a machine learning model to construct a phrase that describes 
an image. It takes an image as input and produces a string of text. This also applies to videos. 
The encoder-decoder architecture can handle variable-length sequences as inputs and outputs, 
making it ideal for sequence transduction problems like machine translation.  

 

 

 

 

 

Figure 3. 24: Encoder- Decoder Algorithm 
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3.4 Evaluation Method 
 

The performance of any forecasting model is done by comparing the forecasted value and the 
actual test value. Similarly in our load forecasting model we used various evaluation metrics 
to evaluate the performance of our deep learning models. The most commonly used metrics 
are: MAPE, MAE, RMSE, MSE etc. According to our study majority of the researchers use 
RMSE as their main evaluation metric. For our short term load forecasting case, we used 
RMSE, MAPE, MSE, MAE AND R2.  

MAPE: The sum of total absolute errors divided by the actual demand (for each period 
separately). Percentage errors are averaged. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

𝑦 − 𝑦

𝑦
| 

 

(3.7) 

 

MSE: A three-dimensional sum of squared differences between fitted values and observed 
values minus the number of parameters in the model, divided by the number of historical 
points. 

𝑀𝑆𝐸 =  
1

𝑁
(𝑦 − 𝑦 )  

 

(3.8) 

 

RMSE: In other words, the square root of the MSE. Observed data values are on the same 
scale as the square root of the MSE. 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =  
1

𝑁
(𝑦 − 𝑦 )  

 

(3.9) 

 

R-square: According to a linear model, R-squared accounts for a certain portion of the 
variation of the dependent variable. 

𝑅 = 1 −  
∑(𝑦 − 𝑦)

∑(𝑦 − 𝑦)
 

 

(3.10) 
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Chapter 4 

4 Result Analysis 
 

The performance of each model is analyzed in this section. Comparing evaluation metrices of 
each methods help us determine which model gives the best prediction. 

4.1 LSTM Method 
 

LSTM model parameters: 

 LSTM layer: 24, 100 
 Dense Layer: 200 
 Activation Function: relu 
 Optimizer: Adam 
 Learning rate: 0.0003 

 

Figure 4. 1: Actual and Predicted load for LSTM Method 
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Figure 4. 2: Epoch vs Training and Validation RMSE and loss 

 

Table 4. 1: Result of evaluation metrices for LSTM Method 

Evaluation Method Result 
MSE 87521.655 

 
MAE 186.556 

 
RMSE 295.840 

 
MAPE 2.280 

 
R-squared 0.973 

 

 

 

4.2 Stacked LSTM 
 

Model parameters: 

 1st LSTM layer: 250 
 2nd LSTM layer: 150 
 Dense Layer: 150 
 Activation Function: relu 
 Optimizer: Adam 
 Learning rate: 0.0003 
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Figure 4. 3: Epoch vs Training and Validation RMSE and loss 

 

Figure 4. 4: Actual and Predicted load for Stacked LSTM Method 
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Table 4. 2: Result of evaluation metrices for Stacked LSTM Method 

Evaluation Method Result 
MSE 89664.370 

 
MAE 190.224 

 
RMSE 299.440 

 
MAPE 2.316 

 
R-squared 0.972 

 

 

 

4.3 XGBoost forecast 
 

 

Figure 4. 5: Actual and Predicted load for XGBoost forecast 
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\ 

Table 4. 3: Result of evaluation metrices for XGBoost forecast 

Evaluation Method Result 
MSE 204701.385 

 
MAE 274.113 

 
RMSE 452.439 

 
MAPE 3.106 

 
R-squared 0.937 

 

 

4.4 CNN forecast 
 

Model parameters: 

 Dense Layer: 150 
 Activation Function: relu 
 Optimizer: Adam 
 Learning rate: 0.0003 

 

Figure 4. 6: Epoch vs Training and Validation RMSE and loss 
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Figure 4. 7: Actual and Predicted load for CNN Method 

Table 4. 4: Result of evaluation metrices for CNN Method 

Evaluation Method Result 
MSE 95594.147 

 
MAE 218.473 

RMSE 309.183 
 

MAPE 2.759 
 

R-squared 0.970 
 

 

4.5 CNN-LSTM forecast 
 

Model parameters: 

 LSTM layer: 100 
 Dense Layer: 50 
 Activation Function: relu 
 Optimizer: Adam 
 Learning rate: 0.0003 
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Figure 4. 8: Epoch vs Training and Validation RMSE and loss 

 

Figure 4. 9: Actual and Predicted load for CNN-LSTM Method 
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Table 4. 5: Result of evaluation metrices for CNN-LSTM Method 

Evaluation Method Result 
MSE 81058.879 

 
MAE 183.236 

 
RMSE 284.708 

 
MAPE 2.234 

 
R-squared 0.975 

 

4.6 MLP forecast 
 

Model parameters: 

 Time Distributed Dense layer: 200, 150, 100, 50 
 Dense Layer: 150 
 Activation Function: relu 
 Optimizer: Adam 
 Learning rate: 0.0003Figure: 

 

 

Figure 4. 10: Actual and Predicted load for MLP forecast 
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Table 4. 6: Result of evaluation metrices for MLP forecast 

Evaluation Method Result 
MSE 78738.070 

 
MAE 182.337 

 
RMSE 280.603 

 
MAPE 2.268 

 
R-squared 0.975 

 

 

4.7 Encoder-Decoder forecast 
Model parameters: 

 LSTM layer: 50, 50 
 Time Distributed Layer: 50 
 Dense Layer: 150 
 Activation Function: relu 
 Optimizer: Adam 
 Learning rate: 0.0003 

 

 

Figure 4. 11: Epoch vs Training and Validation RMSE and loss 
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Figure 4. 12: Actual and Predicted load for Encoder-Decoder forecast 

 

 

Table 4. 7: Result of evaluation metrices for Encoder-Decoder forecast 

Evaluation Method Result 
MSE 122748.698 

 
MAE 222.331 

 
RMSE 350.355 

 
MAPE 2.720 

 
R-squared 0.962 

 

 

 

The overall comparison of each model is shown in Table: . It can be seen that, the model with 
the lowest MSE is MLP. In case of MAE, MLP also performs better. If we consider RMSE 
values of each model, we can see that, MLP performs the best. But, in case of MAPE, the best 
model is CNN-LSTM. Comparing all the R-Squared vales, it can be seen that, XGBoost 
performs the best.  
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Table 4. 8: Comparison of Models based on evaluation metrices 

Model Evaluation Method 
MSE MAE RMSE MAPE R-Squared 

LSTM 87521.655 
 

186.556 
 

295.840 
 

2.280 
 

0.973 

Stacked LSTM 89664.370 
 

190.224 
 

299.440 
 

2.316 
 

0.972 

XGBoost 204701.385 
 

274.113 
 

452.439 
 

3.106 
 

0.937 

CNN 95594.147 
 

218.473 
 

309.183 
 

2.759 
 

0.970 

CNN-LSTM 81058.879 
 

183.236 
 

284.708 
 

2.234 
 

0.975 

MLP 78738.070 
 

182.337 
 

280.603 2.268 
 

0.975 

Encoder-
Decoder 

122748.698 
 

222.331 
 

350.355 
 

2.720 
 

0.962 
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Chapter 5 

5 Conclusion 
 

As presented in the initial chapters, electric load forecasting is nowadays a vital process. For a 
developing country like ours and our diminishing resources, it is important to have an 
optimized plan of load demand and consumption and also the growing demands for electricity 
from consumers and from our day-to-day lives. As seen during literature review, mostly 
machine learning models and statistical approaches exist to predict short-term load forecasting. 
Deep neural networks have also been used worldwide. But on our dataset, we have incorporated 
multivariate time series analysis using deep learning models comparing them with ML models. 
Applying six of them (LSTM, Stacked-LSTM, CNN, LSTM-CNN, Time Distributed MLP and 
Encoder Decoder) we found out that the deep learning models outperformed the machine 
learning models. One interesting finding of ours is that the multilayer perceptron model got the 
lowest error rate compared to the other deep learning models. Overall, deep learning models 
dominated the machine learning models. 

5.1 Future Work 
 

As can be seen from the literature, many techniques have yet to be developed. Model ensemble 
by using different types of optimizers in use. The introduction of a spark for distributed 
computing would enhance performance replacing grid search, which is very time consuming. 
Only Dhaka City was used and its meteorological features were used. What if we incorporated 
more cities? This will make the process easier. Since we have pre-trained models for making 
predictions, we only need to construct new ones with corresponding calendar and 
meteorological values for the future date. Particularly, LSTM-CNN model giving overall better 
performance can be implemented on other data sets from other countries having similar 
condition to ours.  
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