
i 

 

 

Estimation and Optimization of Attenuation of High Frequency 

mmWave within 5G Spectrum 
 

 

 

 

 

by 
 

 

Md. Monzurul Hoque  (170021081) 

Zubayer Kabir Eisham (170021094) 

Md. Samiur Rahman (170021120) 

 

 

 

 
A Thesis Submitted to the Academic Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

 

 

 

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC 

ENGINEERING 
 

 

 

 

 
 

 

 

Department of Electrical and Electronic Engineering  

Islamic University of Technology (IUT) 

Gazipur, Bangladesh 

 



ii 

 

Estimation and Optimization of Attenuation of High Frequency 

mmWave within 5G Spectrum 

 

 

 

 

 

 

 

 

Approved by: 

 

 

 

                                       

Dr. Mohammad Tawhid Kawser                                               

        

                                                            Supervisor and Professor,                            

Department of Electrical and Electronic Engineering,

 Islamic University of Technology (IUT),   

 Boardbazar, Gazipur-1704. 

 

Date: 10-05-2022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eisham
Placed Image

Eisham
Placed Image



iii 

 

Table of Contents 

List of Tables .................................................................................................... ivv 

List of Figures ...................................................................................................... v 

Abstract ............................................................................................................... vi 

Overview .............................................................................................................. 1 

1 Chapter 1 ........................................................................................................ 2 

1.1 INTRODUCTION  ............................................................................................................ 2 

1.2 RELATED WORKS ......................................................................................................... 3 

1.3 BUILDING PENETRATION LOSS (BPL)  .......................................................................... 5 

1.4 O2I MODELS  ................................................................................................................ 6 

1.5 SIMULATION AND RESULTS  ......................................................................................... 3 

1.6 CONCLUSION  ............................................................................................................... 3 

2 Chapter 2  ..................................................................................................... 19 

2.1 INTRODUCTION .......................................................................................................... 19 

2.2 OPTIMIZATION ALGORITHMS ...................................................................................... 21 

     2.2 .1    PARTICLE SWARM OPTIMIZATION ALGORITHM (PSO) .......................................... 21 

     2.2 .2    MOTH FLAME OPTIMIZATION ALGORITHM (MFO) ............................................... 21 

     2.2 .3    WHALE OPTIMIZATION ALGORITHM (WHO) ........................................................ 21 

     2.2 .4    GREY WOLF OPTIMIZATION ALGORITHM (GWO) ................................................. 22 

     2.2 .5    HARRIS HAWK OPTIMIZATION ALGORITHM (HHO) .............................................. 23 

     2.2 .6    SALP SWARM OPTIMIZATION ALGORITHM (SSA) ................................................. 23 

     2.2 .7    SINE COSINE OPTIMIZATION ALGORITHM (SCA) .................................................. 23 

     2.2 .8    DRANGONFLY ALGORITHM (DA) ......................................................................... 24 

     2.2 .9    GRASSHOPPER OPTIMIZATION ALGORITHM (GOA) .............................................. 24 

2.3 PROBLEM STATEMENT ............................................................................................... 25 

2.4 RESULTS AND ANALYSIS ............................................................................................ 27 

           2.4.1    ATTENUATION FACTOR OPTIMIZATION ............................................................ 27 

           2.4.2    FINDING THE BEST ALGORITHM ....................................................................... 30 

               2.4.3    Power Loss Optimization ………………………………………………. 75 

2.5 CONCLUSION .............................................................................................................. 78 

 

 

 

 

REFERENCES ................................................................................................................ 79-83 

 

 

 

 

 

 

 

 

 



iv 

 

List of Tables 

 

Table 1.4.1 O2I Penetration Losses for Different Materials ..................................................... 6 

 

Table 1.4.2 3GPP TR 38.901 O2I Loss Models........................................................................ 7 

 

Table 1.4.3 NYUSIM O2I Loss Models ................................................................................... 7 

 

Table 1.5.1 Channel Parameters ................................................................................................ 8 

 

Table 1.5.2 Antenna Properties ................................................................................................. 9 

 

Table 1.5.3 NYUSIM O2I Loss Simulation Results ................................................................. 9 

 

Table 2.3.1 Omnidirectional PLE and shadow fading standard deviation .............................. 26 

 

Table 2.4.1 Measured values by different algorithms ............................................................. 28 

 

Table 2.4.2 Number of iterations for different algorithms ...................................................... 30 

 

Table 2.4.3 Power Loss optimization values table .................................................................. 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

List of Figures 

 

Figure 1.5.1: Omnidirectional PDPs for O2I High-Loss scenarios ........................................ 12 

 

Figure 1.5.2: Omnidirectional PDPs for O2I Low-Loss scenarios ......................................... 15 

 

Figure 1.5.3: NYUSIM O2I Loss Variation with Changing Frequency ................................. 15 

 

Figure 1.5.4: NYUSIM and 3GPP TR 38.901 O2I Low-Loss scenarios comparison ............ 16 

 

Figure 1.5.5: NYUSIM and 3GPP TR 38.901 O2I High-Loss scenarios comparison ........... 17 

 

Figure 2.3.1: Attenuation due to different scenarios in te environment ................................. 26 

 

Figure 2.4.1: Convergence Curve ........................................................................................... 27 

 

Figure 2.4.2: Attenuation Factor with respect to Humidity .................................................... 27 

 

Figure 2.4.3: PSO best case scenario ...................................................................................... 31 

 

Figure 2.4.4: PSO worst case scenario ................................................................................... 31 

 

Figure 2.4.5: MFO best case scenario ..................................................................................... 32 

 

Figure 2.4.4: MFO worst case scenario .................................................................................. 32 

 

Figure 2.4.5: Path loss for Urban Micro cell optimization convergence curve …………………… 76 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Abstract 

 

 

Fifth-generation (5G) introduces the use of millimeter waves (mmWave) in cellular 

technology, and thus poses a great challenge in proper radio coverage. One of the difficulties 

in high-frequency coverage is the outdoor to indoor (O2I) penetration loss for indoor users. An 

estimation in O2I penetration losses can help operators decide to ensure proper usage of 

available radio resources in the range of 5G. The first part of the work presents an estimation 

of the variation pattern of penetration losses with varying frequencies, within 5G supported 

range, for different building exterior conditions. For the purposes of simulation two simulators 

have been used, mainly NYUSIM and a MATLAB based simulator developed using 3GPP TR 

38.901. This paper also compares the simulation results from these two simulators. 

 

The use of high frequency mmWave generates yet another issue of attenuation due to different 

environmental factors such as temperature, rain rate, humidity etc. This attenuation causes 

significant loss of transmission power, resulting in poor service and radio coverage quality. To 

mitigate this issue, it is of utmost necessity for the operators to be concerned about the optimum 

operating frequencies for certain environmental situation based on the loss due to 

environmental attenuation. The total problem becomes a multidimensional optimization 

problem which can be readily optimized using nature inspired metaheuristic algorithms. In the 

second part of this work, the multidimensional optimization problem of environmental 

attenuation  is optimized by different well known optimization algorithms to investigate the 

optimum and worse operating points of operation for proper radio coverage. 



1 

 

Overview: 

Our whole work is basically divided into two major parts.  

In the first part, we did an estimation of outdoor to indoor loss variation pattern within 5G 

spectrum and comparison of some famous O2I loss models. 

Brief overview of part 1:  

• Introduction to 5G and importance of penetration loss in 5G 

• Research Topic/Area 

• Previous Studies/ Related Works 

• Models & Simulation Software 

• Results 

• Conclusion 

 

In the second part, we have performed the optimization of attenuation due to environmental 

factors for high frequency mmWave within 5G spectrum and figured out the optimum points 

of operation for cellular operators in certain conditions. 

Brief overview of part 2: 

• Millimeter wave Model 

• Attenuation Factor 

• Multidimensional Function 

• Applying stochastic Algorithm 

• Finding Optimum operation point  
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                                                               Chapter 1 

                                                   Part-1 

 

 

1.1 Introduction 

As the number of people and the number of user applications has been increasing, the demand 

in data rate has also been increasing rapidly. To meet the growing demand, cellular 

technologies have been evolving through different generations. Cellular technology heavily 

relies on the efficiency of wireless transmission of data, and operating frequency has the most 

impact on the efficiency. As a generation of cellular technology changes, it brings about 

significant changes in the wireless data transmission protocols, yet transmission of data heavily 

relies on electromagnetic (EM) wave frequency. Fifth-generation (5G) cellular technology uses 

relatively less congested high-frequency bandwidth, allowing a higher data rate. To ensure 

various demands, the cellular operators need to choose the frequencies that can incur less 

amount of power loss. One such factor that contributes to power loss is penetration loss, 

especially when the user is inside a building. Since 5G supports a vast frequency spectrum, 

unlike previous technologies, a detailed understanding regarding the variation pattern of 

outdoor to indoor (O2I) loss in this frequency range is crucial for operators to make various 

decisions for radio planning. This paper demonstrates the variation pattern of O2I penetration 

loss for two different forms, high-loss and lowloss, with frequency and compares the results of 

two different O2I models. 

 

The remaining sections of this part of the work are arranged as follows: section 1.2 addresses 

the previous studies and experiments related to this work, and in section 1.3, a brief discussion 

regarding building penetration loss (BPL) has been mentioned. The mathematical 

representations of two different O2I models are stated in section 1.4. Simulation and results of 

section 1.5 are there to illustrate the channel parameters and antenna properties, analysis and 

simulation of O2I loss in various frequencies, and comparison between two different models. 

In the end, the conclusion of the holistic view of this portion of the work is represented in 

section 1.6. 
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1.2 Related Works   

Since the advent of 5G cellular technology, a good number of studies and experiments have 

been performed to help radio network planning. In [1], a detailed survey has been conducted 

on 5G network architecture, performance requirements and ways or technologies to fulfill 

varieties of demands and versatile requirements. The paper [2] discusses the channel models 

that will be used to design 5G technologies. In the similar context, the authors in [3] have 

provided a good overview of the features implemented in 5G communication, operated in 

mmWave frequency bands. As more bandwidth capable mmWaves are supported in 5G 

technology, some research has already been performed to analyze the behavior of the 

penetration loss at these newly used frequencies. In the works of [4], the indoor coverage at 

high frequencies have been analyzed for a single building scenario: namely for 10, 30 and 60 

GHz. Authors in [5] studied 4.5, 28, and 38 GHz frequency and propounded that the channel 

characterization and propagation models for bands of less than 6 GHz are not of much help for 

bands above 6 GHz. Authors in [6] explored urban outdoor and O2I characteristics for 38 GHz 

frequency band in details. Similar experiments on O2I penetration loss can be found in the 

works of [7]–[9]. In [7], authors used multi-band channel sounder to measure O2I loss at 3.5, 

4.9 and 28 GHz concurrently. In [8], authors conducted experiments in different room 

configurations like classrooms, halls, etc., and measured different propagation parameters and 

channel parameters at 27-29 frequency bands, and analyzed the results. In [9], the writers 

discussed the O2I path-loss attributes and founded the modeling of it on the found results for 

0.8 to 3.7 GHz frequency bands in urban micro-cell scenario. They demonstrated that their 

suggested model is more accurate than 3GPP 3D channel model. In very recent times, in [10], 

the authors developed an O2I penetration loss model that takes into account incident angles in 

both planes, vertical and horizontal. They measured the loss in the 0.9/2.3/5.1 GHz band, and 

in [11], the authors used separate incident angles for both the vertical and horizontal planes to 

demonstrate characteristics of O2I penetration loss at 5 GHz. There has been a good number 

of simulation-based works regarding O2I loss. In [12], channel modeling for communication 

through 5G mmWave has been simulated. The authors in [13] simulated three different 

scenarios using NYUSIM for 26 GHz frequency band: no penetration loss, low penetration loss 

(standard glass) and high penetration loss (infrared reflecting glass). They observed how the 

received power varied as they had increased the distance for three different cases. In the works 

of [14], the authors have performed simulations using NYUSIM simulator to analyze the 
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behavior of O2I loss for 28, 38, 60 and 73 GHz for both low loss and high loss scenarios with 

two different values of antenna elevations. In [15], the authors conducted detailed 

measurements at 28 and 140 GHz and proposed a 3-D spatial statistical channel model based 

on the results. NYUSIM simulator was used to validate the presented model. To the best of the 

authors knowledge, the simulation-based research works published so far have not presented a 

clear variation pattern of O2I losses and a comparison between different loss models for the 

available wide 5G frequency-spectrum. In this part of work, the scenarios of high O2I losses 

and low O2I losses have been compared, using two different models: NYUSIM hyperbolic 

model and 3GPP TR 38.901 model, and a variation pattern of O2I losses has been presented. 
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1.3 Building Penetration Loss (BPL) 

Higher frequencies of 5G technologies have been widely investigated. 5G services support EM 

wave frequencies ranging from 500 MHz and 100 GHz. In contrast to 5G frequency spectrum, 

previous generations of cellular technology have very limited and highly congested frequency 

spectrum. Significant number of investigations have been performed on those limited 

frequency range, mainly up to 6 GHz. 

 

 The use of mmWave in 5G gives rise to many challenges. One of these challenges is the high 

penetration losses. Various elements in the environment, vehicles, building walls, humans, 

flying birds etc., can cause significant penetration loss. For indoor users, wireless signals have 

to penetrate through building walls, infrared reflecting (IRR) glasses, concrete, windows and 

different things inside buildings, resulting in significant reduction in Carrier to Interference 

plus Noise Ratio (CINR), especially for high-frequency signals. Because of the growing use of 

high frequencies, recently, quite a bit of investigations have been performed for building 

penetration loss (BPL) for frequencies ranging up to 100 GHz. The authors of [16] present the 

penetration loss of different materials commonly used in buildings. It indicates a rapid rise in 

concrete and brick penetration losses as the frequency increases. The ordinary glass offers low 

losses and also, these losses increase slowly with frequency. However, modern buildings are 

using tinted glass for better thermal insulation and this kind of glass offers high penetration 

loss, especially at high frequency. At 28 GHz, transparent non-tinted glass and tinted glass had 

3.9 dB and 40.1 dB penetration losses, respectively [17]. These results resemble a significant 

impact on proper radio coverage for mmWaves due to penetration loss. That is why, insight in 

the variation pattern of O2I penetration loss in this newly available frequency spectrum 

supported in 5G is crucial. As penetration loss is higher for the use of higher frequencies, 5G 

deployments have to be denser than previous generation of technologies. Dense deployment 

results in employing more base stations, antennas, cell towers, human employment, and 

monetary investment from the industry. Rigorous analysis regarding variation patterns of O2I 

penetration losses can be helpful for proper roll out of 5G technology. 
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1.4 O2I Models 

A. 3GPP TR 38.901 

 

Several models have been proposed to measure O2I loss. In this paper, a MATLAB based 

code has been developed to simulate penetration loss using 3GPP TR 38.901 model. 3GPP 

TR 38.901 model measures O2I building penetration loss as follows [18]: 

 

𝑃𝐿 = 𝑃𝐿𝑏 + 𝑃𝐿𝑡𝑤 + 𝑃𝐿𝑖𝑛 + 𝑁(0, 𝜎𝑝
2) …………….. (1) 

 

where 𝑃𝐿𝑏 is the basic outdoor path loss; 𝑃𝐿𝑡𝑤 denotes the penetration loss through the 

exterior wall of the building; 𝑃𝐿𝑖𝑛 stands for inside loss, which is proportional to the depth of 

the building, and 𝜎𝑝 
 is the standard deviation for the penetration loss. 𝑃𝐿𝑡𝑤  is characterized 

as shown next: 

 

𝑃𝐿𝑡𝑤 =  𝑃𝐿𝑛𝑝𝑖 − 10 log10 ∑ (𝑝𝑖 × 10−
𝐿𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

10 )𝑁
𝑖=1  …………..   (2) 

 

To account for non-perpendicular incidence, the extra loss 𝑃𝐿𝑛𝑝𝑖 is applied to the exterior 

wall loss. 𝑝𝑖 is the proportion of i th materials, and N is the number of materials where 

 

1

N

i

i

p


 = 1 …………………………. (3) 

Penetration loss of material 𝑖 is expressed as  

 

𝐿𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 =  𝑎𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 +  𝑏𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 × 𝑓 ………………….. (4) 

Example values of  𝐿𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  can be found in Table 1.4.1. Table 1.4.2 gives 𝑃𝐿𝑡𝑤,  𝑃𝐿𝑖𝑛 and 

𝜎𝑝 
  for two O2I penetration loss models 

 

                    Table 1.4.1: O2I PENETRATION LOSSES FOR DIFFERENT MATERIALS 

Material Penetration Loss[dB] 

Standard multi-plane glass 𝐿𝑔𝑙𝑎𝑠𝑠 = 2 + 0.2𝑓 

IRR Glass 𝐿𝐼𝑅𝑅𝑔𝑙𝑎𝑠𝑠 = 23 + 0.3𝑓 

Concrete 𝐿𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 5 + 4𝑓 

Wood 𝐿𝑤𝑜𝑜𝑑 = 4.85 + 0.12𝑓 

 

In Table 1.4.2, for urban macrocell (UMa) and urban microcell (UMi) street canyons, 𝑑2𝐷−𝑖𝑛  is 

a minimum of two independently generated uniformly distributed variables between 0 and 25 

m, and for rural microcell (RMa) street canyons, 𝑑2𝐷−𝑖𝑛 is a minimum of two independently 

generated uniformly distributed variables between 0 and 10 m. 𝑑2𝐷−𝑖𝑛 shall be UT-specifically 

generated 
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                                   Table 1.4.2: 3GPP TR 38.901 O2I LOSS MODELS 

3GPP TR 38.901 Path loss through exterior 

wall 𝑷𝑳𝒕𝒘 in [dB] 

Indoor Loss 

𝑷𝑳𝒊𝒏 𝒊𝒏 [𝒅𝑩] 

Standard 

Deviation 

𝝈𝒑 
 in [dB] 

Low-Loss Model 
5 - 10log10(0.3 × 10−

𝐿𝑔𝑙𝑎𝑠𝑠

10 +

0.7 × 10−
𝐿𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

10 ) 

 
0.5𝑑2𝐷−𝑖𝑛 

 

4.4 

High-Loss Model 5 - 10log10(0.3 ×

10−
𝐿𝐼𝑅𝑅𝑔𝑙𝑎𝑠𝑠

10 + 0.7 ×

10−
𝐿𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

10 ) 

 

0.5𝑑2𝐷−𝑖𝑛 6.5 

 

 

B. NYUSIM 

NYUSIM uses a parabolic model to determine O2I penetration loss. The model has two forms 

depending on the type of building material. They are low loss and high loss. The form of loss 

is determined by the type of building surface. The low-loss model can be used when the outer 

building materials consists of wood and standard glass, and when the outer building materials 

are IRR glass and concrete, the latter model of the two can be used. The parabolic model is 

given below [19]: 

 

BPL[dB] = 10log10(𝐴 + 𝐵 × 𝑓𝑐
2) + 𝑁(0, 𝜎𝑝

2)…………………… (5) 

 

In “(5)”, 𝑓𝑐 is the carrier frequency; for the low loss model the values of A, B, and 𝜎𝑝 
  are 5.0, 

0.03, 4.0 respectively; concurrently their values are 10.0, 5.0, 6.0 respectively for high-loss 

model 

                        

                                              Table 1.4.3: NYUSIM O2I LOSS MODELS 

NYUSIM model Path loss through external 

wall 𝑷𝑳𝒕𝒘 in [dB] 

Standard Deviation 

𝝈𝒑 
 in [dB] 

Low-Loss Model 10log10(5 + 0.03 × 𝑓𝑐
2) 4 

High-Loss Model 10log10(5 + 5 × 𝑓𝑐
2) 6 
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1.5 Simulation and Results 

A. Simulation and Results analysis of O2I Loss for varying frequencies 

  

The simulations have been performed using fixed channel parameters and antenna settings. We 

observed how the O2I loss varies as we keep changing the frequency for two distinct scenarios: 

low loss and high loss, taking ten different readings for ten different frequencies for each case. 

The channel parameters are shown in Table 1.5.1, and the antenna properties are shown in 

Table 1.5.2. Figures were used to represent the results of each simulation. 

 

                                          Table 1.5.1: Channel Parameters 

RF Bandwidth 800 MHz 

Scenario UMi 

T-R Separation Distance 100m 

TX Power 30 dBm 

Base Station Height 35m 

User Terminal Height 1.5m 

Barometric Pressure 1013.25 mbar 

Humidity 50% 

Temperature 20°C 

Rain Rate 0 mm/hour 

Foilage Loss No 

 

For both low loss and high loss scenarios, simulations have been performed from 10 GHz to 

100 GHz at 10 GHz spacing. The penetration losses for high loss and low loss cases have been 

shown in Table 1.5.3. The omnidirectional Power Delay Profiles (PDP) for high loss cases and 

low loss cases have been shown in “Fig. 1.5.1” and “Fig. 1.5.2” respectively. Simulations for 

both omnidirectional and directional settings have been performed, and O2I loss have been 

found same for both cases because O2I loss is independent of how the signal is arriving from 

the transmitting end. O2I penetration losses for high loss and low loss have been plotted in 

“Fig. 1.5.3” from the NYUSIM simulation result. 
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                                             Table 1.5.2: ANTENNA PROPERTIES 

Polarization Co-Pol 

TX Array Type ULA 

RX Array Type ULA 

Number of TX Antenna Elements 1 

Number of RX Antenna Elements 1 

TX Antenna spacing (in wavelength) 0.5 

RX Antenna spacing (in wavelength) 0.5 

Number of TX Antenna Elements per row 1 

Number of RX Antenna Elements per row 1 

TX Antenna Azimuth HPBW 10° 

RX Antenna Azimuth HPBW 10° 

TX Antenna Elevation HPBW 10° 

RX Antenna Elevation HPBW 10° 

 

  

                                     Table 1.5.3: NYUSIM O2I LOSS SIMULATION RESULTS 

Frequency (GHz) High Loss(dB) Low Loss(dB) 

10 31.1 10.2 

20 35 9.7 

30 37 13.1 

40 34.9 19.4 

50 45 19.3 

60 42.5 17.8 

70 45.7 18.3 

80 51.1 24.3 

90 42.6 23.4 

100 43.5 22.7 

 

An upward trend can be observed for both type of O2I penetration losses with the rise of 

frequencies, available in the wide spectrum. However, these upward trends don’t follow any 

fixed pattern. 
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                       Figure 1.5.1: Omnidirectional PDPs for O2I High-Loss scenarios 

 

 

These irregularities in “Fig. 1.5.3” are primarily due to random number used as standard 

deviation; one cause for this randomness is the incident angle of electromagnetic wave on the 

material surface. The difference between O2I high loss and low loss from NYUSIM simulation 

is approximately 25 dB over the whole frequency range. In “Fig. 1.5.3”, it is apparent that O2I 

low loss has a smoother rise than the rise of O2I high loss. From 10 GHz to 40 GHz frequency 

band, O2I low loss has a somewhat linear growth whereas O2I high loss has a sharp drop at 40 

GHz, but for the rest of the frequency range, sharp fluctuations are apparent for the high loss 

cases. In contrast to high loss cases, low loss scenarios have nominal fluctuations from 40 GHz 

to 70 GHz frequency band. Around 5 dB rise is visible as frequency was changed to 80 GHz, 

and from 80 GHz to 100 GHz, the variation pattern was somewhat steady. In summary, 

NYUSIM O2I loss ranges from approximately 10 dB to 25 dB whereas high loss ranges from 

about 30 dB to 55 dB 
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                           Figure 2.5.2: Omnidirectional PDPs for O2I Low-Loss scenarios 

 

 

 

                                             

                                   Figure 3.5.3: NYUSIM O2I Loss variation with changing frequency 
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B. Comparison between simulation results from 3GPP TR 38.901 Model and NYUSIM 

hyperbolic model 

 

In this section, a comparison between O2I penetration loss of 3GPP TR 38.901 Model and 

NYUSIM simulation has been shown. To illustrate the comparison, we have simultaneously 

plotted the penetration loss through outer or external wall (𝑃𝐿𝑡𝑤 of “(2)”) of 3GPP TR 38.901 

model and the simulated results we found for O2I penetration loss model of NYUSIM. For 

depicting the variation pattern of penetration loss of 3GPP 38.901 model, a MATLAB based 

simulator had been used. 

 

For low-loss (“Fig. 1.5.4”) scenarios and high-loss (“Fig. 1.5.5”) scenarios, we have plotted 

separate graphs to have a better comparison of view. 

 

 

 

             Figure 4.5.4: NYUSIM and 3GPP TR 38.901 O2I Low-loss scenarios’ comparison 
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A similar upward trend along with some irregular and random patterns can be perceived for 

the penetration loss of 3GPP TR 38.901 Model as we keep changing the frequency from 10 

GHz up to 100 GHz with an interval of 10 GHz similar to what we had done in the case of 

NYUSIM simulation. In both low-loss and high-loss cases, an inconsistent difference has been 

observed at different frequencies between simulation results from NYUSIM hyperbolic model 

and 3GPP TR 38.901 model. Comparison between “Fig. 1.5.4” and “Fig. 1.5.5” shows that the 

difference of O2I losses between two loss models is higher for high-loss cases compared to 

low-loss cases. The difference between O2I losses of two models is around 30 dB for high-loss 

cases and around 10 dB for low-loss cases. It can be inferred from the simulation results that 

the assumed materials in NYUSIM are more opaque to the transmission of electromagnetic 

waves than the assumed materials of 3GPP TR 38.901. 

 

 

 

           Figure 5.5.5: NYUSIM and 3GPP TR 38.901 O2I High-loss scenarios’ comparison 
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1.6 Conclusion 

The variation pattern of O2I penetration losses for different materials within 5G frequency 

spectrum have been demonstrated. From the analysis of the simulations done by NYUSIM, it 

can be concluded that the O2I Penetration loss follows an upward trend with an irregular and 

random fashion with the increment of the frequency for low-loss and high-loss materials. This 

paper also presented a comparison between the losses encountered due to the penetration 

through the external wall, measured by 3GPP TR 38.901 model, with the simulated results of 

O2I loss found from NYUSIM simulations. Both models followed an irregular upward trend 

as the frequencies were increased, while the O2I losses found from NYUSIM simulated results 

appeared to be higher than the losses measured by 3GPP TR 38.901 model. In the case of high-

loss materials, the difference between 3GPP TR 38.901 model and NYUSIM simulated results 

were comparatively higher than that of the low-loss materials. These studies and analysis of 

O2I penetration loss can be quite vital for newer deployments where 5G mmWaves play 

significant impact 
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Chapter 2 

2 Part-2 

 

 

2.1 Introduction 

The high frequency mmWave in 5G, as discussed in part 1, comes with major advantages 

like higher data rate, low latency, high mobility, higher spectrum density, higher area traffic 

capacity, broader connection density (higher number of devices in unit area), extended 

network energy efficiency, extensive peak data rate and so on. These advantages with high 

frequency mmWave allow newer applications like Enhanced Mobile BroadBand (emBB) 

that allows higher data rate and extended traffic volume, massive Machine-Type 

Communication (mMTC), introducing massive number of low-priced devices with low 

power consumption and ultra-Reliable Low Latency Communication (uRLLC).  

 

However, as discussed in the previous part, all these superior performances come with the 

expense of higher amount of attenuation due to the use of high frequencies. Up to the earlier 

generations of cellular technologies, the attenuation of signals in the environment was not 

that much of a significant issue, since the carrier frequency was limited below 6 GHz up to 

LTE. But as the frequency spectrum highly increased for 5G (up to 100 GHz), the 

attenuation of these high frequency mmWaves due to different environmental factors 

become unavoidable, and a significant ratio of the transmitted signal gets attenuated in the 

multipath environment. As a result, the received signal strength, as well as the user data 

rate drops significantly and the QoS (Quality of Service) gets highly interrupted. So, 

optimization of these attenuation of signal due to certain environmental factors becomes 

quite vital to maintain proper radio coverage by choosing optimum frequency points for 

certain environmental condition and avoiding the disadvantageous points.   

 

So, in a nutshell, in this part of work, the authors focus on one of the key aspects of 

communication- transmission power loss. Power of the transmitted signal determines the 

SNR and Bandwidth of a signal. The authors focus on the overall transmission power in 



20 

 

the environment. There are many factors that impact the transmitted signal-humidity, rain 

drop, temperature, frequency of the signal, atmospheric pressure. The authors focus on 

the efficient calculation of the mathematical model for determining power loss that 

incorporates all the environmental factors. The mathematical model is a multidimensional 

problem with many local solutions, and the objective is to find the global solution in an 

efficient manner. The authors deploy algorithms for adjusting weights in the Neural 

Network to solve this mathematical model for power loss, and compare different 

algorithms of the same genre. The authors, in essence, optimize the mathematical model 

for power loss and the mathematical model for determining the attenuation caused by the 

environment. The authors also find the best algorithm for this particular problem among 

some selected and famous algorithms, and the authors also propose a way to determine 

other local optimum points.  

 

Mathematical model of this environmental attenuation was first developed in 1993 [20]. 

The authors in that work investigated the propagation characteristics of atmosphere for the 

frequency range from 1GHz-100GHz. The model was developed considering dry air, water 

vapor, haze and rain. NYUSIM software was developed based on this model to calculate 

the environmental attenuation factor. But the scope is limited here, because this software 

operates based on constant values of variable, and it may need millions of simulations to 

find the optimum points of operation which is totally impractical. So, a method of 

optimization of this multidimensional attenuation factor appears to be highly desirable to 

minimize the transmission power loss. 

 

Stochastic algorithms have become popular in the advent of ANN. Nature based stochastic 

algorithms gained popularity due to fast convergence to optimum solution and have 

famously solved complex optimization problems including cache optimization [21], 

resource allocation [22], power management in the network [23] , secrecy rate optimization 

problem [24] and etc in the field of wireless and cellular communication. 
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2.2 Optimization Algorithms 

A brief discussion on the optimization algorithms used to optimize the proposed problem is 

given below. These algorithms are mainly swarm based nature inspired optimization 

algorithms which are extensively used to solve complex engineering problems with faster 

convergence. 

 

2.2.1 Particle Swarm Optimization Algorithm (PSO): 
 

This algorithm first proposed in 1995 [25] as a global optimization technique for nonlinear 

functions. It imitates a flock's social and individual intelligence. An optimization issue is 

treated as an n-dimensional space in this approach, where n is the number of parameters. Each 

bird symbolizes one of the possible answers. PSO duplicates each population member's bodily 

changes. A search space is a solution space in this algorithm, and possible solutions are the 

positions of individuals in the search space. If an optimization problem has R variables, the 

solution space in the PSO algorithm is an R-dimensional search space, with positions in the kth 

dimension corresponding to the values of the kth variable. 

Changes in individual locations are prompted by three elements in this algorithm: (i) inertia, 

(ii) the best position of individual (p), and (iii) the best location worldwide (g). Inertia is the 

individual's velocity in the previous iteration, which can be controlled by inertia weight. Inertia 

stops particles from retracing their steps. The best place discovered by an individual till now is 

the p location, and the best site discovered by the entire population until now is the g location. 

Each member has their own velocity, which is created at random in the p and g directions. 

 

 

2.2.2 Moth Flame Optimization Algorithm (MFO): 
 

The MFO is a metaheuristic algorithm designed to solve complicated optimization issues [26]. 

The MFO was inspired by moths' natural navigation method. The movement of moths towards 

lights at night while maintaining a fixed angle is offered as an effective strategy for achieving 

the goal. Members of the moth population represent actual search agents that move about the 

space according to a predetermined plan, whilst members of the flame population represent the 

moths' current ideal positions. In other words, flames can be thought of as pins or flags left by 

moths searching for the optimal environment. 

 

The flame population in the first iteration consists of moths sorted by fitness ratings. The moth 

with the highest fitness value will be assigned first place in the flame population, followed by 

the rest. The position of each moth in relation to its matching flame is then updated. The best 

flame is always used to update the position of the first moth, and the worst flame is always 

used to update the position of the last moth. 

 

 

2.2.3 Whale optimization algorithm (WOA): 
 

Whale optimization algorithm (WOA) is a swarm-based meta-heuristic method for addressing 

difficult optimization problems that is based on the bubble-net hunting maneuver tactic used 

by humpback whales [27]. Because of its simple structure, low operator requirement, high 

convergence speed, and better balancing capabilities between exploration and exploitation 

stages, swarm intelligence has become extensively recognized in numerous technical domains. 
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The algorithm's applications have been widely used in various domains in recent years due to 

its superior performance and efficiency.  

 

The humpback whale population in WOA searches for food in a multi-dimensional search 

space. Individual humpback whale positions are represented as choice variables, while the 

distance between the humpback whales and the food correlates to the value of objective cost. 

Three operational processes determine a whale's time-dependent location: (1) shrinking 

encircling prey, (2) bubble-net attacking strategy (exploitation phase), and (3) hunt for prey 

(exploration phase). 

 

 

2.2.4 Grey Wolf Optimization Algorithm (GWO) [28]: 
 

Grey wolves live in packs and hunt in packs. The following is a description of the searching 

and hunting process: (1) If a prey is discovered, they track, chase, and approach it first. (2) If 

the prey flees, the grey wolves will follow, encircle, and harass it until it comes to a halt. (3) 

Finally, the assault starts.  

 

Grey wolves have long been considered apex predators at the top of the food chain. Grey 

wolves are more prone to living in packs. The typical group size is also 5–12. It's worth noting 

that they have a particularly complex social governance hierarchy. 

Grey wolves' searching and hunting processes were used to develop the optimization algorithm. 

The best solution in the mathematical model is called alpha, the second best is beta, and the 

third best is delta. All of the remaining possible solutions are believed to be omegas. 

 

Alpha's key responsibilities include hunting, sleeping, and waking times, among other things. 

As a result, the group would inherit alpha's decisions. Nonetheless, they achieved one type of 

democratic behavior, in which the alpha wolf follows the other wolves in the pack. The entire 

group would recognise alpha by raising its tail at meetings. Because the group must obey his 

commands, the alpha wolf is known as the dominating wolf. 

 

Subwolves who help alpha with decision-making and other group activities are known as beta. 

This wolf beta could be female or male, and it will most likely be the best alpha contender if 

one of the alpha wolves dies or gets old. The wolf beta must obey alpha, although it can also 

command lower-level wolves. The alpha advisor and group regulator are these wolves. Beta 

distributes alpha commands to the rest of the group and gives alpha feedback. 

 

Omega is the victim in this story. Omega wolves must submit to each dominant wolf on a 

regular basis. They are, in fact, the last wolves who are allowed to feed. 

The alpha is always in charge of the searching and hunting process, whereas the beta has a little 

part and the delta has none. If he/she obtains the best, all of the other grey wolves transfer 

his/her status to the leader. It should be emphasized that the best location in real-world 

searching and hunting operations is closest to the prey, whereas the best position in 

optimization for a global optimum of a given problem is the greatest or lowest of the fitness 

value under specified constraints. 

 

A postulated prey is always surrounded by dominants during the searching process, whereas a 

real prey is encompassed during the hunting process. In order of social hierarchy, the 

dominant grey wolves are positioned around the prey. This means that among the grey 

wolves, the alpha is the closest; the beta is the closest in the pack save for the alpha; and the 
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delta is third. Omega wolves take part in the processes and pass on their superior positions to 

the dominants. 

 

 

2.2.5 Harris Hawks Optimizer (HHO): 
 

Heidari et al. developed HHO [29], which is a hunting mechanism that Harris hawks use 

naturally. This program updates the positions of hawks in a search space using a series of 

equations to imitate distinct hunting tactics that these birds execute to catch prey. 

In this algorithm, a group of hawks attacks a hunt to surprise it (exploration phase). When it 

comes to the possibility of evasion and fleeing the hunt, the Hawks can do multiple fast dives 

close to the prey to startle it and tire it out (exploitation phase).  

The HHO algorithm can change its phase from exploration to exploitation based on the prey's 

escaping energy, and then move between different exploitative modes. The running process 

can greatly reduce the energy of the hunt. 

 

2.2.6 Salp Swarm Algorithm (SSA): 

 
The Salp Swarm Algorithm (SSA) is a new optimization technique that has been developed to 

handle a variety of optimization issues [30]. It replicates the natural activity of Salps, which 

are barrel-shaped planktonic tunicates belonging to the Salpidae family. Furthermore, their 

tissues are comparable to jellyfishes, and their movement behavior and weights have a high 

water percentage. They move by contracting and changing postures by pushing water through 

their jellied bodies.  

 

SSA begins by segmenting the population into two groups: leaders and followers. The chain's 

front salp is known as the leader, while the others are known as the followers.  

The salps' position is calculated in n-dimensions, where n represents the problem's variables 

and n represents the search space. These salps are looking for a food supply, which signals the 

swarm's target. 

 

 

2.2.7 Sine Cosine algorithm (SCA): 
 

Mirjalili proposed the sine cosine algorithm (SCA), which is a powerful population-based 

optimization tool [31]. It has been applied to a wide range of settings since its inception. 

By using mathematical models based on the sine and cosine functions, SCA creates a large 

number of origin random candidate solutions and causes them to oscillate outwards or towards 

the ideal agent. It not only improves convergence speed but also prevents local optimization, 

according to a significant number of test experiments. 

 

 

 

 

 

2.2.8 Dragonfly Algorithm (DA): 
 

DA is created by imitating a dragonfly's swarming behavior [32]. Their swarming is caused by 

either migration or hunting (dynamic swarm or static swarm, respectively). Small groups of 
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dragonflies migrate over a small area to hunt other insects in a static swarm. Local movements 

and sudden alterations are typical of this sort of swarming.  

 

However, in dynamic swarming, a large group of dragonflies forms and moves in one direction 

over a long distance. The major idea for DA is this swarming behavior.  

Static and dynamic swarming behaviors correspond to the metaheuristic optimization 

algorithm's exploration and exploitation phases, respectively. Five weights were employed to 

lead artificial dragonflies down various paths: separation weight, alignment weight, cohesion 

weight, food factor, enemy factor, and inertia weight. High alignment and low cohesion 

weights are used to explore the search space; nevertheless, low alignment and high cohesion 

weights can be utilized to exploit the search space. In addition, to switch between exploration 

and exploitation, the radius of the neighborhood was increased proportionally to the number of 

repetitions. Another technique to balance exploration and exploitation is to adjust the swarming 

weights adaptively during the optimization process. 

 

A random move must be introduced to the searching approach to increase the possibility of an 

optimization algorithm traversing the whole decision space. To promote randomness, 

stochastic behavior, and exploration of artificial dragonfly individuals when there are no 

neighboring solutions, dragonflies are required to fly around the search space using a random 

walk (Lévy flying). 

 

 

2.2.9 Grasshopper Optimization Algorithm (GOA): 
 

The Grasshopper Optimization (GOA) is a new swarm intelligence algorithm that was inspired 

by grasshoppers' natural foraging and swarming activity [33]. The GOA algorithm has been 

successfully used to handle a variety of optimization problems in a variety of disciplines, and 

its benefits have been proved in the literature. 

 

Grasshoppers are pest insects that have a negative impact on agricultural productivity and 

agriculture. Nymph and maturity are the two stages of their life cycle. Small steps and gradual 

movements describe the nymph phase, while long-range and rapid movements represent the 

maturity phase. The intensification and diversification phases of GOA are represented by 

nymphal and adult motions. A grasshopper's position is updated based on its current location, 

global best location, and the locations of other grasshoppers in the swarm. This prevents GOA 

from becoming stuck in local optima. 
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2.3 Problem Statement 

There are two objective functions to be optimized: attenuation factor and close-in free space 

reference distance (CI) path loss model. The whole path loss can be expressed as follows 

[34][35][36]. 

𝑃𝐿𝐶𝐼(𝑓, 𝑑)[𝑑𝐵]  

=  𝐹𝑆𝑃𝐿(𝑓, 1𝑚)[𝑑𝐵]  +  10𝑛𝑙𝑜𝑔10(
𝑑

𝑑0
) + 𝐴𝑇[𝑑𝐵] + 𝑋𝜎

𝐶𝐼 , 𝑑 ≥ 𝑑0 𝑚  

𝑓 is the frequency in GHz, 𝑑 is the separation between transmitter and receiver, 𝑛 is the path 

loss exponent, 𝑑0 the free space reference distance. 𝑋𝜎
𝐶𝐼 is a zero-mean random variable with 

Gaussian distribution. 𝐹𝑆𝑃𝐿 is defined as follows. 

 

𝐹𝑆𝑃𝐿(𝑓, 1𝑚)[𝑑𝐵]  =  20𝑙𝑜𝑔10(
4𝜋 × 109

𝑐
) 

𝑐 is the light speed. 𝐴𝑇 is defined as follows. 

𝐴𝑇[𝑑𝐵] =  𝛼[𝑑𝐵/𝑚] × 𝑑[𝑚] 

 𝛼- the attenuation factor [20]- and 𝑃𝐿𝐶𝐼(𝑓, 𝑑)[𝑑𝐵] are to be optimized. As can be seen from 

the Figure 2.3.4 that  𝛼 has peaks and troughs, and with all the environmental factors finding 

the global point gets critical. More complexity rises in the calculation of. 𝑃𝐿𝐶𝐼(𝑓, 𝑑)[𝑑𝐵]. 
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       Figure 2.3.1: Attenuation due to different scenarios in the environment. 

  

The value of 𝑛 varies depending on the cell description so does the 𝑋𝜎
𝐶𝐼as given in the table 

2.3.1. 

  

  Table 2.3.1 Omnidirectional PLE and shadow fading standard deviation 

Scenario PLE Shadow fading standard Deviation [dB] 

 

UMi 

LOS 2 4.0 

NLOS 3.2 7.0 

 

UMa 

LOS 2 4.0 

NLOS 2.9 7.0 

 

RMa 

LOS 2.31 1.7 

NLOS 3.07 6.7 
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2.4 Results and Analysis 

The optimization of the functions was done in a laptop of processor intel i5, 7th generation 

with 12 GB RAM.  

 

2.4.1 Attenuation Factor Optimization 
 

Ten different stochastic optimization algorithms were applied to solve the attenuation factor in 

100 iterations, and the whole process was repeated 100 times. At the end, the average of the 

hundred different runs were taken. As a result, a holistic convergence curve was obtained with 

hundred iterations where each iteration is the average of hundred different runs. Attenuation 

factor has 5 independent variables. Respective Ranges are given below. 

 

Frequency (GHz) Pressure 

(mbar) 

Humidity (%) Temperature 

(℃) 

Rain Rate 

(mm/hr) 

1-100 300-1013 0-100 (-100) - 50 0-150 

 

Pressure lowest range was set to 300 mbar because of practical reasons. The lowest practical  

pressure can be conceived at the peak of Everest so the range was set accordingly. 

 
Figure 2.4.1: Convergence Curve 
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                                        Table 2.4.1: Measured values by different algorithms 

Algorithm Frequency Pressure Humidity Temperature Rain 

Rate 

Attenuation[dB/m] 

GWO 60.192353

843116930 

1.0132500

00000000e

+03 

44.6823657

04820970 

-

82.546563058

116600 

1.499

99897

45206

25e+0

2 

0.0953 

WOA 60.331650

117882624 

9.3666064

83796969e

+02 

63.7158987

22730500 

-

53.699469184

544590 

1.488

21638

41406

27e+0

2 

0.0867 

PSO 60.124568

771873854 

1.0132500

00000000e

+03 

88.5866966

78674060 

-100 150 0.1002 

SCA 59.965610

732878890 

9.8576539

75893566e

+02 

15.0370867

76311675 

-

96.605785075

555640 

1.490

26122

62035

88e+0

2 

0.0966 

SSA 60.190846

138930596 

1.0117105

02593708e

+03, 

50.7806108

75478910 

-

81.051898065

449410 

1.498

48577

25477

94e+0

2 

0.0945 

HHO 63.921180

520629190 

7.2023922

10850908e

+02 

55.2029406

76603596 

-

39.128755976

970530 

1.371

99936

76064

10e+0

2 

0.0715 

DA 60.124444

749663380 

1.0102000

29006350e

+03 

59.5765476

98760060 

-100 150 0.1001 

MFO 60.124570

334567870 

1.0132500

00000000e

+03 

99.9999999

99931750 

-100 150 0.1002 

GOA 60.144556

788252790 

1.0132499

99999889e

+03 

58.0452457

70665770 

-

94.999996949

358250 

1.499

99999

05543

26e+0

2 

0.0991 
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IGWO 60.125307

810643270 

1.0132423

93294994e

+03 

58.8683990

80388100 

-

99.999473537

860800 

1.499

99372

48800

19e+0

2 

0.1002 

 

 

 

It is apparent that the highest attenuation is 0.1002 dB/m, and the most accurate result should 

be the one given by MFO. The probable worst operating condition can be the one given by 

60.124570334567870 GHz, .013250000000000e+03 mbar, 99.999999999931750 % humidity, 

-100℃, 150 mm/hr. 

 

The reason for such a conclusion is that the humidity is a very sensitive variable to attenuation. 

Only humidity above 99%, the attenuation factor gives a peak. 

 

Figure 2.4.2: Attenuation Factor with respect to Humidity 

 

This is a plot of attenuation factor with respect to humidity where frequency is 60.132GHz, 

temperature -100℃, pressure is 1013.25 mbar, and rain rate is 150 mm/hr.This is a very 

interesting result because maximum attenuation occurs near 60GHz where normal Free space 

loss occurs at the maximum possible frequency which in this case should be 100GHz. 



30 

 

2.4.2 Finding the best algorithm 

For this part, the authors intend to find the algorithm that gives the near accurate result in the 

shortest iteration. 100 different runs were taken to determine the fastest algorithm. The 

determining condition was that if the algorithm hits the maximum attenuation point more than 

3 times, the algorithm terminates the iteration. After the 100 runs, the number of iterations for 

an algorithm was averaged to determine the best algorithm.  Rounded up values are listed in 

the table. 

 
                                    Table 2.4.2: Number of iterations for different algorithms 

GWO WOA PSO SCA SSA HHO DA MFO GOA IGWO 

57 96 19 98 68 100 39 22 21 48 

 

On average PSO can reach the maximum point within 19 iterations. In the best-case scenario 

among 100 different runs, PSO was able to reach the point within 9 iterations. In the worst -

case scenario, PSO took 33 iterations. In the best case scenario, PSO gave the probable accurate 

result that is 60.0295581622350GHz frequency, 1013.25 mbar, 100% humidity, -100℃ and  

150 mm/hr rain rate. In the worst-case scenario, PSO gave the operating condition as 

60.1144905688075 GHz, 1013.25mbar, 41.8539737488666 %, -100℃, 150 mm/hr  

 

In the case of MFO, it takes 22 iterations on average. Best case scenario is when MFO finds 

the point within 13 iterations; on the contrary, worst case is when iteration is 30. In the best 

case, MFO gave the condition as 60.103063896557GHz, 1013.25mbar,  44.9466370543853 % 

,  -100℃,  150 mm/hr, and for the worst case, the result is 60.1584836398928 GHz,   

1013.25mbar,    5.90070148429986%,    -100 ℃, 150mm/hr. 

 

However, On average PSO is the fastest with the near accurate result among ten algorithms, 

and MFO is the second fastest with the most accurate result. 
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                                    Figure 2.4.3: PSO best case scenario 

 

                                                  Figure 2.4.4:  PSO worst case scenario 
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                            Figure 2.4.5:  MFO best case scenario 

 

 

                                   Figure 2.4.6:  MFO worst case scenario 

 

 

Figures (convergence curves) of other different run results are given below 
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2.4.3 Power Loss Optimization 

 
Ten different stochastic optimization algorithms were applied to solve overall path loss in 100 iterations 

with 30 search agents, and the whole process was repeated 100 times.  

𝑃𝐿𝐶𝐼(𝑓, 𝑑)[𝑑𝐵]  

=  𝐹𝑆𝑃𝐿(𝑓, 1𝑚)[𝑑𝐵]  +  10𝑛𝑙𝑜𝑔10(
𝑑

𝑑0
) + 𝐴𝑇[𝑑𝐵] + 𝑋𝜎

𝐶𝐼 , 𝑑 ≥ 𝑑0 𝑚  

𝑃𝐿𝐶𝐼(𝑓, 𝑑)[𝑑𝐵]  has more parameters unlike attenuation factor. It has in total 7 independent 

variables and 5 of which are the independent variable of attenuation factor. 

 

Frequency (GHz) Pressure(mbar) Humidity 

(%) 

Temperat

ure (℃) 

Rain 

Rate 

(mm/hr) 

Transmitt

er and 

receiver 

3D 

separatio

n(m) 

𝑑0(m) 

1-100 300-1013 0-100 (-100) - 

50 

0-150 10-500 1-5 

 

𝑑0 is the free space reference distance in meters, which is ranges from 1m to 5m, but 𝑑0 should 

not exceed 5 m to guarantee free space propagation within 𝑑0. The problem was specified for 

Urban Micro cell which ranges from 10-500m with 𝑛, path loss exponent, equals to 2, and 

𝑋𝜎
𝐶𝐼 = 4. 
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       Figure. 2.4.5: Path loss for Urban Micro cell optimization convergence curve 

 

 

                                  Table 2.4.5: Power Loss Optimization values table  

Algorit

hm 

Freque

ncy 

Pressur

e 

Humidi

ty 

Temper

ature 

Rain 

Rate 

Transm

itter 

and 

receiver 

3D 

separati

on(m) 

𝒅𝟎(m) Power 

Loss[d

B/m] 

GWO 63.4349

6285067

8424 

8.88432

5948107

823e+0

2 

44.2839

1276280

8600 

-

41.2315

4887233

3610 

1.47947

9149563

125e+0

2 

4.97291

0013760

902e+0

2 

2.47939

9382580

016 

173.425

3 

WOA 93.9595 986.132

8 

94.4107 34.6589 149.168

1 

499.097

7 

4.7532 169.082

6 

PSO 64.6544 842.752

4 

55.1694 -

65.5488 

149.312

9 

499.511

4 

2.7672 177.875

1 

SCA 67.6936 837.902 37.4799 - 144.058 497.379 2.2933 0166.21
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5 42.9887 4 2 35 

SSA 74.4292 761.479

8 

64.6185 -

17.3115 

142.762

3 

494.510

5 

3.2895 169.965

4 

HHO 94.5039 807.635

8 

77.9248 29.3738 148.256

1 

497.988

8 

3.9748 165.993

9 

DA 67.0.131 812.958 63.4205 -

39.2964 

147.363

3 

498.750

9 

3.437 173.059

4 

MFO 60.5314 1.0056e

+03 

51.3077 -

98.1171 

149.400

8 

499.468

7 

3.1530 184.727

3 

GOA 71.6427 749.063

1 

55.8721 -

31.1488 

134.142

3 

493.434

2 

3.2773 166.510

6 

IGWO 60.1815 985.955

1 

47.4701 -

97.5477 

147.183

4 

494.691

9 

2.8831 181.560

4 

 

The results suggest different performances of algorithms than the performance in optimizing 

attenuation factor. MFO gave the most optimum result and then IGWO and then PSO. 

Generally, free space path loss increases with frequency and with distances. However, even at 

the maximum possible distance, which is 500m in this case, the most loss occurs around 

60GHz. However, the result of MFO suggests that the average humidity of 51.3% gives the 

most loss. However, in certain cases MFO gives 188dB as the maximum point with 

60.3232965861214 GHz   1013.25mbar,  98.2533736243023 %,   -100℃ ,   150 mm/hr,   500m,    

1m as operating point. 
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2.5 Conclusion 

The overall research has the great potential to contribute in determining the optimum point of 

cell tower location. Also, this portion of the work is hoped to be of greater importance in terms 

of contribution as it relates to efficiency of calculation of a complex equation. Since this path 

loss model is a deterministic model, it can help the cellular operators to grasp the overall 

operating condition from a theoretical standpoint within a short amount of time by using 

stochastic algorithms. Also, this research does a comparative analysis between ten different 

algorithms in this particular problem. This wide comparison can help the operators to choose 

or to avoid algorithms based on their mode of operation. Solving a deterministic model through 

brute search is expensive in terms of calculations, so it hoped that introduction of stochastic 

algorithms to such a genre of problem can improve existing cellular technologies. Also, this 

work is hoped to pave the way of further research in signal power loss in 60 GHz. 
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