

0

Table of Contents

List of Figures ... 1

List of Tables .. 3

List of Acronyms .. 4

Acknowledgement .. 5

Abstract ... 6

Chapter 1 .. 7

Introduction .. 7

1.1 Vehicle Detection... 7

1.2 Object Detection vs. Image Classification ... 7

1.3 Real Time Object Detection... 8

Chapter 2 .. 9

Literature Review .. 9

2.1 Literature Review... 9

2.2 Research Objective .. 10

Chapter 3 .. 12

How YOLO Works .. 12

3.1 Introduction .. 12

3.2 Concept of YOLO .. 12

3.2 Architecture of YOLOv1 ... 14

3.3 YOLOv5 .. 16

3.3.1 Architecture... 17

3.3.2 Activation Function .. 20

3.3.3 Optimization Function .. 20

3.3.4 Cost Function .. 20

3.3.5 Detection in YOLO ... 20

3.3.6 Bag of Freebies ... 22

3.3.7 Bag of Specials ... 23

Chapter 4 .. 24

How MobileNet Works .. 24

4.1 Introduction .. 24

4.2 Convolutional Blocks for MobileNetv2... 25

4.3 Overall Architecture... 26

4.4 Depthwise Separable Convolution ... 27

Chapter 5 .. 30

Research Methodology .. 30

5.1 Dataset.. 30

5.2 Training Parameters ... 34

5.2.1 MobileNetV2 .. 34

5.2.2 YOLOv5 ... 34

5.3 Requirements ... 34

5.3.1 MobileNetV2 .. 34

5.3.2 YOLOv5 ... 34

5.4 Installation.. 35

5.4.1 MobileNetV2 .. 35

5.4.2 YOLOv5 ... 35

5.5 Platform and System Specifications .. 35

5.5.1 Local Machine .. 35

5.5.2 Cloud ... 36

5.6 Training .. 36

5.6.1 MobileNetV2 .. 36

5.6.2 YOLOv5 ... 36

5.7 Research Timeline ... 39

5.7.1 Phase 1 .. 39

5.7.2 Phase 2 .. 40

5.7.3 Phase 3 .. 40

5.7.4 Phase 4 .. 40

Chapter 6 .. 42

Results ... 42

6.1 MobileNetV2 ... 42

6.1.1 Inference on Images .. 42

6.1.2 Inference on Video .. 45

6.2 YOLOv5 .. 45

6.2.1 Inference on Images .. 47

6.2.2 Inference on Video .. 49

6.2.3 Data Augmentation and Training on YOLOv5 .. 49

6.3 Result Comparison ... 50

Chapter 7 .. 52

Conclusion .. 52

7.1 Project Significance ... 52

7.2 Future Prospects ... 53

References ... 54

1

List of Figures

2

3

List of Tables

Figure 3.1: Parameters of the Anchor Boxes .. 21

4

List of Acronyms

YOLO You Only Look Once

IP Internet Protocol

CNN Convolutional Neural Network

R-CNN Region Based Convolutional Neural Networks

FPS Frames Per Second

GPU Graphics Processing Unit

SVM

mAP

UAV

Support Vector Machine

mean Average Precision

Unmanned Aerial Vehicle

PC Personal Computer

IoU Intersection over Union

CPU Central Processing Unit

VGG Visual Geometry Group

FPN Feature Pyramid Network

MSE Mean Square Error

SPM Spatial Pyramid Matching

SE Squeeze and Excitation

ReLU Rectified Linear Unit

NMS Non-Maximum Suppression

CUDA Compute Unified Device Architecture

OpenCV Open Source Computer Vision

cuDNN CUDA Deep Neural Network

CC Communicating Cores

MSVC Microsoft Visual C++

CMD Command Prompt

RAM Read Only Memory

SUV Sport Utility Vehicles

AI Artificial Intelligence

QR Quick Response

PANet
Path Aggregation Network for Instance

Segmentation

CNN Convolutional Neural Network

RNN Residual Neural Networks

 DWSC Depth wise Separable Convolution

5

Acknowledgement

Praise and glory be to Allah Subhanahu wa Ta'ala, the All-Merciful, Almighty for enabling this

research via His unending bounty.

We are eternally grateful to our honorable supervisor Professor Dr. Golam Sarowar sir, for

providing us the chance to do this research work. Throughout the project, he provided us with

invaluable advice and support which helped us greatly while doing this this work.

We'd like to express our gratitude to the other members of the thesis committee for their invaluable

assistance. Lastly, we would like to convey our sincere gratitude to our family members for their

unconditional love and support and for their prayers that always kept us firmly motivated.

6

Abstract

In this thesis, the research is mainly focused on traffic object detection by different computer vision

algorithm like MobileNetV2 and YOLOv5. The main focus is on real-time detection and

identification of various types of automobiles specific to Bangladesh. Vehicle detection is a

necessary step for traffic surveillance and autonomous vehicles. Vehicle counting in complex

transportation conditions requires the detection and tracking of mobile vehicles. Vehicle detection

on the road are used for vehicle tracking, vehicle traffic assessment, average velocity of each

individual vehicle, motion analysis, and vehicle classification, and may be applied in a variety of

contexts. Because of the irregular traffic, the variety of vehicles, and the absence of a good dataset,

it is more difficult in Bangladesh to adopt a smart traffic. One of the most important aspects of

algorithm training is data quality. Here, the dataset, “Dhaka Traffic Detection Challenge Dataset”

was cleaned and augmented to get better results. The dataset was trained on two neural network

architecture, YOLOv5 and MobileNetV2. YOLOv5 ran on PyTorch and the model was trained on

Google Colaboratory, a cloud-based platform. Codes were written in Python 3.8 and Python 3.9.

Roboflow, an online-based computer vision application, was used to organize the dataset for

training. For image categorization and mobile vision, MobileNet is built on the CNN architectural

model. There are other models available, but MobileNet is unique in that it uses very minimal

compute resources to operate and also applies transfer learning. As a result, MobileNet is ideal for

both mobile devices and web browsers. There are 28 levels in MobileNet. MobileNet contains 4.2

million parameters by default. YOLOv5 performed better than MobileNetV2, in terms of accuracy

and inference time. This research will be a vital step towards intelligent traffic detection system

that can detect unauthorized vehicles like rickshaw/CNGs in highways, or to develop a traffic plan

that minimizes traffic congestion on the road.

7

Chapter 1

Introduction

1.1 Vehicle Detection

Vehicle detection and tracking systems has a number of applications, including regulation of

highway traffic, assessing, and controlling. These techniques are used for vehicle tracking, counts,

measuring vehicle speeds, traffic analysis, and vehicle classification, and also utilized in a number

of situations. With recent development in technology, adoption of smart traffic system is becoming

increasingly popular. Vehicle detection is the process of allowing autonomous systems to view

and recognize traffic vehicles in order to make essential judgments about vehicle management,

resource allocation, and traffic control based on the data collected. Many approaches have been

employed in this sector. However, they can be challenging to apply in real-time traffic monitoring

and self-driving car applications. Because of our unique cars and demanding traffic situation, the

work is considerably more difficult for Bangladesh. For example, making any autonomous system

grasp the complicated geometry of a Rickshaw and distinguishing it from that of a bicycle in a

congested traffic scenario in real time using traditional approaches may be rather challenging. To

make the job easier and more feasible, we used machine learning-based computer vision to train a

neural network to recognize and classify 21 types of common automobiles in Bangladesh. We used

the YOLO [1] and the MobileNet [2] architecture to make the systems see cars in real time.

1.2 Object Detection vs. Image Classification

However, there is a slight but significant distinction between image and object recognition. The

AI model assigns a single high-level label to an image or video in image recognition. The AI model

detects each and every significant thing in the picture or video in object recognition. In

classification, we typically have been using a CNN to predict merely the object's name. However,

in order to find the item within the image, we construct bounding boxes around it [3]. This is more

8

challenging for a variety of reasons. Because several items may exist inside the same picture, the

output layer length cannot be fixed. A crude way to solve this issue would be to first select different

regions of interest from the image, and then use a CNN, such as R-CNN, to classify the object

within that region. The drawback is that the items might appear in various positions and have

various aspect ratios. As a result, the algorithms must choose a large number of areas, which takes

a lot of computing power.

1.3 Real Time Object Detection

Real time object recognition and tracking is a broad, exciting, yet inconclusive and difficult topic

in computer vision. Researchers are constantly devising more efficient and competitive algorithms

as a result of its expanding use in surveillance, tracking systems utilized in security, and many

other applications. For our car detection challenge, we need our system to be able to identify

objects quickly enough to be used in real-time applications. Our detection system will receive a

live video feed from a camera, which will consist of several photos collected in a short period of

time, rather than a single image. As a result, the detecting algorithm must process a large number

of photos quickly. This is a significant difficulty that necessitates an efficient design as well as

machines with sufficient processing capability. R-CNN [4], Fast R-CNN [5] , and Faster R-CNN

[6] are examples of machine learning-based object detection architectures.

9

Chapter 2

Literature Review

2.1 Literature Review

Object detection has progressed significantly in the last decade thanks to developments in deep

learning and convolutional neural networks. Computer vision has made significant progress in

terms of accuracy, instance segmentation, and object identification. With the advancement of the

Graphic Processing Unit (GPU), real-time object identification has become more feasible. We'll

look at some fantastic works based on object detection.

1. The authors of this paper [7] looked at the consequences and reasoning behind several

architectural and model changes made to the popular YOLOv5 object detector in order to

improve its small-object recognition capabilities.

2. This study suggests [8] that in the near future, it might be used in autonomous vehicle

situations to identify various road assets in various weather circumstances.

3. With the aid of the PYNQ Z2 board and Movidius NCS, the FPGA-based implementation

of object detection [9] and recognition results in improved performance. The YOLO model

is the quickest and easiest of the three, although it has lower accuracy and FPS than

FRCNN. The SSD provides the maximum frame rate while also balancing calculation time

and accuracy.

4. A comparison was proposed by Bilel at el. [10] for vehicle detection between Faster RCNN

and YOLOv3. It was based on precision, F1 score, recall, quality and processing time. The

study shows that YOLO out performs R_CNN for most of the pictures.

5. Hou-Ning at el. [11] suggest an online network architecture from a series of picture to track

and detect vehicles. Still image of different angle is used for this purpose which extend the

working load for detecting vehicles.

10

6. A bidirectional cooperation between recognition and tracking is analysed by Foresti at el.

[12] , these assigns a semantic levels, establishing identity and pose correspondence

between objects detected at various time instants.

7. Zehang Sun at el. [13] explore multi-scale driven hypothesis generation and appearance

based hypothesis verification to present an in-vehicle real-time monocular precrash vehicle

detection system. Haar Wavelet decomposition for feature extraction and Support Vector

Machines (SVMs) for classification were used here for appearancebased hypothesis

verification.

8. In another research paper [14], they used same methodology to detect vehicle based on on-

road video where the camera was mounted on the vehicle itself.

9. YOLOv2 is used. Jun Sang at el. [15] proposed their vehicle detection research, which

employed the k-means++ clustering technique to cluster the vehicle bounding boxes with

six anchor boxes of various sizes. According to their findings, the average precision (mAP)

might reach 94.78 percent.

10. The optimum dense YOLO approach proposed by Zhi Xu at el. [16] is used to detect

vehicles in images captured by UAVs. This study is particularly useful for detecting tiny

targets and is tailored to vehicle targets' features.

11. Shaobin Chen presented real-time detection for embedded systems in el. [17] , using Yolo

v3-live as the technique that minimized the complexity of embedded operating device

computation.

12. This study suggests traffic object detection under bad weather conditions using YOLOv5.

[18]

2.2 Research Objective

Our research's major goal is to familiarize Bangladeshi automobiles with smart traffic management

and regulation. Some of Bangladesh's unique vehicles are not recognized by existing autonomous

vehicles or traffic control systems. Bangladesh requires its own vehicle detection system that can

identify all cars with unique characteristics. Our main research goals are:

11

1. To help Bangladesh establish a smart transportation system that would minimize traffic

congestion and accident rates.

2. To detect Bangladeshi automobiles in difficult environments. Our main objective is to

create a system that can recognize some of Bangladesh's distinctive vehicles.

3. We intended to use computer vision algorithms based on machine learning, such as

YOLOv5 and Mobilenet-v5, for detecting various classes of vehicles.

4. To implement traffic object detection with deep neural network architecture.

12

Chapter 3

How YOLO Works

3.1 Introduction

YOLO made its computer vision debut in 2015 with a work published by Joseph Redmon et al.

"You Only Look Once: Unified, Real-Time Object Detection," garnered quick interest from other

computer vision experts. Prior to the invention of YOLO, Convolutional Neural Networks (CNNs)

such as Region Convolutional Network (R-CNN) used Region Proposal Networks (RPNs) to

generate proposal bounding boxes on the input image, then run a classifier on the bounding boxes,

and finally perform post-processing to remove duplicate detections and refine the bounding boxes.

It was not suited for training the R-CNN network's various phases independently. Optimizing the

R-CNN network was both challenging and time consuming. The author's objective is to develop a

neural network model that encompasses all phases. After running the input picture through a single

neural network composed of many convolutional networks, the system generates prediction

vectors for each item present in the image. Rather of iteratively categorizing distinct parts on the

picture, the YOLO system computes all of the image's attributes and provides predictions for all

items simultaneously. This is the concept behind "You Only Look Once. [1]

3.2 Concept of YOLO

The primary concept behind YOLOv1 is to insert a grid cell with a size of S*S (7*7 by default)

onto a picture. If an item's center is within a grid cell, that grid cell is responsible for detecting the

object (Figure 3.1). As a result, all subsequent cells ignore the presence of the object displayed in

numerous cells.

To execute object detection, each grid cell forecasts B bounding boxes together with their

associated attributes and confidence ratings in Figure 1 [19] . These confidence scores indicate

whether an object is present or absent within the enclosing box. The confidence score is defined

as follows:

 C = Pc * IOU

13

Figure 3.1: A 7x7 grid cell YOLO Model Applied on an Image.

Where Pc is the probability that an object exists inside the cell, and IOU is the intersection of the

prediction box and the ground truth box. Because Pc between 0 and 1, the confidence score is close

to zero if no object exists in that cell, and IOU is the intersection of the prediction box and the

ground truth box. Because Pc between 0 and 1, the confidence score is close to zero if no object

exists in that cell. Otherwise, the score is equal to the IOU. There are four more parameters for

each bounding box, which correspond to the (center coordinates (bx,by), width, and height) of the

bounding box (Figure 2). Incorporating the confidence score each bounding box has five

parameters: a confidence score.

Figure 3.2: Parameters of a Bounding Box

14

3.2 Architecture of YOLOv1

When it comes to object bounding box prediction, there are two levels in the YOLO model that

are entirely connected to each other (the authors referred to this as the "Darknet architecture")

(Figure 3). For the assessment of this model, the S = 7, B = 2, and C = 20 values from the Pascal

VOC dataset were used. This explains why the final feature maps are 7 by 7, as well as why the

output size was 7 by 7 (2 by 5 Plus 20). According to the authors, the normal-YOLO model with

24 CNN layers in Darknet architecture can handle more complicated datasets and deliver more

accuracy than the fast-YOLO model with 9 CNN levels (Figure 4). When GoogleNet was created,

it advocated the usage of 1x1 and 3x3 convolutional layers in order to reduce the amount of feature

space in the prior layers.

Figure 3.3: Architecture of YOLOv1

the activation function used in the last layer is swish/mish instead of leaky Relu. (Menegaz, 2018)

15

Figure 3.4: Layers, Filters and Output Dimensions of YOLO

Now we’ll look into the insights of IOU which is used in all YOLO models. [20]

• The amount to which two boxes overlap is referred to as the "IOU" (Intersection over

Union). Bigger the area in which the IOU overlaps, the greater the amount.

• When it comes to object detection, IOU is mostly utilized to create boxes that fit exactly

around an item once a model is trained to do so, a green box and a blue box are seen in the

image below. The accurate box is shown in green, while the model's forecast is shown in

blue. For this model, the ultimate goal is for the blue and green boxes to exactly overlap,

such that the IOU between them is equal to one. To eliminate numerous boxes surrounding

the same item based on which box has a higher degree of confidence, non-max suppression

is a technique that is used in Intersection of Union.

16

Figure 3.5: Accurate and Predicted Box From the Model

Figure 3.6: Calculating IOU

3.3 YOLOv5

The latest version YOLO is version 5 which encompasses total architecture of the previous

version. We’ve used here the “small” version of it. There are a few versions and the difference

among them is mainly the layers and connections. Now, we’ll take a look at the architecture,

activation function, cost function, weights and biases of this algorithm.

17

3.3.1 Architecture
Yolo version 5 is based on two concept two ideas of detection. The single-stage detector and the

two-staged detector [21]. Figure 3.7 shows the basic ideas.

Figure 3.7: Double-staged Detector Concept

As shown in Figure 3.7, all object detection designs begin with a feature extractor (Backbone)

compressing the input picture features before sending them on to the detector (which includes the

Neck and Head components used for detection). The detection neck aggregates the characteristics

produced by the backbone. Here, that head is responsible for detecting the bounding boxes, as well

as localizing and classifying them. The one-stage detector (Dense Detection) does both jobs

simultaneously, whereas the two-stage detector (Sparse Detection) does so sequentially and then

combines the findings [22] . It's a one-step detector, so You Only Look Once.

So, there are 3 parts of in the whole architecture,

1. Backbone

2. Neck

3. Head

The authors of YOLOv4 have used different layers and activation function for better optimizing

the algorithm. [23][24]

18

Figure 3.8: A Visual Representation of YOLOv4 Design.

Cross Stage Partial (CSP) architectures such as the CSPResNext50 and the CSPDarknet53 (where

CSP stands for Cross Stage Partial) are both developed from the DenseNet design, which takes the

prior and adds it to the already-existing input before proceeding to the dense layer. DenseNet was

created to link layers in a very deep neural network with the goal of alleviating vanishing gradient

difficulties (as ResNet). DenseNet was intended in making connections between neurons of a

highly deep neural network in order to alleviate gradient difficulties. [25]

Figure 3.9: A Deep Network Consisting of Three Dense Blocks

In figure 3.9, a deep network of three dense blocks is depicted. The layers between two neighboring

blocks are known as transition layers and vary in composition.

YOLOv4 uses path aggregation network in the neck layer which is an advanced version of FPN.

FPN architecture's top-down flow means that only the large-scale detector in the lateral backbone

of FPN can concurrently accept high-level semantic information and fine-grained characteristics

from lower levels. For the time being, FPN's small-scale detector relies solely on semantic traits

19

to identify things. Semantic features and fine-grained characteristics might be concatenated at

high-level layers to make the small and medium-sized detector work better.

Figure 3.10: (a) FPN (b) PAN (c) Bottom-up Augmentation Path Connection

The block diagram of YOLOv5 looks like this,

Figure 3.11: YOLOv5 Architecture Using Block Diagram

20

3.3.2 Activation Function

The selection of activation functions is crucial in the development of any deep neural network.

Recently, a slew of activation functions, such as Leaky ReLU, mish, swish, and others, have been

added. The authors of YOLOv5 selected the Leaky ReLU and Sigmoid activation functions as the

best fit for their research. When it comes to the middle/hidden layers of YOLOv5, the Leaky ReLU

activation function is used, as is the sigmoid activation function when it comes to the final

detection layer.

3.3.3 Optimization Function

In YOLO v5, we have two alternatives for optimizing the function:

1. SGD

2. Adam

For training in YOLO v5, the SGD optimization algorithm is the default. However, the command-

line parameter "— — adam" can be used to change the default one. [26]

3.3.4 Cost Function

YOLO's compound loss is formed from the objectness score, class probability, and bounding box

regression score, and it belongs to the YOLO family. Class probability and object score loss have

been calculated using PyTorch's Binary Cross-Entropy with Logits Loss function. We also have

the option of calculating the loss using the Focal Loss function, which is described below. In order

to train using Focal Loss, we may make use of the fl-gamma hyper parameter.

3.3.5 Detection in YOLO

Suppose we want to train 3 types of object with YOLO: pedestrian, cars, motorcycles. As we have

three background class we need to define three labels. For example, we are using two anchor boxes

to hold things in place (these anchor boxes are presented in the figure 3.12). This means that our

21

Figure 3.12: Anchor boxes and output vectors

output y will be 3×3×2×8. In our image, we have applied a grid with a 3x3 pixel size to each grid

cell. We employ two anchor vectors in each grid cell, and each anchor vector is characterized by

eight parameters (numbers).

Pc probability that there is an object in

that particular cell

bx, by position of center of the object

bh, bw the size of the bounding box

c1, c2, c3 labels for our 3 classes

Table 3.1: Parameters of the Anchor Boxes.

In order to make a training set, we go through each of these 9 grid cells, and we make the same

target vector y for each one. There are no object classes in the first grid cell (purple). For both

anchors, the value of the class presence will be 0. After that, we don't care about the rest of the

values in the vector.

In contrast, the target vector y will be found in the grid cell shown in green, where the first anchor

box contains zeros but the second anchor box contains particular values for both class membership

and bounding box values (marked in red).

22

Figure 3.13: Anchor boxes 1 and 2.

While it's not ideal, our car will be placed to the anchor box 2 because it's taller and wider than our

image suggests. An easy technique to determine which anchor box has the maximum IoU with an

ideal object box is to just check that one. We don't need to worry about the other values as pc

associate anchor box 1 is equal to 0. We assigned Pc=1 to the anchor box 2 because we found a

vehicle equipped with it. As a result, we'll produce a 16-dimensional vector for each of our nine

grid places (3x3 grid positions).

3.3.6 Bag of Freebies

With the goal of increasing the accuracy and performance of the YOLOv4 algorithm, the authors

have experimented with and implemented a variety of optimization strategies. To describe these

enhancements, the writers use the terms "Bag of Freebies" and "Bag of Specials," respectively.

[24]

Figure 3.14: Multiple Optimization Methods That Were Experimented.

23

An improvement approach is referred to by the term "Bag," and the term "Freebies" indicates that

this improvement method can help improve the model's performance and accuracy without costing

any hardware. As a result, the architecture will be able to take advantage of extra performance

without having to pay for it. After conducting many tests and analyzing the data, the authors of

YOLOv4 identified and implemented the following Bag of Freebies improvement approaches and

applied them to YOLOv4.

1. For Backbone: CutMix and Mosaic data augmentations, DropBlock regularization, Class

label smoothing. [24]

2. For detector: Complete Intersection over Union (CIoU-loss), Cross-mini–Batch Norm

(CmBN), DropBlock regularization, Mosaic data augmentation, Self-Adversarial Training

(SAT), Eliminate grid sensitivity, using multiple anchors for a single ground truth, Cosine

annealing scheduler, Optimal hyper-parameters, Random training shapes. [24]

3.3.7 Bag of Specials

After the Bag of Freebies, the authors came up with another way to make things better, called the

Bag of Specials. It means getting something of value for a discount or cheap. There are advanced

optimization strategies that demand a minimal amount of architecture expense in order to

considerably improve the performance accuracy of object detection in the Bag of Specials

collection. [24]

1. For backbone: Mish activation, Cross-stage partial connections (CSP), Multi-input

weighted residual connections (MiWRC). [24]

2. For detector (neck and head): Mish activation, Spatial Pyramid Pooling block (SPP-

block), Spatial Attention Module (SAM-block), Path Aggregation Network (PANet),

Distance Intersection over Union Non-Maximum Suppression (DIoU-NMS).

24

Chapter 4

How MobileNet Works

4.1 Introduction

It is the first mobile computer vision model developed by TensorFlow, and it is named MobileNet

since it is designed to be used in mobile applications, as the name indicates. In the previous version

of MobileNetV1, Depth wise Separable Convolution was introduced, which significantly lowered

the network's complexity cost and model size, making it suitable for mobile devices or other low-

power devices, as well as for high-performance computing. It has been introduced to MobileNetV2

a new upgraded module with an inverted residual structure. Non-linearities in thin layers have been

eliminated this time around. With MobileNetV2 as the foundation for feature extraction, it is also

feasible to perform state-of-the-art object recognition and semantic segmentation techniques.

Figure 4.1 illustrates how image processing is carried out using MobileNetV2 software. The

changes between MobileNetV1 and MobileNetV2 are seen in Figure 4.2.[27] [2]

When contrasted to a network with traditional convolutions of same depth in the nets, it results in

a significant reduction in the number of parameters. As a result, deep neural networks that are

lightweight are built.

Figure 4.1: Image Processing by MobileNet Architecture

25

Figure 4.2: MobileNetV1 and MobilenetV2 comparison [2]

4.2 Convolutional Blocks for MobileNetv2

• A DWSC is made from two methods: Depth-wise convolution and Pointwise convolution.

• In MobileNetV2, there are two types of network blocks. A one-stride residual network

block is one of them. A two-stride block is appropriate for downsizing.

• Both kinds of blocks have three layers each.

• The first layer is 1*1 convolution using Rectified Linear activation of type 6 this time.

• The depth wise convolution is the second layer.

• The third layer is a1X1 network layer convolution with no non-linearity. If ReLU is applied

again, it is suggested that Deep networks will only have the power of a linear classifier in

the non-zero volume output domain, which is the case for most applications.

• There is also a t expansion factor. For all major experiments, t=6.

• If there are 64 channels in the input, the internal output would become 64×t=64×6=384

network channels.

26

4.3 Overall Architecture

Figure 4.3: Overall Architecture of MobileNetV2

• For spatial convolution, 3X3 kernels are employed. where t: expansion factor, c:

number of output channels, n: repeating number, s: stride.

• The core network (width multiplier 1, 224X224) employs 3.4 million values and

has a computational complexity of 300 million multiply-adds.

• For input resolutions ranging from 96 to 224 and width multipliers ranging from

0.35 to 1.4, tradeoffs are further investigated. The network computation took up to

585 million MAdds, while the model size ranged from 1.7 million to 6.9 million

parameters.

• The network is trained on 16 GPUs with a batch size of 96.

27

4.4 Depthwise Separable Convolution

 When a filter can be separated into its depth and spatial dimensions, the term separable is used.

Take the Sobel filter, for example (figure 4.4), which is used in image processing to identify edges

Figure 4.4: Fx(left), Fy (right)

Fx is used to identify the vertical edge, whereas Fy is used to detect the horizontal edge. These

filters may be distinguished in terms of their height and width. Gx is the matrix product of [1 1 1]

and [1 2 1]. The filter had changed its appearance. It shows nine parameters, but only six are

available. This was possible since the measurements of height and breadth were separated. The

same principle may be used to separate the depth dimension from the horizontal (width*height)

dimension, resulting in DWSC. The depth dimension is then covered using a 1*1 matrix.

One thing to note is how much this convolution reduces the number of parameters while

maintaining the same number of channels. 3*3*3 parameters for depth-wise convolution and 1*3

parameters for additional convolution in the depth dimension are required to create one channel.

28

However, if three output channels are required, we only need 31*3 depth matrix, totaling 36 (= 27

+9) parameters, while standard convolution requires 33*3*3 filters, totaling 81 parameters.

DWSC (figure 4.5) is followed by a pointwise convolution as given below:

Figure 4.5: Depthwise Separable Convolution

The channel-wise DK*DK spatial convolution is known as depthwise convolution. If, as shown in

figure 4.5, we have five channels, we may expect to have five DKDK spatial convolutions as a

result. One convolution may have different maps for each of the input channels. That's why there

are exactly as many input and output ports as there are devices connected to them. It costs

Df2*M*Dk2 to compute. [28]

29

Figure 4.6: Depthwise Convolution

Figure 4.7: Pointwise Convolution

Convolution in the form of pointwise convolution is a one-to-one transformation. It is a

convolution with a kernel size of 1x1 that simply mixes the depthwise convolution's

characteristics. It costs M * N * Df2 to compute.

The batch norm and the ReLU are utilized instead of a single 3x3 convolution layer in

MobileNet's design. Using a 3x3 depth-wise convolution and a 1x1 pointwise convolution,

Mobile Nets separate the convolution.

30

Chapter 5

Research Methodology

5.1 Dataset

The dataset for training was provided by Dhaka-AI [39], named “Dhaka Traffic Detection

Challenge Dataset” [40] [41]. The Dataset is composed of the most common 21 different classes

of vehicles of Dhaka city. There are total 3002 images in the dataset and 24,368 annotations. Figure

5.1 shows a general summary of the dataset.

Figure 5.1: Summary of the Dataset

List of the class names and their number of appearance in the dataset:

• Ambulance - 70

• Auto-rickshaw - 43

• Bicycle - 459

• Bus - 3340

• Car - 5476

• Garbage van - 3

• Human hauler - 169

• Minibus - 95

• Minivan - 935

• Motorbike - 2284

• Pickup - 1225

31

• Army vehicle - 43

• Police car - 32

• Rickshaw - 3549

• Scooter - 38

• SUV - 860

• Taxi - 60

• CNG - 2990

• Truck - 1492

• Van - 756

• Wheelbarrow - 120

The dataset is an imbalanced dataset. Car, rickshaw, bus and CNG are overrepresented where

except only motorbike, truck, pickup and minivan, the rest of the vehicles are underrepresented.

Figure 5.2 shows the class balance report generated by Roboflow . As the data set was unbalanced,

different methods can be used like Cutmix, mixup, rotation etc. to better train the model. But as

the training time would increase significantly with low performance workstation that we have we

couldn’t do so at the beginning. Afterwards we tried some data augmentation techniques but the

results didn’t improve that much. Figure 5.3 and 5.4 show a typical image for each of the classes

of vehicles. Figure 5.5 shows the image size distribution of the dataset.

Figure 5.2: Class Balance of the Dataset

32

Figure 5.3: Different Classes of Vehicles in Dhaka City (1)

Figure 5.4: Different Classes of Vehicles in Dhaka City (2)

33

Figure 5.5: Image Size Distribution of the Dataset

34

5.2 Training Parameters

5.2.1 MobileNetV2

1. Batch Size: 8

2. Number of Steps: 10,000

3. Warm-up Steps: 2000

4. Number of classes: 21

5.2.2 YOLOv5

1. Batch Size: 16

2. Epochs: 2000

3. Number of classes: 21

5.3 Requirements

5.3.1 MobileNetV2

1. Windows or Linux

2. Python >= 3.8

3. TensorFlow >= 2.5

4. Anaconda >= 3.8

5. Nvidia GPU GTX 650 or newer

6. CUDA Toolkit v11.2

7. CuDNN 8.1.0

8. Object Detection API

9. Microsoft Visual Studio

5.3.2 YOLOv5

1. Windows or Linux

2. Python >= 3.9

3. Tensorflow >= 2.4.1

4. matplotlib >= 3.2.2

5. opencv-python >= 4.1.1

35

6. Pillow >= 7.1.2

7. PyYAML >= 5.3

8. scikit-learn == 0.19.2

5.4 Installation

5.4.1 MobileNetV2

We used local machine for training the dataset using MobileNetV2. The following steps were done

sequentially in the training process:

1. A new environment in Anaconda was created.

2. Inside the environment, first we installed TensorFlow 2.5.

3. CUDA Toolkit and CUDNN was installed and added to path.

4. From TensorFlow Models repository, the Object Detection API was installed.

5. Downloaded the pre-trained MobileNetV2 FPNlite 640x640 from TensorFlow Model Zoo.

6. Appropriate Label Map and TFrecords were generated for the dataset.

5.4.2 YOLOv5

As we used Google colab platform for training with YOLO we did not need any installations in

the local machine. All the installations were done in colab. They are as following,

• Roboflow for training the model

• Pytorch

• OS

We used Roboflow developed by Ultralytics Corporation. It has all the dependencies installed

within it like Numpy, Open CV, DarkNet repository. We only had to choose the model we wanted

to train and prepare the dataset accordingly.

5.5 Platform and System Specifications

5.5.1 Local Machine

MobileNetV2 model was trained on a desktop pc. The specifications of the system were:

• CPU: AMD Ryzen-5 3600 6 Core Processor @ 3.60 GHz

36

• GPU: GIGABYTE GamingX NVIDIA GTX 1060 6 GB VRAM

• RAM: 16 GB DDR4

5.5.2 Cloud

The YOLOv5 model was trained on Google Colaboratory Pro, which is a paid cloud platform. The

specifications of the platform were:

• CPU: Intel Xeon(R) 2.30 GHz

• GPU: Tesla P100-PCIE-16GB VRAM

• RAM: 12.8 GB DDR4

5.6 Training

5.6.1 MobileNetV2

The MobileNetV2 model was trained on local machine for ten thousand steps for an approximate

training time of 28 hours. The model was trained using a GTX 1060 6 GB gpu. The loss vs steps

curve is shown in figure 5.6.

Figure 5.6: Loss vs Step Curve of MobileNetV2

5.6.2 YOLOv5

YOLOv5 was trained using 1000 epochs which took approximately 12 hours to train. Batch size

was 16. The learning rate saturated after 700 epochs. Figure 5.7 depicts the relation between

performance matrix and epochs of the model. Figure 5.8 depicts the confusion matrix for YOLOv5

and figure 5.9 shows the label instances of the particular model.

37

Figure 5.7: Performance Matrix vs Epochs

Figure 5.8: Confusion Matrix of YOLOv5

38

Figure 5.9: Label Instances

39

5.7 Research Timeline

We methodically split our research activity into four parts to better assist our development and

guarantee that we followed a strict plan that would keep us on track. We chose to adopt a more

systematic approach to our learning and work rather than rushing to the finish line and stressing

about the ultimate product. For each step, we identified specific targets that we wanted to achieve

and were flexible with time so that we could do our tasks properly rather than half-heartedly.

We all shared a single goal: to learn and explore. We wanted to establish a good foundation in

anything we did because machine learning and deep learning were unfamiliar to us. As we

embarked on this journey, we concentrated on the theoretical parts of learning and putting what

we had learned into practice. We worked on a variety of initiatives to help us learn more

effectively, which finally led to our dissertation work. Figure 5.10 depicts a summary of our

research timeline.

Figure 5.10: Research Progression Timeline

5.7.1 Phase 1

The first stage took the most time. It began after our third-year final examinations were completed.

To learn about Python programming, machine learning, and eventually deep learning, we began

taking online classes, watching YouTube videos, and participating in different online courses. We

also began reading research papers on various machine and deep learning approaches and

strategies. The entire process took around four months and provided us with adequate information

to choose a dissertation subject. We selected Computer Vision because we were intrigued by the

thought that robots could perceive and recognize objects in the same way that people could. This

is what we wanted to investigate and expand on.

40

5.7.2 Phase 2

The second step was significantly more difficult and demanding. This was the time that we studied

Computer Vision in depth, both theoretically and practically. We learnt both traditional and

cutting-edge computer vision techniques. We looked for projects that sparked our attention on

Github [29] and Stack Overflow [30]. We worked on a variety of modest projects, such as a real-

time attendance system and picture denoising, to improve our understanding of this field of study

and generate ideas for our own thesis. This stage lasted around three months.

5.7.3 Phase 3

We spent hours during this step attempting to come to an agreement on the subtopic and dataset

we should use for our thesis work. We looked through Kaggle [31] and UCI Datasets for an

enjoyable topic to work on. While there were many interesting things to choose from, we always

felt compelled to concentrate on something that was relevant to our own lives. We found that there

were no datasets particular to Bangladesh. As a result, we decided to make our own dataset and

contribute to the Deep Learning community.

Fortunately for us, we came across the "Dhaka-AI" competition, which was an AI-based

competition held in Bangladesh using a Dhaka-specific dataset. As a result, we used the Dhaka

traffic dataset to develop a deep learning-based real-time vehicle recognition system. We tried a

variety of methods and spent a lot of time experimenting. Finally, we chose MobileNetV2 and

YOLOv5 framework as the foundation for our thesis work. This stage lasted around three months.

5.7.4 Phase 4

After we'd chosen our topic, dataset, and method of action, all that was left for us to do was put

our knowledge into practice and bring our thesis work to life. We spent the following four months

improving and training our models to achieve the best potential outcomes.

We documented all of our discoveries and were prepared for our defense as we approached the

end of the process. To improve our outcomes, we adjusted our models and explored other

41

strategies. We wanted to make certain that no stone was left unturned and that we could confidently

and effectively defend our thesis before the thesis committee.

We were able to overcome all barriers and deliver our thesis thanks to the blessing of Almighty

Allah, the direction and assistance of our supervisor, Professor Dr. Golam Sarowar sir, and the

love and support of our parents.

42

Chapter 6

Results

6.1 MobileNetV2

For MobileNetV2 we got the mean average precision or mAP to be around 0.26. The value is fairly

acceptable since the COCO API metric of MobileNetV2 is 0.28. The precision value is can be

improved by enhancing the dataset and by making it more balanced in terms of class

representation. Figure 6.1 shows the the mAP of detection boxes for our MobileNetV2 model.

Figure 6.1: Detection Box mAP of MobileNetV2

6.1.1 Inference on Images

We ran inference on a few images randomly to test our models working capacity. The results are

shown in figure 6.2, 6.3, 6.4 and 6.5.

43

Figure 6.2: MobileNetV2 Image Inference 1

Figure 6.3: MobileNetV2 Image Inference 2

44

Figure 6.4: MobileNetV2 Image Inference 3

 Figure 6.5: MobileNetV2 Image Inference 4

45

6.1.2 Inference on Video

The inference video was created by running inference on a real time traffic video using the

MobileNetV2 exported model. A QR code containing the video is depicted in figure 6.6.

Figure 6.6: QR Code of MobileNetV2 Video Inference

6.2 YOLOv5

For YOLOv5s the mean average precision or mAP was found to be .51 approximately. The mAP

curve is shown in figure 6.7. As noticeable in the figure, the mAP increases initially with increasing

epochs but saturated after 700 epochs approximately. The mAP for YOLOv5s we’ve achieved is

fairly good considering it’s a multiclass database.

Figure 6.7: Mean Average Precision of YOLOv5

46

We can measure the performance of the YOLOv5 model from different parameters’ values.

Tensorboard API was used for generating these performance parameters. Figure 6.8 depicts

precision vs confidence, figure 6.9 depicts precision vs recall and figure 6.10 depicts recall vs

confidence for the 21 different classes in the database.

Figure 6.8: Precision vs Confidence Curve

Figure 6.9: Precision vs Recall Curve

47

Figure 6.10: Precision vs Confidence Curve

6.2.1 Inference on Images

To test our YOLOv5 model we ran inference on a few images. The results are shown in figures

6.11, 6.12, 6.13, 6.14.

Figure 6.11: YOLOv5 Image Inference 1

48

Figure 6.12: YOLOv5 Image Inference 2

Figure 6.13: YOLOv5 Image Inference 3

Figure 6.14: YOLOv5 Image Inference 4

49

6.2.2 Inference on Video
For the same video used before, video inference was done using the YOLOv5 exported model.

The result is stored in a drive link and figure 6.15 depicts the QR code that can access it.

Figure 6.15: QR Code of YOLOv5 Video Inference

6.2.3 Data Augmentation and Training on YOLOv5

We have also used data preprocessing for better results in YOLOv5. Roboflow was used to

augment the data and generate new dataset. Augmentations applied are:

1. Auto rotation

2. Auto orientation

3. Horizontal flip

4. Rotation(between -15° to 15°)

5. Cutout: 3 boxes with 10% of the size.

6. Bounding box crop.

After augmentation we had 6.3k images of which 612 were used for validation and 299 were used

for testing.

50

Figure 6.16: Dataset Augmentation Summary

We only could train it for 70 epochs because of resource constraints as the dataset is huge. But

judging by the results it appears that under represented class detection should improve if trained

for 500 epochs or more. Figure 6.17 depicts the mAP of the augmented dataset.

Figure 6.17: mAP for Augmented Dataset

6.3 Result Comparison

As we can see from all the training results, YOLOv5 with the original dataset trained for 1000

epochs has given us the best result closely succeeded by Mobilenetv2. The second training of

YOLOv5 that we’ve done has the worst result but that’s only because we couldn’t train the model

for sufficient epochs because of resource constraints.

So, it is clear that YOLOv5 is superior then Mobilenetv2. It’s also the newer of the two algorithms.

For the quantitative analysis, we emphasized on the detection process speed and on the number

51

of classes each framework could detect accurately. The results were synonymous with our

qualitative hypothesis and shows a numerical representation of the results obtained. And also

YOLOv5 is faster than Mobilenetv2 in our experiments and also in theory. We can see the same

result in comparative studies between them. Though Mobilenetv2 has better accuracy but YOLOv5

is much faster. We can use them for object detection according to our need and balance.

Here’s a comparison of accuracy between SSD Mobilenetv2 and YOLO from a research work.

[32]

Figure 6.18: Comparison between YOLO and MobileNetV2.

52

Chapter 7

Conclusion

7.1 Project Significance

We think that our research is important in a number of ways. In terms of its scope, this project

makes it possible for Bangladesh to put in place an intelligent traffic surveillance system.

Also, self-driving cars will be able to tell the difference between some of the unique cars in

Bangladesh that they have never seen before when equipped with the trained models.

In terms of resources, we trained and ran our models on a moderately powerful workstation and in

the Google Colab cloud, both of which can be used by anyone. Improvements in cloud computation

are paving a way to the use of this kind of object detection techniques even more.

We were able to get real-time results because the inferences were done pretty quickly. But if our

GPU was better, we could train our model faster and get results faster. Uses of this algorithms are

given below.

1. Yolo can improve small object detection more than any other algorithm. So, for more

speedy and accurate detection of small objects in an image YOLOv5 can be used

efficiently.

2. YOLOv5 can detect vehicle even in bad weather condition with higher accuracy. YOLOv5

and also Mobilenet can predict different vehicles, persons, traffic lights even when the

weather is not ideal.

3. Object detection algorithms can also be implemented successfully using FPGA devices

with low power. As this types of algorithms take low computational power to run in

inference.

53

4. Intelligent ways to find and count vehicles are becoming more and more important for

managing highways. Using Object detection algorithm like YOLOv3 and YOLOv5 we can

track, detect and count vehicles in a highway using surveillance camera footage.

5. Smart camera vehicle monitoring software is in production as of now. One of them is

Camlytics. It uses object detection and counting system of different DNN model to

accurately measure the flow of vehicles.

7.2 Future Prospects

The future prospects of this project is exciting and huge. More classifications, such as people and

traffic signs, will be added as we enhance the current dataset to better train our models. Premium

cloud training facilities will also be used so that we may acquire unlimited training time and

increase our model performances even more. Our project is a derivative work but it is critical for

traffic management and monitoring, and also for driverless cars. Our research might potentially be

used to intelligent parking systems. Some other scopes of our research are:

• Real-time traffic management systems

• Autonomous vehicles

• Measurement of distance between vehicles

• Cloud-based detection and classification

• Automated parking systems

• Surveillance and monitoring

54

References

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol.

2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.

[2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted

Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.

[3] “No Title”, [Online]. Available: https://en.wikipedia.org/wiki/Object_detection

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., pp. 580–587, 2014, doi: 10.1109/CVPR.2014.81.

[5] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, pp. 1440–

1448, 2015, doi: 10.1109/ICCV.2015.169.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

39, no. 6, pp. 1137–1149, 2017, doi: 10.1109/TPAMI.2016.2577031.

[7] A. Benjumea, I. Teeti, F. Cuzzolin, and A. Bradley, “YOLO-Z: Improving small object

detection in YOLOv5 for autonomous vehicles,” 2021, [Online]. Available:

http://arxiv.org/abs/2112.11798

[8] T. Sharma, B. Debaque, N. Duclos, A. Chehri, B. Kinder, and P. Fortier, “Deep Learning-

Based Object Detection and Scene Perception under Bad Weather Conditions,” Electron.,

vol. 11, no. 4, pp. 1–11, 2022, doi: 10.3390/electronics11040563.

[9] S. P. Kaarmukilan, S. Poddar, and A. K. Thomas, “FPGA based Deep Learning Models for

Object Detection and Recognition Comparison of Object Detection: Comparison of object

detection models using FPGA,” Proc. 4th Int. Conf. Comput. Methodol. Commun. ICCMC

2020, no. Iccmc, pp. 471–474, 2020, doi: 10.1109/ICCMC48092.2020.ICCMC-00088.

55

[10] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car Detection using

Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3,” 2019 1st

Int. Conf. Unmanned Veh. Syst. UVS 2019, pp. 1–6, 2019, doi:

10.1109/UVS.2019.8658300.

[11] H. N. Hu et al., “Joint monocular 3D vehicle detection and tracking,” Proc. IEEE Int. Conf.

Comput. Vis., vol. 2019-Octob, pp. 5389–5398, 2019, doi: 10.1109/ICCV.2019.00549.

[12] G. L. Foresti, V. Murino, and C. Regazzoni, “Vehicle recognition and tracking from road

image sequences,” IEEE Trans. Veh. Technol., vol. 48, no. 1, pp. 295–300, 1999, doi:

10.1109/25.740109.

[13] Z. Sun, R. Miller, G. Bebis, and D. DiMeo, “A real-time precrash vehicle detection system,”

Proc. IEEE Work. Appl. Comput. Vis., vol. 2002-Janua, pp. 171–176, 2002, doi:

10.1109/ACV.2002.1182177.

[14] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 28, no. 5, pp. 694–711, 2006, doi:

10.1109/TPAMI.2006.104.

[15] J. Sang et al., “An improved YOLOv2 for vehicle detection,” Sensors (Switzerland), vol.

18, no. 12, 2018, doi: 10.3390/s18124272.

[16] Z. Xu, H. Shi, N. Li, C. Xiang, and H. Zhou, “Vehicle Detection under UAV Based on

Optimal Dense YOLO Method,” 2018 5th Int. Conf. Syst. Informatics, ICSAI 2018, no.

Icsai, pp. 407–411, 2019, doi: 10.1109/ICSAI.2018.8599403.

[17] B. N. Li, J. Qin, R. Wang, M. Wang, and X. Li, “Selective level set segmentation using

fuzzy region competition,” IEEE Access, vol. 4, pp. 4777–4788, 2016, doi:

10.1109/ACCESS.2016.2590440.

[18] T. Sharma, B. Debaque, N. Duclos, A. Chehri, B. Kinder, and P. Fortier, “Deep Learning-

Based Object Detection and Scene Perception under Bad Weather Conditions,” Electron.,

vol. 11, no. 4, 2022, doi: 10.3390/electronics11040563.

[19] A. V Thatte, “Evolution of YOLO — YOLO version 1.”

https://towardsdatascience.com/evolution-of-yolo-yolo-version-1-afb8af302bd2

56

[20] M. Menegaz, “Understanding YOLO.” https://hackernoon.com/understanding-yolo-

f5a74bbc7967

[21] J. Solawetz, “YOLOv4 Explained,” 2020. https://blog.roboflow.com/a-thorough-

breakdown-of-yolov4/

[22] J. Solawetz, “YOLOv5 New Version - Improvements And Evaluation.”

https://blog.roboflow.com/yolov5-improvements-and-evaluation/

[23] cenit, “AlexeyAB / darknet,” 2021. https://github.com/AlexeyAB/darknet

[24] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy

of Object Detection,” 2020, [Online]. Available: http://arxiv.org/abs/2004.10934

[25] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR

2017, vol. 2017-January, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243.

[26] Patel, “YOLO V5 — Explained and Demystified,” 2020. https://towardsai.net/p/computer-

vision/yolo-v5 - explained-and-demystified

[27] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications,” 2017, [Online]. Available: http://arxiv.org/abs/1704.04861

[28] “MobileNet V1 Architecture”, [Online]. Available: https://iq.opengenus.org/mobilenet-v1-

architecture/

[29] “No Title.” https://github.com/team

[30] “No Title.” https://stackoverflow.com/

[31] “No Title.” https://www.kaggle.com/

[32] S. A. Magalhães et al., “Evaluating the single-shot multibox detector and yolo deep learning

models for the detection of tomatoes in a greenhouse,” Sensors, vol. 21, no. 10, pp. 1–30,

2021, doi: 10.3390/s21103569.

