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Abstract 

 

In this thesis, the research is mainly focused on traffic object detection by different computer vision 

algorithm like MobileNetV2 and YOLOv5. The main focus is on real-time detection and 

identification of various types of automobiles specific to Bangladesh. Vehicle detection is a 

necessary step for traffic surveillance and autonomous vehicles. Vehicle counting in complex 

transportation conditions requires the detection and tracking of mobile vehicles. Vehicle detection 

on the road are used for vehicle tracking, vehicle traffic assessment, average velocity of each 

individual vehicle, motion analysis, and vehicle classification, and may be applied in a variety of 

contexts. Because of the irregular traffic, the variety of vehicles, and the absence of a good dataset, 

it is more difficult in Bangladesh to adopt a smart traffic. One of the most important aspects of 

algorithm training is data quality. Here, the dataset, “Dhaka Traffic Detection Challenge Dataset” 

was cleaned and augmented to get better results. The dataset was trained on two neural network 

architecture, YOLOv5 and MobileNetV2. YOLOv5 ran on PyTorch and the model was trained on 

Google Colaboratory, a cloud-based platform. Codes were written in Python 3.8 and Python 3.9. 

Roboflow, an online-based computer vision application, was used to organize the dataset for 

training. For image categorization and mobile vision, MobileNet is built on the CNN architectural 

model. There are other models available, but MobileNet is unique in that it uses very minimal 

compute resources to operate and also applies transfer learning. As a result, MobileNet is ideal for 

both mobile devices and web browsers. There are 28 levels in MobileNet. MobileNet contains 4.2 

million parameters by default. YOLOv5 performed better than MobileNetV2, in terms of accuracy 

and inference time. This research will be a vital step towards intelligent traffic detection system 

that can detect unauthorized vehicles like rickshaw/CNGs in highways, or to develop a traffic plan 

that minimizes traffic congestion on the road. 
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Chapter 1 

Introduction 

 

1.1 Vehicle Detection 

Vehicle detection and tracking systems has a number of applications, including regulation of 

highway traffic, assessing, and controlling. These techniques are used for vehicle tracking, counts, 

measuring vehicle speeds, traffic analysis, and vehicle classification, and also utilized in a number 

of situations. With recent development in technology, adoption of smart traffic system is becoming 

increasingly popular. Vehicle detection is the process of allowing autonomous systems to view 

and recognize traffic vehicles in order to make essential judgments about vehicle management, 

resource allocation, and traffic control based on the data collected. Many approaches have been 

employed in this sector. However, they can be challenging to apply in real-time traffic monitoring 

and self-driving car applications. Because of our unique cars and demanding traffic situation, the 

work is considerably more difficult for Bangladesh. For example, making any autonomous system 

grasp the complicated geometry of a Rickshaw and distinguishing it from that of a bicycle in a 

congested traffic scenario in real time using traditional approaches may be rather challenging. To 

make the job easier and more feasible, we used machine learning-based computer vision to train a 

neural network to recognize and classify 21 types of common automobiles in Bangladesh. We used 

the YOLO [1] and the MobileNet [2] architecture to make the systems see cars in real time. 

 

1.2 Object Detection vs. Image Classification 

However, there is a slight but significant distinction between image and object recognition. The 

AI model assigns a single high-level label to an image or video in image recognition. The AI model 

detects each and every significant thing in the picture or video in object recognition. In 

classification, we typically have been using a CNN to predict merely the object's name. However, 

in order to find the item within the image, we construct bounding boxes around it [3]. This is more 
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challenging for a variety of reasons. Because several items may exist inside the same picture, the 

output layer length cannot be fixed. A crude way to solve this issue would be to first select different 

regions of interest from the image, and then use a CNN, such as R-CNN, to classify the object 

within that region. The drawback is that the items might appear in various positions and have 

various aspect ratios. As a result, the algorithms must choose a large number of areas, which takes 

a lot of computing power. 

 

 

1.3 Real Time Object Detection 

Real time object recognition and tracking is a broad, exciting, yet inconclusive and difficult topic 

in computer vision. Researchers are constantly devising more efficient and competitive algorithms 

as a result of its expanding use in surveillance, tracking systems utilized in security, and many 

other applications. For our car detection challenge, we need our system to be able to identify 

objects quickly enough to be used in real-time applications. Our detection system will receive a 

live video feed from a camera, which will consist of several photos collected in a short period of 

time, rather than a single image. As a result, the detecting algorithm must process a large number 

of photos quickly. This is a significant difficulty that necessitates an efficient design as well as 

machines with sufficient processing capability. R-CNN [4], Fast R-CNN [5] , and Faster R-CNN 

[6] are examples of machine learning-based object detection architectures.  
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Chapter 2 

Literature Review 

 

2.1 Literature Review 

Object detection has progressed significantly in the last decade thanks to developments in deep 

learning and convolutional neural networks. Computer vision has made significant progress in 

terms of accuracy, instance segmentation, and object identification. With the advancement of the 

Graphic Processing Unit (GPU), real-time object identification has become more feasible. We'll 

look at some fantastic works based on object detection. 

1. The authors of this paper [7] looked at the consequences and reasoning behind several 

architectural and model changes made to the popular YOLOv5 object detector in order to 

improve its small-object recognition capabilities.  

2. This study suggests [8] that in the near future, it might be used in autonomous vehicle 

situations to identify various road assets in various weather circumstances.  

3. With the aid of the PYNQ Z2 board and Movidius NCS, the FPGA-based implementation 

of object detection [9] and recognition results in improved performance. The YOLO model 

is the quickest and easiest of the three, although it has lower accuracy and FPS than 

FRCNN. The SSD provides the maximum frame rate while also balancing calculation time 

and accuracy. 

4. A comparison was proposed by Bilel at el. [10] for vehicle detection between Faster RCNN 

and YOLOv3. It was based on precision, F1 score, recall, quality and processing time. The 

study shows that YOLO out performs R_CNN for most of the pictures.  

5. Hou-Ning at el. [11] suggest an online network architecture from a series of picture to track 

and detect vehicles. Still image of different angle is used for this purpose which extend the 

working load for detecting vehicles.  
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6. A bidirectional cooperation between recognition and tracking is analysed by Foresti at el. 

[12] , these assigns a semantic levels, establishing identity and pose correspondence 

between objects detected at various time instants. 

7. Zehang Sun at el. [13] explore multi-scale driven hypothesis generation and appearance 

based hypothesis verification to present an in-vehicle real-time monocular precrash vehicle 

detection system. Haar Wavelet decomposition for feature extraction and Support Vector 

Machines (SVMs) for classification were used here for appearancebased hypothesis 

verification. 

8. In another research paper [14], they used same methodology to detect vehicle based on on-

road video where the camera was mounted on the vehicle itself. 

9. YOLOv2 is used. Jun Sang at el. [15] proposed their vehicle detection research, which 

employed the k-means++ clustering technique to cluster the vehicle bounding boxes with 

six anchor boxes of various sizes. According to their findings, the average precision (mAP) 

might reach 94.78 percent. 

10. The optimum dense YOLO approach proposed by Zhi Xu at el. [16] is used to detect 

vehicles in images captured by UAVs. This study is particularly useful for detecting tiny 

targets and is tailored to vehicle targets' features. 

11. Shaobin Chen presented real-time detection for embedded systems in el. [17] , using Yolo 

v3-live as the technique that minimized the complexity of embedded operating device 

computation. 

12. This study suggests traffic object detection under bad weather conditions using YOLOv5. 

[18] 

 

2.2 Research Objective 

Our research's major goal is to familiarize Bangladeshi automobiles with smart traffic management 

and regulation. Some of Bangladesh's unique vehicles are not recognized by existing autonomous 

vehicles or traffic control systems. Bangladesh requires its own vehicle detection system that can 

identify all cars with unique characteristics. Our main research goals are:  
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1. To help Bangladesh establish a smart transportation system that would minimize traffic 

congestion and accident rates.  

2. To detect Bangladeshi automobiles in difficult environments. Our main objective is to 

create a system that can recognize some of Bangladesh's distinctive vehicles.  

3. We intended to use computer vision algorithms based on machine learning, such as 

YOLOv5 and Mobilenet-v5, for detecting various classes of vehicles. 

4. To implement traffic object detection with deep neural network architecture. 
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Chapter 3 

How YOLO Works 
 

3.1 Introduction 

YOLO made its computer vision debut in 2015 with a work published by Joseph Redmon et al. 

"You Only Look Once: Unified, Real-Time Object Detection," garnered quick interest from other 

computer vision experts. Prior to the invention of YOLO, Convolutional Neural Networks (CNNs) 

such as Region Convolutional Network (R-CNN) used Region Proposal Networks (RPNs) to 

generate proposal bounding boxes on the input image, then run a classifier on the bounding boxes, 

and finally perform post-processing to remove duplicate detections and refine the bounding boxes. 

It was not suited for training the R-CNN network's various phases independently. Optimizing the 

R-CNN network was both challenging and time consuming. The author's objective is to develop a 

neural network model that encompasses all phases. After running the input picture through a single 

neural network composed of many convolutional networks, the system generates prediction 

vectors for each item present in the image. Rather of iteratively categorizing distinct parts on the 

picture, the YOLO system computes all of the image's attributes and provides predictions for all 

items simultaneously. This is the concept behind "You Only Look Once. [1] 

 

3.2 Concept of YOLO  

The primary concept behind YOLOv1 is to insert a grid cell with a size of S*S (7*7 by default) 

onto a picture. If an item's center is within a grid cell, that grid cell is responsible for detecting the 

object (Figure 3.1). As a result, all subsequent cells ignore the presence of the object displayed in 

numerous cells. 

To execute object detection, each grid cell forecasts B bounding boxes together with their 

associated attributes and confidence ratings in Figure 1 [19] . These confidence scores indicate 

whether an object is present or absent within the enclosing box. The confidence score is defined 

as follows:  

                                                                C = Pc * IOU 



13 

 

 

Figure 3.1: A 7x7 grid cell YOLO Model Applied on an Image. 

Where Pc is the probability that an object exists inside the cell, and IOU is the intersection of the 

prediction box and the ground truth box. Because Pc between 0 and 1, the confidence score is close 

to zero if no object exists in that cell, and IOU is the intersection of the prediction box and the 

ground truth box. Because Pc between 0 and 1, the confidence score is close to zero if no object 

exists in that cell. Otherwise, the score is equal to the IOU. There are four more parameters for 

each bounding box, which correspond to the (center coordinates (bx,by), width, and height) of the 

bounding box (Figure 2). Incorporating the confidence score each bounding box has five 

parameters: a confidence score. 

 

 
Figure 3.2: Parameters of a Bounding Box 
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3.2 Architecture of YOLOv1 

When it comes to object bounding box prediction, there are two levels in the YOLO model that 

are entirely connected to each other (the authors referred to this as the "Darknet architecture") 

(Figure 3). For the assessment of this model, the S = 7, B = 2, and C = 20 values from the Pascal 

VOC dataset were used. This explains why the final feature maps are 7 by 7, as well as why the 

output size was 7 by 7 (2 by 5 Plus 20). According to the authors, the normal-YOLO model with 

24 CNN layers in Darknet architecture can handle more complicated datasets and deliver more 

accuracy than the fast-YOLO model with 9 CNN levels (Figure 4). When GoogleNet was created, 

it advocated the usage of 1x1 and 3x3 convolutional layers in order to reduce the amount of feature 

space in the prior layers. 

  

Figure 3.3: Architecture of YOLOv1 

 

the activation function used in the last layer is swish/mish instead of leaky Relu. (Menegaz, 2018) 
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Figure 3.4: Layers, Filters and Output Dimensions of YOLO 

Now we’ll look into the insights of IOU which is used in all YOLO models. [20] 

• The amount to which two boxes overlap is referred to as the "IOU" (Intersection over 

Union). Bigger the area in which the IOU overlaps, the greater the amount. 

• When it comes to object detection, IOU is mostly utilized to create boxes that fit exactly 

around an item once a model is trained to do so, a green box and a blue box are seen in the 

image below. The accurate box is shown in green, while the model's forecast is shown in 

blue. For this model, the ultimate goal is for the blue and green boxes to exactly overlap, 

such that the IOU between them is equal to one. To eliminate numerous boxes surrounding 

the same item based on which box has a higher degree of confidence, non-max suppression 

is a technique that is used in Intersection of Union. 
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Figure 3.5: Accurate and Predicted Box From the Model 

 

 

 

 

 

 

Figure 3.6: Calculating IOU  

 

 

3.3 YOLOv5 

The latest version YOLO is version 5 which encompasses total architecture of the previous 

version. We’ve used here the “small” version of it. There are a few versions and the difference 

among them is mainly the layers and connections. Now, we’ll take a look at the architecture, 

activation function, cost function, weights and biases of this algorithm. 
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3.3.1 Architecture 
Yolo version 5 is based on two concept two ideas of detection. The single-stage detector and the 

two-staged detector [21]. Figure 3.7 shows the basic ideas. 

Figure 3.7: Double-staged Detector Concept 

As shown in Figure 3.7, all object detection designs begin with a feature extractor (Backbone) 

compressing the input picture features before sending them on to the detector (which includes the  

Neck and Head components used for detection). The detection neck aggregates the characteristics 

produced by the backbone. Here, that head is responsible for detecting the bounding boxes, as well 

as localizing and classifying them. The one-stage detector (Dense Detection) does both jobs 

simultaneously, whereas the two-stage detector (Sparse Detection) does so sequentially and then 

combines the findings [22] . It's a one-step detector, so You Only Look Once. 

So, there are 3 parts of in the whole architecture,  

1. Backbone 

2. Neck  

3. Head  

The authors of YOLOv4 have used different layers and activation function for better optimizing 

the algorithm. [23][24] 



18 

 

 

Figure 3.8: A Visual Representation of YOLOv4 Design. 

Cross Stage Partial (CSP) architectures such as the CSPResNext50 and the CSPDarknet53 (where 

CSP stands for Cross Stage Partial) are both developed from the DenseNet design, which takes the 

prior and adds it to the already-existing input before proceeding to the dense layer. DenseNet was 

created to link layers in a very deep neural network with the goal of alleviating vanishing gradient 

difficulties (as ResNet). DenseNet was intended in making connections between neurons of a 

highly deep neural network in order to alleviate gradient difficulties. [25] 

 

Figure 3.9: A Deep Network Consisting of Three Dense Blocks 

In figure 3.9, a deep network of three dense blocks is depicted. The layers between two neighboring 

blocks are known as transition layers and vary in composition. 

YOLOv4 uses path aggregation network in the neck layer which is an advanced version of FPN. 

FPN architecture's top-down flow means that only the large-scale detector in the lateral backbone 

of FPN can concurrently accept high-level semantic information and fine-grained characteristics 

from lower levels. For the time being, FPN's small-scale detector relies solely on semantic traits 
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to identify things. Semantic features and fine-grained characteristics might be concatenated at 

high-level layers to make the small and medium-sized detector work better. 

Figure 3.10: (a) FPN (b) PAN (c) Bottom-up Augmentation Path Connection 

The block diagram of YOLOv5 looks like this,  

 

Figure 3.11: YOLOv5 Architecture Using Block Diagram 
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3.3.2 Activation Function 
 

The selection of activation functions is crucial in the development of any deep neural network. 

Recently, a slew of activation functions, such as Leaky ReLU, mish, swish, and others, have been 

added. The authors of YOLOv5 selected the Leaky ReLU and Sigmoid activation functions as the 

best fit for their research. When it comes to the middle/hidden layers of YOLOv5, the Leaky ReLU 

activation function is used, as is the sigmoid activation function when it comes to the final 

detection layer. 

3.3.3 Optimization Function 
 

In YOLO v5, we have two alternatives for optimizing the function:  

1. SGD 

2. Adam 

For training in YOLO v5, the SGD optimization algorithm is the default. However, the command-

line parameter "— — adam" can be used to change the default one. [26] 

 

3.3.4 Cost Function 
 

YOLO's compound loss is formed from the objectness score, class probability, and bounding box 

regression score, and it belongs to the YOLO family. Class probability and object score loss have 

been calculated using PyTorch's Binary Cross-Entropy with Logits Loss function. We also have 

the option of calculating the loss using the Focal Loss function, which is described below. In order 

to train using Focal Loss, we may make use of the fl-gamma hyper parameter. 

3.3.5 Detection in YOLO 
 

Suppose we want to train 3 types of object with YOLO: pedestrian, cars, motorcycles. As we have 

three background class we need to define three labels. For example, we are using two anchor boxes 

to hold things in place (these anchor boxes are presented in the figure 3.12). This means that our  
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Figure 3.12: Anchor boxes and output vectors 

output y will be 3×3×2×8. In our image, we have applied a grid with a 3x3 pixel size to each grid 

cell. We employ two anchor vectors in each grid cell, and each anchor vector is characterized by 

eight parameters (numbers).  

Pc probability that there is an object in 

that particular cell 

bx, by position of center of the object 

bh, bw the size of the bounding box  

c1, c2, c3 labels for our 3 classes 

 

Table 3.1: Parameters of the Anchor Boxes. 

In order to make a training set, we go through each of these 9 grid cells, and we make the same 

target vector y for each one. There are no object classes in the first grid cell (purple). For both 

anchors, the value of the class presence will be 0. After that, we don't care about the rest of the 

values in the vector. 

In contrast, the target vector y will be found in the grid cell shown in green, where the first anchor 

box contains zeros but the second anchor box contains particular values for both class membership 

and bounding box values (marked in red). 



22 

 

 

Figure 3.13: Anchor boxes 1 and 2. 

While it's not ideal, our car will be placed to the anchor box 2 because it's taller and wider than our 

image suggests. An easy technique to determine which anchor box has the maximum IoU with an 

ideal object box is to just check that one. We don't need to worry about the other values as pc 

associate anchor box 1 is equal to 0. We assigned Pc=1 to the anchor box 2 because we found a 

vehicle equipped with it. As a result, we'll produce a 16-dimensional vector for each of our nine 

grid places (3x3 grid positions). 

 

3.3.6 Bag of Freebies  
 

With the goal of increasing the accuracy and performance of the YOLOv4 algorithm, the authors 

have experimented with and implemented a variety of optimization strategies. To describe these 

enhancements, the writers use the terms "Bag of Freebies" and "Bag of Specials," respectively. 

[24] 

 
Figure 3.14: Multiple Optimization Methods That Were Experimented.  
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An improvement approach is referred to by the term "Bag," and the term "Freebies" indicates that 

this improvement method can help improve the model's performance and accuracy without costing 

any hardware. As a result, the architecture will be able to take advantage of extra performance 

without having to pay for it. After conducting many tests and analyzing the data, the authors of 

YOLOv4 identified and implemented the following Bag of Freebies improvement approaches and 

applied them to YOLOv4. 

1. For Backbone: CutMix and Mosaic data augmentations, DropBlock regularization, Class 

label smoothing. [24] 

2. For detector: Complete Intersection over Union (CIoU-loss), Cross-mini–Batch Norm 

(CmBN), DropBlock regularization, Mosaic data augmentation, Self-Adversarial Training 

(SAT), Eliminate grid sensitivity, using multiple anchors for a single ground truth, Cosine 

annealing scheduler, Optimal hyper-parameters, Random training shapes. [24] 

 

3.3.7 Bag of Specials 
 

After the Bag of Freebies, the authors came up with another way to make things better, called the 

Bag of Specials. It means getting something of value for a discount or cheap. There are advanced 

optimization strategies that demand a minimal amount of architecture expense in order to 

considerably improve the performance accuracy of object detection in the Bag of Specials 

collection. [24] 

 

1. For backbone: Mish activation, Cross-stage partial connections (CSP), Multi-input 

weighted residual connections (MiWRC). [24] 

2. For detector (neck and head): Mish activation, Spatial Pyramid Pooling block (SPP-

block), Spatial Attention Module (SAM-block), Path Aggregation Network (PANet), 

Distance Intersection over Union Non-Maximum Suppression (DIoU-NMS). 
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Chapter 4 

How MobileNet Works 
 

4.1 Introduction 

It is the first mobile computer vision model developed by TensorFlow, and it is named MobileNet 

since it is designed to be used in mobile applications, as the name indicates. In the previous version 

of MobileNetV1, Depth wise Separable Convolution was introduced, which significantly lowered 

the network's complexity cost and model size, making it suitable for mobile devices or other low-

power devices, as well as for high-performance computing. It has been introduced to MobileNetV2 

a new upgraded module with an inverted residual structure. Non-linearities in thin layers have been 

eliminated this time around. With MobileNetV2 as the foundation for feature extraction, it is also 

feasible to perform state-of-the-art object recognition and semantic segmentation techniques. 

Figure 4.1 illustrates how image processing is carried out using MobileNetV2 software. The 

changes between MobileNetV1 and MobileNetV2 are seen in Figure 4.2.[27] [2] 

When contrasted to a network with traditional convolutions of same depth in the nets, it results in 

a significant reduction in the number of parameters. As a result, deep neural networks that are 

lightweight are built. 

 

 

Figure 4.1: Image Processing by MobileNet Architecture 
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Figure 4.2: MobileNetV1 and MobilenetV2 comparison [2] 

 

4.2 Convolutional Blocks for MobileNetv2 

• A DWSC is made from two methods: Depth-wise convolution and Pointwise convolution. 

• In MobileNetV2, there are two types of network blocks. A one-stride residual network 

block is one of them. A two-stride block is appropriate for downsizing. 

• Both kinds of blocks have three layers each. 

• The first layer is 1*1 convolution using Rectified Linear activation of type 6 this time. 

• The depth wise convolution is the second layer. 

• The third layer is a1X1 network layer convolution with no non-linearity. If ReLU is applied 

again, it is suggested that Deep networks will only have the power of a linear classifier in 

the non-zero volume output domain, which is the case for most applications. 

• There is also a t expansion factor. For all major experiments, t=6. 

• If there are 64 channels in the input, the internal output would become 64×t=64×6=384 

network channels. 
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4.3 Overall Architecture 

 

Figure 4.3: Overall Architecture of MobileNetV2 

 

• For spatial convolution, 3X3 kernels are employed. where t: expansion factor, c: 

number of output channels, n: repeating number, s: stride. 

• The core network (width multiplier 1, 224X224) employs 3.4 million values and 

has a computational complexity of 300 million multiply-adds. 

• For input resolutions ranging from 96 to 224 and width multipliers ranging from 

0.35 to 1.4, tradeoffs are further investigated. The network computation took up to 

585 million MAdds, while the model size ranged from 1.7 million to 6.9 million 

parameters. 

• The network is trained on 16 GPUs with a batch size of 96. 
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4.4 Depthwise Separable Convolution 

 When a filter can be separated into its depth and spatial dimensions, the term separable is used. 

Take the Sobel filter, for example (figure 4.4), which is used in image processing to identify edges 

Figure 4.4: Fx(left), Fy (right) 

Fx is used to identify the vertical edge, whereas Fy is used to detect the horizontal edge. These 

filters may be distinguished in terms of their height and width. Gx is the matrix product of [1 1 1] 

and [1 2 1]. The filter had changed its appearance. It shows nine parameters, but only six are 

available. This was possible since the measurements of height and breadth were separated. The 

same principle may be used to separate the depth dimension from the horizontal (width*height) 

dimension, resulting in DWSC. The depth dimension is then covered using a 1*1 matrix. 

One thing to note is how much this convolution reduces the number of parameters while 

maintaining the same number of channels. 3*3*3 parameters for depth-wise convolution and 1*3 

parameters for additional convolution in the depth dimension are required to create one channel. 
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However, if three output channels are required, we only need 31*3 depth matrix, totaling 36 (= 27 

+9) parameters, while standard convolution requires 33*3*3 filters, totaling 81 parameters. 

DWSC (figure 4.5) is followed by a pointwise convolution as given below: 

 

 

Figure 4.5: Depthwise Separable Convolution 

 

The channel-wise DK*DK spatial convolution is known as depthwise convolution. If, as shown in 

figure 4.5, we have five channels, we may expect to have five DKDK spatial convolutions as a 

result. One convolution may have different maps for each of the input channels. That's why there 

are exactly as many input and output ports as there are devices connected to them. It costs 

Df2*M*Dk2 to compute. [28] 
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Figure 4.6: Depthwise Convolution 

 

Figure 4.7: Pointwise Convolution 

 

Convolution in the form of pointwise convolution is a one-to-one transformation. It is a 

convolution with a kernel size of 1x1 that simply mixes the depthwise convolution's 

characteristics. It costs M * N * Df2 to compute.  

The batch norm and the ReLU are utilized instead of a single 3x3 convolution layer in 

MobileNet's design. Using a 3x3 depth-wise convolution and a 1x1 pointwise convolution, 

Mobile Nets separate the convolution. 
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Chapter 5 

Research Methodology 

 

5.1 Dataset 

The dataset for training was provided by Dhaka-AI [39], named “Dhaka Traffic Detection 

Challenge Dataset” [40] [41]. The Dataset is composed of the most common 21 different classes 

of vehicles of Dhaka city. There are total 3002 images in the dataset and 24,368 annotations. Figure 

5.1 shows a general summary of the dataset.  

 

Figure 5.1: Summary of the Dataset 

 

List of the class names and their number of appearance in the dataset:  

• Ambulance - 70  

• Auto-rickshaw - 43  

• Bicycle - 459  

• Bus - 3340  

• Car - 5476  

• Garbage van - 3  

• Human hauler - 169  

• Minibus - 95  

• Minivan - 935  

• Motorbike - 2284  

• Pickup - 1225  
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• Army vehicle - 43 

• Police car - 32  

• Rickshaw - 3549 

• Scooter - 38 

• SUV - 860 

• Taxi - 60 

• CNG - 2990  

• Truck - 1492  

• Van - 756 

• Wheelbarrow - 120  

 

The dataset is an imbalanced dataset. Car, rickshaw, bus and CNG are overrepresented where 

except only motorbike, truck, pickup and minivan, the rest of the vehicles are underrepresented. 

Figure 5.2 shows the class balance report generated by Roboflow . As the data set was unbalanced, 

different methods can be used like Cutmix, mixup, rotation etc. to better train the model. But as 

the training time would increase significantly with low performance workstation that we have we 

couldn’t do so at the beginning. Afterwards we tried some data augmentation techniques but the 

results didn’t improve that much. Figure 5.3 and 5.4 show a typical image for each of the classes 

of vehicles. Figure 5.5 shows the image size distribution of the dataset.  

Figure 5.2: Class Balance of the Dataset 
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Figure 5.3: Different Classes of Vehicles in Dhaka City (1) 

Figure 5.4: Different Classes of Vehicles in Dhaka City (2) 
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Figure 5.5: Image Size Distribution of the Dataset 
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5.2 Training Parameters 

5.2.1 MobileNetV2 

1. Batch Size: 8 

2. Number of Steps: 10,000 

3. Warm-up Steps: 2000 

4. Number of classes: 21 

5.2.2 YOLOv5 

1. Batch Size: 16 

2. Epochs: 2000 

3. Number of classes: 21 

 

5.3 Requirements 

5.3.1 MobileNetV2 

1. Windows or Linux 

2. Python >= 3.8 

3. TensorFlow >= 2.5 

4. Anaconda >= 3.8 

5. Nvidia GPU GTX 650 or newer 

6. CUDA Toolkit v11.2 

7. CuDNN 8.1.0 

8. Object Detection API 

9. Microsoft Visual Studio 

5.3.2 YOLOv5 

1. Windows or Linux 

2. Python >= 3.9 

3. Tensorflow >= 2.4.1 

4. matplotlib >= 3.2.2 

5. opencv-python >= 4.1.1 
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6. Pillow >= 7.1.2  

7. PyYAML >= 5.3 

8. scikit-learn == 0.19.2 

5.4 Installation 

5.4.1 MobileNetV2 

We used local machine for training the dataset using MobileNetV2. The following steps were done 

sequentially in the training process:  

1. A new environment in Anaconda was created. 

2. Inside the environment, first we installed TensorFlow 2.5. 

3. CUDA Toolkit and CUDNN was installed and added to path. 

4. From TensorFlow Models repository, the Object Detection API was installed. 

5. Downloaded the pre-trained MobileNetV2 FPNlite 640x640 from TensorFlow Model Zoo. 

6.  Appropriate Label Map and TFrecords were generated for the dataset.  

5.4.2 YOLOv5 

As we used Google colab platform for training with YOLO we did not need any installations in 

the local machine. All the installations were done in colab. They are as following, 

• Roboflow for training the model  

• Pytorch  

• OS  

We used Roboflow developed by Ultralytics Corporation. It has all the dependencies installed 

within it like Numpy, Open CV, DarkNet repository. We only had to choose the model we wanted 

to train and prepare the dataset accordingly. 

 

5.5 Platform and System Specifications 

5.5.1 Local Machine 

MobileNetV2 model was trained on a desktop pc. The specifications of the system were: 

• CPU: AMD Ryzen-5 3600 6 Core Processor @ 3.60 GHz 
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• GPU: GIGABYTE GamingX NVIDIA GTX 1060 6 GB VRAM 

• RAM: 16 GB DDR4 

5.5.2 Cloud 

The YOLOv5 model was trained on Google Colaboratory Pro, which is a paid cloud platform. The 

specifications of the platform were:  

• CPU: Intel Xeon(R) 2.30 GHz 

• GPU: Tesla P100-PCIE-16GB VRAM 

• RAM: 12.8 GB DDR4 

5.6 Training 

5.6.1 MobileNetV2 

The MobileNetV2 model was trained on local machine for ten thousand steps for an approximate 

training time of 28 hours. The model was trained using a GTX 1060 6 GB gpu. The loss vs steps 

curve is shown in figure 5.6.  

Figure 5.6: Loss vs Step Curve of MobileNetV2 

5.6.2 YOLOv5 

YOLOv5 was trained using 1000 epochs which took approximately 12 hours to train. Batch size 

was 16. The learning rate saturated after 700 epochs. Figure 5.7 depicts the relation between 

performance matrix and epochs of the model. Figure 5.8 depicts the confusion matrix for YOLOv5 

and figure 5.9 shows the label instances of the particular model.  
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Figure 5.7: Performance Matrix vs Epochs 

 

Figure 5.8: Confusion Matrix of YOLOv5 
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Figure 5.9: Label Instances 
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5.7 Research Timeline 

We methodically split our research activity into four parts to better assist our development and 

guarantee that we followed a strict plan that would keep us on track. We chose to adopt a more 

systematic approach to our learning and work rather than rushing to the finish line and stressing 

about the ultimate product. For each step, we identified specific targets that we wanted to achieve 

and were flexible with time so that we could do our tasks properly rather than half-heartedly. 

We all shared a single goal: to learn and explore. We wanted to establish a good foundation in 

anything we did because machine learning and deep learning were unfamiliar to us. As we 

embarked on this journey, we concentrated on the theoretical parts of learning and putting what 

we had learned into practice. We worked on a variety of initiatives to help us learn more 

effectively, which finally led to our dissertation work. Figure 5.10 depicts a summary of our 

research timeline. 

Figure 5.10: Research Progression Timeline 

 

5.7.1 Phase 1 

The first stage took the most time. It began after our third-year final examinations were completed. 

To learn about Python programming, machine learning, and eventually deep learning, we began 

taking online classes, watching YouTube videos, and participating in different online courses. We 

also began reading research papers on various machine and deep learning approaches and 

strategies. The entire process took around four months and provided us with adequate information 

to choose a dissertation subject. We selected Computer Vision because we were intrigued by the 

thought that robots could perceive and recognize objects in the same way that people could. This 

is what we wanted to investigate and expand on. 
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5.7.2 Phase 2 

The second step was significantly more difficult and demanding. This was the time that we studied 

Computer Vision in depth, both theoretically and practically. We learnt both traditional and 

cutting-edge computer vision techniques. We looked for projects that sparked our attention on 

Github [29] and Stack Overflow [30]. We worked on a variety of modest projects, such as a real-

time attendance system and picture denoising, to improve our understanding of this field of study 

and generate ideas for our own thesis. This stage lasted around three months. 

 

5.7.3 Phase 3 

We spent hours during this step attempting to come to an agreement on the subtopic and dataset 

we should use for our thesis work. We looked through Kaggle [31] and UCI Datasets for an 

enjoyable topic to work on. While there were many interesting things to choose from, we always 

felt compelled to concentrate on something that was relevant to our own lives. We found that there 

were no datasets particular to Bangladesh. As a result, we decided to make our own dataset and 

contribute to the Deep Learning community. 

Fortunately for us, we came across the "Dhaka-AI" competition, which was an AI-based 

competition held in Bangladesh using a Dhaka-specific dataset. As a result, we used the Dhaka 

traffic dataset to develop a deep learning-based real-time vehicle recognition system. We tried a 

variety of methods and spent a lot of time experimenting. Finally, we chose MobileNetV2 and 

YOLOv5 framework as the foundation for our thesis work. This stage lasted around three months. 

 

5.7.4 Phase 4 

After we'd chosen our topic, dataset, and method of action, all that was left for us to do was put 

our knowledge into practice and bring our thesis work to life. We spent the following four months 

improving and training our models to achieve the best potential outcomes. 

We documented all of our discoveries and were prepared for our defense as we approached the 

end of the process. To improve our outcomes, we adjusted our models and explored other 
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strategies. We wanted to make certain that no stone was left unturned and that we could confidently 

and effectively defend our thesis before the thesis committee. 

We were able to overcome all barriers and deliver our thesis thanks to the blessing of Almighty 

Allah, the direction and assistance of our supervisor, Professor Dr. Golam Sarowar sir, and the 

love and support of our parents.  
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Chapter 6 

Results 

6.1 MobileNetV2 

For MobileNetV2 we got the mean average precision or mAP to be around 0.26. The value is fairly 

acceptable since the COCO API metric of MobileNetV2 is 0.28. The precision value is can be 

improved by enhancing the dataset and by making it more balanced in terms of class 

representation. Figure 6.1 shows the the mAP of detection boxes for our MobileNetV2 model.  

 

Figure 6.1: Detection Box mAP of MobileNetV2 

 

 

6.1.1 Inference on Images 

We ran inference on a few images randomly to test our models working capacity. The results are 

shown in figure 6.2, 6.3, 6.4 and 6.5.  
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Figure 6.2: MobileNetV2 Image Inference 1 

 

 

Figure 6.3: MobileNetV2 Image Inference 2 
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Figure 6.4: MobileNetV2 Image Inference 3 

 

 

 Figure 6.5: MobileNetV2 Image Inference 4 
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6.1.2 Inference on Video 

The inference video was created by running inference on a real time traffic video using the 

MobileNetV2 exported model. A QR code containing the video is depicted in figure 6.6.  

 

Figure 6.6: QR Code of MobileNetV2 Video Inference 

 

6.2 YOLOv5 

For YOLOv5s the mean average precision or mAP was found to be .51 approximately. The mAP 

curve is shown in figure 6.7. As noticeable in the figure, the mAP increases initially with increasing 

epochs but saturated after 700 epochs approximately. The mAP for YOLOv5s we’ve achieved is 

fairly good considering it’s a multiclass database.  

Figure 6.7: Mean Average Precision of YOLOv5 
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We can measure the performance of the YOLOv5 model from different parameters’ values. 

Tensorboard API was used for generating these performance parameters. Figure 6.8 depicts 

precision vs confidence, figure 6.9 depicts precision vs recall and figure 6.10 depicts recall vs 

confidence for the 21 different classes in the database. 

Figure 6.8: Precision vs Confidence Curve 

Figure 6.9: Precision vs Recall Curve 
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Figure 6.10: Precision vs Confidence Curve 

 

6.2.1 Inference on Images 
 

To test our YOLOv5 model we ran inference on a few images. The results are shown in figures 

6.11, 6.12, 6.13, 6.14. 

 

Figure 6.11: YOLOv5 Image Inference 1 
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Figure 6.12: YOLOv5 Image Inference 2 

 

Figure 6.13: YOLOv5 Image Inference 3 

 

Figure 6.14: YOLOv5 Image Inference 4 
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6.2.2 Inference on Video 
For the same video used before, video inference was done using the YOLOv5 exported model. 

The result is stored in a drive link and figure 6.15 depicts the QR code that can access it.  

 

Figure 6.15: QR Code of YOLOv5 Video Inference 

 

6.2.3 Data Augmentation and Training on YOLOv5 

We have also used data preprocessing for better results in YOLOv5. Roboflow was used to 

augment the data and generate new dataset. Augmentations applied are: 

1. Auto rotation 

2. Auto orientation  

3. Horizontal flip 

4. Rotation(between -15° to 15°) 

5. Cutout: 3 boxes with 10% of the size. 

6. Bounding box crop. 

 

After augmentation we had 6.3k images of which 612 were used for validation and 299 were used 

for testing.  
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Figure 6.16: Dataset Augmentation Summary 

 

We only could train it for 70 epochs because of resource constraints as the dataset is huge. But 

judging by the results it appears that under represented class detection should improve if trained 

for 500 epochs or more. Figure 6.17 depicts the mAP of the augmented dataset.  

 

 
Figure 6.17: mAP for Augmented Dataset 

 

6.3 Result Comparison 

As we can see from all the training results, YOLOv5 with the original dataset trained for 1000 

epochs has given us the best result closely succeeded by Mobilenetv2. The second training of 

YOLOv5 that we’ve done has the worst result but that’s only because we couldn’t train the model 

for sufficient epochs because of resource constraints.  

So, it is clear that YOLOv5 is superior then Mobilenetv2. It’s also the newer of the two algorithms. 

For the quantitative analysis, we emphasized on the detection process speed and on the number 
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of classes each framework could detect accurately. The results were synonymous with our 

qualitative hypothesis and shows a numerical representation of the results obtained. And also 

YOLOv5 is faster than Mobilenetv2 in our experiments and also in theory. We can see the same 

result in comparative studies between them. Though Mobilenetv2 has better accuracy but YOLOv5 

is much faster. We can use them for object detection according to our need and balance.  

Here’s a comparison of accuracy between SSD Mobilenetv2 and YOLO from a research work. 

[32] 

 

Figure 6.18: Comparison between YOLO and MobileNetV2. 
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Chapter 7 

Conclusion 

 

 

7.1 Project Significance 

We think that our research is important in a number of ways. In terms of its scope, this project 

makes it possible for Bangladesh to put in place an intelligent traffic surveillance system. 

Also, self-driving cars will be able to tell the difference between some of the unique cars in 

Bangladesh that they have never seen before when equipped with the trained models. 

In terms of resources, we trained and ran our models on a moderately powerful workstation and in 

the Google Colab cloud, both of which can be used by anyone. Improvements in cloud computation 

are paving a way to the use of this kind of object detection techniques even more. 

We were able to get real-time results because the inferences were done pretty quickly. But if our 

GPU was better, we could train our model faster and get results faster. Uses of this algorithms are 

given below. 

 

1. Yolo can improve small object detection more than any other algorithm. So, for more 

speedy and accurate detection of small objects in an image YOLOv5 can be used 

efficiently. 

2. YOLOv5 can detect vehicle even in bad weather condition with higher accuracy. YOLOv5 

and also Mobilenet can predict different vehicles, persons, traffic lights even when the 

weather is not ideal. 

3. Object detection algorithms can also be implemented successfully using FPGA devices 

with low power. As this types of algorithms take low computational power to run in 

inference. 
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4. Intelligent ways to find and count vehicles are becoming more and more important for 

managing highways. Using Object detection algorithm like YOLOv3 and YOLOv5 we can 

track, detect and count vehicles in a highway using surveillance camera footage. 

5. Smart camera vehicle monitoring software is in production as of now. One of them is 

Camlytics. It uses object detection and counting system of different DNN model to 

accurately measure the flow of vehicles.  

 

7.2 Future Prospects 

The future prospects of this project is exciting and huge. More classifications, such as people and 

traffic signs, will be added as we enhance the current dataset to better train our models. Premium 

cloud training facilities will also be used so that we may acquire unlimited training time and 

increase our model performances even more. Our project is a derivative work but it is critical for 

traffic management and monitoring, and also for driverless cars. Our research might potentially be 

used to intelligent parking systems. Some other scopes of our research are:  

• Real-time traffic management systems  

• Autonomous vehicles  

• Measurement of distance between vehicles 

• Cloud-based detection and classification 

• Automated parking systems 

• Surveillance and monitoring 
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