ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) ## DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING Mid-Semester Examination Summer Semester, A. Y. 2021-2022 Course No.: EEE 4405 / EEE 4491 Course Title: Energy Conversion II Time: 90 Minutes Full Marks: 75 There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are | written in the brackets. | | | | |--------------------------|----|---|---------------------| | 1. | a) | Answer the following questions in brief: Explain the concept of slip and its impact on the rotor speed and torque of a 3-phase induction motor. Explain the concept of "Electrical Braking" in a 3-phase induction motor. The speed of the rotating magnetic field (RMF) referred to as synchronous speed - explain. Explain the behavior of a 3-phase induction motor for both standstill and running conditions if the slip-ring connection of a wound rotor is kept open and a 3-phase supply is given to the stator. Explain the behavior of a 3-phase squirrel cage induction motor if you give single-phase and neutral supply disconnecting other two phases. Load increase in a 3-phase induction motor results in increased current consumption - explain. | 21
(CO1,
PO1) | | | b) | A 3-phase squirrel cage rotor induction motor is rotating with 1440 rpm. It has 4-pole per phase configuration. Under this running condition, find the current frequency in the stator side and the rotor side? | 04
(CO2,
PO2) | | 2. | a) | Torque of an induction motor (T_r) can be written as, $T_r = \frac{90 \text{ s} E_2^2 R_2}{\pi N_s R_2^2 + (sX'_2)^2},$ where, N_s is in rpm. | 14
(CO2,
PO2) | - Using above equation, derive the condition of maximum torque under (i) running condition. - Suppose a three phase induction motor is having a total rotor resistance (ii) of R_2 and standstill rotor reactance, X_2 where $R_2 > X_2$. Show the effect of increasing rotor resistance on torque speed characteristic curve. - For a fixed load, if you increase the supply voltage of a three phase (iii) induction motor, show the changes in synchronous speed and the rotor speed. Show the effect using a typical torque-speed characteristics curve. - Show the effect of changing rotor resistance (R_2) on the rotor current (I_2) for both standstill condition and running condition. - A 440-V, 3-phase, 50-Hz, 4-pole, Y-connected induction motor has a speed of 11 1490 rpm. The rotor has an impedance of (0.4 + j4) ohm and rotor/stator turns ratio (CO2, of 0.8. - (i) Calculate the generated torque at 1490 rpm. - (ii) Calculate starting torque. - (iii) Calculate starting current of the rotor. - (iv) Under running condition if the load torque is increased to 78.87 Nm, determine the speed of the rotor. - (v) Sketch the torque speed curve for the mentioned motor. - 3. a) Figure 3.a shows the typical magnetic starter circuit diagram for a three phase induction motor. Briefly describe how the starter circuit provides short-circuit protection, overload protection and undervoltage protection for a three phase induction motor. 13 (CO1, PO1) Figure 3.a b) For the single phase induction motor shown in Figure 3.b, if you provide a single phase ac supply, state the motor's rotation status. Briefly explain using double (CO1, revolving field theory. Figure 3.b