M.Sc. Engg./ Ph.D. (EE)

Date: February 15, 2023 (Afternoon)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination

Summer Semester, A.Y.2021-2022

Course No.: EEE 6311

Time: 90 Minutes

Course Title: Power System Optimization

Full Marks: 75

There are 4 (four) questions. Answer any 3 (three). All questions carry equal marks. Marks in the margin indicate full marks. All symbols carry their usual meanings.

- Q. 1. a) Explain in short, the necessity of unit commitment and de-commitment in economic oppower system operation. How is it different than economic load dispatch?
 - b) For a three-unit thermal power plant the following data are given:

20

$P_{g,min}$ (MW)	P _{g,max} (MW)	Heat Rate (MBtu/h)	Fuel Cost (\$/MBtu)
200	500	$510+7.2P_{g1}+0.00142P_{g1}^{2}$	1.05
80	350	$310+7.85P_{g2}+0.00194P_{g2}^{2}$	1.02
100	420	$78+7.97P_{g3}+0.00482P_{g3}^{2}$	1.10

Consider a demand of 800 MW.

- i) Find out the feasible unit combinations for the given demand.
- ii) Prepare a priority list ordering among the units based on full load average production cost.
- Q. 2. a) Explain the following terms with respect to engineering optimization: (i) mixed integer 05 nonlinear programming, (ii) convex optimization.
 - b) A two-region interconnected power system has a tie-line with a maximum real power handling capacity of 440 MW. The detail of the power generating units for each region is given below:

Region	Units	Unit Capacity (MW)	Unit Output (MW)	Regional Load (MW)
1	1	800	500	1000
	2	600	450	
2	3	1000	850	900
	4	300	100	

Examine the effect of unit outages (one unit at a time) on the spinning reserve of the system. Also, find out whether any of the unit outages would affect the power transmission through the tie-line.

- Q. 3. a) Discuss with appropriate equations, the concepts of hot start-up and cold start-up costs.
 - b) Consider two thermal units with the following cost functions:

20

05

$$C_1(P_{G1}) = 890 + 15P_{G1} + 0.03P_{G1}^2 + \frac{1}{2} hr$$

If the demand is given as 950 MW, find out the economic dispatch from of the generators using *lambda iteration algorithm*. Also find the value of the incremental cost (λ).

- Q. 4. a) Mention the difference between binding and non-binding constraints related to a 05 constrained optimization problem.
 - b) The fuel cost functions of a two-generator power system are expressed as

20

$$C_1(P_{G1}) = 500 + 5.2P_{G1} + 0.003P_{G1}^2$$
 , and $C_2(P_{G2}) = 460 + 5.1P_{G2} + 0.002P_{G2}^2$

The load demand is 500 MW and the corresponding generation limits are given as $100 \le P_{G1} \le 400$ MW, and $150 \le P_{G2} \le 300$ MW, respectively. Applying the Karush-Kuhn-Tucker condition of optimality, find out the optimal generation outputs.