B.Sc. in EEE, 2nd Semester B. Sc. TE(2-Yr) 2nd Semester

February 23, 2023 (Morning)

(PO2)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination Course No.: Math 4221/Math 4629 Course Title: Mathematics III

Summer Semester, A. Y. 2021-2022

Time: 90 Minutes Full Marks: 75

There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

			41
1.	(a)	Prove that $\mathbf{a} \times \mathbf{b} \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ hence find the value of, $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b})$.	(9) (CO1 (PO1
	(b)	If the volume of the parallelepiped with edges $\mathbf{a}=2\mathbf{i}-\mathbf{j}-\mathbf{k}$, $\mathbf{b}=3\mathbf{i}+2\mathbf{j}+2\mathbf{k}$ and $\mathbf{c}=5\mathbf{i}-\mathbf{m}\mathbf{j}+3\mathbf{m}\mathbf{k}$ is 28 find the value of m.	(8) (CO1 (PO1
	(c)	Explain the physical meaning of $[a+b \ b+c \ c+a]=2[abc]$ and prove this relation.	(8) (CO1
2.	(a)	Prove that $\nabla .(\phi \mathbf{A}) = (\nabla \phi).\mathbf{A} + \phi (\nabla .\mathbf{A})$ and hence find $\nabla .(r^3 \mathbf{r})$	(PO1) (12) (CO2) (PO2)
	(b)	Determine the constant a, b, c so that vector $\mathbf{v}=(-4x-3y+az)\mathbf{i}+(bx+3y+5z)\mathbf{j}+(4x+cy+3z)\mathbf{k}$ is irrotational. Find a scalar function ϕ so that $\mathbf{v}=\nabla\phi$.	(13) (CO2) (PO2)
3.	(a)	Evaluate the line integral \int_{C} F .d r where F =-3x ² i+5xyj and C is the curve y=4x ² in the xy plane from (1, 4) to (2, 16).	(12) (CO3) (PO2)
	(b)	Evaluate $\iiint\limits_V \mathbf{F} \ dV$ where $\mathbf{F}=2x^2i-xzj+y^2zk$ and V is the region bounded by the	(13) (CO3)

surfaces x=0, x=6, y=0, $z=y^2$, z=4.