

B.Sc. Engg. CSE 8th Semester

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION DURATION: 1 HOUR 30 MINUTES

SUMMER SEMESTER, 2021-2022

FULL MARKS: 75

CSE 4801: Compiler Design

Programmable calculators are not allowed. Do not write anything on the question paper.

Answer all 3 (three) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

		Co and 10 are written within parentineses.	
1.	a)	A computer program is a set of instructions understandable by human beings. Discuss the steps to convert a computer program into computer understandable format in brief.	5 (CO1) (PO1)
	b)	The process of constructing a compiler can be modularized to improve efficiency. Draw a block diagram showing various construction phases and modules of a compiler and discuss in brief.	10 (CO1) (PO1)
	c)	Discuss the strategies to recover from lexical errors.	10 (CO1) (PO1)
2.	a)	Consider the following grammar: $A \rightarrow aB \mid b$ $B \rightarrow cC \mid d$ $C \rightarrow a \mid c$	5 (CO2) (PO2)
	b)	What type of phrase-structure grammar can accurately describe the grammar? Justify your answer. You need to construct a predictive parser for the following grammar: $A \rightarrow AB \mid AC \mid b$ $B \rightarrow Bd \mid e \mid d$ $C \rightarrow a \mid d$	10 (CO2) (PO2)
	c)	Preprocess the grammar to make it ready to work with predictive parser. Show the steps to prove that the string <i>baedd</i> is a valid sentence for the grammar given in Question 2.b) using recursive descent parsing method.	10 (CO2 (PO2
3.	a)	A grammar is given below: $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$	
		i. Find the set of $FIRST(X)$ and $FOLLOW(X)$ for each non terminal X.	(CO2
		ii. Generate set of states, i.e., $LR(0)$ items for the grammar to construct SLR parser.	(PO2 10 (CO2 (PO2
	b)	Explain how the set of FIRST(X) and FOLLOW(X) helps to take decisions during SLR parsing.	(CO2 (PO1