

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Mid Semester Examination Course No.: CEE 4815 Course Title: Introduction to Finite Element Method There are 4 (Four) questions. Answer 3 (Three) questions. Questions 2 and 4 are compulsory. Answer 1 question from questions 1 and 3. The figures in the right margin indicate full marks.		
1(a).	Briefly explain the steps of the finite element method.	(10) (CO1) (PO1)
1(b).	Derive the shape functions of 2-nodal and 3-nodal truss elements for the local coordinate system and verify with the Lagrange Polynomials.	(15) (CO1) (PO1)
2(a).	Derive the shape functions and Jacobian matrix of a 4-nodal square element in the two-dimensional condition for the local coordinate system.	(11) (CO1) (PO1)
2(b).	 Answer the following question regarding a quadrilateral element having coordinates of (0,0), (5, 1), (5, 3), and (0,4) - (i) Determine the coordinates of a point in the global coordinate system corresponding to the local coordinate (0.5, 0.7). (ii) Determine Jacobian matrix. 	(14) (CO2) (PO2)
3(a).	Derive strain displacement matrix [B] for plane strain condition.	(10) (CO1) (PO1)
3(b).	Derive general stiffness matrix using the principle of virtual work.	(15) (CO1) (PO1)
4.	Calculate axial forces at both nodes of a truss element for the nodal displacements of 2.0 mm at node 1 and 10 mm at node 2. Show the calculations of the Jacobian matrix, strain-displacement matrix [B], and stiffness matrix [K] for elastic condition. The cross-sectional area of the truss is 100 mm^2 , and the length is 5.0 m . Here, the elastic modulus of the truss material, $E = 200 \text{ GPa}$.	(25) (CO2) (PO2)