M. Sc. Engg. (CEE)

17 February, 2023 (2:00 PM – 3:30 PM)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

TERM

: MID SEMESTER EXAMINATION SUMMER SEMESTER: 2021-2022

COURSE NO. : CEE 6109

TIME : 1.5 Hours

COURSE TITLE: Advance Concrete Technology

FULL MARKS: 75

There are (Three) questions. Answer ALL questions. Programmable calculators are not allowed. Do not write on this question paper. The figures in the right margin indicate full marks. The Symbols have their usual meaning.

1 The specified FM of fine aggregate of a bridge project is 2.6. The sieve analysis data of a fine aggregate sample collected for the bridge project are summarized below:

ASTM Sieve	Materials Retained (g)		
3 inch	0		
1.5 inch	0		
1.0 inch	0		
3/4 inch	0		
1/2 inch	0		
3/8 inch	0		
#4	40		
#8	70		
#12	60		
#16	30		
#30	50		
#40	0		
#50	0		
#100	40		
#200	20		
Pan	90		

- (i) Calculate the FM of the sample.
- Draw the grading curve of the sample, (ii)
- (iii) Make a brief discussion on the FM, sieve analysis data, and grading
- What measures are necessary to improve the grading of the sand (iv) sample?
- In what ratio the sand sample is to be mixed with another sand (v) sample of FM 2.0 to obtain the required fineness modulus of 2.6?

Sieve openings for ASTM sieves are provided in the attached table.

- 2(a) Discuss about the environmental problems related to construction materials (cement, steel, coarse and fine aggregate, brick). Also discuss the possible steps that are to be taken into consideration to reduce these problems.
- (b) What types of tests are necessary to examine the reactivity of aggregate?
- (c) Write hydration reactions of cement. Explain how gypsum controls setting of cement.
- (d) What types of information you can obtain from ASTM C150, ASTM C595, ASTM C1157, BDS EN 197-1-2010.
 - 3 If 110 g of water is added with 200 g of cement, calculate the following for 25 0%, 50%, and 100% of hydration:
 - (i) Amount of water chemically bonded,
 - (ii) Amount of water in gel pores of cement,
 - (iii) Amount of free water in capillary,
 - (iv) Volume of empty capillary,
 - (v) Volume of cement gel.
 - (vi) Gel-to-space ratio.

Make a brief discussion on the results.

Aperture mm or µm	Approximate Imperial equivalent in.	Previous designation of nearest size						
		BS	ASTM	(continued)				
				1 70 mm	0.0661	No. 10	No 1	
125 mm	5	-	5 in.	1.40 mm	0.0555	No. 12	No 1	
106 mm	4.24	4 in.	4.24 in.	1.18 mm	0.0469	No. 14	No. 1	
90 mm	3.5	3½ in.	3½ in.	1.00 mm	0.0394	No. 16	No. 1	
75 mm	3	3 in.	3 in.	850 µm	0.0331	No. 18	No. 2	
63 mm	2.5	2½ in.	2½ in.	710 µm	0.0278	No. 22	No. 2	
53 mm	2.12	2 in.	2.12	600 µm	0.0234	No. 25	No. 3	
45 mm	1.75	1 in.	1 } in.	500 µm	0.0197	No. 30	No. 3	
37.5 mm	1.50	1 1 in.	1 ½ in.	425 µm	0.0165	No. 36	No. 4	
31.5 mm	1.25	11 in.	1 in.	355 μm	0.0139	No. 44	No. 4	
26.5 mm	1.06	1 in	1.06	300 µm	0.0117	No. 52	No. 5	
	0.875	% in.	Z in.	250 µm	0.0098	No. 60	No. 6	
22.4 mm	0.750	in.	in.	212 µm	0.0083	No. 72	No. 8	
19.0 mm			in.	180 µm	0.0070	No. 85	No. 1	
16.0 mm	0.625	1 in	0.530 in	150 µm	0.0059	No. 100 No. 120	No 1	
13.2 mm	0.530	2 111	7 in.	125 µm	0.0049	No. 150	No 1	
11.2 mm	0.438	3	im.	106 µm	0.0041	No. 170	No 1	
9.5 mm	0.375	g in		90 µm	0.0035	No. 200	No. 2	
8.0 mm	0.312	A in.	A see in	75 µm	0.0029	No. 240	No. 2	
6.7 mm	0.265	l in.	0.265 in.	63 µm	0.0025	No. 300	No.	
5.6 mm	0.223	3	No. 3½	53 μm	0.0021	No. 350	No 3	
4.75 mm	0.187	re in.	No. 4	45 µm	0.0015	140. 550	No 4	
4.00 mm	0.157		No. 5	38 µm	0.0013	-	No.	
3.35 mm	0.132	No. 5	No. 6	32 µm	0.0012			
2.80 mm	0.111	No. 6	No. 7					
2.36 mm	0.0937	No. 7	No. 8					
2.00 mm	0.0787	No. 8	No. 10					
1.70 mm	0.0661	No. 10	No. 12					