

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS

SUMMER SEMESTER, 2021-2022 FULL MARKS: 200

Math 4241: Integral Calculus and Differential Equations

Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1.	a)		4 (201)
		ii. Verify that $y = e^{3x} \cos 2x$ is a solution to the linear equation $y'' - 6y' + 13y = 0$. (C	(201) 4 (202) (201)
		ii. Find an explicit solution to the following initial value problem:	4 (202)
		$= -1(r^2 + 1) \cdot r(-1) = 1$	PO1)
	b)		4 CO1) PO1)
		· ·	8 CO2) PO1)
	c)		10 CO2) PO1)
2.	a)		4 CO1) PO1)
			8 CO2) PO1)
	b)		4 (CO1) (PO1)
		1	8 (CO2) (PO1)
	c)	1	10 (CO2) (PO1)

- i. Define Cauchy-Euler's form of linear differential equation.
 - ii. Solve the following Cauchy-Euler's differential equation:

$$x^{3} \frac{d^{3}y}{dx^{3}} - x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} - 2y = x^{3}$$

b) Solve the following differential equation using the method of variation of parameters:

$$(D^2 - 3D + 2)y = \sin(e^{-x}).$$

i. Define ordinary point of a second order linear differential equation.

ii. Find the power series solution of the differential equation
$$\frac{d^2y}{dx^2} + xy = 0$$
 about the ordinary point $x = 0$.

- a) Define regular and irregular singular points of a linear differential equation.
 - b) Use the method of Frobenius to obtain two linearly independent power series solution of the differential equation $2x^2y'' - xy' + (x - 5)y = 0$ about the singular point x = 0.
 - i. Write down the Rodrigue's formula for Legendre polynomial. Evaluate $P_3(x)$ using this
 - ii. Prove that $P_{2n}(0) = (-1)^n \frac{(2n)!}{2^{2n}(n!)^2}$, where $P_n(x)$ is a Legendre polynomial of degree n.
- a) What do you mean by Bessel's differential equation? Define Bessel's function of first kind and second kind.

b) For Bessel's polynomial
$$J_n(x)$$
, prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.

- i. Define a Partial Differential Equation (PDE). Write down the general form of a second order PDE. Classify them with proper naming.
 - ii. Find the general solution to the PDE $p \tan x + q \tan y = \tan z$ using Lagrange's method.

(CO2 (PO1

(CO₂ (PO1

(CO1 (PO1

10

(CO2) (PO1)

10

15

6. a) Define the complete and particular integral of a PDE.

6 (CO1)

(PO1)

b) Find the integral surface of the PDE (x - y)p + (y - x - z)q = z through the curves z = 1, $x^2 + y^2 = 1$.

(CO2) (PO1)

9

c) i. Show that the two functions, f(x, y, z, p, q) = xp - yq = 0 and g(x, y, z, p, q) = z(xp + yq) - 2xy = 0, are compatible and find the solution. (CO2)

(PO1)

ii. Find a complete integral of $p^2x + q^2y = z$ using Charpit's method.

9

(CO2) (PO1)

Math 4241