ep

05 May 2023

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
ORGANISATION OF ISLAMIC COOPERATION (0IC)
Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION SUMMER SEMESTER, 2021-2022
DURATION: 3 HOURS FULL MARKS: 150

CSE 6™ Semester

CSE 4649: Systems Programming

Programmable calculators are not allowed. Do not write anything on the question paper.
Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas corresponding
CO and PO are written within parentheses.

[For all the questions, assume M-b?system unless otherwise mentioned.]

1. a) Considera C program given in Code Snippet 1.

7

‘ = (CO2)

void fun_test(char *x, char *y){ (PO2)
if (&x[@] < &y[4])

printf("Trick!");
‘ else

| }

| int main(){
‘ char str[]

printf("Treat!");

= "Good Luck in your Exam)
str;
str;
fun_test(x, y);
| }

Code Snippet 1: Code Snippet for Question 1.a)
What will the above program print out and why?

b) Incomputer programming, a local variable that is assigned to some value but is not read by any 10
subsequent instruction is referred to as a dead store. Optimizing compilers optimize code by (C03)
removing dead stores in a program. The following C program in Code Snippet 2 contains one (PO4)
such dead store. When this program is compiled with an optimizing compiler, the elimination
of dead store will introduce a security loophole.

Find out the dead store in the program and explain how the security loophole can occur.
r}/ function prototype for checking password |
} int check_pass(char *pass){}

‘ int main(){
! char pwd[20];
fgets(pwd, 20, stdin);

‘ if (check_pass(pwd))

printf("You're logged in!");
| else

printf("Incorrect password!"); ‘
‘ memset(pwd, @, sizeof(pwd));

Code Snippet 2: Code Sr;ippet for Question 1.b)

c) Explain the concept of Cycles Per Element (CPE) for expressing program performance with 8
appropriate example.

(Con)
| (PO1)
2. a) Consider the following C switch skeleton in Code Sni

ppet 3 and the corresponding x86-64
assembly code with jump table.

CSE 4649 Page 1 of 4

[long fun_switch(long x, long y) | fun_switch:
{ # ‘result’ in %rax
long result = s leaqg (%rdi,%rsi), %rax
switch(result) { movq %rax, (%rsp)
\ case leaq -63(%rax), %rdx
3 cmpg $6, %rdx
case _____: ja il 2
0 jmp * L4(,%rdx,8)
case o . 8- .quad a2
b sarg $2, %rax .quad .L6
break; movq %rax, (%rsp) .quad 2 b7 4
case L5 .quad a2
: addq (%rsp), %rsi ‘ .quad .L2
break; addq $7, %rsi
case movq %rsi, (%rsp) \
4 L6t
default: movq (%rsp), %rax
5 subq %rdi, %rax
} movq %rax, (%rsp)
return result; jmp JL9
} i
addg $105, %rax
movq %rax, (%rsp)
jmp i)
sk
movq %rsp, (%rsp)
\ LB
movq (%rsp), %rax
L__ ret gaz)

Code Snippet 3: Switch program for Question 2.a)

i, What are the values for the case labels in the switch statement? Complete the C source 3+1
code. (CO:
(PO-

ii. Explain how switch statements are more efficient than if-else blocks. Mention the
requirements those need to be satisfied for efficient switch implementation in machine (CO

level. (PO
b) State whether the following statements are correct or incorrect. 1x
i XOR instruction can be used to zero-out a register. (Co
ii. Ifpisan integer pointer (int *) and p has the value 0 then after the expression (p && p++) (PO
is evaluated, p will have 1.
ii. In C,if one operand’s type is unsigned short and another operand’s type is signed short,
then both of them will be converted to unsigned short before doing an arithmetic operation.
iv. Callee-saved registers can be safely used by caller function after execution returns to it.
v. Optimization by compilers is done at run-time.
3. a) What will be the output of the program in Code Snippet 4 assuming X, y and z have memory
addresses 100, 200 and 300 respectively. (CC
» (PC

| int main() {

‘ int x = 1569;
int *y = &x;
int *z = (int *) %3
printf("%d,%d,%d\n", (int) Xx, (int) &x, (int) (x+1));
printf("%d,%d,%d\n", (int) y, (int) &y, (int) (y+1));
printf("%d,%d,%d\n", (int) z, (int) &z, (int) (z+1));

¥ - |

Code Snippet 4: C program for Question 3.a)
CSE 4649 Page 2 0f 4

ntion and explain the steps you would follow to design and implement an efficient and 7

optimized system that can scale as well as perform well. (CO3)
(PO3)
Explain two types of optimization blockers with appropriate code example in C. 9
(CO1)
(PO1)
The x86-64 assembly instructions of three functions are given in Code Snippet 5. Function 18
signatures for the functions are int fun_1(int x),int fun_2(int n) and int main(). (CO2)
- (PO2)
400500 <fun_2>:
490500: push %rbp
4004e0 <fun_1>: 400508: mov %edi, -0x4(%rbp)
4904e@: push %rbp | ap@5@b: imul $0x69, -ex4(%rbp) ,%edi
4004e4: mov $Ox7 , %eax | =>40050f: callq 4004e0 <fun_1>
Appdef: mov %eax, -ex8(%rbp) | 4@0518: pop %rbp
4Q0Af2: moVv %edi,%eax | =»4008519: retq
4004f4: cltd ‘
APRAfS5: mov -Ox8 (%rbp) ,%edi | 400520 <main>:
A4004f8: idiv %edi \ 400520: push %rbp
A@04fa: pop %rbp AP@528: mov $ox45,%edi
=»4004fb: retq =»400534: callq 400500 <fun_2> ; START
49053d: pop %rbp
=>40053e: retq
Code Snippet 5: x86-64 assembly for Question 4.3)
Assuming a 64-bit system, write down the execution trace before and after each 411 ang ret
(marked with “=>") instruction according to the Table 1. First one before call inmainis done
for you. Note that, all values are in hexadecimal.
Table 1: Sample execution trace for Question 4.2)
| State Values ‘
0x400534 0x45 | -
b) Suppose you're asked to design the function parameter passing convention of a newly proposed T
ISA i69. Would you use registers Ot stack or a combination of both? Provide justification in favor (CO3)
of your choice. (PO3)
5. a) Consider the C code given in Code Snippet 6.
h’—/’r”/—)t__—J____‘__')__———r———________—ﬁ__-A-|
| void take_input(char +puf, unsigned int len){ \
l } fgets(buf, len, stdin); k
| int main(){ H
ﬂ char buf[@x69]; |
| int n, max_len = Bx69; ‘
‘ scanf("%d", &n); k
‘ if (n < max_len) take_input(buf, 0y \
\ else printf("Not enough space! \n"); E
1 I—— R —
Code Snippet 6: vulnerable Code Snippet for Question 5.a)

i. The above code is vulnerable to buffer overflow which lets anyone COpY beyond the 8
allocated space of the buf variable. Explain the reason of buffer overflow with a concrete (CO3)
input example. (PO4)

ii. Rewrite the relevant portion of code t0 mitigate the vulnerability. Explain how your fix is 4
solving the problem. (CO3)

(PO3)

CSE 4649 Page 3 of 4

b)

c)

6. a)
b)

CSE 4649

Consider the C code given in Code Snippet 7.

int main(){
char str[69];
fgets(str, 69, stdin);

|

Code Snippet 7: Code Snippet for Question 5.b)

Suppose the starting address of the str variable is stored in %rsp where

%rsp=0x7fffffffe869. A user gives “HelloWorld” as input. Now, show how this string

would be stored in memory in both Little Endian and Big Endian machines. Show memory
address of every character for both types of machines.

How Sign Flag (SF) and Overflow Flag (OF) are used together to detect signed overflow. Explain 8
with concrete examples. (Coy)
(PO1)

The x86-64 assembly instructions of a recursive function int fun (int n) is given in Code
Snippet 8.

fun: [.L3:
cmpl $1, %edi ’ mov1 %edi, %eax
jle «L3 ret
pushg %rbp ‘.LZ:
pushg %rbx addq $8, %rsp
subg $8, %rsp popq %rbx
mov1 %edi, %ebx popq %rbp
leal -1(%rdi), %edi ret
call fun
movl %eax, %ebp
leal -2(%rbx), %edi
call fun
addl %ebp, %eax
jmp 52
Code Snippet 8: x86-64 assembly for Question 6.a)
i. Explain how the notion of callee-saved registers is being used for ensuring correct and 6
expected execution of function fun(). (C0o1)
(PO2)
ii. Write the equivalent C source code for the instructions in Code Snippet 8. 9
(Co2)
(PO2)
Write down the sequence of x86-64 assembly instructions for the C code given in Code Snippet 10
9.] (CO2)
void fun_arr(int arr[], int i, int *sum) (PO2)
{
*sum = @;
for (; 1 < @; i--)
{
*sum += arr[i];
}

| }

Code Snippet 9: Code Snippet for Question 6.b)

Page 4 of 4

