13

12

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS

SUMMER SEMESTER, 2021-2022

FULL MARKS: 150

CSE 6293: Data Warehousing and Mining

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all <u>6 (six)</u> questions. Figures in the right margin indicate full marks of questions.

1. a) Consider the following set of frequent 3-itemsets where there are only five items in the data set:

 $\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}, \{2, 3, 5\}, \{3, 4, 5\}.$

- i. List all candidate 4-itemsets obtained by a candidate generation procedure using the $F_{k-1} \times F_1$ merging strategy.
- ii. List all candidate 4-itemsets obtained by the candidate generation procedure using *Apriori* algorithm.
- iii. List all candidate 4-itemsets that survive the candidate pruning step of the *Apriori* algorithm.
- b) Answer the following considering the market basket transactions provided in Table 1.
 - i. What is the maximum number of association rules that can be extracted from this data?
 - ii. What is the maximum size of frequent itemsets that can be extracted (assuming minsup > 0)?
 - iii. Find an itemset (of size 2 or larger) that has the largest support.

Table 1: Market basket transactions for Ouestion 1b).

Transaction ID	Items Bought			
1	[Milk, Beer, Diapers]			
2	{Bread, Butter, Milk}			
3	{Milk, Diapers, Cookies}			
4	{Bread, Butter, Cookies}			
5	{Beer, Cookies, Diapers}			
6	{Milk, Diapers, Bread, Butter}			
7	{Bread, Butter, Diapers}			
8	{Beer, Diapers}			
9	{Milk, Diapers, Bread, Butter}			
10	{Beer, Cookies}			

- 2. a) What are the different sources of classification error. Mention two disadvantages of decision tree based classification.
 - b) What are the causes of model overfitting? Explain different techniques to handle the class imbalance problem.
 - c) What are the outcomes of choosing a smaller or larger K value in the KNN algorithm?

6

5

4+10

- b) Table2 shows the training examples for a binary classification problem. Considering the data answer the following questions:
 - i. Compute the Gini index for the overall collection of training examples.
 - ii. Compute the Gini index for the Custoner ID attribute.
 - iii. Compute the Gini index for the Gender attribute.
 - iv. Compute the Gini index for the Car Type attribute using multiway split.
 - v. Which attribute is better, Gender, Car Type, or Shirt Size?

Table 2: Data set for Question 3b).

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	СО
2	M	Sports	Medium	CO
3	M	Sports	Medium	CO
4	M	Sports	Large	CO
5	M	Sports	Extra Large	CO
6	M	Sports	Extra Large	CO
7	F	Sports	Small	CO
8	F	Sports	Small	CO
9	F	Sports	Medium	CO
10	F	Luxury	Large	CO
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

- 4. a) Mention the data preprocessing techniques used in text mining.
 - b) With an example explain the Bag of Words (BoW) technique for text mining. Mention the limitations of this technique.

10

10+5

7+:

1

3+4

- 5. a) Bitmap indexing is useful in data warehousing. Mention the advantages and problems of using a bitmap index structure.
 - b) A data warehouse can be modeled by either a *star schema* or a *snowflake schema*. Briefly describe the similarities and the differences of the two models.
 - c) What are the differences among *information processing*, *analytical processing*, and *data mining*? Discuss the motivation behind OLAP mining (OLAM).
- 6. a) Explain the main building blocks of a multi-Tiered data warehouse architecture?
 - b) Suppose that x = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) and y = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) are the two term-frequency vectors. Compute the cosine similarity between the two vectors.
 - c) What are the various types of data sampling method? What are the benefits of applying dimensionality reduction to a dataset?