

B. Sc. in EEE, 2nd Semester

17 May, 2023 Time: 10.00 AM -1.00 PM

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination Course Number: Phy 4221 Course Title: Engineering Physics II Summer Semester: 2021 - 2022 Full Marks: 150

Time: 3 Hours

of each question and the

Answer <u>All</u> questions. The symbols have their usual meanings. Marks of each question and the corresponding CO and PO are written in brackets.

Sec A

1.	(a)	Describe the term X-ray diffraction related to crystallography. Explain what	6
		information you get from X-ray diffraction of a crystal.	(CO1)
			(PO1, PO2)
	(b)	Deduce an expression relating the Miller indices and inter planar distance for	14
		orthorhombic crystal system.	(CO2)
			(PO1, PO2)
	(c)	Calculate the wavelength of X-rays that are diffracted 43.4 degree by copper	5
		crystal, whose lattice constant 'a' is 0.3615 nm. Separate determinations	(CO3)
		indicate that this diffraction peak for copper is the first order for d_{111}	(PO1, PO2)
2.	(a)	Define crystal defects? Explain briefly various types of defects that are	10
		observed in a solid	(CO1)
			(PO1, PO2)
	(b)	Explain Lisajous figures. Deduce the resultant motion for various values of	15
		the phase differences for the following two simple harmonic motions of same	(CO3)
		frequency ω but having different displacements in two perpendicular	(PO1, PO2)
		directions which act simultaneously on a particle:	
		$x=p \sin(\omega t + \alpha)$, and	
		$y = q \sin \omega t$.	
3.	(a)	Formulate the differential equations for the damped harmonic and forced	6
Service		oscillators.	(CO1)
			(PO1, PO2)
	(b)	Evaluate the differential equation for damped harmonic oscillator to obtain	14
	~ /	an expression for the displacement.	(CO2)
			(PO1, PO2)

(c) Two light springs of spring constants k_1 and k_2 and a block of mass m are in one-line AB on a smooth horizontal table such that one end of each spring is on rigid supports and the other end is free as shown in Fig. 1 below. The distance CD between the free ends of the springs is 60 cm. If the block moves along AB with a velocity 60 cm/s in between the springs, calculate the period of oscillation of the block. ($k_1 = 1.8 \text{ N/m}$, $k_2 = 3.2 \text{ N/m}$, m = 250 g).

5

(CO3)

(PO1, PO2)

Sec B

4.	(a)	Define Compton scattering.	5 (CO5) (PO1)
	(b)	Deduce an expression for the change in wavelength of a photon undergoing a Compton scattering.	12 (CO5) (PO1)
	(c)	Compare Compton scattering between x-rays ($\lambda \approx 25$ pm) and visible light ($\lambda \approx 600$ nm) at a particular angle of scattering. Find out also their (i) Compton shift and (ii) fractional wavelength shift.	8 (CO5) (PO1)
5.	(a)	Explain how the average life time of a radioactive substance depends on the decay constant. Describe the important applications of radioactive isotopes.	8 (CO6) (PO1)
	(b)	Explain with schematic diagram the binding energy per nucleon versus mass number curve.	10 (CO7) (PO1)
	(c)	Describe the characteristics of nuclear force. Define nuclear fission and fusion reactions.	7 (CO7) (PO1)
6.	(a)	Describe briefly different types of waves with appropriate examples.	8 (CO8) (PO1)
	(b)	Draw schematically the potential energy, kinetic energy, and mechanical energy as a function of time for a linear harmonic oscillator. At which position energy is all kinetic and at which position it is all potential?	8 (CO8) (PO1)
	(c)	Show that the average power of a wave depends on the square of its amplitude and also on the square of its angular frequency.	9 (CO8) (PO1)