

B.Sc. in ME and IPE, 2nd Semester

May 08, 2023

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination

Summer Semester, A. Y. 2021-2022

Course No.: EEE 4281

Time: 3 Hours

Course Title: Electrical Circuits and Electrical Machines

Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

- a) Design RC circuits that provide θ (phase angle in degree and 0 < θ < 90 degree)) leading and lagging phase shifts and justify the answer.
 (CO2, PO2)
 - b) Determine the phasor currents I_1 and I_2 in the given magnetically coupled circuit in Fig. 1. (CO3, PO2)

2. a) With appropriate sketches, illustrate the functionality of the commutator as a mechanical rectifier to obtain DC output from a DC generator.

12 (CO5, PO2)

b) A shunt-type DC generator delivers 450 A current at 230 V and the resistance of the shunt field and armature are 50 Ω and 0.03 Ω , respectively as shown in Fig. 2. Calculate the generated EMF.

3. a) Deduce the formula of developed armature torque in a DC motor.

12 (CO5, PO2)

- b) Discuss the different speed control methods for a shunt-type DC motor. With necessary justifications, distinguish the most preferred to the least preferred method in terms of:

 13
 (CO5, PO2)
 - i. Effect of variation of flux.
 - ii. Effect of armature reaction,
 - Associated power loss due to the application of a speed control method,
 - iv. Obtaining maximum speed compared to rated speed,
 - v. Cost of the system.

- Sketch the simplified equivalent circuit of a loaded transformer (either inductive or capacitive load). Design and formulate current, voltage, and 12 (CO5, PO2) impedances for the followings:
 - The equivalent circuit is referred to primary. i.
 - The equivalent circuit is referred to secondary. ii.
 - b) A 30 kVA, 2400V/120V, 50 Hz transformer has a high voltage winding resistance of 0.1 Ω and a leakage reactance of 0.22 Ω . The low voltage winding resistance is $0.035~\Omega$ and the leakage reactance of $0.012~\Omega$. Calculate the equivalent winding resistance, reactance, and impedances referred to the high voltage side and low voltage side, respectively.

13 (CO5, PO2)

12

- Formulate the relationship between the maximum rotor-torque and synchronous speed of an induction motor under running conditions. (CO5, PO2)
 - b) A 3-phase induction motor is wound for 4 poles and is supplied from a 50 Hz 13 system. Calculate the followings: (CO5, PO2) The synchronous speed,
 - ii. the speed of the motor when slip is 4%,
 - the rotor current frequency when the motor runs at 600 r.p.m. iii.
- Answer the following questions in brief: Discuss the basic difference between an alternator and a generator. 12 i. (CO5, PO2) ii.
 - Write down the parallel operation of the alternator with advantages. Distinguish the key difference between the alternator and synchronous motor.
 - Show the effect of load in the "V-curve" of an alternator. iv.
 - Formulate the power output equation of a cylindrical rotor-type b) 13 synchronous generator: (CO5, PO2)

 $P = \left[\frac{EV}{Z_s} \cos(\delta - \theta) - \frac{V^2}{Z_s} \cos \theta \right]$

Where, P, E, V, Z_s , δ and $\bar{\theta}$ have their definition for synchronous generator operation.

From the power output equation above, derive maximum power output ii. equations using derivative and approximation methods.