

B.Sc. in EEE, 8th Semester

May 08, 2023 10:00 AM - 01:00 PM

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination Course No.: EEE 4803

Course Title: Engineering Materials

Winter Semester, A. Y. 2021-2022

Time: 3 Hours Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

1.	a)	Explain how dielectric loss of a dielectric medium can be quantified into a circuit. Formulate the equivalent series configuration.	12 (CO2, PO2, PO3)
	b)	A parallel plate capacitor has an area of 350 mm ² and the separation between plates is 0.2 mm. The space between the plates is filled with a dielectric having $\epsilon_r' = 2.85$ when subjected to the frequency of 0.5 MHz. The loss tangent at this frequency is 2.68×10^{-4} . Find the parameters of the equivalent circuit-(i) parallel R-C circuit and (ii) series R-C circuit.	8 (CO2, PO2, PO3)
	c)	State the magnetic material that is used for less dielectric loss. Discuss the basic properties of that material.	5 (CO1, PO1, PO3)
2.	a)	Formulate the refractive index of a dielectric material as a function of frequency. Illustrate the graph between frequency and refractive index of a dielectric material having $\omega_0 = 2$. (Include both the real and imaginary parts in your illustration)	15 (CO1, CO2, PO3)
	b)	Evaluate the statement- "the imaginary part of the refractive index is responsible for decay in propagating wave."	10 (CO1, PO1, PO3)
3.	a)	Explain with proper illustration how metal behaves as a transparent material in higher frequencies. (Using Drude Model)	12 (CO1, PO1, PO3)
	b)	Suppose you are experimenting with a dielectric material with a negative refractive index. Illustrate how light will behave in that material. State at least two cases where this phenomenon can be applied.	13 (CO2, PO3)
4.	a)	Formulate the expressions that are pre-requisites for achieving surface plasmon polariton. Show the frequency required to achieve Surface plasmon resonance is $\omega = \frac{\omega_p}{\sqrt{2}}$.	20 (CO1, PO1)
	b)	State a few areas where surface plasmon polariton (SPP) can be applied.	5 (CO2, PO3)
5.	a)	Describe the characteristic of different types of magnetic materials and compare between them. Explain which one is suitable for engineering application with proper examples.	15 (CO1, CO2, PO1, PO3)
	b)	Compare the differences between hard and soft magnetic materials. Explain with proper graphs.	10 (CO1, PO1)
6.	a)	Explain how Schrödinger came up with a wave equation for the quantum particle.	8 (CO1, PO1)
	b)	Solve the Schrödinger's wave equation with proper explanation.	17 (CO1, PO1)