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Abstract
In recompression, partial cooling, and main compression intercooling cycles, the main compressor inlet
temperature (MCIT) and the turbine inlet temperature (TIT) have a substantial impact on a supercritical
CO2's (sCO2) thermal performance. These three cycles are evaluated thermodynamically from the
perspectives of energy and exergy. A parametric study i1s conducted utilizing climate information for
critical weather conditions to determine the influence of significant operational factors on the power
plant's overall performance. Few studies on machine learning-based Brayton cycle performance prediction
have been carried out in recent years, mostly due to a lack of reliable methodology and case studies. In
this study, a detailed approach for machine learning application into the Brayton cycle study is offered in
order to assess and improve the parameter and performance of the Brayton cycle. Firstly, a cycle dataset
with three Brayton cycle configurations i1s created using thermodynamic modeling. Energy-exergy
analysis allows to assess any possible effects on the environment that may arise from the power plant's
exergy destruction. 54.48% energy efficiency is extracted from Recompression Cycle with 77.97% exergy
efficiency 1s found. The datasets are then created using parametric analysis, and the simulated models are
trained using machine learning methods (random forest, XGBoost, and LightGBM). To maximize SCO2
cycle power output, the meridional surface is optimized. The random forest regressor had the highest R2
(coefficient of determination) for recompression cycle among regression algorithms. Finally, the XGBoost
regression, Random Forest, and Light Gradient Boosting prediction models for the Brayton cycle were
built for machine learning to predict Net Work Output using a dataset containing 17250 values that can
forecast error rates. In this study, ANN based Genetic Algorithm 1s used to optimize the output of
thermodynamics models in the optimal condition with the variation of other parameters. TOPSIS decision-
making tool 1s used for optimization. It should be emphasized that adding more input data would improve
the prediction and optimization processes overall performance. In conclusion, The Brayton Cycle
prediction and optimization method put forward in this paper 1s a promising technology that combines
machine learning with energy use and would provide a new angle for research in this field. To conclude,
the machine learning models can be used in power plant industries for better prediction and optimization

as these algorithms are five times faster than traditional thermodynamic models.

Keywords: Supercritical CO2 Brayton cycle; Concentrated solar power; Machine Learning; Exergy

analysis; Artificial Neural Network; Optimization.
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Table 1: Nomenclatures & Symbols

Abbreviation Meaning

H Heater

RH Re-Heater

HTR High Temperature Recuperator

LTR Low Temperature Recuperator

CSP Concentrated Solar Power

REC Recompression SCO:z cycle

PAR Partial cooling SCO2 cycle

INT Main compression Intercooling SCO:; cycle
PC Pre-Compressor

RC Re-Compressor

PCL Pre-Cooler

ICL Intercooler

MC Main Compressor

SCO2BC Supercritical Carbon Di-oxide Brayton Cycle
ANN Artificial Neural Network

GA Genetic Algorithm

TES Thermal Energy Storage

TOPSIS Technique for Order Preference by Similarity to Ideal Solution
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Symbol Meaning

E Exergy (kJ)

EHTR Effectiveness of the high temperature recuperator
CLTR Effectiveness of the low temperature recuperator
E Rate of exergy (kW)

}‘1 Specific enthalpy (kJ/kg)

5 Specific entropy [kJ/(kg-K)]
C Specific Exergy (kJ/kg)

m mass flow rate (kg/s)

P Pressure (MPa)

Q Rate of Heat (kW)

To Reference temperature (K)
5>-CO2 Supercritical Carbon Dioxide
T Temperature (°C)

W Rate of Work (kW)

A Split Ratio

Neye Cycle efficiency

Nexergy Second law efficiency
Subscripts

In Inlet

out Outlet

CO2 Carbon Di-oxide

hel Heliostat

COS Cosine

s&h Shading & blocking

ref Reflectivity

L= Receiver
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Chapter 1: Introduction
1.1 Objectives of the Study

e To study the cycle performance with variation of different working parameters.

e To determine the optimal pressure & compressor inlet temperature for maximum thermal
efficiency.

e To analyze exergy destruction of each component, exergy efficiency & overall performance of the

cycle.

e To train, test & predict work output & efficiency of the cycle using machine learning regression

algorithms (Random Forest, XGBoost, LightGBM).

e To determine optimized condition for maximum net work output using ANN & GA.

1.2 Structure of the Thesis
Research Background of S-CO2 Brayton Cycle

Energy conservation and pollution reduction have grown in significance in recent years. Several
contentious discussions about improving combined-cycle powerplants and lowering their environmental
consequences have emerged as the first half of the 21st century progresses, most of which were previously
beyond the ability of humans. Many researchers have proposed towards a number of specific designs and
performance enhancements to simultaneously minimize the disastrous consequences of fuel consumption
and improve plant efficiency [1]. In recent years, concentrated solar thermal power (CSP) plants have
received a lot of support. The supply of conventional fundamental energy sources like coal, oil, and natural
gas 1s constrained, and it 1s expected that they won't last for very long. Environmental problems related to
conventional energy sources are in higher demand. Future energy consumption is anticipated to be
dominated by renewable energy sources as a result of increased energy demand, which will reduce the
need for fossil fuels and ease environmental concerns. Additionally, humans need several types of energy
for their everyday lives as well as for industrial production, including electricity, heat, and cooling[2]. The
CSP integrated power cycle has been proposed in recent literature as a solution for this problem.
Concentrating solar power (CSP) facilities now uses oil, molten salt, or steam as heat transfer fluids (HTF)
to transmit energy from the solar receiver to the power block. Supercritical CO2 (s-CO2) is being studied
for use in CSP applications as both the working fluid and the HTF. It operates more readily at greater
temperatures than steam and performs more well at lower temperatures. Thermal power facilities with
closed loop Brayton cycles have been recommended as the potential locations for sCO2 applications.

These power cycles are projected to be the next generation of power cycles due to their lower cost,
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increased thermal efficiency, and simpler plant design. The cooling of CO2 close to the critical temperature
and pressure 1s one of the major difficulties. The effective and seamless functioning of a thermal power
plant depends on a dependable and well-designed cooling system. The S-CO2 system operates at pressures
and temperatures that are close to carbon dioxide's critical point. When CO2 is cooled below the "pseudo-
critical” line, its density and specific heat increase rapidly. The results of this include low compressor
work and high heat transfer coefficients in the pre-cooler and recuperator. When the turbine and
compressor input temperatures are the same as with an ideal gas, it provides higher efficiency than is
feasible 1n i1deal gas[3]. At temperatures appropriate for CSP applications, operating in a closed-loop
recompression, supercritical carbon dioxide (S-CO2) In comparison to supercritical or superheated steam,
the Brayton cycle may have cycle efficiency that is comparable or even superior. S- CO2 application to
trough fields 1s complicated considering the high pressure needed, and exploratory study implies the fluid
would be more viable for use in power towers.[4]. Five supercritical carbon dioxide cycle, the fundamental
Brayton cycle, the regenerative Brayton cycle, the recompression Brayton cycle, the pre compression
Brayton cycle, and the split expansion Brayton cycle are all examples of Brayton cycles, where the
recompression Brayton cycle had the best thermal efficiency were thermodynamically compared to a solar
power tower. Employing this cycle, the integrated system's maximum thermal efficiency was 40%. The
cycle's maximum thermal efficiency stood at 52%.[5]. A study looked into how different parameters
influenced the precooler's design for utilization in the sCO2 cycle. It was presented an innovative research
study on the usage of S-CO2 in power cycles for the production of electricity in the late 1960s. The
simplicity and compactness of the systems is effective for many applications, even if the efficiency of a
low-temperature cycle is not any higher than that of an identical steam cycle. In terms of efficiency and

simplicity in high-temperature cycles, CO2 exceeds a steam cycle.[6]

The majority of research in recent decades has been based on traditional methods of the specific
experiment and thermodynamic modeling, whose workload and cost are relatively significant in solving
large-scale problems, despite the high accuracy of the research results, as with the supercritical CO2
Brayton Cycle works mentioned above. We search for a cost-effective and efficient approach that could
rapidly resolve the calculation issue for the various performance indices of the CSP integrated supercritical
CO2 Brayton system while ensuring the accuracy of the results. The accuracy and working speed of this
procedure require being guaranteed, and a suitable trade-off is needed between each of them. Recently,
the use of Al has developed and grown, and this has led to a fresh approach to the issue at concern. As a

result, this research offered an approach based on machine learning to accomplish performance prediction,
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parameter analysis, and optimization [1]. Using a multi-layered approach, a precooler design and analysis
code (PDAC), an artificial neural network (ANN), and a 3D Reynolds Averaged Navier-Stokes (RANS)
model were designed. To accurately forecast the transcritical ORC's thermal efficiency and cycle high
pressure for the R1234ze(E) working fluid, Zhi et al. [7] developed an artificial neural network model in
which it was observed that channel flow rate and optimum exit temperature had a significant effect on

pressure losses.

A pinch point that develops inside the heat exchanger when the exit temperature is below the pseudocritical
temperature results in a significant increase in size and pressure losses [8]. For the design, planning, and
operation of power systems, load forecasting i1s a vital aspect. In this study a hybrid forecasting model
based on limit gradient lifting (XGBoost) and gating recurrent neural network (GRU) 1s developed.[9]
The results show that the combined model can effectively incorporate the benefits of the two models and

1s much more accurate than either the single model or the commonly used forecasting methods.[10]

The efficiency of coal-fired power plants 1s influenced by many factors, including the main steam/reheat
steam pressures and temperatures, turbine extraction pressures, and surplus air ratio for a certain fuel. To
estimate the energy input from fuel (coal), the Artificial Neural Network (ANN) 1s trained using data from
the flow-sheet application's simulation of a power plant.[11] This study combines ANN and GA-based
(neuro genetic) techniques to optimize a high ash coal-fired supercritical power plant for the climate of

India. The created model may also be used for optimization when a quick response is required.[12].

Chen et al [13] develops a predictive model that predicts the combined cycle power plant's hourly full
load electrical output by investigating and examining various machine learning regression methodologies.
The dataset's input variables, which are four factors, have an impact on how well a power plant can handle
its base load. The greatest performance of the highest subset, which includes the whole set of input

variables, has been seen using the most efficient technique, the Bagging algorithm with REPTree[14].
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Chapter 2: Literature Review

2.1 Superiority of sCO:2 cycles

The advantages of supercritical CO2 power cycles over Rankine cycles were documented by Persichilli
et al.[15], who emphasized their compactness, reduced cost, and greater cycle efficiency. Different sCO2
power cycles were evaluated by Besarati and Goswami [16] who found that partial cooling and
intercooling arrangement offered the best performance. The optimization of a straightforward and
recompression sCO2 cycle was done by Dyreby et al.[17]. In order to increase the cycle efficiency, they
investigated the association between recuperator size and lowest cycle temperature. Testing of the trans-
critical CO2 cycle at the Sandia National Laboratory by Wright et al. [18] revealed that it performed better
than the Rankine cycle. By installing numerous reheat stages in between the turbines, the efficiency was
raised by a further 4-5%. To make use of the waste heat[19] investigated the thermo-economic feasibility
of four distinct sCO2 bottoming cycle topologies cascaded with steam Rankine cycles. The combined
supercritical and trans-critical CO2 cycle investigation was also carried out by [20]to observe the
performance increase of 17% compared to a straightforward regeneration cycle. Based on recuperator
efficiency and pinch point temperature control in the recuperator[21] improved the sCO2 recompression
cycle performance. Additionally, the split ratio and pressure ratio were improved. Brayton cycles operate
at temperatures relevant for applications of concentrating solar power (CSP) based on various cycles. They
are lighter and smaller in volume, have less thermal mass, and simpler power blocks. The installation,
maintenance, and operating costs of the s-CO, process are further decreased by the smaller size and
simpler gear. In a high-efficiency operation, they started with Dostal's recompression model and
investigated its partial cooling cycle arrangement.

Mohammad et al. [22] studied the Solar system integrated with Brayton cycle and Bottoming Rankine
cycle in which solar collector operates as a central receiver, reflecting sunlight to ensure it enters the flow
of fluid and stores energy depending on how much heat required to commence the cycle. The two desired
functions of this cycle's optimization aim to decrease the cost of producing power and enhance energy
effectiveness. The ORC cycle, MED desalination unit, and supercritical carbon dioxide solar Brayton
cycle are integrated, with the multi-effects desalination system working on the ORC cycle's waste heat.
This hybrid arrangement is used for both the production of freshwater and power.

They studied recompression with main-compression intercooling rather than Dostal's precompression
setup since it lacked the requisite performance gain. To evaluate the possibility for additional efficiency

gains, they compared examples with and without reheating 1n all cycle configurations. In this paper, Cycle
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thermodynamic calculations disregarded pressure losses and assumed constant heat exchanger
effectiveness. Recovered Brayton cycles are extremely sensitive to loop pressure losses and heat exchanger
performance. Consequently, this paper can include transient and off-design activities, and integrating more

realistic heat exchanger components.|[19]

sCO2 power cycles in the literature

Y

Solar Energy Dual recuperative cvcle (DCR) Energy & Exergy analysis

Waste Heat Intercooling cycle (ICC)

Energy source Cycle configurations

Optimization analysis

Direct oxy-fuel combustion Reheating cycle (RHC)

Recompression cycle (RC

Figure 1: Supercritical CO2 power cycles in the literature.

The organic Rankine cycle (ORC) may recover and utilize low-grade thermal energy. Recent machine
learning ORC performance prediction research are few. This research showed how to utilize machine
learning to anticipate and optimize ORC performance. This work uses gradient boosting. Due to its
thermophysical qualities, CO2 1s employed in nuclear reactors, power plants, refrigeration, and air
conditioning systems. These correlations and their applications can provide valuable insight into thermal
design and heat exchanger optimization, notably in thermal power plants. Supercritical CO2 pressure drop,
convective heat transfer, buoyancy influence, and wall temperature distribution are explained.
Application, experimental, and numerical investigations for a unique heat transfer correlation for sCO2
may be applied for a wide range of operational parameters, including micro- to macro-tube size, mass
flow, heat flux, temperature, and pressure. P. Li, Z. Qiao et al. [23] examined using a combined
supercritical CO2 Brayton and organic Rankine cycle (sCO2-ORC) to harness solar energy. The
thermodynamic performance 1s estimated using a solution approach. [J hen employing CO2-Enhanced
Geothermal System (EGS), the sCO2-ORC combined cycle performs thermodynamically at the highest
level. R218, RC318 and R245ca are the best working fluids for supplementary heat sources.
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2.2 CSP plants integrated with sCO2 power cycles

The sCO2 was heated up directly and utilized as a working fluid and a heat transfer medium in four
different power cycle architectures connected to a central receiver to evaluate the impact of turbine input
temperature.[24] A thermal energy storage system using molten salt technology was used to thoroughly
investigate the system performance of several solar-assisted sCO2 power cycles.[25] Multiple solar-
assisted sCO2 closed-loop Brayton cycle configurations with recuperation and recompression were used
extensive exergetic analysis.[26] The highest thermal efficiency of 55.2% at 850 °C and the best
performance were found in the recompression cycle, according to their findings. For central solar receiver

systems, the sCO2 recompression cycle they proposed might be a strong contender[21].

Ma et al.[27] described the dynamic models that were used to report on how ambient air temperature and
solar energy input influenced the operation of directly heated sCO2 Brayton cycles in the winter and
summer. In order to utilize solar electricity throughout various seasonal fluctuations, Ehsan et al. [28]
mentioned the study of the recompression cycle's fluctuations. Based on the overall plant efficiency, the
impact of the mass flow rate, operating pressure, effective recuperator area, and the number of

compression and expansion stages were examined [29] .

T. Conboy et el. [30] demonstrated a bypass mechanism has been created to enable preheating of the hot-
leg prior to full utilization of the turbines. In the test loop, this system avoids reverse flow factors, but
when temperatures rise, it must be brought off. Experiment controllers use control concerns and techniques
to transition the demonstration loop from cold start-up circumstances to steady-state power generation.
When closing down the turbines, it 1s important to keep regard to the speed balance of the compressors in
order to prevent overflow situations. Speeds must be adjusted in order to optimize power output for a
given input temperature. Ruiz-Casanova et al. [31] have investigated that this study analyzes the
thermodynamic effectiveness of four independent supercritical carbon dioxide Brayton cycles with the
aim of producing electricity utilizing a low-grade geothermal resource. Studies demonstrate that, in
compared to cycles without intercooling, intercooled cycles can reduce specific compression work under
identical conditions of operation. Based to the parametric study, Productivity is not immediately affected
by operating pressures or the cycle's lowest temperature. The intercooled recuperated Brayton cycle
alternative has the best performance. Chen R et al. [32] studied both off-design and on-design models to
analyze the operational efficiency of the power plant for six 10 MW S-CO2 Brayton cycles. A genetic

algorithm was used to identify the optimal layout for each cycle while adhering to the same boundary
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design constraints. better complexity cycles showed higher performance degradation as ambient
temperature increased but they may also demonstrate increased peak productivity and focused work at the
design-point. The intercooling system operated with maximum cycle efficiency within the design
specifications. Liu T Y, et al [33] have investigated the effects of cycle structure and the addition of
optimization variables on the comparison, along with various efficiency and cost tradeoff criteria. In
addition, four arrangements with various compromise decisions are suggested. The outcomes of the design
point and cycle efficiency are influenced by multiple optimized factors. When moderate cycle beginning
cost predominates (Wth > (0.701), simple recuperative and reheating cycles are also suggested. Chen R et
al. [34] have investigated the importance of the optical and thermal-to-electricity subsystems' design
elements and annualized performances 1s discussed in relation to integrated CSP facilities' overall
optimization. For a STP system with a solar field, a SCO2 Brayton cycle, a UBFB particle receiver, and
particle storage, it constructed a component-level integral model. Developments in optimal IR and system
efficiency can be accomplished by enhancements in heliostat beam efficiency and power block

effectiveness.

2.3 Machine Learning Implementation

Khadse et al [35] studies on the thermodynamic parameters of recuperated (RC) and recuperated
recompression (RRC) S-CO2 Brayton cycle configurations for exhaust heat recovery from a next-
generation heavy-duty simple cycle gas turbine. The major objective is to extract as much power as
possible from the exhaust stream, and the optimal turbine intake temperature will determine the amount
of CO2 that must be flowed and the boundary conditions for the main heat exchanger. This research
suggests a machine learning-based approach to performance prediction, parameter analysis, and
optimization. The strategy was inspired by machine learning, which was used to forecast the chemical
characteristics of MOF materials.[36] A back propagation neural network (BPNN) 1s used by the ORC
system for recovering waste heat from diesel engines to anticipate the output power, evaporator outlet
exhaust temperature, and heat exchanger efficiency. [37]This method is based on Meng et al.'s idea of
using machine learning to forecast the chemical properties of MOF materials and their use of Back

Propagation Neural Network (BPNN) to predict the performance of the heat exchanger.[38]

Siddique et al.[39] studies on determining which of four machine learning (ML) algorithms—Iinear

regression (LR), gradient-boosted regression tree (GBRT), K nearest neighbor (KNN), and artificial neural
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networks (ANN)—makes the best accurate predictions concerning CCPP power. The prediction is based
on four CCPP-related variables: ambient inlet air temperature, atmospheric pressure, relative humidity,
and vacuum (exhaust pressure of the gas turbine). Results are predicted using the machine learning and
data mining software suite Rapid Miner. It displays the recommended architecture for CCPP power
prediction using ML algorithms.[40]

Tufekci et al.[41] studies regression approaches are designed as learning algorithms to predict the full load
electrical power output of a combined gas and steam turbines. The dataset is seen as a pair (X1, Y1), which

1s referred to as an instance. a regression method that develops a mapping function using machine learning.

2.4 Multi-objective performance optimization

This work's operational parameter ranges have been used to neuro-genetic optimization. The ideal
characteristics of the researched power plant configuration are determined in two phases using a neuro-
genetic method.[42]Assuming standard ranges, the first stage involves establishing the optimized values
of operating parameters like excess air ratio, IP turbine (reheat steam) pressure/temperature, and LP
turbine pressure, while the second stage involves establishing the optimized extraction pressures of turbine

bleed streams to feedwater heaters (FWHSs).

In this study the steam turbine power plant that was optimized and thermo-economically modeled is
explored. Data from currently operational power plants are utilized for modeling, results verification, and
optimization. The quick and elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) 1s used to apply
15 design variables to concurrently enhance thermal efficiency and reduce overall cost rate. When
compared to the actual data of the operating powerplant, the optimization findings demonstrate a
simultaneous gain in efficiency of 3.76% and drop-in overall cost rate of 3.84%. The Artificial Neural
Network (ANN) is used to demonstrate a correlation between two goals and fifteen choice factors with
sufficient accuracy[43]. A unique triple cascade waste heat recovery system with a supercritical CO2
power cycle and a transcritical CO2 regeneration cycle is described for high temperature exhaust waste

heat produced while a gas turbine is running in J. Du et al[44].

The heat exchanger contributes to a significant amount of energy loss in the integrated system's thermal
performance, and the turbine, compressor, and other work-producing components have significant capital
expenses. The target functions for the system's optimization with a variety of goals include the net power

production, energy efficiency, and cost per unit of energy. The multi-objective system optimization based
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on variables sensitivity analysis employs the NSGA-II algorithm and TOPSIS decision. An artificial neural
network with many layers was utilized to model the Afyon Geothermal Power Plant. The 100% data set
that was obtained from the real Binary Geothermal Power Plant was divided into 80% training data and
20% test data. The system of the geothermal power plant was numerically modeled using three inputs and
five outputs. The results are supplied together with the outputs from the Artificial Neural Network-based
Binary Geothermal Power Plant system. The plant's mass flow rates and geothermal water temperature

are 110 C and 150 kg/s, respectively, while its energy and exergy efficiencies are 10.4% and 29.7%.

The optimal simple payback period and exergy cost for the plant's electricity are predicted to be 2.87 years
and 0.0176 USD per kWh, respectively[45]. Q. Jin et al.[46] developed a model using time-dependent
thermodynamics and a neural network model using data samples. Cycle thermal efficiency, net power
production, sustainability function, and exergy efficiency are the goals of multi-objective optimization.
The results of the decision-making process employing the Shannon Entropy methodology have a lower
deviation index, and the outcomes of the TOPSIS and LINMAP techniques are likewise consistent with

one another.
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Chapter 3: Description of the model

3.1 Supercritical CO2 Brayton Cycle Configuration

All heat exchangers and devices (compressors and turbines) were mass, energy, and exergy balanced for
the thermodynamic study of the supercritical CO2 Brayton cycle designs. To determine if a temperature
pinch point problem exists, [47] discretized the heat exchangers. An effectiveness factor for the whole hot
stream was taken into account for setups with the LTR, and the HTR was simulated by assuming a heat
exchanger effectiveness[16]Split ratio is another crucial factor in S-CO2 Brayton cycles with LTR. (SR),
which is the proportion of the total mass flow rate of the S-CO2 Brayton cycle to the mass flow rate of
the cold stream entering the LTR. An energy balance on the LTR determines the SR, which is used to
compute thermal performance and compression power. Table 2 demonstrates the key features of each

setup. There 1s a thorough explanation of each cycle by Padilla et al. [48]

Table 2: Description of the S-CO2 Brayton cycles.

Cycle Compressor intercooling Recuperators Recompressor Description

RC No HTR & LTR Yes Brayton cycle modified. Splitting
the LTR's hot steam reduces the
cold stream's heat capacity. An

additional compressor is used.
PC Yes HTR & LTR Yes Brayton cycle modified. Splitting

the stream exiting the main
compressor reduces the cold
stream's heat capacity. To minimize
compressor input power, an
intercooling phase was added to the
split fraction sent to the LTR. Re-
compressor 1s utilized in this
configuration.

MC Yes HTR & LTR Yes A modified RC cycle. After the MC
1s introduced, an intercooling step
is added to lower the power input to

the compressors.
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3.1.1 Recompression cycle

The Simple Brayton cycle has a pinch point issue, which reduces cycle efficiency, since the hot and cold

fluid streams have different heat capacities. To solve this problem, the recompression cycle also includes

the low temperature recuperator and the recompression compressor. The recompression compressors

receive a fraction of the working fluid's total mass flow rate (sC0O2)[49].

The mass flow rate through the high-pressure stream compared to the low-pressure stream is decreased

by the recompression cycle. This 1s accomplished by separating the low-pressure stream into two distinct

streams after it leaves the low-temperature recuperator, which are subsequently compressed in the

precooler and main compressor[50].

Central Receiver

M-C: Main-compressor LTR: Low Temperature Recuperator LPT: Low Pressure Turbine
R-C: Re-compressor HTR: High Temperature Recuperator HPT. High Pressure Turbine
G: Generator P. Pump TES: Thermal Energy Storage
Tlﬂ
9 11 12 19
n ; > 4
44 5
% 2 %
A Y UR HTR 8
T
v
Hot Salt Tank

Pra cooler

19AM0D] JB|OS

Heliostal Field

|‘ (AIr cooled)
Recompression S-COzBrayton Cycle

|

Molten Salt Loop Equipped with TES

Figure 2: Cycle layout of Recompression sCO2 cycle equipped with TES.
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Figure 3: T-s diagram of Recompression sCO2 cycle equipped with TES.

3.1.2 Partial Cooling cycle

The sCO2 Simple Brayton cycle's cycle efficiency may also be increased by partial cooling. The partial

cooling cycle is analogous to the intercooling cycle in terms of the parts of the turbomachinery and the

number of heat exchangers. A low-temperature recuperator's working fluid stream flows mostly in the

precooler's direction during partial cooling.[51]

R-C: Re-compressor

P-C: Pre-compressor

M-C: Main-compressor LTR: Low Temperature Recuperator

HTR: High Temperature Recuperator
P: Pump

LPT: Low Pressure Turbine

HPT: High Pressure Turbine
TES: Thermal Energy Storage

Central Receiver

12
—
: >
; 44
HTR

Reheater

Hot Salt Tank

Cold Salt Tank

Heliostat Field

'

Intercooler Pre cooler 18
(Air cooled) (Air cooled) + ’I
Partial Cooling Cycle with Recompression S-CQO2 Brayton Cycle Molten Salt Loop Equipped with TES

Figure 4: Cycle layout of Partial Cooling sCO2 cycle equipped with TES.
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Figure 5: T-s diagram of Partial Cooling sCO2 cycle equipped with TES.

One possible intercooling recompression configuration divides the stream after the pre-compressor.
Before it enters the pre-compressor, the turbine exhaust flow is cooled by a precooler. One can see split
flow coming out of the pre-compressor.[52] One route serves the re-compressor, while the other serves
the primary compressor, intercooler, and re-compressor. Because the pre-compressor's inlet pressure is at

an intermediate pressure after it, the re-compressor is used for a portion of the turbine pressure ratio.[53]

3.1.3 Main Compression Inter Cooling cycle

In Main compression Intercooling Cycle one way to conceptualize it is as two distinct intercooling stages
that are separated from the primary compressor. The main compressor receives the working fluid under
significant pressure and temperature conditions.[54] Before entering the main compressor, the portion of
the stream leaving the precooler passes through an intercooling stage and a compressor that is operating
at a significantly lower pressure. The recompression cycle's heat recovery procedure is the same as what

was previously described for that cycle.[55]
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Figure 6: Cycle layout Main Compression Inter Cooling sCO2 cycle equipped with TES.
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Figure 7: T-s diagram of Main Compression Inter Cooling sCO2 cycle equipped with TES.

The exit pressure of the turbine is the same as the input pressure of the re-compressor. What unites them
is the idea that both the intercooling cycle and the recompression cycle involve multistage compression

with intercooling.[56]
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3.2 Designing CSP Loop at Optimum Condition
3.2.1 Sizing the Heliostat Field

Shahin M. et al [57] proposes a concept that incorporates a traditional Rankine cycle for the generation
of electrical and thermal energy with a sun extracting system comprising sensors that heat a heat transfer
fluid. The suggested framework 1s subjected to a thermodynamic study to assess and enhance its
effectiveness. To find out the impact of various features and operating characteristics on the total efficiency
and power output, a parametric analysis is conducted. To choose the best alternative to pair with the
suggested model, a comparison of the parabolic trough and the heliostat field is offered. The results

demonstrate that the heliostat field outperforms the parabolic trough in terms of performance.

The heliostat field and the receiver formed the solar subsystem. The heliostat field 1s formed up of several
heliostats, each having an aperture area of A, which focuses and reflects solar radiation into the receiver.
The sun's direct normal irradiance (DNI) and the heliostat field efficiency determine how much solar

thermal energy enters the receiver.[58]

To be able to improve accuracy and reduce capital costs, it is crucial to size a solar tower power plant with
thermal energy storage properly. To determine the thermo-economic efficiency of the system under various
solar resources, key design variables including model direct normal irradiance, solar wide-ranging, and
thermal storage hours have been investigated. Since 1t accounts for 40% of energy losses and 50% of the

power plant's overall costs, the heliostat field's ideal design is particularly essential [59].

N = Ncos X Nat X Nint X Ns\&b X Nref

The effectiveness of the cosine effect, atmospheric attenuation, interception, shading and blocking, and
the heliostats' reflectivity are all represented by the equations 1.4<, Natt » Nint » Mo and 1, . The astigmatic
effect, tracking error, mirror slope error, and sun-shape error all affect how well objects are intercepted.
The placement of the heliostats, the orientation of the sun, and the relative positions of surrounding

heliostats all affect n. g4, , making it the parameter that requires the most calculation.

The heat flux that enters the aperture region of the solar receiver circulated to the molten salt solution.
Some optics, convective, and irradiation losses happen along the path from the aperture to the molten

salt.[60]
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3.2.2 Selection of Hot Salt
Solar salt, a composition of NaNO3/KNOs wt.% of (60/40) having heat capacity of 1.55 kJ kg’ K is

considered as TES material in CSP because of having melting point 240 °C & considerate cost 0.5-1 ($/kg)
[61].

3.2.3 TES
Systems for thermal energy storage (TES) have grown 1n significance as a result of their ability to improve

energy efficiency and incorporate renewable energy sources. However, research is being done on how
storage material characteristics affect system performance. Concentrating solar power, or CSP, makes it
possible to integrate simple, efficient, and cost-effective thermal energy storage (TES) by turning solar
energy into heat as an extra step before creating electricity. The system designs that have been used up till

now for reasonably priced CSP TES systems are the two-tank TES and steam accumulator.

Stekli et al [62] described the energy extracted from the system must also be at the highest temperature
feasible for contact with the thermodynamic power cycle, whose performance is controlled by Carnot
efficiency. A CSP TES system's capacity to do work is reduced and less thermal energy can be turned into
electricity, which lowers exergetic efficiency, if the discharge temperature 1s lower than the temperature

at which the system was charged.

Although PCM-based TES systems suffer from poor thermal conductivity, they offer great latent heat
storage capabilities. While they may need to operate at greater temperatures, molten salts offer better heat
transfer capacities. High energy density and long storage times are features of thermochemical storage
materials; however, system complexity and reaction kinetics provide difficulties. Latent heat storage
(LHS) systems use temperature-invariant phase changes to store heat. Organic and inorganic substances,
as well as their eutectics and combinations, are classified as phase change materials (PCMs). Due to their
extreme melting points and elevated energy densities, PCMs including carbonates, fluorides, and chlorides
are a few examples that are suited for CSP storage. Although several LHS storage arrangements have been

studied, the shell and tube PCM structure is the most practical and popular one[63].

Steam accumulators store heat through sensible heat storage, which takes the form of pressured, saturated
water. The cycle's excess steam i1s pumped into a pressurized vessel filled with liquid water to start the
process of charging. When the saturated liquid fills 90% of the tank, the system has been fully charged.
The most often used horizontal accumulators have a wide water surface area and an elevated water

level.[64]
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Chapter 4: Computational Methodology

4.1 Thermodynamic Equations

The design models of recompression, partial cooling & main compression inter cooling cycle
configurations are modified here from prior work in order to examine the performance under off-design
conditions. The components of the heat exchanger and turbomachinery's off-design models are then
merged with these models and evaluated using real measured climate conditions and variations in power
demand, together with data from the literature that is already available. The developed models are based

on the following assumptions.

e Except for the solar field components, there are very little heat losses from the cycle components

to the ambient air.

e A 360° external cylinder receiver is used to collect more of the light that is reflected from the edge

of the solar field.
e All heat recuperators and pipelines ignore pressure drop and friction losses.
e The system's kinetic and potential energy hardly change over time.

e For the two primary compression stages, it i1s assumed that the input temperatures are same.

The total system is broken down into the solar sub-system and the power cycle for thermodynamic study.
Each component of the system has its own thermodynamic model, and the simulation model is
programmed in Python programming environment using CoolProp library. The energy and exergy balance

equations are written as follows for a control volume following a steady state process:

. . . hgs—h
Compressor isentropic efficiency, ng = —=——
g8 *7
- Ty hy—h,
Turbine 1sentropic efficiency, ny = .
1Nz s

Work input to the compressor, W, = migo, (hg - hy)
Work output from the turbine, Wy = Mo, (hg - hs)
Heat input by the heater, Quy = mgp, (hy - hy2)

Net work output, Wne: = WT — Wp

?ﬂCﬂz{hq_hE}

Recuperator effectiveness, & =

@mﬂx
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Phign

1
. ) P- 2
Ratio of pressure ratios, RPR = —tntgrmediate
Plow =
Split ratio, SR = ——
Mg+Mqg
s s W
Thermal efficiency of the cycle, Pyl = Q“;f
;.4 N
Second law efficiency of the cycle, Neyergy = (1 — ;_E-ﬁ)
in

Receiver heat input, Qrec,in = Ncos * qun = Nfield * (DNI) - Ape; * Nper

. Qrecnet

Receiver efficiency, Nyec =

Qrer:,in

Table 3: Components-wise exergy destruction equation of a main compression intercooling cycle.

Component Equation
L 1
Heater Xy = mge,[(his - hy) — To (S14- $1)] + Mg, [1 - (T_D)] Qu
H
_ ; T, .
Reheater Xpu = Mg, [(hy = h3) — T (s5- 53)] + mgg, [1 — (E)] Cres
HTR Xyt = Mgq, [(hy = hs) — Ty (s4— s5)] + mcﬂg[(hu - hy4) =T (S12— S14)]
LTR XLTR = mcnz [(hs - hﬁ) - Tn (55“ 55)] + mﬂﬂg(l _SR)[(hm - hu) _Tu (S:m“ 312)]

Main compressor Xyc = SR.mp, [(hg - hyg) — Ty (Sg= S19)] + Wiyc

Re-compressor Xre = (1-SR).mco,[(he = hi2) — Ty (S6= S12)] + Wgc
Pre-compressor Xpc = Migg,[(hy = hg) — Ty (S7= Sg)] + Wpe

HPT Xupr = Mg, [(hy = hy) — Ty (51= 52)] — Wypr

LPT Xipr = mcﬂg[(h3 - hy) — Ty (s3- S4)] — Wipr
Pre-cooler Xpcr = SR.mce,[(he - hy) — To (S6— S7)]
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Intercooler Xicr = SR-Tﬁcﬂg [(hg - hg) — T, (Sg— S9)]

Exergy input Xin = Mg, [1- (—)] Qy + Mg, [1 - (—)] Qra

Total Exergy

Xaest = Xy + Xpy + Xpyrr + Xprr + Xyc + Xpe + Xpe + Xypr + Xppr + Xpep + XjeL
destruction

4.2 Model Validation
Independent validation was performed on the mathematical models for the REC, PAR and INT SCO:BC.
The previous literature and Reference respectively, were used to validate the models under the identical

operating conditions as the relevant literature. Figure 14 & Figure 15 provided the REC, PAR and INT's

computed thermal efficiency with variation of MCIT & TIT respectively. At the same operating conditions,

calculated thermal efficiencies for all three cycles were found to be quite similar to the literature. Results

are compared with previous studies to validate the model.
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Figure 8: Cycle model validation for MCIT variation.
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Figure 9: Cycle model validation for TIT variation.

The model has good agreement when compared to the literature. Due to variations in the recuperator
representation, there 1s a little departure from the literature. Unlike the current study, where the
temperature difference constraint in the LTR 1s fixed, the literature models recuperators by determining

the heat exchanger effectiveness.

The intermediate pressure's setting is responsible for the additional variation. For each condition set in the
current investigation, the intermediate pressure is optimized. The method used to determine the
intermediate pressure in previous studies is not specified. This tested model offers a method for simulating

a concentrated solar power system with sCO2 power cycles.
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Cycle Design Parameters

Table 4: Initial parameters for simulation and analysis of system performance

Maximum pressure 25 MPa
Turbine inlet temperature 600 °C
Minimum pressure 8 MPa
Main compressor inlet temperature 34 °C
Pinch temperature [ e &
Mass flow rate of the S-CO; cycle 1 kg/s
Effectiveness of HTR 0.97
Effectiveness of LTR 0.88
Compressor 1sentropic efficiency 0.89
Turbine 1sentropic efficiency 0.90
Table S: CSP loop Design Parameters
Parameters Symbol Value References
Direct normal irradiance DNI(W/m?2) 600 [58], [65]
Cosine effect efficiency N cos 0.8267 [58], [59]
Shading and blocking efficiency Ns&b 0.9698 [58], [59]
Interception efficiency Nint 0.971 [58], [59]
Atmospheric attenuation efficiency Wart 0.9383 [58], [59]
Reflectivity efficiency of heliostat Nref (.88 [58], [59]
Number of heliostats Nhel 624 [58], [59]
Reflective area of each heliostat Aper(m?) 045 x 12.84 [58], [59]
Recelver aperture area Arec(m?) 68.1 [58], [59]
33

CamScanner


https://v3.camscanner.com/user/download

y @Tt)

Given Design Parameters
(N, Ne, P, PL, exTR, ELTR)

¥

Initiate Loop with

Operation Parameters
K=1

v

Invoke CoolProp from
Python Package Library

Parametric Analysis & Optimal

Configuartion selection

&

[ Validated Thermodynamic Models ]

ft Validate
i b
Calculate on Each Model:

« Recompression
= Partial Cooling
« Main Compression Inter Cooling

\ A

CoolProp Library

No

&.

Get Working Fluid
(supercritical CO,) Properties

r

v

Calculate Whet, Ncycle: Xdest: Nexergy

e o

Determine Thermodynamic Prope
of each state of the System:
(T, P, h, s, x)

rties i f‘
Initiate Energy & Exergy Analysis

ey -

J A

ey

1 ;
Evaluate CSP Design
Parameters
¥
Calculate Aneliostat, Qrec.iny Qsun
for CSP Implementation

Calculate TIT from T, and
MCIT from Air Temperature

i

| Weather Data Containing Hourly Data Determine DNI, T,ec & Air
| =

| for DNI, GHI, Dry-bulb Temperature Temperature from Weather

| Data
Generate Data B Data Extraction in CSV format
and ( End )
store data in matrix (k:0) i
Y
i m Receive Optimized Configuration
Thermodynamic for Best performance
Simulation Data A
it Multi-criteria Decision
Analysis using TOPSIS
lnput Variables Prediction Target ] ry

Pareto Frontier

Operation Heat Source Configuration Perfnnﬂance
Parameters Parameters Parameters Indexes

Solution Set

v

Machine Learning ]

Regression Models

Y

» XGBoost Regressor
*» Random Forest Regressor
* Lightgbm

sydeis) 10|d % S)NSay aseIMoYsS

Multiobjective Optimization i3
using Genetic Algorithm ’ y
7 [ Validation ] [ Early-stop l
[ Neural Netwrok Fitting J ( J
Y
_ , Training of the Network by Changing
Specify the Network Architecture Number of Hidden Neurons

| Train & Test Prediction

biae

Figure 10: Flow chart demonstrating cycle modelling, data extraction & performance optimization.
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Fig 10 shows the advanced SCO2BC with CSP system design methodology of this research. The
procedure is established by a standard thermodynamic model (shown in blue). Input of the operation
parameters into these verified thermodynamic models for calculation is the first step in the conventional
system design process. And each model should go through this calculating process again. CSP loop is
integrated (shown 1n orange) with the main cycle to visualize changes in TIT with DNI variation. Better
performance indicators are obtained through analysis and optimization of the output findings. After
evaluating the performance indicators of several setups, the best configuration may finally be manually
chosen. The same procedure for creating thermodynamic models is part of a machine-learning (show 1in
green) approach to goal-oriented design. Following the generation of numerous sets of simulation data, a
machine-learning regression model is trained using this data to predict performance indicators of systems,
such as the net output power, exergy destruction and cycle thermal efficiency. In this study, a collection
of Pareto frontier solutions is generated by combining the regression model with genetic algorithms. Then,
using this set of Pareto optimization results, TOPSIS is utilized to determine which configuration 1s best

for the given parameters.

4.3 Machine Learning Prediction Models

4.3.1 Random Forest Regressor:

The supervised learning approach used in machine learning includes the Random Forest algorithm. A
model for accurate prediction of incoming input data is initially constructed in a supervised learning model
by taking into account the goal value and a known dataset. It is based on the idea of ensemble learning
and can be used to solve classification and regression issues in machine learning. Random Forest
significantly use several distinct decision trees as opposed to depending on a single decision tree. With
the aid of projections from each tree, the random forest predicts the outcome based on the votes of the

majority of projections.

Decision Tree with Regression:

The decision tree is generated using the approach of least squares. After analyzing each of its potential
values and i1dentifying the separation point (sp), X (n) is divided into R1 and R2, two distinct root nodes.
Determining the values ¢l and c¢2 for identifying the minimal value in the output y, respectively, to get

the minimum value. This ap is hence the optimal separating point for x (n) is

ming, [ming, Yxier1 (Vi — c1)? + ming Yyierz (vi — c1)? ]
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Based on each node, the output value is being. For instance, for R1, output value of the corresponding is
found be:

C{):L inERI y"'

N1

All output values are being averaged in order to predict the value with the highest degree of accuracy.

Training Dataset

N

Bootstrapping Set 1 Bootstrapping Set 2 Bootstrapping Set n

Baggin 00B 1 Baggin 00B 2
gl gl

Testing i é C)
Dataset | L ».
_ b q. Decision
Node . tree
LeafNode
%

Voting average

L 4
Prediction

Figure 11: Decision tree diagram.

4.3.2 XGBoost Regressor:

A supervised learning approach called XGBoost integrates the estimates of several simpler variables to
attempt to accurately predict a target variable (weaker one). In weaker models, regression trees act as the
weak learners and each one converts an input data point to a leaf that outputs a continuous score.
incorporating fresh trees that anticipate the residuals or errors of previous trees into the prior trees to obtain

the final prediction. XGBoost minimizes a regularized (L1 and L2) objective function with a convex loss
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function (based on the difference between the predicted and target outputs) and a penalty term for model

complexity.
Training Dataset (X, Y)
TREE 01 TREE 02 TREE 03
A L
v @
. . - z
/ - s l /g
l = l /; 3 / E‘ 8
Compute Compute O Compute
Residuals(r,) i sduals(r:) S L B Residuals 1,
Fa(X) =Fa: (X) + Qo ha (X 1a1)
Figure 12: XGBoost algorithm prediction tree.
4.3.3 LightGBM.:

LightGBM is a highly efficient gradient boosting framework specifically designed for regression tasks. It
uses cutting-edge algorithms to improve training speed and accuracy while using decision trees as the
foundational learners. Gradient-based one-side sampling (GOSS) 1s an approach that uses intelligent

selection to choose examples with bigger gradients for more efficient model training. In order to create a

more accurate and effective learning process, LightGBM additionally makes use of leaf-wise tree

development, where nodes are divided based on the largest benefit. Additionally, it provides multiple
regularization strategies, including L1 and L2 regularization, enabling improved generalization and

avoiding overfitting.
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O Cannot Expend

O Can Fxpend

Leat-wise tree expansion in LightGBM

Figure 13: LightGBM prediction tree diagram.

The framework allows for flexibility in adjusting the learning rate, allowing for precise control of the
convergence pace and model performance. Furthermore, LightGBM offers early stopping, enabling the
training process to be stopped if the model performance on a validation set does not increase, saving time
and computational resources. It can handle huge datasets and make use of multi-core CPUs or distributed
computing systems for faster processing thanks to its parallel and distributed training capabilities. With

great performance, scalability, and flexibility, LightGBM excels at producing precise regression models.

4.4 Optimization Methods

4.4.1 Genetic Algorithm

A genetic algorithm 1s an optimization and heuristic search method that draws inspiration from biology
and the process of natural selection. It is frequently used to address optimization 1ssues where more
conventional techniques may be inefficient or unproductive. The process starts with a population of
potential answers that are frequently represented as a collection of strings or binary sequences known as
chromosomes. Every chromosome symbolizes a possible answer to the current issue. Randomly or in
accordance with a predetermined strategy, the population is initialized. The algorithm then goes through

a number of generations—a series of iterations. The algorithm uses a fitness function unique to the
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problem domain to assess each population member's fitness or quality in each generation. A solution's
level of problem-solving effectiveness is quantified by the fitness function, which normally gives better

solutions a higher fitness score.

The selection procedure, which comes after, involves choosing people from the current population to be
the parents of the following generation. Individuals with better fitness scores are often more likely to be
picked because selection is typically based on fitness scores. As better suited solutions are more likely to
result in offspring with desired traits, the objective is to prefer them. Following the selection of the parents,
new people for the following generation are produced by genetic processes including crossover and
mutation. Crossover is the process of fusing the genetic material from two parent chromosomes to produce
child chromosomes. To encourage diversity and keep the algorithm from being locked in local optima,

mutation introduces minute random modifications to the chromosomes.

Input layer Hidden layer | Hidden layer 2 Hidden layer 3 Output laver

24,
(X2

\

N7 OSSO NN
SR @ 55 @ S N7

X A
SN NN

L7 O OIS
SN S O S 70700 NeZ
P> "‘" AR Ve
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‘ [/

U %054

Zadl ‘4

Figure 14: Genetic algorithm network implemented with neural network.

The population can change throughout time thanks to the recurrent cycles of evaluation, selection,
crossover, and mutation. The objective is for the algorithm to converge to an optimal or nearly optimal
answer to the problem. The algorithm's termination condition may depend on a number of variables,
including attaining a predetermined number of generations, arriving at a workable solution, or failing to

notice appreciable progress after multiple iterations. As adaptive algorithms for resolving real-world
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1ssues and as computer representations of biological evolutionary processes, genetic algorithms have been
applied in the fields of science and engineering.[66] In order to get the most accurate response genetic
algorithms (GA) models the selection process and genetic mechanisms in Darwin's biological evolution
hypothesis. There are two significant ways in which the genetic algorithm differs from a traditional
derivative-based (gradient-based) optimization method. At each iteration, the GA produces a population
of points. The population's best point gets closer to the optimal outcome.[67]. Multiple objective functions
are able to concurrently minimized or maximized by using multi-objective optimization. It may be stated

to bel[44]

minF (X) = [f1(X), 2(X), f5(X) - fn (X)]"

Subjected to

gi(X)<0,j=12,---,m
hi(X)=0,i=12,--,n
Xpemin S Xk < Xkmax

In this current study, six parameters were accounted for the optimization procedure, 1.e., DNI, MCIT, TIT,
Pinch Point, RPR, SR. The most adopted optimization algorithm method is constraint satisfaction based

Genetic Algorithm working on resolving problems with global maximizing and minimization [68]-[74].

Generally, multiple random combined sets of the design variables, referred to as populations, are used to
implement multi-objective optimization using Genetic Algorithm. The optimal procedures identified
could be used to determine the population size[75]. Each member of the population has been put to the
test by the MOOGA using a fitness function table. The top 1-5% of the population frequently passes over
to the next generation unmodified, while the remainder of the population develops via mutations and
crossings. Until any stoppage conditions are satisfied, the procedure continues. The current optimization

problem was handled in the MATLAB environment with a population of 50.[76]

Scaling and selection were done implementing the built-in functions' rank and stochastic uniform. The

5%, 80%, and 15% values for elite size, crossover, and mutation percentages were employed,

correspondingly. The upward moving factor was increased to 0.2. The Lagrangian function was used as

nonlinear constraint technique function[67]. The upper constraint of maximum DNI, MCIT, TIT, Pinch

Temp, RPR, SR and the lower bounds of minimum temperatures & Split Ratio were both set to be

somewhat higher than CO2 critical levels.
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Table 6: Design variables (Recompression) utilized for the Current Study.

Design Variable Lower Bounds Upper bounds
Direct Normal Irradiance (DNI) [ W/m?] 271875 553.125
Main Compressor Inlet Temperature (MCIT)[°C] 34 5 36
Turbine Inlet Temperature (TIT)[°C] 400 700
Pinch Point Temperature Difference (Pinch)[K] 5 20
Split Ratio (SR)[x] 0.6445 0.7968
Table 7: Design variables (Partial Cooling) utilized for the Current Study.
Design Variable Lower Bounds Upper bounds
Direct Normal Irradiance (DNI) [ W/m?] 271.875 353.123
Main Compressor Inlet Temperature (MCIT)[°C] 34 53
Turbine Inlet Temperature (TIT) [°C] 400 700
Pinch Point Temperature Difference (Pinch)[K] 5 20
Ratio of Pressure ratio (RPR)[Pr] 0.3 0.9
Split Ratio (SR)[x] 0.23 0.98

Table 8: Design variables (Main Compression Intercooling) utilized for the Current Study.

Design Variable Lower Bounds Upper bounds
Direct Normal Irradiance (DNI) [ W/m?] 271.8735 333125

Main Compressor Inlet Temperature (MCIT) [°C] 34 35

Turbine Inlet Temperature (TIT)[°C] 400 700

Pinch Point Temperature Difference (Pinch)[K] 5 20

Ratio of Pressure ratio (RPR)[Pr] 0.3 0.9

Split Ratio (SR)[x] 0.5566 0.8
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Net work output, 1% law efficiency, 2™ law efficiency Exergy Destruction are taken into consideration as
an objective function for current research since the primary objective of the optimization is to maximize

power from the cycle.

4.4.2 Artificial Neural Network

Learning from experience is performed by artificial neural networks and the ability to generalize from
given training data to unknown data 1s possessed by them. Additionally, the operation can be performed
quickly and utilized for real-time operation. The calculation of an artificial neuron model involves the
introduction of inputs, multiplication of weights, and application of the results to the transfer function. A
multilayer structure 1s typically possessed by artificial neural networks, which consist of an input layer,
one or more hidden layers, and an output layer. The same type of transfer function 1s used in each hidden

layer.

A sigmoid transfer function i1s generally used in MATLAB's multilayer neural network. The
backpropagation neural network 1s widely used. In backpropagation learning, weight and bias values are

repeatedly calculated according to the development of multi-layer structure.

Hidden Layer Output Layer
g ——
Input Output
5 4
N —
10

Figure 15: Neural network in MATLAB.

In this study, a MATLAB-embedded feedforward net neural network 1s utilized. All kinds of input-output
mapping can be handled by Feedforward net, and the arguments hidden size and train Fcn are used. The
column vector size and training function of the hidden layer are meant by each, with 10 and trainlm as the
default values. The weights and biases are updated by the training function trainlm using Levenberg-
Marquardt optimization. The fastest backpropagation algorithm in the toolbox is often Trainlm and it is

required to use more memory than other algorithms. However, 1t 1s used first in supervised algorithms.
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4.4.3 TOPSIS

The optimal option is chosen using multi-criteria decision making (MCDM). Assuming K decision-makers
are evaluating m decisions based on n criteria. The evaluations and weights are first combined using
arithmetic mean or another appropriate approach in the traditional TOPSIS method[77]. After that, the
sum of the ratings and weights are put together to create the decision (D) and weight (W) matrix shown as

follows|[78]:

X11 X12 X1n

X21 X322 X2n
L) = .

Am1 Xm2 Xmn
W=|[w1 W, Whn |

Subjected to
xij = aggregate rating of i'" alternative for j™ criterion
wj = the weight for j' criterion.

Vector or linear normalization is used to scale up diverse criteria to a similar level. Decision matrix (R)

that has been normalized by[78]:

11 T2 n

21 T22 2n
R = :

'mi1 Tm2 mn

Subjected to
r; = normalized rating of i alternative for j" criterion

An available list of options i1s evaluated and the optimal alternative is selected using the Technique for

Order of Preference by Similarity to Ideal Solution (TOPSIS), a multi-criteria decision-making technique.

The decision matrix, which depicts how options perform relative to each criterion, was created using this
linear approach. Normalization methods are used to transform raw data into dimensionless values to
guarantee fairness in assessing criteria.[79] To account for their relative weight in the decision-making

process, several weighting techniques are examined.
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\

TOPSIS 45 the weight of the j-th optimization objective, Gi"*€*"*¢ is the value of the j-

In the equation[66], w;
th target with an NIP (negative ideal point) after normalization, and Distance i is the Euclidean distance

between the i-th feasible option and (NIP). For a simple computation, w;'“*> = 1 is utilized in this study.

The 1deal (Pp) and negative-ideal (P_) strategies are determined as Equations [80] respectively:

Pt = {’L‘?f, e *(m!;lx‘l?ij | L € R'),(m;ﬁnvi; |teER ¢
\ J J )

P~ ={vl,-. 0} =*(m;ﬁnvij | 1 E R'),(maxvij |i €E R ¢
N\ J ,,
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5.1 Off-design Performance

Chapter 5: Results & Discussions

Parametric analysis evaluates the thermodynamic effects of supercritical CO; Brayton Cycle factors such
main compressor inlet temperature, pressure ratio, turbine inlet temperature, and pinch temperature
differential of LTR and HTR. Table 3 & Table 4 shows system performance simulation and analysis
beginning parameters & CSP loop design parameters. Figures indicate vascular conditions during study.
In the following explanation, DNI 600 w/m? is considered as design point, so the turbine inlet temperature
change 1s equal to the heat source inlet.

Table 9: Recompression S-CO2 Cycle pressure, temperature, enthalpy & entropy for each state point.

State (i)

10
11

12

T (°C)
600
546.108
600
509.777
200.327
82.934
34
75.834
192.324
192.327

192.327

468.0952

P (MPa) h (kJ/kg) s (kJ/kg K)
25 1094.689 2.767
16.5 1032.902 3775
16.5 1099.484 2.854
8 996.47 2.869
8 640.034 2.291
8 495.911 1.939
8 320.691 1.391
25 350.18 1.401
25 572.98 1.957
25 572.98 1.957
25 572.98 1.957
25 929.416 2.562
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Table 10: Partial cooling S-CO2 Cycle pressure, temperature, enthalpy & entropy for each state point.

State (i)

1

Z

10
11
12
13

14

TCO)
600

544.433

600

506.897

103.09

60.936

35

48.558

35

56.523

92.35

92.35

92.35

409.56

23

16.5

16.5

10.498

10.498

23

25

2

25

23

P (MPa)

46

h (kJ/kg)

1094.689

30.842

1099.484

993.036

523.998

459.916

352.291

358.523

286.459

307.531

387.409

387.409

387.409

856.447

s (kJ/kg'K)

2.767

2.773

2.854

2.864

2.016

1.834

1.494

1.496

1.268

L2713

1.505

1.505

1.505

2.459
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State (i)

10
11
12
13

14

T (°C)
600
544.433
600
506.897
178.593
64.746
34
43.582
34
54.746
168.462
168.462
168.462

454.293

P (MPa)

23

16.5

16.5

10.5

10.5

25

25

25

2

25

47

h (kJ/kg)

1094.689

1030.842

1099.484

993.0367

615.201

446.908

320.691

325293

282.898

303.707

534.376

5334.376

534.376

012.211

Table 11: Main Compression Intercooling S-CO2 Cycle pressure, temperature, enthalpy & entropy for
every state point.

s (kJ/kg'K)

2.767

2.5

2.854

2.864

2.237

1.855

1.391

1.393

1.256

1.263

1.872

1.872

1.872

2.538
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5.1.1 Effect of MCIT
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Figure 16: Exergy destruction & exergy efficiency comparison for recompression, partial cooling & intercooling cycle
with the variation of the TIT at different compressor inlet temperature of 35°C and 40°C.
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Figure 17: Exergy destruction & exergy efficiency comparison for recompression, partial cooling & intercooling cycle
with the variation of the TIT at different compressor inlet temperature of 45°C and 50°C.
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Figl6 & Fig.17 illustrates that turbine input temperature affects REC, PAR & INT SCO2BC exergy
efficiency and exergy destruction. There is an optimal cycle pressure ratio because exergy efficiency grows
rapidly, then gently, and even drops for each turbine inlet temperature. First, turbine power production
increases faster than compressor power consumption, but when the pressure ratio increases, the opposite
happens. Compressor performance and cycle efficiency are extremely important in a supercritical CO2
(sCO2) power cycle. Because of its high efficiency and small design, the sSCO2 power cycle is a potential
technology for power generation. The sCO2 power cycle's total performance is directly impacted by the
compressor's operation. The system's power output, thermal efficiency, and overall performance are
affected by the compressor's efficiency, pressure ratio, and specific work input. To achieve the necessary

cycle efficiency and power output, accurate parameter selection and design optimization are required.

5.1.2 Effect of TIT

The turbine extracts energy from the expanding working fluid as it expands. The sCO2 power cycle's total
performance, including the operation of additional components like heat exchangers, is influenced by the
turbine inlet temperature. To achieve the desired heat transfer rates and maintain the temperature
differences required for efficient cycle operation at higher turbine inlet temperatures, more effective and

complex heat exchangers may be required.
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Figure 18: Cycle thermal efficiency & specific work comparison for recompression, partial cooling & intercooling cycle with
the variation of the MCIT at different turbine inlet temperature of 350°C, 450°C, 550°C and 650°C.

As shown in Fig. 19, as the pinch temperature difference decreases, REC, PAR & INT SCO2BC exergy
efficiency increases because the condenser transfers more energy and LTR and HTR destroy more exergy.
To avoid heat transmission degradation, the pinch temperature difference is normally greater than 7 K.

The performance curves are essentially parallel throughout pinch temperature changes, indicating that

pinch temperature difference affects REC, PAR & INT SCO2BC similarly.

INT has higher cycle thermal efficiency than REC & PAR at every pinch temperature variation and 1is
easler to attain the split ratio. The power output of the sCO2 power cycle 1s directly impacted by the
turbine inlet temperature. As the temperature of the CO2 entering the turbine rises, more energy is
transferred to the turbine, increasing power output. It 1s done so that more energy can be extracted from

the expanding working fluid by the turbine, which increases power production.
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5.1.3 Effect of Pinch Temperature
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Figure 19: Comparison of split ratio & cycle thermal efficiency with variation of recuperator pinch
temperature.
5.1.4 Effect of Compressor Efficiency
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Figure 20: Recompression SCO2 cycle specific work, split ratio, cycle efficiency & mass flowrate with the
variation of compressor efficiency.
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Figure 21: Partial coolingSCO2 cycle specific work, split ratio, cycle efficiency & mass flowrate with the

variation of compressor efficiency.
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Figure 22: Main compression inter cooling SCO?2 cycle specific work, split ratio, cycle efficiency & mass
flowrate with the variation of compressor efficiency.
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5.1.5 Exergy Analysis

Exergy analysis 1s employed in the study to evaluate cycle performance, identify areas of energy loss, and
make recommendations for potential modifications. The main sources of inefficiency can be identified
and improved by emphasizing efforts on those areas by quantifying the exergy destruction at various stages
of the power cycle. Beyond what can be determined using only the first law of thermodynamics, the exergy
analysis provides a more thorough understanding of the energy losses occurring within the system. Exergy
analysis provides a useful tool for evaluating and improving sCO:z cycle performances. It us to be used to
develop strategies for enhancing performance, increasing energy efficiency, and lowering environmental

impact by providing insights into the thermodynamic constraints and inefficiencies of the system.

Exergy efficiencies for each component of main compression intercooling cycle configuration 1s analyzed
for TIT = 600°C, CIT = 34°C, m=1 kg/s and RPR = 0.6. As the cycle pressure ratio increases, the turbine,
main compressor, cooler, and heater exergy destruction increases, but the recompression compressor and
LTR do not. HTR exergy destruction is reducing. The turbine and primary compressor inlet-outlet entropy
differential increases with cycle pressure ratio. The condenser releases more energy to the environment as
its inlet temperature rises and its exit temperature remains constant. Total rate of exergy destruction is

found out to be 9926.24 kW from the cycle model.

Rate of exergy input for main compression intercooling cycle is calculated to be 19302.17 kW. Percentage
of exergy destruction along with their numerical values are represented graphically & it is evident that
maximum amount of exergy is destruction occurs in RC (Re-compressor) with 30.24% followed by 6.8

% in HTR (High temperature recuperator) for exergy efficiency of the main compression intercooling

cycle 48.57% at TIT of 600°C.
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Figure 23: Exergy destruction in different components in Recompression S-CO2 cycle.
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Figure 24: Exergy destruction in different components in partial cooling S-CO2 cycle.
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Figure 25: Exergy destruction in different components in main compression intercooling S-CO2 cycle.

5.2 Seasonal TIT, MCIT observation
All of three CSP plants' turbine inlet temperatures, TIT, vary due to DNI's intermittent nature. To maximize

power generation when DNI exceeds 6.1 kW-hr/m2, all three plants set TIT = 600 °C. Low DNI periods
reduce central receiver molten salt mass flow. The central receiver maintains a constant mass flow of

molten salt into the hot tank regardless of DNI conditions to fully charge the 12-hr TES.

Thus, during low DNI, MSHE-fed molten salt into the power block decreases. Figure shows that how
climate affects tank temperature. Due to MSHE heat transfer, the TES cold tank temperature decreases
with DNI. Lower DNI values impair MSHE heat transfer, raising cold tank temperature.
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Figure 26: Recompression SCO2 cycle hourly CSP plant performance for supplemented with TES at various
seasonal climates.
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Figure 27: Partial cooling SCO?2 cycle hourly CSP plant performance for supplemented with TES at various
seasonal climates.
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Figure 28: Main compression inter cooling SCO2 cycle hourly CSP plant performance for supplemented with
TES at various seasonal climates.
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5.3 Machine Learning model error Evaluation

Following heat map 1s a graphic that employs color coding to show how a machine learning model

performs or behaves given various combinations of different parameters (DNI, MCIT, TIT, pinch, RPR,

SR, work output). It provides information about the behavior of the model and aids in the discovery of
patterns and correlations between variables.
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Figure 29: 3D plot for REC, PAR, INT SCO,BC parameters.
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Figure 30: Heat map indicating correlation between cycle parameters.
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Table 12: Machine learning model prediction error comparison.

- ={.2

net work

Model Cycle MSE RMSE R-squared

REC 0.0112265 1.0595512 99.9984903

LightGBM PAR 0.0927271 3.0451127 99.9863481
INT 0.0920744 3.0343772 99.9871483

REC 1.39E-05 0.037307 99.9999982

Random Forest PAR 0.1539177 3.9232344 99.9793468
INT 0.1528512 3.9096188 99.9794899

REC 5.54E-03 0.744417 99.9992786

XGBoost PAR 0.2062556 4.5415371 99.9723239
INT 0.2062556 4.5415371 99.9723239

As shown 1n Table 8, for a similar amount of test-train data, the Random Forest model has the lowest
MSE & RMSE for test data, while the XGBoost algorithm has higher percentage of errors. As lower error
rates indicate better performance in predicting output values for a given set of input values, the Random

Forest Regressor model was selected for further processing of the data.
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5.3.1 Genetic Algorithm Optimization Results

GA multi-objective optimization for Recompression SCO:z Cycle
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Figure 31: Multi-objective Pareto front for REC SCO2BC.
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Figure 32: GA performance (Epoch 1000) curve for REC SCO2BC.
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GA multi-objective optimization for Partial Cooling SCO:2 Cycle
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Figure 35: Multi-objective Pareto front for PAR SCO2BC.
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Figure 36: GA performance (Epoch 1000) curve for PAR SCO2BC.
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Figure 37: Training state for PAR SCO2BC.
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GA multi-objective optimization for Main Compression Inter Cooling SCO2 Cycle
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5.3.2 TOPSIS Decision Analysis Results

The Pareto front diagram shows the optimized point for best output, as all points on the Pareto front have

been optimized and give the best data. However, it is worth noting that a slight variation in input data may

yield different optimized values.

Table 13: Optimized conditions obtained from TOPSIS for best performance.

Cvel DNI
YCI€ kW ;mz]
REC | 0.486247

PAR | 0.521002

INT |0.472434

MCIT
(°C)

54.7703 | 653.398 | 18.9855 - 0.79602 | 12.8408 | 44.3508509

16.9024 | 46.8328048
34.1036 | 656.4771 9.90803 | 0.70858 | 0.56792 | 18.0712 | 57.4488273

34.0471

TIT
(°C)

Tpinch

RPR

0.82564

SR

0.71061

wnet
(MW)

l]cycle

(%)

Xdest
(MW)

6.83467

7.96143

7.7498

Nexergyy

(%)

65.2561669

67.5327321

68.2970968

Table 13. shows the optimized parameters, such as DNI, MCIT, TIT, Tpinch, RPR, SR, obtained from this

study using different tools for best performance possible (Wier, §eycle, Xdest, Wexerey) for Recompression,

Partial cooling & Main compression inter cooling sCOz cycle.
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Chapter 6: Conclusion

6.1 Conclusion

In this study, Machine Learning methods are shown for evaluating sCO> Brayton cycle (e.g.,
Recompression Cycle, Partial Cooling Cycle & Main Compressor Intercooling Cycle). Random Forest
Algorithm, XGBoost & LightGBM regression models are primarily implemented for cycle analysis &

forecasting.

e The energy and exergy assessments of S-CO2 power cycles investigated the contribution of the
key functional factors to the thermal and second law efficiency. The effects of the cycles' low and
high pressures are investigated at intake turbine temperatures of 450°C, 550°C, 650°C, and 750°C
with a net output power of 15 MW. The study that is being done at this time has produced the

results listed below.

e In order to regulate TIT and MCIT under various weather and seasonal conditions, the effect of
variation in DNI and air temperature is implemented using weather data. For the CSP loop

calculations, pre-designed TES is taken into account.

¢ The maximum thermal efficiency of 54.48% is achieved by the Main-Compression intercooling at
RPR of 0.60, split ratio 0.85 TIT of 750°C, Cycle maximum pressure of 25 MPa, minimum

pressure of 8 MPa and Compression inlet temperature of 34°C.

e The algorithms' hyperparameters have been adjusted to provide the lowest MSE value and highest
R squared error. Through R Squared Error, the findings demonstrate the relationship between the
variables and the target values; Random Forest and XGBoost both demonstrated 99.93% and
99.92% matching, correspondingly. In terms of 17250 values, Random Forest outperforms
XGBoost Algorithm in terms of speed and accuracy. The results have demonstrated that Machine
learning algorithms have been effectively adapted to the thermodynamic model.
e TOPSIS decision making tool was used to determine optimized points for each cycle to attain
maximum cycle performance.
The results show that, in comparison to thermodynamic models, machine learning techniques may be used

to predict & optimize SCO2 cycles equipped with CSP loop with higher accuracy and efficiency.
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6.2 Recommendation for future works

6.2.1 Design recommendation for future commercialization

In a dry area with high solar irradiation where there is a plentiful supply of water, the location of the future
CSP plant with sCO2 power block is extremely suitable. The unique characteristics of the sCO2 power
cycle, such as its compactness in heat exchangers and turbomachinery and ability to maintain superior
performance at higher climate temperatures with dry cooling, can help reduce the CSP plant's capital cost

E€VEn more.

For a particular CSP location, selecting the appropriate ambient temperature is essential when designing
the cooling tower. To determine the ideal ambient temperature for a certain CSP location and enhance
plant efficiency, an economic assessment is required. In order to achieve the greatest possible yearly CSP
performance, this air temperature should fall between the mean temperature and the temperature with the
highest frequency as determined by the climatic dataset. Our long-term research objective is the thorough
economic evaluation and improvement of dry cooled sCO2 power cycles created for use in CSP

applications under varied climatic conditions.

6.2.2 Hyperparameter optimization & implementation of deep learning models

One of the most important steps in putting deep learning models into practice is hyperparameter
optimization. Hyperparameters are variables that affect the model's behavior and performance but are set
before training and are not learned from the data. Included in them are variables like learning rate, batch

size, number of layers, activation functions, regularization methods, and more.

Determining the optimal values or combinations of hyperparameters that maximize the model's
performance and generalization is the goal of hyperparameter optimization. The accuracy, speed of
convergence, and robustness of the model can all be considerably enhanced by a carefully chosen set of

hyperparameters.

Data Availability

Data will be made available on request.
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