Optimum Arrangement of Various Renewable Energy-Integrated
Distribution Generation Systems

by

Fardin Sohel (180021103)
MD Tahmidur Rahman Tamim (180021307)
Syed Saad Aslam (180021308)

A Thesis Submitted to the Academic Faculty in Partial Fulfillment of the
Requirements for the Degree of

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC
ENGINEERING

Department of Electrical and Electronic Engineering

Islamic University of Technology (IUT)
Gazipur, Bangladesh



CERTIFICATE OF APPROVAL

Approved by:

20 SR

Dr. Ashik Ahmed

Supervisor and Professor,

Department of Electrical and Electronic Engineering,
[slamic University of Technology (IUT),

Board Bazar, Gazipur-1704.

Date: 8’/4 29



DECLARATION OF CANDIDATE

We therefore solemnly affirm that the research described for this undergraduate thesis 1s

unique to us which has on no occasion before been submitted to another university,

institution, or organization for a degree or other academic credential.

FO\ﬁét“\ - /(e f
Name: [-‘gmém SoN?.\ Name: MO Tohw/dun £ahman Towi
Student ID:  {R05211073 Student ID: (2002120 2
Date: O0K8/0L/13 Date: 0&{06{2;

Name: 55@[ Saad AHWM-

Student ID: 12890 2130 %

Date: 2 /6025

- .



ACKNOWLEDGEMENTS

In the name of God, the Most Gracious, the Most Merciful.

The study would not have been possible without Allah, the Almighty, so the writers would like

to first and foremost pay their honest appreciativeness to Him.

We want to express our thankfulness to everyone who assisted us in implementation of this task
and recognize the university's noteworthy contribution as well as the department's incomparable

compassion to us throughout the entire process.

We be indebted an obligation of gratitude to our esteemed project supervisor, Dr. Ashik Ahmed,
Professor of the Department of Electrical and Electronics, for his unfailing encouragement,
inspiration, patience, enthusiasm, and comprehensive acquaintance of the subject matter.
Throughout the entirety of our work period, his constant direction and close supervision kept us
safe.We would also like to acknowledge the support from Lecturer, Mr. Hasan Jamil Apon, of

the Department of Electrical and Electronics and Mr. Shadman Abid too.

Last but not least, we would want to accept and thank our parents, friends, and well-wishers

whose moral support and encouraging words helped us achieve our objectives spiritually.

\"



ABSTRACT

Fossil fuel is the conventional source of energy. However, it is exhaustible and from multiple
studies, it 1s well known about the ramifications they have on our environment. Therefore,
incorporating renewable energy via Renewable Energy based Distributed Generation (RDG) is
a topic which piques interest to ensure the most effective working of modern power networks.
However, since renewable energy sources like sunlight and wind 1s neither continuous nor
steady, getting the RDG units' optimal placement and size is a crucial task. On a further note,
for agro-based countries or countries containing plenty of livestock, incorporating biogas units
will also contribute to ensuring efficient generation of electricity. In this study, a novel method
to find out the optimal allocation and sizing of RDG units has been proposed using latest
optimization algorithms like the Pelican Optimizer Algorithm (POA) and the Dandelion
Optimizer (DA), taking into account multi objective operational constraints like ensuring
minimum voltage deviation and power loss. The IEEE-33-bus and IEEE-69-bus systems were
used as test systems. It was also seen that the algorithms gave better results when compared to
widely used algorithm like the Particle Swarm Optimization (PSO) and Equilibrium Optimizer
in cases where RDG units were introduced in the test systems, instead of no RDG present. After
running the optimization algorithms in the proposed models, it was observed that DA performed
best for IEEE 69 bus system. Whereas, the POA was the better performing in case of IEEE 33
bus system. But both POA and DA outperform the previously used Particle Swarm Optimization
(PSO) and Equilibrium Optimizer (EO). It can be said that the performance of the two proposed

algorithms depend on the nature of the distribution system used.
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CHAPTER 1
INTRODUCTION

1.1 Background

A reliable and economical supply of electrical energy is crucial for industrial processes
and the functionalities of society. [1]. However, the primary energy source's reliance on
fossil fuels for power generation has generated questions due to their quick depletion,
endangering the use of fossil fuels in the future. Since fossil fuels are readily depleted
their consistent usage has raised questions, endangering their use for the future. Therefore,
there 1s an upward trend towards using various renewable energy sources to produce
power. A probable solution to the problems caused by the lack of conventional energy
sources assimilation of Renewable Distributed Generation (RDG) unit’s systems inside

distribution networks.

Over the years, a lot of study has been done to examine the potential advantages,
difficulties, and application areas of integrating RDG in distribution networks. The
authors, for instance, address the main issues, opportunities, and limitations associated
with integrating distributed generation into electric power networks. Distributed
Generators (DGs) now have access to the most practical and profitable energy sources
available. [2] presents the potential for the future and scientific developments in the
exploitation of renewable energy sources. Many studies have probed into other alternative
sources while considering their availability into electric power networks and smart grids,
including [3-6]. As a practical way to fulfill the growing demand for electricity and lessen

reliance on dwindling supplies existing fuel sources.
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1.2 Motivation

Thorough checking and planning frameworks have been recommended in order to
address the 1ssues with grid- integrated DG planning [7]. Using some variables, [8] shows
the effect of RDGs on the distribution grid. It is crucially important to remember that
natural elements have an impact on the electricity produced from renewable energy
sources [9]. While the environmental benefits of dispersed energy resources and their role
in lowering greenhouse gas emissions are studied in [10], the financial, general economic,
and sociological implications of distributed energy generation are discussed in [11].
Research studies have suggested exhibiting approaches for incorporating a degree of
uncertainty [12], effective operational schedules for multi-grid distribution systems [13],
[14] and in order to maximize the technological, economic and environmental benefits
planning frameworks to increase the flexibility of power-water distribution networks.
Algorithms and optimization approaches to enable the best imaginable unification of DGs

in active distribution systems, have also been used [15].

1.3 Problem Statement:

Our system parameters may suffer from adversities for abnormal rate of incorporation of
RDGs. Therefore, careful consideration and careful planning are compulsory when
integrating RDG units into distribution networks in order to ensure that network
performance requirements may be fulfilled. Additionally, external anomalies can largely

influence the power produced by the RDG sources.

Installation of a variety of DGs of different types in distribution networks have been the
subject of numerous research i1deas that have used various optimization methodologies.
The majority of these projects focus on enhancing the technical aspects of voltage stability
and power loss reduction 1n the distribution network. In addition, previous research shows
that choosing the right RDG location for distribution networks i1s a never-ending
difficulty. It 1s impossible to overstate the importance of optimization approaches in this
area of research since it would be desirable to gain significant improvements using a

unique or improved optimization methodology.
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CHAPTER 2
LITERATURE REVIEW

2.1 Existing Researches

Weather, temperature, site location, and time are just a few of the variables that have a
big impact on the energy that RDG sources deliver. Dealing with random anomalies in
networks of DG-integrated power system 1s the main research challenge in this area.
Inadequate RDG unit penetration can have adverse effects on system performance. The
point estimate method (PEM), scenario-based analysis (SBA), and Monte Carlo
simulation (MCS) are three ways to handling uncertainty that have been explored in [16].
In [17], MCS-based probabilistic techniques were used to analyze the effects of wind and
PV generation on distribution networks. Optimization techniques like MCS and (PSO)
have been applied in [18]. To incorporate renewable energy sources into distribution
networks, enhanced optimization methods, such as the improved Harris hawks based
particle swarm optimizer (HHO-PSO), have been suggested [19]. Particle swarm
optimization and gravitational search algorithm (PPSOGSA) are two examples of hybrid
approach that have been proposed when integrating renewable energy sources into
distribution networks if any case uncertainties are involved [20]. For the best DG sizing
and placement, including the ant lion optimization algorithm (ALOA), backtrack search
optimization algorithm (BSOA), artificial bee colony algorithm (ABC), hybrid grey wolf
optimizer, bacterial foraging optimization algorithm (BFOA), intelligent water drop
algorithm (IWD), stud krill herd algorithm (SKHA), and combined genetic algorithm-
particle swarm optimization (GA-PSQO) algorithm techniques have been applied [21-28].
For the best positioning and sizing of DGs to achieve loss minimization and other techno-
economic advantages, other optimization techniques have been proposed [29-31]. These
include mixed-integer nonlinear programming (MINLP), multi-objective opposition-

based chaotic differential evolution (MOCDE), and evolutionary programming (EP).

Real-time data use in realistic distribution networks 1s another topic of research in this
area. For instance, the whale optimization approach (WOA) algorithm has been tested on
a number of distribution networks, including IEEE 15-bus, 33-bus, 69-bus, 85-bus, and
118-bus test systems [32]. Hybrid particle swarm optimization combined with

gravitational search algorithm (PSOGSA) and MMFO has been proposed to find the ideal
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spot and RDG unit capacity while taking into account power losses, expenditures on
operations, voltage characteristics, and consistency of voltage in practical applications for
example to say about MEDN 15-bus and Moscow 111-bus systems. [33]. The power
voltage sensitive constant (PVSC), which has been demonstrated on IEEE 33-bus and
130-bus power distribution systems, has been introduced as a solution to the RDG
utilization problem. [34]. In [35], fuzzy expert rules based on bus voltage magnitudes
and loss sensitivity factors were applied to direct distributed generator placement
selections. On IEEE 30-bus and 57-bus systems, the SHADE-EC algorithm has been used
for deterministic RDG placement while taking control mechanisms through consideration
when resolving both types of objective random probability distribution or pattern
situations [36]. In [37], when dealing with uncertainties, 1ideal arrangement of Various
Renewable Energy-Integration using Artificial Hummingbird Algorithm was applied by
Md. Shadman Abid et al.

In conclusion, studies examine a range of topics, including the advantages, difficulties,
and scopes of implementing RDGs, addressing uncertainty, choosing the finest site and
size for DGs, and utilizing optimization approaches. To evaluate the efficacy of suggested
algorithms and solutions, realistic distribution networks and real-time data are also taken
into consideration. Achieving effective, reliable, and sustainable energy generating and

distribution networks is the ultimate goal.

2.2 Research Gaps:

These conclusions may be drawn from the aforementioned literature review:

e Very few studies on the optimum allocation of RDG units and the optimal size
have been conducted.

e The integration of biogas as a unit of renewable energy source is completely a
new concept along with other well-known RDG units.

e The overall loss of the system and the bus voltage deviation were not minimized
together in most of the previous works.

e Latest swarm algorithms like Pelican Optimization algorithm (POA) and
Dandelion Optimizer (DO) are yet to be investigated in the research area of RDG

placement and sizing.
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2.3 Research Contribution:

The primary aim of this research is to assess the placement and size of RDG units to

reduce active power loss, and reduce voltage deviation. The core aids of the current work

are listed as follows:

The location and sizing of RDG units were determined as part of the optimization
problem.

Along with solar (PV) and wind (WT) RDG units, the biogas unit was taken into
account and used as an additional RDG unit.

An energy production mathematical model for biogas was designed in order to
accommodate the electrical power created by the biogas RDG unit in the
distribution system.

The optimum solution is compared between two latest algorithms, Pelican
Optimization algorithm (POA) and Dandelion Optimizer (DO) and also
algorithms like Equilibrium Optimizer (EO) and widely used Particle Swarm
Optimization (PSO).

The power loss of the system, voltage deviation, DG dimension and DG bus

positions were determined using each of the said optimization algorithms and the

results were compared.
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CHAPTER 3

MODELLING AND RESEARCH
METHODOLOGY

3.1 Fitness Function

The main objective of this study is to maximize and optimize the technical benefits
obtained by integrating Renewable Distributed Generations (RDGs) into conventional
distribution networks. Simulated investigations are used to thoroughly evaluate and
investigate many aspects in order to accomplish this goal. These features include
minimizing active power loss, improving bus voltage. By combining these two evaluation

criteria into a single objective function, the weighted sum approach is used to efficiently

assess the system's performance. This method makes it possible to evaluate the RDGs'

overall efficacy and efficiency within the distribution network in great detail.

fitness = min(Pj,ss + Vp)

(1)

The P, and Vp of the fitness function can be expressed using the following equations:

NBr

Fliss = E Piﬂss,b
b=1

(2)

Np
Vp = X‘Vi -y
i=1

(3)
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The total voltage magnitude i1s denoted by V; whereas the voltage deviation is shown by

ef

Vp at the i*" bus respectively in (p.u). PET represents 1 p.u in voltage magnitude.

3.2 Modelling of RDG units

Weather-related variables including solar radiation, wind speed, temperature, and more
have significant effects on the generation of energy from renewable sources. Given
renewable power generation is heavily reliant on the weather, it 1s crucial to carefully
evaluate the jeopardy and unpredictability of this source of energy before thinking about
incorporating Renewable Distributed Generation (RDG) units into electrical networks.
The Monte Carlo simulation, which takes a probabilistic approach, 1s one often used
technique for assessing power system concerns. Additionally, specialized functions are
employed to model the uncertainty associated with each of these factors, such as the
Weibull function for wind speed and the beta function for solar irradiation. In direction
to do so, a daily weather data has been collected to analyze the random or random
probability distribution nature of wind velocities and solar irradiance [39]. The biogas
data [40] has been collected and analyzed to incorporate with the solar and wind

generations

321 Modelling the Solar Panels (PV)

Solar irradiance is the primary component on which the power from PV units depend

O1n.

Ppyp * G-
Gsre * R
Ppyp * G

,fﬂ'r G < RE
Ppy(G) =

,for G > R,

(4)

However, in order to achieve a realistic solar model, we need to take into
consideration random probability distribution nature of the solar irradiance. We do

so by using the beta probability density function.
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(a+ B)

* Gﬂt-!-l * (1 _ G)ﬁ—l ]

f(G) r F(ﬂ:)l"(ﬁ)
for0<G<1La=20,=20
0, otherwise

(5)

We are to consider the shape factors of the density function by considering the standard
deviation and the average deviation of the solar irradiances. The shape factors are

denoted by a and p respectively as shown in the following set of equations:

L

Ug

Bt = (1 — pg) * [(H“E)*ggﬁ —d]
(6)
at = (ug *BY)/( — pug)
(7)

By dividing the time span under consideration, t, into N, states, beta PDF can be

converted into a discrete form. And by rearranging, we get the following equation:

N N
Ppy = [Z Ppyg * fs(SE)]/[Z fs(sé)]
g=1 g=1

(8)

At the time interval t and the state g, the probability isf; (S¢).
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Fig. 3.1 Hourly solar Irradiance of 18" April, 2023

3.2.2 Modelling the Wind Turbine

The power generated by a wind turbine can be expresses as follows:

Pywr(v)
0 forv < v,
UV — Vg
. ‘PWTR fﬂr ’U,;g E v i: vn
= Un-V¢i
PWTR fﬂ?‘ Fn':_:ui Veo
0 fore =z .,

(9)

The following Weibull probability density function can be used to assess the stochastic

nature of wind resources in a certain region:

fo@) =k /Cx (v /)t xe /0
(10)
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The cumulative distribution function of the Weibull function can be expressed as

following Eq. (11) and the inverse of it can determine the wind speed as in Eq. (12).

o) =1—e /)"

(11)
v =C*[-In(r)] /)

(12)

Where, k and C are the shape factors, can be used to calculate their predicted values
using the average and standard deviation of the wind speed observations over a period

of time.
Kt = (gt / ut)—1086
(13)
C'=um, /T(A+1/Kk")

(14)

By dividing the time span under consideration, t, into Nv states, Weibull probability
density function can be stated in discrete form. Eq (13) and (14) can be revised to reflect
g as the inverse of Nv, and Eq. (15) can be used to express the predicted wind turbine

power.

. e
Pur =) Puwrgfo(@5)| /| ) £o()
| g=1 | L9=1 :

(15)

th

Where, v=v, and f, (1{; ) is the probability of wind speed at " time interval for g state.
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Fig. 3.2 Hourly wind velocity of 18" April, 2023

3.2.3 Modelling of Biogas units:

In a biogas plant, waste from the agricultural industry, green plants, animal manure, and
byproducts from slaughterhouses can all be converted into combustible gas. More details
on how biogas is produced and fermented by anaerobic process can be found out by

reading [41].

Given that biogas produces energy per volume in the rate of 21-23.5 MJ/m3, 1 m3 of
biogas corresponds to 0.5-0.6 1 of diesel fuel. [46]. A dairy farm of Gazipur, Bangladesh,
that produces sufficient cow dung has been selected, as primary source of fuel to produce
biogas for our proposed model. Through investigation and the gathering of data from the
dairy farm where the total no. of cows considered were 1500, it was speculated that the
daily production of cow from the cows were 25 Kg. 25% of the daily collected cow dung

was considered to be usable for biogas production.

If properly digested, one kilogram of cow waste produces 0.035 m3 of biogas [42]. For a
biogas plant's digester to calculate the active slurry volume, the hydraulic retention time
(HRT) must be known. It 1s believed that a digester would retain a particle or quantity of

liquid waste for this length of time. The quantity is calculated by dividing the digester's
20



volume by the daily slurry additions. The amount of a digester's tank that is actively
involved in the anaerobic digestion process 1s known as the active slurry volume. It stands
for the area of the tank that is home to the mixture of organic waste and the
microorganisms necessary for the waste's digestion and decomposition. Active slurry is

therefore given by:

Vs = 2W « HRT

1000

(16)

for the animal waste W, HRT = 20 days [43]

So, for the proposed biogas model, the volume of its digester, when built, can easily be
found out from the Egs. (23). In general, 60% of biogas is produced as methane. [44] This
is preferable because, in general, the production of electricity from biogas necessitates a
minimum of 45% methane in the fuel. For this, we used a 24% biogas to electricity

conversion efficiency. From [45], it is proved that, energy produced from per unit volume

of biogas 1s 6 KWh.

Finally, incorporating all the above facts, it can be finally concluded that the actual

electric power output as obtained from a biogas plant 1s represented by:

Pbiﬂ = Npgijo * Hmﬂiﬂ ¥ %usable—dung ¥ Wdung per cow * Ncatt!e no.

(17)

Where, Pgio 1s the power produced by the biogas plants daily, Hmsgi, is the energy
produced from per unit volume of biogas in kilowatt-hour/ m?, Cbhg, is the biogas yield

in m°/kg and ngi, is the efficiency of the biogas plants and the corresponding conversion.
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The daily power data derived from here is sample in 24-hour sample data using random

Gaussian distribution.

4 Figure 1 = O X

File Edit View Inset Tools Desktop Window Help N
Ddde | @ 0E8 k[E

24 random sample points with a total sum of 284

25 -

-y
o

Output Power KW
o

0 o 10 15 20
Hours of a day

Fig. 3.3 Hourly biogas output

In this case, for the proposed model of biogas plant for our research, 30 KW rated capacity

biogas generator has been used for simulation,
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Genset Rating 30 KW

Brand YANMAR

Model 30 KW

Fuel Consumption (at 100% Load) 200 GRAM/KW/HRS
Fuel Tank Capacity 6 LITTER

Phase Three Phase

Fig. 3.4 Biogas plant specifications

3.3 Test System Description

We employed the IEEE 33 and IEEE 69 bus distribution system as the test system 1n this

work.

19 2 2A 2

20 27 28 29 30 A 32 33

1 2 3 4 5 6 f 8 9 10 11 12 185 218 185 18 17 18

23 24 25

Fig. 3.5 IEEE 33 bus distribution system
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Fig. 3.6 IEEE 69 bus distribution system

In Figs. 3.8 and 3.9, the one-line schematics for the IEEE 33 and IEEE 69 buses,

respectively, are exhibited. In comparison to the former bus system, which has a total

load demand of 3.802 MW and 2.695 MV Ar, the later bus system has a total load demand

of 3.715 MW and 2.3 MVAr.

Table 3.1 System specifications of IEEE 33 and IEEE 69 bus systems

System Specifications 33 bus system 69 bus system

NB 33 69

Nbr 32 68

Vs (KV) 11 12.66
Base MV A 100 100
Real power (MW) a.715 3.802
Reactive Power (MV Ar) 2.300 2.695
Sioada MV A) 3.715+2.300 3.802+12.694

3.4 Operational Constraints

The following requirements are implemented to guarantee that the optimization process

maintains specific operational limitations:
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Power Flow Balance

The sum of the real and reactive load demand (P .4, Qioaq), as well as the real and

reactive power losses (Pj,gs, Qjoss), should match the total both power generation (Fy.y,,

Qgen)- This can be stated mathematically as:

N Ny
NG L Line
Z Pen:ZPLnad+ ZPLﬂss
N=1 i=1 =1
(18)
N Ni;
NG L Line
Z Qgen = z QLoaa T 2 QLoss
N=1 =1 =1
(19)

In this instance, , NL symbolizes the total load buses, N; relates to the total number of

generators and Nj;,. for the total network branches.

Voltage Limit:

Each bus’s voltage (Vi) 1s to be set within an approved range. Typically, a nominal
voltage value difference of up to 10% 1s permissible. As a result, the limits of voltage can

be defined in the following manner:

Vi—min o VI = Vi—ma:

(20)

Power flow limit:

The apparent power through each branch (1) of our distribution system should not exceed

the maximum thermal limit:

25



SI i: Si—max

(21)
DG penetration limit:
These limits of active and reactive ensure the DG operates within specified bounds:
Ppgit < Ppgi < Ppgi
(22)
Qpci < Qpei < Qpéi
(23)

Limit of ratings of each DG for this research are considered to be 0.1 MVA to 1.48 MVA,

with a constant power factor of 0.9 per unit (p.u).

RDG Capacity Constraints:

The active power capacity of each Renewable Distributed Generation (RDG) farm 1s set

to a fixed value. The capacity constraint is given by:

Ngpgi * Prpgi < NRD G0, * Prpgi

(24)

26



Here the number of primary RDG units consisting the RDG farm at location 1 is
represented by by Ngpci. The rated power of that primary unit is represented by by Pgpi
at the location 1 and NRDGi,, 4, 18 the highest number of allowable RDG units allowed at

location 1.

3.5 Optimization Algorithm
3.5.1 Pelican Optimization Algorithm

In this study, a new meta-heuristic method called the Pelican Optimization Algorithm
(POA) 1s used. Pelicans frequently cooperate when hunting. When the pelicans locate
their prey, they dive to it from a height of 10 to 20 meters. To entice fish into shallow
waters, they then spread their wings on the water's surface where they can easily catch
them. When catching fish, the pelican's beak fills up with a lot of water, which causes it
to tilt its head forward before swallowing the fish to spit out the extra. Pelicans have

become skilled hunters as a result of their intelligent hunting behavior and tactics. [46]

Mathematical Model of the POA
The proposed POA, which 1s an algorithm based on populations (pelicans) 1n its

population. where each pelican symbolizes a prospective solution. Conditional on
their position in the search space, each member of the pelican proposes values for
the variables in the optimization problem. On the basis of the problem's bottom
bound and upper bound, fellows of the populace are primarily adjusted at random

using equation (1).

xij =l +rand-(y; —1),i=12,..,N,j=12,..,m

(25)

In this equation, N 1s the number of pelicans, m 1s the number of issue variables, rand 1s

a random number in the series [0, 1], and x; ; 1s the value of the Ju variable signposted

by the ith candidate solution. [; is the J; minor bound and u; is the Ji» major bound of

problem variables.
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To categorize the pelicans, the population matrix is built. Each row of this matrix
epitomizes a prospective solution and the columns represent the suggested values for the
problem variables. Each member of the population in the suggested POA 1s a pelican,
which is a potential fix for the stated issue. The updated candidate of this matrix solutions
based on the possible solution of the assessment of the objective function, simulates
pelicans' behavior and tactics when attacking and hunting prey. Two stages of the hunting

strategy are simulated: [38]

[.  Stirring toward prey (exploration phase)

II.  Speeding on water surface (exploitation phase)

Phase 1: Stirring toward prey (exploration phase)
A crucial element of POA 1s the random generation of the prey's location within the search
space. As aresult, POA 1s better able to analyze the world of problem-solving with greater

precision. Equation (26) below illustrates the mathematical representation of the

aforementioned ideas as well as the pelican's approach to its prey.

Yo —

P, {Iid‘ + rand - (ﬁj —I- xi,j): Fp <t} Fij
L]

x;j+rand-(x;; —p;), else

(16 )

Where, p; is the location of prey in the ji dimension, and F, 1s its objective function

P,

value. x; ; is the new status of the im pelican in the jm dimension based on phase 1, /'1s a

random number which is equal to 1 or 2,

During this type of updating, also known as effective updating, the algorithm is
prevented from moving to less-than-ideal locations. This process is simulated using

Equation (27):

Py Py ,
Xi:{}:i F* < F;
X;, else,

(27)
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Where, X f ! is the new status of the in pelican and Fipl is its objective function value based
on phase 1.[46]
Phase 2: Speeding on the Water Surface (exploitation Phase)

The pelicans reach the water's surface in the second stage of feeding, spread their

wings to high the fish uphill, and then exclusive it up in their neck pocket.

Modeling this behavior of pelicans leads to better locations in the hunting area for
the proposed POA. This process increases POA's capacity for local search and

exploitation.

Equation (28) uses mathematics to simulate the pelican's hunting behavior.

r
I:E :xu+R-(1—?)-(2-rand—1)-xu,

(28)

Where, xip ; 1s the new status of the in pelican in the jm dimension based on phase 2, R 1s

a constant, which is equal to 0.2, R - (1 — :7) 1s the neighborhood radius of x; ; while, t

18 the iteration counter, and T 1s the maximum number of iterations. [46]

The coefficient R - (1 — %) represents the area of the locality of the population members

to search locally near each member to converge to a improved solution. This agrees us to
test the area around each member of the population with smaller and more perfect steps,
so that the POA can converge to solutions nearer to the global (and smooth exactly global)

optimal based on the usage notion.

At this phase, operative updating has also been used to receive or discard the new pelican

position, which is modeled in Equation (29).

P; pP; %
XF{X[. E2 < Fj; 39

X;, else,

29



Q:a rt PDD

\

Input Information of ulptimizatinn problem

+

Determine parametersof Nand T

v

Generate initial population

¥

Calculate objective function

VY <

Generate the prey at random

> <

Calculate x;:} function using Eq. (4)
’ l

No

j=j+1

Yes

Update X; using Eq. (5)

il

Calculate xf} function using Eq. (5)

j=j+1
Yes
Update X; using Eq. (7)
l

No .

i=i+1
Yes E

Jj=1

Save best candidate solution so far

E=Tt+1

=1

Yes
No

Output best candidate solution provided by POA
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Table 3.2 Pseudo Code of POA
Algorithm: Pseudo-code of POA

Start POA
Input the optimization problem information
Determine the POA population size (N) and the number of iterations
Initialization of the position of pelicans and calculate the objective
Fort=1.:T
Generate the position of the prey at random
Forl=1:N
Phase 1: Moving towards prey (exploration phase)
Forj=1:m
Calculate new status of the jth dimension using
End
Update the ith population member using Equation (2)
Phase 2: Winging on the water surface (exploitation phase)

Forj=1:m
Calculate new status of the jth dimension using
End
Update the ith population member using Equation (4)
End
Update best candidate solution
End
Output best candidate solution obtained by POA
End POA

3.5.2 Improved Pelican Optimization Algorithm

The proposed algorithm described in this work 1nitially follows the Pelican Optimization
Algorithm's equations (1) through (3) but, in equation (4), a chaotic local search approach
based on search strategy is presented to improve the performance of POA in obtaining
the best solution. The factor (2 -rand — 1) in equation 4 instead of utilizing the rand
function which denotes random number, deploys a localized search. Natural nonlinear
systems frequently experience chaos, and its ergodic property—specifically, its ability to
traverse all states within a certain range without recurrence—is frequently used as an

additional means of escaping from local optimums. The chebyshev map was employed

to produce the chaotic sets.[47]

x(t + 1) = cos(t - acos(x(t))

(30)
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((x(t) + 1) - chvalue)
2

G(t) =

(31)
The chaotic chebyshev map gives the following output:

. Chebyshev Map
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Fig. 3.8 Iterative Chebyshev chaos map

3.5.3 Dandelion Optimizer

The newest novel swarm intelligence bioinspired optimization algorithm 1s called the
Dandelion Optimizer (DO), and it is used to solve continuous optimization issues. Three

stages make up DO's simulation of the long-distance, wind-dependent flight of dandelion

seeds.

When seeds are in the growing stage, waves from above cause them to rise spirally, or
they can travel regionally in communities depending on weather conditions. Flying seeds
regularly alter their direction in outer space as they drop during the descending stage.
Seeds are placed in randomly assigned spots during the landing stage in order for them to
grow. Here for the dandelion optimization algorithm, it is to referred to the flight of a
seed during its descending and landing stages, correspondingly by mathematical

functions.
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Mathematical models of dandelion seeds are created from the rising stage, descending
stage, and landing stage under various weather conditions in accordance with the

characteristics of the long-distance flight of dandelion seeds. Two stages for this

algorithm are:

[.  Seed dispersal (exploration phase)

II.  Selection (exploitation phase)

The proposed DO first presents the biological mechanism and motivation. Then, in

accordance with the formulation of the mathematical model of DO, its expressions are

produced. [48]
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Table 3.3 Pseudo Code of DO

Algorithm: Pseudo-code of DO

Start DO
Input the dandelion seeds X

Calculate fitness value f of each dandelion seeds
Select the Xeite according to fitness value
while (t<T) do
if randn()<1.5
Generate adaptive parameters using appropriate eq’
Update dandelion seeds using appropriate eq"
else if do
Generate adaptive parameters using appropriate eq"
Update dandelion seeds using appropriate eq"
end
Update dandelion seeds for decline stage
Update dandelion seeds for land stage
Arrange dandelion seeds from good to bad

Update Xelite
if f(Eiite)<f(Xbest)
Xbest=Xelite aNd foest=Ff (Xelite)
end

1

end

Return Xpest and fpest
End DO

Other optimization algorithms

The POA and DO are compared with some state of the art metaheuristic

algorithms. These are as follows:

e Particle Swarm Optimization (PSO)[49]
e Equilibrium Optimizer (EO)[50]
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CHAPTER 4
RESULT DISCUSSION AND ANALYSIS

4.1 Method of load flow analysis

There are various approaches to measuring parameters like power loss or voltage
deviation in test bus systems, with or without the inclusion of DGs. Newton-
Raphson and Backward-Forward methods are two of them that are taken into
consideration. According to a number of previous studies in the area of load flow
analysis of power systems, the Newton-Raphson method typically converges more
quickly than the Backward-Forward method. Furthermore, the earlier method
enables more accurate modeling and analysis of voltage control devices than the
later method. Although, compared to the Backward-Forward Method, the Newton-
Raphson method may exhibit a few minor issues with computational complexity

and memory requirements

As aresult, load flow analysis was performed on the two trial subject’s bus systems
using both the Backward-Forward Method and the Newton Raphson Method. In
both cases, the former method provided us with improved outcomes than the latter
one in terms of power loss and voltage deviation in the p.u. unit which can be
observed in figure 4.1, 4.2 and 4.3. This led us to use the Newton Raphson’s
Tangent Based Method for the remaining portion of this research for load flow

analysis.
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Figure 4.1 Voltage profile in p.u of IEEE 69 bus system without DG
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4.2 Comparison of algorithms after incorporating RDGs

In the IEEE 69 bus distribution system, Table 4.1 lists the RDG location, size,
power loss, bus voltage deviation, and total simulation time for each of the four
optimization algorithms: PSO, EO, POA, and DO. The Dandelion Optimizer (DO),
when compared to all the other optimization algorithms, performed the best, as
shown by the results analysis. When compared to the others, the DO performed
significantly better. Voltage deviation and elapsed time both show a noticeable
improvement. When compared to EO, PSO, and DO, the Pelican Optimization

Algorithm 1s seen to perform better.

In the IEEE 33 bus distribution system, Table 4.2 lists the RDG location, size,
power loss, bus voltage deviation, and total simulation time for each of the four
optimization algorithms: PSO, EO, POA, and DO. The Pelican Optimization
Algorithm performs better than all the other algorithms in this situation, with the
exception of elapsed time, according to the results. Due to the larger search space
in this instance, the elapsed time is higher. All other parameters work well for POA
aside from that. In this thesis, Dandelion Optimizer comes in second place,
significantly outperforming both PSO and EO.

We get two standout performers from the two tables: DO for the IEEE 69 bus
distribution system and POA for the IEEE 33 bus distribution system. This gives us
sufficient data to state with certainty that both DO and POA are advised for issues
relating to RDG placement, and that performance may differ depending on the

distribution system.
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Table 4.1: IEEE 69 bus systems optimized results

IEEE 69 Bus System
Cases of | Optimization RDG RDG Size Power Voltage Elapsed
RDGs Algorithm Location (MVA) [Loss (KW) Deviation | time for 50
used iterations
Wind Particle 7 0.98 200 1.65 934
Solar Swarm 7 0.89 seconds
Bio Optimization 4 0.6
Wind Dandelion 69 0.6 180 1.10 791
Solar Optimizer 63 1.4 seconds
Bio 5 0.1
Wind Pelican 4 0.4 190 13 1600
Solar Optimizer 21 0.3 seconds
Bio 5 0.1
Wind Equilibrium 57 1.18 195 1.35 1400
Solar Optimizer 58 0.97 seconds
Bio 3 0.67
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Table 4.2: IEEE 33 bus systems optimized results

IEEE 33 Bus System
Cases of | Optimization RDG RDG Size Power Voltage Elapsed
RDGs Algorithm Location (MVA) Loss (KW) Deviation | time for 50
used iterations
Wind Particle 11 0.36 LIS L3 494
Solar Swarm 11 0.43 seconds
Bio Optimization 4 0.67
Wind Dandelion 9 0.15 149 1.4 503
Solar Optimizer 10 0.95 seconds
Bio 4 0.1
Wind Pelican 4 0.23 124 1.11 1000
Solar Optimizer 8 | seconds
Bio 4 0.1
Wind Equilibrium d 0.16 200 2 440
Solar Optimizer 22 1.3 seconds
Bio 4 0.10
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The voltage profile obtained in figure 4.4 shows the p.u. voltages of 69 buses 1n the

distribution system after implementing PSO, EO, DO and POA. The profile shows that

DO provide the highest voltage in the buses during the integration of DG units and thus,

it 1s the best performer for this case.

Figure 4.5 shows the profile for IEEE 33 bus distribution system and the result that can

be concluded here is that POA 1s the best performer overall for this case.
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From figure 4.6 and 4.7 shows the convergence profile for the applied algorithms with
respect to the fitness value. In IEEE 69 bus system, the DO converges the fastest with
the least value of fitness function. Whereas, in IEEE 33 bus system, POA gives the

lowest value of fitness function although, DO had the fastest convergence.
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CHAPTER 5
CONCLUSION

5.1 Remarks:

This study suggests a novel method for determining the ideal size and location of
RDGs in distribution networks. The idyllic dimension and site of DG were
determined using two parameters. These include abating the inclusive active power
loss and the complete bus voltage deviation. Pelican Optimization Algorithm
(POA) and Dandelion Optimizer (DO), two recent metaheuristic optimization
algorithms, were used to improve the results before being contrasted with
Equilibrium Optimizer (EO) and Particle Swarm Optimization (PSO), two
additional algorithms. All algorithms are outperformed by the POA and DO. It has
been observed that DA occasionally performs slightly better than POA.
Consequently, the suggested DO and POA may be used to choose the ideal RDG

unit size and location in the distribution system.

5.2 Future Work Scope:

1) Instead of using IEEE test distribution systems, RDG units could be applied to

existing distribution networks.

2) In addition, to the proposed function, a multi-objective function can be created

by researching the economic implications of including RDG units.

3) Additionally, another project might involve installing an energy storage system

for a continuous supply in the distribution system.
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