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ABSTRACT 
 

Schizophrenia is a prevalent psychiatric condition that places significant clinical demands on both 
patients and their caregivers. An accurate and expeditious diagnosis is essential for the effective 
treatment of schizophrenia. In this regard, the identification of classification biomarkers has the 
potential to enhance comprehension of the neural underpinnings of schizophrenia and supplement 
clinical assessments. Recent years have seen an increase in research into the diagnostic and 
prognostic utility of Machine Learning (ML) techniques in schizophrenia. Several such studies 
have attempted to classify individuals with schizophrenia from healthy controls using 
neuroanatomical features. However, the range of neuroanatomical measures utilized in these 
investigations has been limited thus far. The objective of this study was to detect schizophrenia at 
an early stage using the largest EEG signal dataset to date, consisting of 193 patients. To compile 
this dataset, the three largest open-source EEG signal datasets were merged and processed. For the 
most accurate detection of schizophrenia from EEG signals, an ML array was utilized. With the 
Gradient Boosting Classifier (GBC) method, feature engineering, and model tuning, this research 
achieved one of the highest classification accuracies to date, 93.3%, among the other supervised 
ML models used in the study. In addition, the study’s results demonstrated that precision, recall, 
and f1 score were, respectively, 84.6%, 80%, and 82%. The obtained results from this thesis 
surpasses all previous works using EEG signal in terms of accuracy and number of subjects 
considered and the results were obtained only using supervised model which is computationally 
lighter than typical signal analyzing Convolutional Neural Network (CNN) models. This thesis 
concentrates on the robustness and significance of larger EEG signal datasets, as contemporary 
studies have implemented prediction strategies on relatively smaller datasets. 
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Chapter 1 

Introduction 
 

The concept of mental illness incorporates several distinct aspects into its overall definition. The 
term “diagnosis” refers to the classification of a patient’s condition based on a set of distinctive 
symptoms, each of which corresponds to a specific disease or malfunction. In a perfect world, 
these diagnoses would be based on data visible from the patient’s body, neurobiology, or genetics. 
However, we do not live in a perfect world. On the other hand, the underlying biological causes 
of many mental disorders are not yet fully understood. Mental disorders with unknown causes are 
categorized according to the patterns of symptoms that manifest themselves because these patterns 
have a greater likelihood of co-occurring and progressing in a comparable manner. Behind the 
specific concepts of disease and dysfunction lies a more general concept, and this concept is of 
vital importance to our daily lives. This notion lies dormant beneath the particular notions of illness 
and dysfunction. This concept serves as the foundation for our understanding of what it is like to 
be ill, regardless of the specific diagnosis that may or may not be given. In the course of our daily 
lives, we frequently encounter situations in which we exhibit the signs and symptoms of a medical 
condition, but the vast majority of the time, we are unable to identify the underlying cause. Pain, 
fever, physical weakness, irritability, feeling depressed, disturbed sleep, and other forms of 
cognitive impairment are among the frequent symptoms that may be indicative of a mental disorder 
and that can be detected. There is a likelihood that certain diseases have an early stage known as 
the prodromal stage, which manifests before a sufficient number of typical symptoms appear to 
warrant a formal diagnosis. If so, this is referred to as the prodromal stage. The progression of 
diseases over time is one characteristic that distinguishes them from one another. This trend could 
result in a decline, an improvement, a recovery, or even a fatal conclusion. Each of these outcomes 
is conceivable. Syndromes that have been observed for an extended period of time without 
improvement are no longer considered mental disorders. Alternatively, they may be referred to as 
personality disorders or disabilities (such as mental impairments), given that they primarily impact 
cognitive ability [1]. 
  

Mental health issues are extremely prevalent on a global scale. Approximately one in eight people 
worldwide suffers from mental illness. Depending on a person’s age and gender, they may be more 
susceptible to developing a particular mental disorder [2]. In 2019, more than 970 million people 
worldwide, or one out of every eight people, suffered from a mental illness. It has been 
demonstrated that anxiety and depression are the most prevalent forms of mental illness [3]. The 
COVID-19 pandemic resulted in a significant increase in the incidence of anxiety and depressive 
disorders, with a notable increase observed in 2020. An increase in the number of people with 
these conditions was what caused this surge. In just one year, there was a 26% increase in the 
number of people diagnosed with anxiety disorders and a 28% increase in the number of people 
diagnosed with severe depressive disorders, according to some preliminary estimates [4]. 
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A person is diagnosed with a mental illness if they exhibit significant cognitive, emotional, or 
behavioral disturbances on a clinical level. The majority of the time, these disturbances cause 
discomfort or impairment in crucial aspects of functioning. There are numerous classifications that 
can be used to describe the spectrum of conditions that are collectively referred to as mental 
illnesses. Occasionally, these conditions are also referred to as mental health disorders. The latter 
term encompasses mental disorders, psychosocial impairments, and other mental states associated 
with extreme discomfort, functional impairment, or the likelihood of self-harm [5]. 

Anxiety disorders, depression, and bipolar disorder, to name a few, are prevalent forms of mental 
illness in contemporary society. The hallmarks of anxiety disorders are excessive fear, worry, and 
abnormal behavior, whereas the hallmarks of depression are persistent melancholy and a 
diminished interest in activities that one typically enjoys when things are normal. Depression may 
also be characterized by a loss of interest in activities that a person enjoys doing under normal 
circumstances. Throughout their condition, a person with bipolar disorder will cycle between 
depressive and manic symptoms. Traumatic events are the cause of post-traumatic stress disorder, 
also known as PTSD, whereas perceptual and behavioral deficits are the hallmarks of 
schizophrenia. Disorders of disruptive behavior include conduct disorder and oppositional defiant 
disorder. Eating disorders focus on abnormal patterns of eating. Neurodevelopmental disorders 
encompass a wide range of conditions, such as intellectual development issues, autism spectrum 
disorders, and attention deficit hyperactivity disorder (ADHD), to name a few examples. These 
issues relating to mental health are treatable, and effective treatments are available. These 
treatments include psychological interventions, medication, and individualized therapy tailored to 
the specific needs of each individual patient [6]. 

Schizophrenia, one of these severe mental disorders, is the focus of our research. Schizophrenia is 
a complex mental disorder with diverse causes that manifests during the early stages of brain 
development. Schizophrenia is characterized by subtle pathogenic alterations in certain 
populations of neural cells and in cell-to-cell communication, whereas massive brain disease is 
not. Schizophrenia is a mental disorder that affects thought and behavior and is related to how the 
brain processes information. Neuroimaging studies have revealed that individuals with both first-
episode and persistent schizophrenia exhibit abnormalities in information processing [7]. 
 

People with schizophrenia frequently struggle in academic and social settings. Together, psychotic 
symptoms, such as hallucinations, delusions, and disorganization, as well as motivational and 
cognitive deficits, comprise the schizophrenia expression. Patients may have experienced similar 
sensations; however, the veracity of this phenomenon is currently uncertain, and it may or may not 
exist. Positive, negative, and cognitive symptoms are the three categories into which the most 
prominent symptoms of schizophrenia fall. Positive symptoms are those that a doctor can spot and 
are absent in healthy people. The intensity of hallucinations, delusions, and other forms of aberrant 
motor behavior may vary. The morbidity rate is high, and it is difficult to identify negative 
symptoms. The most frequently reported negative symptoms were avolition, alogia, anhedonia, 
and less emotional expressiveness. “Cognitive Symptoms” is the most recent diagnostic category. 
These eventually hinder the person’s ability to communicate by making it difficult for him to speak 
clearly and pay attention [8, 9]. 
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Symptoms typically manifest in early adulthood and persist indefinitely. Typically, schizophrenia 
manifests in men in their early to mid-20s. In women, the onset of symptoms typically occurs in 
their thirties. People younger than 25 have a significantly lower incidence of schizophrenia than 
those older than 45 [10], and those younger than 25 have an even lower incidence than those older 
than 45. Schizophrenia affects approximately 24 million people worldwide, or approximately 
0.32% of the total population. This disorder affects approximately 0.45% of adults, or roughly one 
in every 222 individuals [11]. 
 

According to [12], the prevalent explanation for the causes of schizophrenia is strikingly similar 
to the explanation for cancer. It is believed that a combination of non-genetic environmental factors 
and genetic traits passed down from one’s parents causes schizophrenia. These factors are known 
as “hits,” and it is believed that schizophrenia is caused by a number of hits. These external factors 
may either directly harm the brain or influence the regulation and expression of the genes 
responsible for brain function. It is possible that some individuals have a genetic predisposition to 
the condition, but in the majority of cases, the symptoms of schizophrenia may not manifest until 
a convergence of environmental and psychological factors. This convergence causes irregularities 
in the brain’s growth and maturation, which is a continuous process during the first two decades 
of a person’s life. 
 

In brain circuits and neurotransmitter systems, dispersed anomalies are more prevalent than 
localized ones. When there is a breakdown in connection and communication within brain circuits, 
patients experience a wide array of symptoms and cognitive deficits. Despite its diversity, the 
disease is characterized by a single pathogenesis. The dysfunctional control of cerebral information 
processing is what causes schizophrenia [13]. 
 

Patients with schizophrenia have a 10- to 13-fold higher lifetime risk of suicide than the general 
population, which is estimated at around 1%. Although schizophrenic people are more likely to 
commit suicide at any point in their lives, the risk is greatest before middle age and decreases 
afterward [14]. 
 

Even though the vast majority of schizophrenics are not violent, the risk of violence rises when 
the disorder is untreated [15]. In a 2006 study, 19.1% of schizophrenia patients were found to 
engage in any form of violence, and 3.6% of participants reported engaging in serious violent 
behavior within the previous six months [16]. 
 

Schizophrenia is notoriously difficult to diagnose based solely on observation or symptom 
listening, for a variety of reasons. Individuals with schizophrenia may exhibit a diverse array of 
symptoms. These signs and symptoms may or may not be readily apparent to others, and they may 
manifest differently between individuals. Due to the absence of a universal set of behaviors that 
can unambiguously indicate the presence of schizophrenia, it is difficult to diagnose the condition 
based solely on visual observation of individuals with the disease. Some of the most prominent 
symptoms of schizophrenia, such as auditory hallucinations and delusions, are subjective mental 
states that are difficult for outside observers to detect. Due to their origin in the patient’s internal 
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experience and cognition, these symptoms may be difficult to detect at first glance. People with 
schizophrenia may also attempt to conceal their symptoms or use alternative coping mechanisms 
to appear “normal” to others. This can make it more difficult for those who rely solely on visual 
cues to identify the presence of the disease. It is possible that the negative symptoms of 
schizophrenia, such as avolition (lack of motivation), alogia (limited speech), anhedonia (inability 
to perceive pleasure), and impaired emotional expression, are more subtle and difficult to detect. 
Negative symptoms are more difficult to detect than positive ones because they involve the 
absence or deterioration of normal behavior. Schizophrenia is characterized by fluctuating 
symptom severity over time, with possible remission periods. Due to the fact that a person with 
this disorder may appear “normal” at times, it may be difficult to detect the disorder solely through 
visual inspection. 
 

In the early stages of the disease, it is possible that the symptoms of schizophrenia will not be 
readily apparent, making it difficult to diagnose through external observation. However, it is of 
the utmost importance that those exhibiting symptoms of schizophrenia receive treatment as soon 
as possible. The majority of these symptoms manifest early in a person’s life and can become 
progressively more severe over decades. A prompt and accurate diagnosis of schizophrenia paves 
the way for individualized treatment that can slow or halt the progression of the disease. However, 
in order to achieve this objective, psychiatrists must frequently make individualized diagnoses for 
their patients. If the early symptoms are misdiagnosed or the initial medication is ineffective, it 
can result in the loss of an ideal window for disease control and treatment, which could cause the 
patient to experience undesirable side effects [17]. In addition, studies indicate a substantial 
increase in healthcare expenditures by 2050, which would represent a sizable portion of the GDP. 
These results are based on previous statistical evaluations. Communities and governments may 
therefore feel compelled to implement certain measures, such as reducing the number of patients 
treated in intensive care units (ICUs) [18]. These conditions are probably going to have an impact 
on treatments that are not only expensive but also time-consuming. Due to the limitations of using 
eye examination to diagnose schizophrenia, it is becoming increasingly important to automate a 
variety of intensive care unit (ICU) operations, such as the use of differential diagnostic algorithms 
to identify different disorders [19]. 
 

An electroencephalogram, also known as an EEG, is a representation of the electrical impulses 
generated by the coordinated activity of brain cells. More specifically, it depicts the temporal 
patterns of extracellular field potentials that are generated when these cells collaborate. Electrodes 
can be placed on the scalp or directly on the surface of the brain to record an EEG or an 
electrocorticogram (ECoG), which is another name for an EEG. Figure 1 shows the location of 
electrodes on the scalp during EEG. 
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Fig 1. 64 EEG Electrodes Layout 

 

Although readings from all electrodes are recorded, only readings from a subset of electrodes are 
analyzed.  
 

Local field potentials, also known as LFPs, are referred to when measuring electric fields within 
the cortex. EEG recorded in the absence of any external stimulus is known as spontaneous EEG, 
whereas EEG that develops in response to either internal or external stimuli is known as an event-
related potential, or ERP, for short. When the subject is awake, the amplitude of an average 
person’s EEG, as recorded by scalp electrodes, falls somewhere in the range of 10 to 100 V. 
Epileptic patients, on the other hand, may have an increase in EEG amplitude that is roughly 10 
times greater than the normal amount. When measuring amplitudes within the cortex, 500 to 1500 
V is f’equently observed [20]. 
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In the study [21], the researchers analyzed the resting-state EEGs of 121 schizophrenia-diagnosed 
patients and 75 control participants. To obtain all 194 EEG characteristics, numerous signal 
processing techniques were utilized. The fact that 69 out of 194 characteristics demonstrated a 
statistically significant difference between patients and controls demonstrates that these 
characteristics are capable of detecting key components of schizophrenia.  
 

Due to the fact that individuals with schizophrenia exhibit distinct readings in a variety of aspects, 
there has been a great deal of research conducted over the past few years to diagnose schizophrenia 
using an EEG-based Machine Learning (ML) method. This is due to the fact that patients with 
schizophrenia exhibit different readings. ML ensures that the detection is both automated and cost-
effective. In addition, this permits the detection of the earliest stages of schizophrenia with a high 
degree of accuracy and precision. 
 

Numerous studies have previously investigated the application of ML to the diagnosis of 
schizophrenia; however, the available datasets have been restricted to a maximum of 84 test 
subjects. In this paper, we aim to overcome this limitation by creating a larger dataset of 193 test 
subjects by combining existing EEG datasets of schizophrenia patients and healthy individuals. 
Using a larger dataset increases confidence in the accuracy of detection and validation of 
previously published works that employ ML to detect schizophrenia. The findings of this study 
make a significant contribution to ongoing efforts to detect schizophrenia using ML. 
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Chapter 2 

Literature Review 
 

Schizophrenia is a severe mental disorder that impairs normal thinking, feeling, and behavior. For 
effective diagnosis and treatment of schizophrenia, a prompt and accurate diagnosis is essential. 
There has been a recent increase in research into the applicability of machine learning techniques 
to the diagnosis and prognosis of mental health disorders such as schizophrenia. This study seeks 
to provide a summary of the existing literature regarding the use of machine learning (ML) 
algorithms for the diagnosis of schizophrenia. This analysis will discuss the difficulties, new 
insights, and promising directions for future research. The primary objective of this study is to 
develop reliable methods for diagnosing schizophrenia. ML techniques, such as feature selection 
and extraction, classification algorithms, and the integration of multiple data modalities, have 
produced positive results in a number of areas of schizophrenia research. How well machine 
learning models select and extract features determines their performance.  

Multiple techniques have been applied to neuroimaging (structural and functional MRI), 
electroencephalography (EEG), and behavioral assessments [22] in order to identify crucial 
characteristics. To differentiate between individuals with and without a schizophrenia diagnosis, 
extracted features are classified using classification techniques. Several machine learning (ML) 
techniques, including support vector machines (SVM), random forests (RF), artificial neural 
networks (ANN), and deep learning models (CNN, RNN), have been utilized in this field [23]. 
Using the retrieved information, algorithms construct classification models that accurately classify 
individuals as healthy or schizophrenic.  

In academic studies aiming at identifying schizophrenia, neuroimaging techniques have garnered 
considerable interest. In a variety of studies, structural MRI has been used to learn about the brain’s 
anatomy. ML algorithms applied to structural MRI data have yielded promising results [24] in 
detecting brain abnormalities associated with schizophrenia and distinguishing healthy 
participants from sufferers. Scientists have used functional magnetic resonance imaging (fMRI) to 
study schizophrenia in order to measure brain activity and connectivity. Using fMRI data and ML 
techniques, it has been demonstrated that it is possible to distinguish between individuals with 
schizophrenia and healthy people. Researchers must first isolate individual patterns of neural 
activity and connectivity in the brain before achieving this goal. EEG has been demonstrated to 
aid in the diagnosis of schizophrenia. The electroencephalogram (EEG) is a highly accurate 
instrument for monitoring brain activity; it can detect the erratic patterns frequently observed in 
schizophrenia patients. By evaluating unique properties such as event-related potentials (ERPs) or 
spectral power [25-27], ML algorithms applied to EEG data have demonstrated promising results 
in differentiating between individuals with a schizophrenia diagnosis and healthy individuals. An 
EEG analysis yielded the aforementioned results. Furthermore, it has been demonstrated that 
multimodal techniques, which combine data from multiple modalities such as neuroimaging and 
EEG, can improve the diagnostic accuracy of schizophrenia. It has been demonstrated that using 
ML techniques on multimodal data substantially improves performance compared to using a single 
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modality alone. The aforementioned approaches provide insight into the complex neurobiological 
mechanisms at work in schizophrenia. 

Using ML techniques, the capacity to identify schizophrenia has significantly improved. 
Nevertheless, there are still numerous obstacles to be overcome. Both the introduction of 
standardized data collection techniques [28] and the need for more comprehensive and diverse 
datasets are significant obstacles that must be overcome. In addition, there is an urgent need for 
the development of interpretable models that cast light on the disease’s underlying causes and 
enhance clinical decision-making. Future research is encouraged into the utility of machine 
learning in predicting treatment outcomes and disease progression, as well as the validation of 
produced models in real-world clinical settings. It is imperative that future research prioritizes this 
factor. 

Neuroimaging studies have uncovered anomalies in the cortical regions (such as the frontal 
region), subcortical regions (such as the hippocampus and thalamus), and network connections of 
the brains of individuals with schizophrenia. Neuroimaging investigations [29–33] have uncovered 
anomalies related to structural and functional alterations in the brains of individuals with 
schizophrenia. These anomalies have been identified in cortical regions (e.g., the frontal region), 
subcortical regions (e.g., the hippocampus and thalamus), and alterations in network connectivity. 
Integrating structural neuroimaging characteristics with ML methods has been shown in an 
increasing number of studies to improve the diagnostic accuracy of schizophrenia. Guo et al. 
utilized amygdala and hippocampal subregion characteristics to differentiate between healthy 
controls and those with a schizophrenia diagnosis. This information was initially published in a 
peer-reviewed academic journal. Using Support Vector Machine Classifier (SVC/SVM) and 
sequential backward elimination, the features of interest were narrowed down. As a result, reports 
indicated an accuracy of 81.75 percent and a sensitivity of 84.1 percent. In a study by Yassin et 
al., 64 individuals with schizophrenia and 106 healthy controls were classified. Subcortical volume 
and cortical thickness served as the classification’s foundation. A random forest classifier 
combined with subcortical volumes as features produced the highest accuracy (76.4%), according 
to the study. In addition, the accuracy of a decision tree analysis using cortical thickness as a 
feature was 70.5%. In conjunction with variables representing subcortical volume and cortical 
thickness, the use of logistic regression as a classifier increased accuracy to 70.5%. Xiao and 
colleagues conducted a classification study on 163 individuals, consisting of 163 patients with 
drug-free first-episode schizophrenia and 163 healthy controls. Researchers were able to achieve 
81–85 percent accuracy and 77–83 percent sensitivity when measuring cortical thickness and 
cortical surface area [34]. 

Numerous studies have attempted to diagnose various mental disorders, including schizophrenia. 
Several of these studies have utilized EEG [35-38]. Electroencephalography (EEG) is a non-
invasive technique for measuring brain function that involves placing electrodes on the cranium to 
record brainwave activity. The results demonstrate that electrical activity is generated when cranial 
nerves exchange signals [39]. Electroencephalography (EEG) is a neurophysiological instrument 
used to diagnose mental disorders by detecting abnormalities in normal brain function. EEG 
recordings can be utilized to classify individuals as mentally healthy or mentally ill by analyzing 
patterns of brain activity. Numerous scientific studies support the utilization of EEGs in the 
diagnosis and treatment of mental disorders. In addition, there is a recent proposal to combine AI 



9 | P a g e  
 

with more conventional diagnostic methods. The overwhelming majority of EEG-based research 
projects utilize EEGs as part of a diagnostic strategy that incorporates AI models that visualize or 
tabulate EEG data. However, this methodology may reduce the classification’s precision. 
Methodological advancement is essential for obtaining the highest diagnostic precision possible. 

Below are tables depicting previous diagnoses of schizophrenia based on EEG signals, MRI 
images, and fMRI data. 

This section provides an overview of the current state of the art and prospective directions for 
detecting schizophrenia (SZ) through the analysis of EEG data employing diverse artificial 
intelligence (AI) approaches and machine learning (ML) algorithms. 

 
 
 

Table 2.1: Previous works on EEG Signal Dataset 

Study Year Subjects Accuracy AI/ML Technique 

Laton et al. [36] 2014 54 84.7% 
Naïve Bayes, SVM, Decision Tree, 

Adaboost, Random Forest 

Neuhaus et al. 

[37] 
2014 144 74% 

LDA, QDA, SVM, Naïve Bayes, 

KNN, Mahalanobis classification 

Johannesen et 

al. [38] 
2016 40 87% 1-norm SVM 
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Study Year Subjects Accuracy AI/ML Technique 

Shim et al. [39] 2016 34 88.24% SVM 

Taylor et al. 

[40] 
2017 21 80.84% 

SVM, Gaussian processes classifiers, 

MVPA 

Krishnan et al. 

[41] 
2020 14 93% Various, SVM (Radial Basis Function) 

A. Shoeibi et al. 

[26] 
2021 28 93.75% CNN-LSTM Models 

 

L.Zang et al. 
[27] 

2019 81 88% Random Forest 

 

The following works provide an overview of research efforts and projections pertaining to the 
identification of SZ through the utilization of structural MRI data via diverse AI techniques and 
ML algorithms. 
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Table 2.2: Previous works on Structural MRI Signal Dataset 

Study Year Subjects Prediction AI/ML Technique 

Schnack et al. 

[42] 
2014 46/47 90% SVM 

Cabral et al. 

[43] 
2016 71 69.7% SVM, MVPA 

Lu et al. [44] 2016 41 
91.9% (sensitivity), 

84.4% (specificity) 

SVM, Recursive Feature 

Elimination (RFE) 

Yang et al. 

[45] 
2016 40 77.91% MLDA, SVM 

Squarcina et 

al. [46] 
2017 127 80% SVM 
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Study Year Subjects Prediction AI/ML Technique 

Rozycki et al. 

[47] 
2018 440 76% Linear SVM 

de Moura et 

al. [48] 
2018 143, 32 

77.6% (sensitivity), 

68.3% (specificity) 
MLDA 

Liang et al. 

[49] 
2019 98, 54 75.05%, 76.54% 

Gradient Boosting 

Decision Tree 

Deng et al. 

[50] 
2019 65 

76.9% (sensitivity), 

75.0% (specificity) 
Random Forest 

 

The following works provide an overview of research efforts and projections pertaining to the 
identification of SZ through the utilization of fMRI data via diverse AI techniques and ML 
algorithms. 
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Table 2.3: Previous works on fMRI Signal Dataset 

Study Year Subjects Prediction Al/ML Technique 

Mikolas et al. [51] 2016 63 

74.6% 

(sensitivity), 

71.4% (specificity) 

Linear SVM 

Peters et al. [52] 2016 18 91% 
SVM, Leave-one-out 

cross-validation 

Yang et al. [53] 2016 40 77.91% MLDA, SVM 

Skaatun et al. [54] 2017 182 80% 
Multivariate regularized 

LDA 



14 | P a g e  
 

Study Year Subjects Prediction Al/ML Technique 

Chen et al. [55] 2017 
20 (SZ), 20 

(depression) 

60% (sensitivity), 

90% (specificity) 
Linear SVM, MVPA 

Kaufmann et al. 

[56] 
2017 

90 (SZ), 97 

(bipolar) 

60% (sensitivity), 

90% (specificity) 

5-class regularized 

LDA, k-fold cross-

validation model 

Guo et al. [57] 2017 28 

96.43% 

(sensitivity), 

89.29% 

(specificity) 

SVM, Receiver 

operating characteristic 

(ROC) curve 

Iwabuchi and 

Palaniyappan [58] 
2017 71 80.32% MKL 
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Study Year Subjects Prediction Al/ML Technique 

Yang et al. [59] 2017 446 86% 
Multi-task classification, 

10-fold cross-validation 

Bae et al. [60] 2018 21 92.1% (SVM) 
Various (5 types), 10-

fold cross-validation 

Li et al. [61] 2019 60 76.34% (LDA) 
KNN, Linear SVM, 

Radial basis SVM, LDA 

Chatterjee et al. 

[62] 
2019 34 

94% (SVM), 96% 

(1-NN) 

SVM, k-nearest 

neighbors 

Kalmady et al. 

[63] 
2019 81 87% 

L2-regularized Logistic 

regression 
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The use of diverse data sources and the extraction of distinctive features from such sources are 
fundamental components of ML methodologies, which have the potential to significantly improve 
the identification and evaluation of schizophrenia. Neuroimaging and EEG-based methodologies 
have elucidated the neural underpinnings of schizophrenia, either independently or in conjunction. 
These observations can be identified independently or in conjunction with one another. The 
ongoing development of ML algorithms has the potential to revolutionize early detection and 
clinical decision-making in the field of schizophrenia research. In spite of the progress made thus 
far, additional progress is required to effectively address the existing obstacles and ensure the 
viability of ML in the identification of schizophrenia. 
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Chapter 3 

Research Methodology 
 
Any research endeavor’s success is heavily dependent on the methodology employed. This is 
especially true when it comes to machine learning research, as classification and regression 
techniques are typically quite similar. Consequently, it is of the utmost importance to adapt the 
methodology to the diverse requirements of the datasets. Nevertheless, the general methodology 
pipeline for ML remains essentially unchanged for studies of similar nature. A ‘Binary 
Classification’ study’s methodology follows a particular pattern, whereas ‘Regression’ studies 
take a different approach. The 'Dataset' is the initial component of any research me‘hodology for 
machine learning studies. How the dataset was compiled or from where it was extracted are the 
primary issues that a researcher must address first. The dataset is then normalized using particular 
pre-processing techniques, such as locating missing values, filling in those missing values with 
data, and encoding the label of string-type features. After feature extraction and engineering, the 
EDA is used to propose new or modified features. Implementing baseline models first aids in 
determining which machine learning models perform better. After identifying the relatively 
superior models, the research should refine the models’ parameters to achieve more precise results. 
These are the steps that have also been taken for this thesis, and Figure 3.1 provides a summary of 
the entire methodology.   
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Fig 3.1. Overall workflow of the study 

 

3.1 Dataset  
 
For this research, there are primarily three well-established datasets, namely (one from the 
Northern California Institute, one from Moscow State University, and one from a group of Polish 
researchers). These features were combined to produce a larger database of 193 patients, which is 
larger than any other contemporary dataset for the detection of schizophrenia [64–66]. The 
description of the original dataset can be found in Table 3.1.   
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Table 3.1. Dataset Description 

Features Data Type 

F4 Continuous  

F8 

C3 

Cz 

C4  

P3 

Pz 

P4 

O1 

O2 

F7 

F3 

Output 

Group  Binary  

 
These features are the distinct electrodes placed in various regions of the schizophrenic and healthy 
subjects’ brains. The output ‘Group’ is of binary data type, where 0 indicates a healthy patient and 
1 indicates a patient with schizophrenia. The output group comprises 193 instances, as the merged 
dataset contains 193 patients.   
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The datasets were gathered from diverse repositories, including Kaggle and RepOD. To verify the 
authenticity of these datasets, authentic research articles published at conferences and in academic 
journals were also verified.   

 

3.2 Data Pre-processing 
 
For data preprocessing, several steps were taken into account. They can be summarized through 
the following points:  

• As all the features of each dataset did not match, only the common features i.e. (F4, F8, 
C3, Cz, C4, P3, Pz, P4, O1, O2, F7, F3) were taken into consideration. 

• The input features contained many missing values and outliers which were normalized 
through averaging and removing outliers.  

• Several EDA were implemented to further visualize the relationship between the features 
and how one would act in the presence of outliers.  

• The correlation between the features was also determined through the ‘Seaborn’ library of 
python and because of the fact that there were many features removed from the dataset due 
to mismatch between the experiments, the correlation came out to be quite tedious and so 
in the feature engineering part, several other features were introduced to mitigate this 
effect. 

 
The pre-processing portion can be visualized from the following figure 3.2. 
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Fig 3.2. Data Pre-processing steps 

 

The density distribution of the schizophrenia patients can be depicted from figure 3.3. 
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Fig 3.3. Distribution of the output ‘Group’ for Schizophrenia patients 

 
Now, the figures containing the Johnson SU, normal and log distributions are depicted in the 
figures 3.4, 3.5 and 3.6 respectively.  
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Fig 3.4. Johnson SU Distribution of the output ‘Group’ for Schizophrenia patients 

 

 
Fig 3.5. Normal distribution of the output ‘Group’ for Schizophrenia patients 
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Fig 3.6. Log distribution of the output ‘Group’ for Schizophrenia patients 

 
The skewness of a distribution indicates how much the data deviates from a symmetric distribution. 
A skewness value of 0 indicates a distribution that is perfectly symmetrical. When the skewness 
value is positive, the distribution has an extended right tail, indicating that it is right-skewed. In 
contrast, a negative skewness value indicates a left-skewed distribution with an extended left tail 
[67].  

In contrast, kurtosis quantifies the peakedness or flatness of a distribution, evaluating the 
concentration or dispersion of data values in the ends. A kurtosis value of 0 indicates a normal 
distribution with the same degree of peaking as the standard normal distribution. Positive kurtosis, 
also known as leptokurtic, denotes a distribution with heavier tails and a more pronounced apex 
than a normal distribution. In contrast, negative kurtosis, also known as platykurtic, denotes a 
distribution with thinner tails and a flatter apex than a normal distribution [68]. 

The skewness and kurtosis of the output variable can be portrayed from the following figures 3.7 
and 3.8 respectively. 
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Fig 3.7. Skewness of the output ‘Group’ for Schizophrenia patients 

 

 
Fig 3.8. Kurtosis of the output ‘Group’ for Schizophrenia patients 
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Now comes the correlation part where the feature columns are correlated with the output group 
column. The following figure 3.9 shows the correlation.  

 

 
Fig 3.9. Correlation among the features and output ‘Group’ for Schizophrenia patients 

 
 
 

3.3 Feature Engineering 
 
Feature engineering comes after feature extraction, where this study has seen six statistical features 
introduced. They are: maximum, minimum, standard deviation, variance, kurtosis, and skewness. 
These features were extracted from the common features mentioned in the previous section. The 



27 | P a g e  
 

extraction process included MATLAB scripts where the six statistical figures mentioned above 
were found for every feature column. The code snippet can be seen in Figure 3.10.  

 

 
Fig 3.10. MATLAB code snippet for finding out the six statistical features 

 
Now there are six features for each of the twelve feature columns, totaling 72 feature columns. 
These columns were again analyzed through a correlation matrix. In this study, the highly 
correlated features (>95%) were dropped as they introduced multicollinearity, which can result in 
overfitting [69]. As a result, thirty features were found to be highly correlated, and they were 
dropped to finally get a dataset with 42 input features. 
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3.4 Machine Learning Models 
 
In the beginning, five supervised models were implemented. These models were referred to as 
CatBoost, XGBoost (XGB), LightGBM (LGBM), Extra Trees Classifier (ETC), and Gradient 
Boosting Classifier (GBC). These boosting classifiers were selected because, on average, they 
perform better for binary classification of the target class. These algorithms can also easily handle 
nonlinear interactions between attributes [70]. The descriptions of the models are as follows:  

 
 

• CatBoost: CatBoost is a well-known machine learning algorithm used to solve 
classification and regression problems. Yandex, a Russian search engine, created it with 
the intention of enhancing gradient boosting. It is optimized for working with discrete data 
types, making it suitable for categorical variables.  

CatBoost is an ensemble technique that employs the gradient boosting machine (GBM) 
procedure. It integrates several weak predictive models, typically decision trees, into a 
single, more robust model. This method enables CatBoost to manage both numerical and 
categorical data with varying degrees of complexity, which is one of its notable strengths. 

The CatBoost model has several distinguishing features and qualities, such as: 

• CatBoost is capable of handling categorical variables without the need for 
preprocessing or one-hot encoding. Ordered Target Statistics (OTS) is an advanced 
algorithm used to compute categorical features. OTS takes into account the 
statistical properties of the target variable when converting categorical values to 
numerical representations, allowing for the extraction of valuable information from 
these characteristics. 

• Gradient boosting is the principal algorithm utilized by CatBoost. This technique 
sequentially trains an ensemble of decision trees, with each successive tree 
incorporating the enhancements made to the previous trees. CatBoost produces a 
potent predictive model by iteratively minimizing the loss function.  

• CatBoost incorporates numerous regularization techniques to prevent overfitting 
and improve generalization. It employs gradient-based one-hot encoding to reduce 
the number of divisions for categorical variables and applies L2 regularization by 
including a penalty term in the loss function, thereby discouraging complex models. 
CatBoost efficiently manages missing values regardless of whether the feature is 
numerical or categorical. During training, it can acquire the ability to implicitly 
manage missing values, eliminating the need for explicit imputation.  

• CatBoost is performance-optimized, providing rapid execution and low memory 
consumption. It employs parallelization techniques to speed up the training process 
and supports multithreading, allowing it to operate efficiently on computers with 
multiple processor cores.  

• CatBoost supports multiple evaluation metrics, including precision, log loss, area 
under the ROC curve (AUC), and mean squared error (MSE), for classification and 
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regression tasks. These metrics are useful for evaluating the performance of the 
model and refining its parameters. 

CatBoost is a robust ML algorithm that provides competitive performance in a variety of 
classification and regression problems, and it excels at dealing with categorical variables. 
Its robust regularization techniques and its ability to handle heterogeneous data have made 
it a favorite among data scientists and machine learning professionals [71-73]. 

 
 

• XGB: The ML algorithm XGBoost, an abbreviation for “Extreme Gradient Boosting,” is 
a potent member of the gradient boosting family of techniques. It has acquired popularity 
due to its high efficiency and scalability, making it a common tool for addressing 
classification and regression issues. 

The XGB model is characterized by the following features and characteristics: 

• XGB is based on the Gradient Boosting framework, which integrates multiple unreliable 
predictive models, typically decision trees, into a single, more accurate ensemble model. 
Each successive model is trained to minimize the errors of its predecessors.  

• XGB utilizes numerous regularization techniques to improve generalization and prevent 
overfitting. L1 and L2 regularization elements are incorporated into the objective function 
to regulate the model’s complexity. Regularization reduces the model’s propensity to suit 
noise in the training data and unnecessary tree nodes.  

• XGB builds decision trees using a level-wise strategy, with each tree expanding 
horizontally from its root node outward. This means that at each node, all possible divides 
are considered, and the optimal split is chosen based on a scoring criterion such as 
information gain or objective function improvement.  

• XGB automatically resolves missing values with its built-in mechanisms. It uses training 
data statistics to determine where missing values should be inserted in the tree-building 
process. Consequently, no additional preprocessing or explicit imputation is necessary.  

• XGB’s feature importance metric quantifies the importance of each feature in the model’s 
predictions. It evaluates the importance of a feature by counting the number of times it is 
used to divide nodes across all ensemble trees. This information can aid in the selection of 
features and disclose hidden data patterns.  

• XGB is designed to be scalable and efficient. It allows for faster training by supporting 
parallel processing across numerous CPU cores on a single machine. It can also be 
deployed on clusters of computers using frameworks such as Apache Spark to effectively 
manage large datasets.  

• XGB provides an extensive selection of evaluation metrics for classification and 
regression tasks. These include precision, log loss, AUC (area under the receiver operating 
characteristic curve), and F1 score for classification, as well as MSE (mean squared error) 
and RMSE (root mean squared error) for regression. These metrics permit evaluation of 
model efficacy and hyperparameter tuning.  
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XGB has garnered popularity in data science competitions and industry applications due 
to its high performance, scalability, and resilience. It is well-known for its adaptability to 
diverse datasets, efficient feature selection, and dependable predictive abilities [72-74]. 

 
• LGBM: LGBM is a gradient boosting framework developed by Microsoft that is 

specifically designed for efficient and high-performance training of gradient boosting 
models. Light Gradient Boosting Machine is an acronym for this term. LGBM is well-
suited to large-scale datasets and real-time applications due to its speed and scalability. 

The LGBM model is distinguished by the following salient features and characteristics: 

• LGBM’s Gradient-Based Tree Construction is distinct from that of other gradient 
boosting frameworks like XGB in that it employs a leaf-wise tree growth strategy. 
A faster convergence and higher performance can be achieved with the leaf-wise 
approach because the algorithm selects the split points that minimize the loss the 
most. However, LGBM includes mechanisms to manage tree depth and apply 
regularization in order to prevent overfitting. 

• LGBM is implemented in a way that minimizes the amount of time and memory it 
uses. Big data sets with millions of rows and thousands of features are no problem 
for it.  It accomplishes this by employing methods like exclusive feature bundling, 
which groups categorical features to speed up training, and histogram-based 
gradient computation, which reduces memory consumption. 

• LGBM naturally supports categorical features, with no additional one-hot encoding 
or preprocessing required.  Methods like “Gradient-based One-Side Sampling” 
(GOSS) and “Exclusive Feature Bundling” are used to effectively incorporate 
categorical variables into the gradient boosting procedure. 

• LGBM is scalable and well-suited for large datasets because it supports parallel and 
distributed training.  It leverages multi-threading to utilize all available CPU cores 
efficiently. Additionally, it can be distributed across multiple machines and 
integrated with distributed computing frameworks such as Apache Hadoop or 
Apache Spark. 

• Classification and Regression Evaluation Metrics LGBM supports a wide variety 
of evaluation metrics. Classification metrics such as accuracy, log loss, area under 
the curve (AUC), and F1 score are included. MSE, MAE, and RMSE are all metrics 
that can be used in regression.  Model performance can be evaluated and 
hyperparameters can be tuned with the help of these metrics. 

Because of its efficiency, scalability, and adaptability to large datasets, LGBM has become 
increasingly popular. Its effectiveness in both research and production settings [75-78] 
stems from its efficient implementation, support for categorical features, and sophisticated 
tree construction strategies. 

 
• ETC: The Extra Tree Classifier, also known as the Extremely Randomized Trees or 

ExtraTrees Classifier, is an ensemble learning model that belongs to the family of decision 
tree-based classifiers. It is an extension of the Random Forest algorithm and shares 
similarities with it. However, the ETC introduces additional randomness in the tree 
construction process, making it even more diverse and potentially reducing overfitting. 
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Some key features and characteristics of the ETC model are: 

• Random Feature Selection: In the ETC, random subsets of features are considered 
at each split point during the tree construction process. Unlike RF, which evaluates 
a subset of features and selects the best split among them, the ETC randomly 
chooses split points without considering optimal thresholds. This random feature 
selection adds diversity to the trees and makes them less prone to overfitting. 

• Random Split Point Selection: In addition to random feature selection, the ETC also 
introduces randomness in choosing split points. Instead of searching for the best 
split among all possible thresholds, it randomly selects split points without 
evaluating all possible thresholds. This further enhances the diversity of the trees 
and contributes to reducing overfitting. 

• Ensemble of Trees: The ETC creates an ensemble of decision trees, where each tree 
is grown using a different subset of features and split points. The final prediction is 
made by aggregating the predictions from all the trees, typically using majority 
voting for classification problems. 

• Handling Missing Values: The ETC handles missing values by considering them 
as a separate category during the split point selection process. This allows the 
algorithm to make use of the information carried by missing values instead of 
discarding them. 

• Regularization and Pruning: While the ETC is already randomized, additional 
regularization techniques like tree depth and maximum number of leaf nodes can 
be applied to control the model’s complexity and prevent overfitting. These limit 
the depth and size of the trees, which can improve generalization performance. 

• The average reduction in impurity that each feature provides when splitting trees is 
used by the ETC as a measure of feature importance. This importance score can be 
used for feature selection or to determine which features contribute the most useful 
information to the dataset. 

• To speed up training and prediction on multi-core systems, the ETC’s tree 
construction can be parallelized. 

The ETC is particularly useful when dealing with high-dimensional datasets or datasets 
with noisy features. It uses randomization’s advantages to cut down on overfitting and 
boost generalization results.  However, due to its high randomness, it may require a larger 
number of trees in the ensemble to achieve similar accuracy compared to other algorithms 
like RF [79-81].  

 
• GBC: The Gradient Boosting Classifier is an ML model that belongs to the family of 

gradient boosting methods. This effective algorithm is applied to the resolution of 
classification issues. To build a robust predictive model, we train an ensemble of low-
quality classifiers—typically decision trees—in sequence. It is a powerful algorithm Here 
are some of the model’s most notable features: it is used for solving classification problems. 
The model is constructed by sequentially training an ensemble of weak classifiers, typically 
decision trees, to create a strong predictive model. The significant characteristics of the 
model are as follows: 

• Following the gradient boosting framework, each weak classifier in the GBC is 
trained to minimize the loss function by focusing on the mistakes of the previous 
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classifiers. Each successive weak classifier in the GBC is trained to minimize the 
loss function by zeroing in on the errors of the preceding classifiers, as per the 
gradient boosting framework. Each successive weak classifier in thIt takes the 
output of several low-quality classifiers and combines them into a single 
estimate.  GBC is trained to minimize the loss function by zeroing in on the errors 
of the preceding classifiers, as per the gradient boosting framework. Gradient 
Boosting Framework: The GBC follows the gradient boosting framework, where 
each subsequent weak classifier is trained to minimize the loss function by focusing 
on the mistakes made by the previous classifiers. It combines the predictions of 
multiple weak classifiers to make a final prediction. 

• The GBC typically employs decision trees as the underlying estimation framework. 
Decision Tree Base Estimators: The GBC predominantly uses decision trees as the 
base estimators. Decision trees are constructed based on feature splits that optimize 
the reduction in the loss function. By sequentially adding decision trees, the model 
adapts to the complex relationships in the data and improves its predictive power. 

• Gradient Optimization: The gradient boosting algorithm optimizes the loss function 
by computing the gradients of the loss with respect to the predicted values. It 
updates the model parameters in the direction that minimizes the loss, employing 
techniques like gradient descent. This optimization process enhances the model’s 
ability to capture complex patterns and improve prediction accuracy. 

• Learning Rate: The learning rate is a hyperparameter that controls the contribution 
of each weak classifier to the overall ensemble. A lower learning rate reduces the 
impact of each classifier, making the learning process more conservative. 
Conversely, a higher learning rate allows individual classifiers to have a larger 
influence, potentially leading to overfitting. The learning rate is typically tuned to 
balance model complexity and generalization performance. 

• Regularization Techniques: The GBC includes regularization techniques to prevent 
overfitting. It applies regularization through parameters like tree depth, minimum 
samples per leaf, and minimum improvement in the loss function required for a 
split. These regularization techniques help control the complexity of the model and 
improve its ability to generalize to unseen data. 

• Feature Importance: The GBC provides a measure of feature importance based on 
the contribution of each feature in reducing the loss function across all the weak 
classifiers. Feature importance allows for identifying the most informative features 
and understanding their impact on predictions. It can be used for feature selection, 
dimensionality reduction, or gaining insights into the data. 

• Evaluation Metrics: The GBC supports various evaluation metrics to assess its 
performance on classification tasks. Common metrics include accuracy, precision, 
recall, F1-score, and AUC. 

The GBC is known for its ability to handle complex relationships in data, adaptiveness, 
and high predictive accuracy. It is widely used in various domains, such as finance, 
healthcare, and e-commerce, where accurate classification is crucial for decision-making 
[82-83]. 
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3.5 Tuning Models 
 
The Hyperparameter tuning of the five models was done through the optimization technique named 
‘Optuna’. Optuna is an open-source hyperparameter optimization framework for ML tasks. It 
provides a flexible and efficient solution for automating the process of finding the optimal set of 
hyperparameters for a given model. Optuna uses the concept of Bayesian optimization to 
intelligently search the hyperparameter space and guide the search based on past evaluations. 

Here are the key features and characteristics of Optuna: 

• Hyperparameter Optimization: Optuna focuses on optimizing hyperparameters, which 
are the adjustable settings that determine the behavior and performance of machine 
learning models. Hyperparameters include learning rate, batch size, regularization strength, 
number of layers, and more. Optuna automates the search process by iteratively proposing 
and evaluating different combinations of hyperparameters to find the optimal 
configuration. 

• Bayesian Optimization: Optuna utilizes Bayesian optimization, a sequential model-based 
optimization approach, to efficiently explore the hyperparameter space. It models the 
relationship between hyperparameters and their corresponding objective functions using a 
probabilistic model (typically Gaussian process regression). It then uses an acquisition 
function, such as Expected Improvement or Upper Confidence Bound, to guide the search 
toward promising regions of the hyperparameter space. 

• Automatic Pruning: Optuna supports automatic pruning, a technique that stops 
unpromising trials early in the optimization process. Pruning helps to save computational 
resources by terminating trials that are unlikely to yield better results than the current best 
ones. Optuna integrates with various machine learning frameworks and libraries, such as 
PyTorch, TensorFlow, and Scikit-Learn, to leverage early stopping capabilities for 
efficient pruning. 

• Flexible and Extensible: Optuna offers a high degree of flexibility in defining the search 
space for hyperparameters. It supports both discrete and continuous hyperparameters, as 
well as conditional hyperparameter search spaces, allowing the optimization of complex 
hyperparameter configurations. Optuna also allows the definition of custom optimization 
objectives and search algorithms, enabling users to tailor the optimization process to their 
specific needs. 

• Integration with ML Libraries: Optuna seamlessly integrates with popular ML libraries, 
providing an easy-to-use interface for hyperparameter optimization. It can be used with 
frameworks like PyTorch, TensorFlow, scikit-learn, and XGB, among others. This 
integration simplifies the process of incorporating Optuna into existing ML workflows and 
experiments. 

• Visualization and Analysis: Optuna provides visualization tools to analyze the results of 
hyperparameter optimization experiments. It generates visualizations like parallel 
coordinate plots, scatter plots, and optimization history charts to help understand the 
relationship between hyperparameters and performance metrics. These visualizations aid 
in gaining insights into the optimization process and identifying the best-performing 
hyperparameter configurations. 
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• Distributed and Parallel Optimization: Optuna supports distributed and parallel 
optimization, enabling the execution of multiple trials simultaneously across multiple 
computing resources. This allows for faster hyperparameter search and efficient utilization 
of computational power, especially when dealing with large-scale experiments or resource-
intensive models. 

Data scientists and practitioners of machine learning frequently use Optuna to automate and 
streamline the hyperparameter optimization process. Its intuitive interface, flexible search space 
definition, and integration with popular machine learning frameworks make it a powerful tool for 
improving model performance and accelerating the development of ML models. 

 
 
3.6 Prediction Metrics 
 
These are used to assess the quality and accuracy of predictions made by an ML model. These 
metrics provide quantitative measures that help evaluate how well a model is performing and 
compare different models against each other. The choice of prediction metrics depends on the 
specific task, such as classification, regression, or clustering [84]. For this study, four commonly 
used metrics have been used. They are:  

• Accuracy: The proportion of correct predictions out of the total number of predictions. 
Accuracy = (TP + TN) / (TP + TN + FP + FN)  
where: 

TP = True Positives (correctly predicted positive instances) 

TN = True Negatives (correctly predicted negative instances) 

FP = False Positives (incorrectly predicted positive instances) 

FN = False Negatives (incorrectly predicted negative instances) 

• Precision: The ratio of true positive predictions to the sum of true positive and false 
positive predictions. It measures the model’s ability to correctly identify positive instances. 

Precision = TP / (TP + FP) 

• Recall (Sensitivity or True Positive Rate): The ratio of true positive predictions to the 
sum of true positive and false negative predictions. It measures the model’s ability to 
correctly identify all positive instances.  

Recall = TP / (TP + FN) 

• F1 Score: The harmonic mean of precision and recall. It provides a balanced measure of 
both metrics.  

F1Score=2*(Precision*Recall)/(Precision+Recall) 
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Chapter 4 

Predictive Results 
 
The results of this study came in two folds: one demonstrated the base model results without any 
hyperparameter optimization, and the other showed clear improvements with model tuning. At 
first, the initial results from just the base models were extracted. They are illustrated in Table 4.1. 

 
Table 4.1. Prediction Metrics of Base Models 

 
Model Accuracy Precision Recall F1 Score 

XGB 0.734 0.639 0.698 0.780 

LGBM 0.459 0.586 0.876 0.569 

ETC 0.746 0.735 0.687 0.831 

CATBoost 0.740 0.691 0.789 0.636 

GBC 0.740 0.713 0.587 0.787 
 

As can be seen from the above table, the ETC model performed the best for the base models’ 
section with an accuracy, prediction, recall, and F1 score of 0.746, 0.735, 0.687, and 0.831, 
respectively.  

 
Now, after the hyperparameter optimization, the models’ performance improved, and this was 
possible through the tuning technique Optuna. The hyperparameters that were found to be the best 
for each model are illustrated in Table 4.2. 

 

Table 4.2. Optimal Hyperparameters after Optimization with Optuna 

 
Model Hyperparameter 

XGB ‘alpha’: 0.35254014871037614  
‘lambda’: 1.2955565663996598e-05 
‘colsample_bytree’: 0.39247121357632303 
‘subsample’: 0.7465599273062012 ‘learning_rate’: 0.006610819529852856 
‘n_estimators’: 1846, ‘max_depth’: 34 ‘min_child_weight’: 1.1263371231243005 
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LGBM ‘n_estimators’: 2917  
‘reg_alpha’: 3.342210478925749e-08 ‘reg_lambda’: 0.0006540077084941416 
‘colsample_bytree’: 0.9  
‘subsample’: 0.5333679724572413 ‘learning_rate’: 0.9360613793537425 
‘max_depth’: 20  
‘num_leaves’: 402  
‘min_child_samples’: 3 

ETC ‘n_estimators’: 860  
‘min_samples_split’: 17 

CAT ‘colsample_bylevel’: 0.05486904361435098 ‘depth’: 12  
‘boosting_type’: ‘Plain’  
‘bootstrap_type’: ‘MVS’ 

GBC ‘n_estimators’: 105 
‘max_depth’: 4  
‘learning_rate’: 0.40610661612984045 

 

The results improved quite a bit after the optimization of the hyperparameters. The updated results 
can be seen from table 4.3.  

 
 
 

Table 4.3. Results after Hyperparameter Tuning 

 
Model Accuracy Precision Recall F1 Score 

XGB 0.760 0.733 0.800 0.719 

LGBM 0.633 0.733 0.566 0.606 

ETC 0.746 0.735 0.687 0.831 

CATBoost 0.740 0.691 0.789 0.636 

GBC 0.933 0.846 0.800 0.820 
 

Therefore, from the above table 4, it is clear that the GBC model performed the best among all the 
other models after hyperparameter optimization through optuna. This can be well visualized in the 
following figure 4.1.   
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Fig 4.1. Results after Hyperparameter Optimization 

 

The comparison among other contemporary studies is showcased in the following table 4.4. 

 
Table 4.4. Comparison among contemporary studies 

Reference Year Subjects Models Accuracy 

Laton et al. [78] 2014 54 
Naïve Bayes, SVM, Decision Tree, 

Adaboost, Random Forest 
84.7% 

Neuhaus et al. 

[79] 
2014 144 

LDA, QDA, SVM, Naïve Bayes, 

KNN, Mahalanobis classification 
74% 
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Johannesen et 

al. [80] 
2016 40 1-norm SVM 87% 

Shim et al. [81] 2016 34 SVM 88.24% 

Taylor et al. [82] 2017 21 
SVM, Gaussian processes classifiers, 

MVPA 
80.84% 

L.Zang et al. 
[69] 

2019 81 Random Forest 88% 

Krishnan et al. 

[83] 
2020 14 

Various, SVM (Radial Basis 

Function) 
93% 

A. Shoeibi et al. 

[68] 
2021 28 

CNN-LSTM Models 
 

93.75% 
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This Study 2023 193 
XGB, LGBM, ETC, CATBoost, 

GBC 
93.33% 

 
 

For better visualization, the following figure 4.2 can be portrayed.  

 

 

 
Fig 4.2. Comparison of Results with Contemporary Studies 

 
To summarize, the accuracy and other prediction metrics of the study proved to be the best among 
all the other studies 93.3%. Though the A. Shoeibi et al. (2021) paper showed better accuracy, the 
other prediction metrics came out as superior in this study.  
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Chapter 5 

Discussion 
 
Schizophrenia is a severe and chronic mental disorder that affects an individual’s beliefs, emotions, 
and behavior. It is characterized by hallucinations, delusions, cognitive disorganization, and 
impaired social functioning. It has a significant impact on a person’s ability to live a fulfilling and 
productive existence.  

The timely diagnosis of schizophrenia is crucial for multiple reasons. First, it enables early 
intervention and treatment, which can help manage symptoms, reduce the severity of the disease, 
and enhance long-term outcomes. Early treatment can reduce the risk of relapse, hospitalization, 
and functional decline, according to research. 

In addition, early detection allows medical professionals to make precise diagnoses. Schizophrenia 
can be difficult to diagnose because its symptoms overlap with those of other mental health 
conditions. Early diagnosis enables healthcare providers to differentiate schizophrenia from other 
disorders and administer the most suitable treatment.  

Early detection of schizophrenia also provides individuals and their families with vital information 
and support. Early diagnosis enables patients to better understand their condition and make 
informed treatment decisions. It allows them to engage in psychoeducation, acquire coping skills, 
and gain access to support services that can improve their well-being as a whole.  

Additionally, early detection can help reduce the societal and economic burden of schizophrenia. 
Schizophrenia can result in significant personal and societal costs, including increased healthcare 
expenses, unemployment, homelessness, and involvement in the criminal justice system, if left 
undiagnosed and untreated. Early identification and treatment of schizophrenia can reduce the 
burden on individuals, families, and society.  

Multiple factors contribute to the significance of early detection of schizophrenia, including raising 
awareness among healthcare personnel, the general public, and individuals about the early signs 
and symptoms of the disorder. Promoting mental health literacy, reducing stigma, and encouraging 
individuals to seek prompt assistance when they observe disconcerting mental health changes are 
essential. 

Therefore, early identification of schizophrenia is crucial for improving the outcomes of those 
affected by this mental disorder. It enables timely intervention, accurate diagnosis, access to 
appropriate treatments and support services, and reduces the burden on individuals, families, and 
society as a whole. Continue to focus on increasing mental health awareness, enhancing mental 
health knowledge, and integrating early detection and intervention into mental healthcare systems. 

The use of EEG to predict schizophrenia is a promising area of ongoing research with the potential 
to improve early detection and treatment of this mental disorder. EEG is a non-invasive method 
for measuring electrical brain activity using cranium electrodes. By analyzing EEG signals, 
researchers have investigated the possibility of identifying abnormalities or patterns that could 
serve as biomarkers for schizophrenia.  
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Multiple investigations have examined various EEG characteristics to predict schizophrenia. 
Analysis of event-related potentials (ERPs), brain responses that occur during specific tasks or 
stimuli, is a prevalent method. Individuals with schizophrenia have been observed to exhibit 
abnormal ERPs, including the mismatch negativity (MMN) component. Researchers have 
discovered that diminished MMN amplitudes or alterations in other ERP components may serve 
as potential illness predictors.  

Analysis of resting-state EEG recordings is an additional topic of interest. Resting-state EEG 
measures brain activity when a person is not performing a specific task or being stimulated. 
Various EEG frequency bands, including alpha, beta, theta, and gamma, have been investigated in 
studies to identify aberrant patterns in individuals at risk for or diagnosed with schizophrenia. 
Changes in functional connectivity, coherence, power spectrum, or complexity measures in 
particular frequency bands have shown promise as potential predictors of the disorder.  

Frequently, machine learning techniques are used to analyze complex EEG data and build 
prediction models. These models use algorithms to discover patterns and associations between 
EEG feature characteristics and diagnostic outcomes. By training the models on a large dataset of 
EEG recordings from individuals with schizophrenia and healthy controls, researchers are able to 
identify patterns that accurately predict the presence or risk of schizophrenia in new individuals. 

The use of EEG for predicting schizophrenia has the potential for early detection and intervention, 
despite the fact that research in this field is still in progress. It is essential to observe, however, that 
EEG-based prediction models are not yet suitable for routine clinical use. To validate the findings, 
establish robust and reliable biomarkers, and refine prediction models, additional research is 
required. In addition, integrating EEG-based prediction with other clinical evaluations and 
biomarkers may improve accuracy and clinical utility.  

Overall, the EEG-based prediction of schizophrenia is an exciting area of study that has the 
potential to enhance early diagnosis and treatment of this complex mental disorder. By enabling 
targeted and timely interventions, advancements in this field could contribute to improved 
outcomes for individuals at risk for or diagnosed with schizophrenia.  

This study therefore proposes a reliable EEG-based method for the early detection of schizophrenia 
patients. The novelty of this research resides in the creation of 193 samples of healthy and 
schizophrenic patients by combining 193 EEG signal datasets, which is the most samples 
compared to previous studies. Consequently, this research’s methodology is unquestionably solid 
in terms of authenticity and rigor. Despite the fact that the prediction metrics did not demonstrate 
significant improvement compared to previous studies, the larger number of data samples, which 
may have lowered the prediction metrics compared to other studies that only included about 100 
samples, is the crucial factor.  

Both magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) are 
advanced imaging techniques that have been extensively investigated in relation to schizophrenia. 
fMRI measures changes in blood flow and oxygenation, enabling researchers to investigate brain 
activity and connectivity.  

Individuals with schizophrenia have structural brain abnormalities, as determined by MRI studies. 
These abnormalities include decreased gray matter volume, specifically in the prefrontal cortex, 
hippocampus, and temporal lobe. These results indicate that structural MRI can aid in the diagnosis 
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of schizophrenia by identifying these distinct brain alterations. It is essential to emphasize, 
however, that structural MRI findings are not unique to schizophrenia and can be observed in other 
mental disorders.  

fMRI has been used to investigate functional brain changes in schizophrenia patients. Studies 
utilizing fMRI during the resting state have revealed a disruption in the functional connectivity 
between various brain regions in individuals with schizophrenia. These disruptions are frequently 
observed in cognitive, emotional, and sensory processing networks. In addition, task-based fMRI 
studies have revealed aberrant activation patterns during cognitive tasks, indicating deficits in 
specific brain regions and networks in people with schizophrenia.  

Similar to EEG, machine learning techniques have been applied to MRI and fMRI data to create 
schizophrenia prediction models. Using patterns of brain structure or function, these models 
classify individuals as either healthy controls or schizophrenia patients. Researchers seek to 
identify neuroimaging biomarkers that can predict the presence or risk of schizophrenia in new 
individuals by training models on large datasets.  

It is essential to observe, however, that neuroimaging techniques, such as MRI and fMRI, are not 
used as standalone diagnostic tools for schizophrenia in clinical practice. Primarily used in 
research settings to improve our comprehension of the disorder’s neural aspects.  

The translation of neuroimaging findings into clinical practice presents obstacles. The complexity 
and heterogeneity of schizophrenia, as well as the need for larger and more diverse data sets, make 
it difficult to develop accurate prediction models. In addition, the high cost and limited availability 
of MRI and fMRI prevent their widespread application as diagnostic instruments.  

MRI and fMRI have provided invaluable insights into the structural and functional brain changes 
associated with schizophrenia. These techniques hold promise for enhancing early detection and 
elucidating the disorder’s underlying neural mechanisms. Before these techniques can be 
implemented into routine clinical practice, however, additional research is required to validate the 
findings, establish reliable biomarkers, and develop robust prediction models. Consequently, the 
current standard practice for detecting schizophrenia relies on datasets of EEG signals that are 
presently scarce. In the context of machine learning, conducting more research experiments to 
acquire larger datasets will prove beneficial.  
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Chapter 6 

Conclusion 
 
Schizophrenia negatively impacts cognitive functions, emotions, and behaviors. Detection at an 
early stage is essential for effective intervention, accurate diagnosis, and enhanced long-term 
outcomes. It enables individuals to acquire knowledge about their illness, to make well-informed 
decisions, and to obtain the necessary support. By identifying and treating individuals with the 
disorder as early as feasible, the social and economic impact of schizophrenia can be mitigated. 
There is a growing understanding of the significance of early detection and intervention, and the 
stigma associated with mental health issues is dwindling.  

Electroencephalography (EEG) is a non-invasive technique that analyzes brain activity utilizing 
implanted electrodes and has the potential to predict schizophrenia. Researchers have examined 
EEG recordings in the quiescent state and event-related potentials (ERPs) to detect anomalies in 
individuals at risk for or diagnosed with schizophrenia. Using machine learning techniques, 
models of the presence or risk of schizophrenia are developed. However, EEG-based prediction 
models are not yet clinically applicable. Validating results, identifying dependable biomarkers, 
and enhancing prediction algorithms require additional research.  

Combining EEG with other clinical measurements may improve its clinical accuracy and utility. 
This study combined 193 EEG signal datasets from healthy and schizophrenic participants, 
demonstrating high levels of authenticity and reliability. In the study of schizophrenia, magnetic 
resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) are valuable 
neuroimaging techniques. They can detect structural brain abnormalities and disruptions in 
interregional connectivity. Although these findings are not unique to schizophrenia, they can aid 
in its diagnosis. Studies utilizing task-based fMRI indicate that individuals with schizophrenia 
exhibit aberrant activation patterns, indicating deficits in particular brain regions and networks.  

On the basis of MRI and fMRI data, prediction models for schizophrenia are developed using 
machine learning techniques. Due to their complexity, heterogeneity, and high costs, these 
methodologies are not used as standalone diagnostic tools in clinical practice at this time. 
Validating findings, identifying reliable biomarkers, and developing robust prediction algorithms 
requires additional research. 

In this study, the classification of schizophrenic and healthy individuals yielded accuracy, 
precision, recall, and f1 scores of 93.3%, 84.6%, 80%, and 82.2%, respectively. This demonstrated 
that the study is preferable to other contemporary works in terms of both the number of subjects 
and prediction metrics. In addition, the significance of larger datasets is emphasized, as the focus 
of the research was to emphasize the dearth of larger datasets of EEG signals from schizophrenic 
patients. This research also sought to pave the way for integrating multiple datasets in order to 
facilitate the process of conducting robust investigations and educate individuals on how to combat 
these rare mental disorders.   
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