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Abstract 

Over the past few years, Psychiatric Disorders (PD) have had a significant impact on global 

health and their prevalence has been leading towards major adversities like functional disabilities 

and even suicide. These disorders can be divided into some major and specific categories which 

show different symptoms and have different remedies accordingly. This study makes an attempt 

to tackle this problem head on and detect said disorders to allow the patients to take necessary 

actions before the point of no return.  For efficient and trustworthy detection of PD, a Machine 

Learning (ML) approach has been taken and different algorithms were run on the chosen dataset. 

The dataset that was used for this study was collected from Neuroimaging (NI), 

Electroencephalography (EEG), tests which have a variety of distinctive features. It was observed 

that EEG is a reliable and effective way of collecting brain signals which can later be used in 

different studies like this one. Judging by the magnitude of the samples taken by the EEG device, 

it was decided that ML would be a very useful tool in this regard and with good accuracies, an 

acceptable structure can be created. The goal of this study to make a contribution to application of 

machine learning algorithms in medical sciences and also to call attention to the capabilities of 

EEG in the prompt detection of PD. 

From the findings of this study, it can be observed that very high accuracy was obtained for both 

the binary and multiclass classifications. The results were tabulated taking samples by using 

feature selection and feature extraction methods. The highest accuracy for main disorder for 

multiclass classification was 80.69% and that of the specific disorder was 87.52% both of which 

used SPARSE PCA feature extraction method. This study makes a solid attempt at addressing this 

rising issue with a very satisfactory approach and thus makes a fruitful contribution to the medical 

and data science field for addressing similar adversities in the process.
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Chapter 1 

Introduction 

The purpose of this chapter is to provide an introduction to detection of PD from EEG by 

implementing some ML algorithms. 

 

1.1 Problem Statement and Motivation 

Psychiatric disorders are, in fact, a force to be reckoned with when it comes to functioning 

normally in everyday life and can have a wide range of adverse effects on individuals as well as 

communities as a whole. When investigated, it has been observed that such disorders have effects 

from multiple dimensions as opposed to having a linear impact. According to sources like the 

World Health Organization (WHO), about 10% of the entire population of the world is suffering 

from one or more types of PD and about 25% get affected by these disorders at some point in their 

lifetime. Being diagnosed with PD can make an individual isolated from society which can result 

in discriminations in family as well as workplace environments as there is a substantial amount of 

social stigma associated with such disorders. Besides, the overall quality of life is hampered greatly 

since the patients face impairment in performing everyday tasks. Moreover, the chances of causing 

physical health problems and functional disabilities are increased greatly which can be triggered 

by the psychological effects of the disorder itself. Even extremities like risk of suicide have to be 

taken into consideration as it is not uncommon in such scenarios.  

 

During and after the COVID-19 pandemic, the cases of PD have risen significantly as well 

as increased their severity. Effects such as extended depression, anxiety and substance abuse are 

some of the few aftereffects which prevails within the general masses. Due to the disruption caused 

by it in mental health services, the newly affected ones were not attended to properly which 
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sustained till today. It has been found out from studies that among the Chinese people, stress 

disorder increased to 73.4%, depression to 50.7% and anxiety to disorder to 44.7% as a result of 

this outbreak [1]. This goes to show how such an unanticipated event can spike the rate of PD and 

with that, their aftermaths and makes a compelling case on how it is so important to identify those 

disorders and work on them as promptly as possible.  

One of the most efficacious noninvasive NI techniques is EEG which gives the user the 

option of observing the neurobehavioral networks with the help of time and frequency scales by 

placing electrodes on the scalp. EEG is unique for its higher temporal resolution which allows 

higher accuracy when it comes to neural activities [4]. In numerous medical studies, EEG modules 

were used to investigate the cognitive models and behavioral trends in performing tasks when it 

came to psychiatric disorders [2]. In comparison to other neural diagnosis and prognosis devices, 

EEG is cheaper and physician friendly. It allows ambulatory diagnosis for the patients allowing 

them to receive healthcare at a reasonable cost [3]. Though the whole process is fairly effective 

and inexpensive and does not require outrageous footprint, the specialists are needed to be trained 

for an extensive period [5]. Overall, EEG can be considered to be a reliable source of data for the 

neural data for a number of demographics of patients and can be used to build a dataset in the 

process for future applications.  

A dataset made up of EEG data was selected and the tool that was relied upon throughout 

this study was machine learning for a variety of upsides like its reliability and efficiency. This 

study in particular deals with both main disorders (mood disorder, addictive disorder, trauma and 

stress related disorder, schizophrenia, anxiety disorder and obsessive compulsive disorder) as well 

as specific disorders (depressive disorder, schizophrenia, alcohol use disorder, behavioral 

addiction disorder, bipolar disorder, PTSD, Social Anxiety Disorder (SAD), obsessive compulsive 

disorder, acute stress disorder and adjustment disorder) incorporating binary and Multi-Class 

Classification (MCC) in machine learning which can be considered as a unique feature. A number 

of machine learning algorithms such as random forest (RF), light gradient-boosting machine 

(LGBM), support vector machine (SVM) and hybrid Extreme Gradient Boosting Random Forest 

(XGBRF) were used on the chosen dataset to come to a conclusive and satisfactory set of results. 
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1.2 Research Objectives 

The goal of this research is to distinguish between Healthy Control (HC) subjects and 

unhealthy patients and to further narrow down on their disorders. Besides separating the two, the 

objective of this work is to categorize the test subjects into some main disorders and then some 

subcategories, namely specific disorders, with satisfactory accuracy. For feature selection and 

extraction, Analysis of Variance (ANOVA) and SPARSE Principal Component Analysis (PCA) 

were used respectively and later Synthetic Minority Over-Sampling Technique (SMOTE) was 

used for data augmentation and up sampling. After the preprocessing and manipulation of data, 

certain metrics were considered for evaluating the impact of the models such as confusion 

matrices, F1 score, recall and Receiver Operating Characteristics (ROC) were observed. To sum 

up, this study makes an attempt at a very swift and accurate diagnosis of any of the prevalent PD 

using ML-based alternatives. 

 

1.3 Literature Review 

A plethora of research has been conducted on PD identification with many using a ML approach. 

Watts et al. [6] has proposed a binary classification model for predicting the chances of committing 

criminal activities by psychiatric patients. It was concluded that machine learning models can show 

greater accuracy than gold-standard risk assessment tools. [2] depicts eight 

electroencephalographic (EEG) regions of interest were used to examine SAD-related changes in 

brain connections within the default mode network (DMN). This was the first study to use EEG-

based EC to categorize the severity of SAD (control mild, average, and severe) and to look into 

the topological structure of the effective brain connectivity network in SAD as well as the neural 

correlates of the DMN resting-state. The main finding was that SAD patients had increased EC 

between the DMN regions compared to HCs in the resting state. For the diagnosis of psychiatric 

illness, a statistical ML methodology-based automated diagnosis procedure based on 

electroencephalography (EEG) data is proposed [7]. This paper illustrates two binary 

classifications and a multiclass classification. Accordingly, the results are 88.3%, 92.7%, and 
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87.1%. The feature selection method of Peng [8] and the MFA classification procedure [9], which 

make up the proposed EEG-based methodology, are found to be extremely effective for the 

diagnosis of psychiatric disorders.  

Park et al. proposed in their study [10], a machine learning (ML) classifier is being created with 

the intention of using electroencephalography (EEG) to detect and compare the main psychiatric 

disorders. The support vector machine, random forest, and elastic net machine learning methods 

were used in this study to make predictions. Then, they compared the results of each prediction 

performance analysis. 

The model with the highest degree of precision used the elastic net technique along with an IQ 

adjustment. According to a different study [11] by Rahman et al., SVM has the highest accuracy 

for multiclass classification (95.3%). For analysis, they also used EEG data that was openly 

accessible. 

Additionally, Ranjith et al. used the Improved Elman Neural Network (IENN) to detect stress 

levels in a dataset of only six people, with an accuracy of 94.12%. Ashford et al. proposed a method 

with a different approach that performs CNN as those image classifiers and represents the 

statistical features as 2D images, achieving up to 89.38% accuracy [13]. Iscan et al. in his research 

stated that EEG systems are inexpensive and can be used anywhere, including private medical 

practices, in contrast to structural and functional MR imaging, which is very expensive and can 

only be carried out in specialized facilities. Additionally, resting state EEG is thought to have 

higher test-retest reliability than traditional resting-state fMRI sequences and measures and is at 

least on par with the reliability of anatomical MRI measures. [14]. 

For this study, these researches were studied that provided the core inspiration. It was considered 

by the team that the approach for this study will be a combination of all the works stated above 

and prove to be conclusive and trustworthy when it comes to problem-solving in this domain. 
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Chapter 2 

Machine Learning Algorithms 

 

Analysis of PD from EEG signals using ML techniques involves detecting patterns in EEG 

data that indicate abnormal brain activity associated with specific psychiatric conditions. Anomaly 

detection plays a crucial role in this task, as it aims to identify instances where the EEG signals 

deviate from the normal patterns observed in healthy individuals. However, developing effective 

models for anomaly identification in psychiatric disorders is challenging due to the difficulty in 

defining comprehensive normal ranges that encompass all possible variations in EEG signals. 

Moreover, the presence of noise in the data can mimic true anomalies, further complicating the 

detection process. 

In the context of psychiatric disorder analysis, large datasets of EEG signals are often 

available, with the majority of the data representing normal brain activity. This poses an additional 

challenge in developing accurate detection algorithms, as the imbalance between normal and 

abnormal instances can impact the algorithm's performance. Nevertheless, researchers have 

devoted significant efforts to developing machine learning algorithms specifically tailored for 

detecting anomalies in EEG signals associated with psychiatric disorders. 

This research integrates a range of machine learning techniques to analyze psychiatric 

disorders using EEG signals. These techniques leverage advanced algorithms and models 

discussed in the following sections to identify patterns of abnormal brain activity associated with 

specific psychiatric conditions. By applying machine learning to EEG analysis, this research aims 

to contribute to the understanding, diagnosis, and treatment of psychiatric disorders. 
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2.1 Random Forest (RF) 

Random Forest (RF) is a machine learning algorithm that combines regression and classification 

methods. It is an ensemble technique that improves prediction accuracy by combining the 

predictions of multiple decision trees [15]. During the training period, RF constructs multiple 

decision trees and generates output classes for each individual tree. RF leverages the concept that 

a large ensemble of statistically independent systems can outperform individual algorithms. Even 

without hyper-parameter tuning, RF generally yields reasonable prediction results. 

 

 

Fig 2.1.1: Structure of a Random Forest 

To enhance the diversity and robustness of the individual trees, RF incorporates a technique called 

bagging. Bagging involves creating new sets of training data by resampling with replacement from 

the original dataset. Each bootstrap sample is used to train a separate decision tree. By doing so, 

RF introduces variation among the trees and reduces overfitting. 
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During the training process, RF also employs a technique called feature sampling. It randomly 

selects a subset of features from the original set of characteristics to be considered at each node of 

the decision tree. This further promotes diversity and helps prevent the dominance of certain 

features in the ensemble.  

The prediction of unknown inputs can be determined by the formulae below. 

𝑓̑ =
1

𝐵
 ∑ 𝑓𝑏(𝑥′)

𝐵

𝑏=1

 

(1) 

Here, B= Optimal number of trees 

 Also, uncertainty of the prediction can be written as: 

 𝜎 = √∑ (𝑓𝑏(𝑥′) − 𝑓 ̑ ̂)𝐵
𝑏−1

2

𝐵 − 1
 

(2) 

The variance of Random Forest is calculated as follows: 

𝜌𝜎2  +  
1 −  𝜌 

𝐾
𝜎 2 

(3) 

Here σ2 denotes tree variance, ρ denotes correlation between trees, K represents total trees. [16] 

 

 

2.2 Light Gradient Boosting Machine (LightGBM) 

LightGBM is a gradient boosting framework based on decision trees to increase the 

efficiency of the model and reduce memory usage. It builds upon the traditional gradient boosting 
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algorithm by introducing innovative techniques that improve performance and scalability. 

LightGBM employs a leaf-wise growth strategy, unlike other algorithms that grow trees in a level-

wise or horizontal manner. This means that LightGBM selects the leaf node with the maximum 

delta loss to expand during tree growth. In contrast to level-wise algorithms, the leaf-wise approach 

has the potential to attain superior loss reduction while expanding identical leaves. 

 

Fig 2.2.1: Level-wise Tree Growth 

 

Fig 2.2.2: Leaf-wise Tree Growth 

 

The nomenclature of "Light" in LightGBM is attributed to its exceptional rapidity and efficacy. 

The escalating magnitude of data poses a formidable challenge to conventional data science 

algorithms, impeding their ability to furnish expedited outcomes. The Light Gradient Boosting 

Machine (LightGBM) algorithm is tailored to address the challenge of processing large datasets 

with limited memory resources. The suitability of LightGBM for addressing large-scale data 

challenges is evidenced. 
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The popularity of LightGBM can be attributed to its emphasis on precision in outcome delivery. 

The objective of LightGBM is to attain elevated levels of prediction accuracy through the 

utilization of optimization techniques, including the leaf-wise growth strategy. In addition, it is 

worth noting that LightGBM is equipped with the capability to facilitate GPU learning, thereby 

empowering data scientists to harness the computational prowess of GPUs, which in turn leads to 

expedited training and inference. The aforementioned capability has played a significant role in 

the extensive acceptance of LightGBM across diverse data science application development 

scenarios. 

2.3 Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is a robust machine learning methodology that can be 

effectively employed for both regression and classification tasks. The present study highlights the 

exceptional performance of the subject under consideration in the domains of intricate data 

handling and attainment of elevated levels of predictive accuracy. It is based on the concept of 

finding an optimal hyperplane that best separates different classes or fits the regression line to the 

data [16]. In the case of binary classification, SVM aims to find a hyperplane in the feature space 

that maximizes the margin, i.e., the distance between the hyperplane and the nearest data points 

from each class [17]. This hyperplane serves as the decision boundary for classifying new 

instances. SVM can handle both linearly separable data and cases where the classes are not linearly 

separable through the use of a technique called the kernel trick. The kernel trick allows SVM to 

implicitly map the data into a higher-dimensional feature space, where linear separation becomes 

possible. 

The SVM formulation involves solving an optimization problem to find the optimal 

hyperplane [10]. The objective is to minimize the hinge loss function, which penalizes 

misclassified points, while also incorporating a regularization term to control the complexity of 

the model. Once the optimization problem is solved, the SVM model can classify new instances 

by evaluating their position with respect to the learned decision boundary. 

It selects the critical data points, known as support vectors, to construct the hyperplane that 

separates different categories. This property of SVM is responsible for its name. To illustrate, let's 
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consider the following diagram depicting two distinct categories being classified by a decision 

boundary or hyperplane: 

 

Fig 2.3.1: SVM Classified Using Decision Boundary (Hyperplane) 

Its ability to handle complex datasets, support non-linear separation through kernels, and provide 

strong generalization capabilities makes it a valuable tool in the field of machine learning and data 

analysis. Based on kernel trick, SVM is as follows: 

𝑆(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑘𝑦𝑘𝑘(𝑥𝑘, 𝑥) + 𝑏

𝑘

) 
(4) 

Here Kx ∈RN are support vectors and k (xk, x) is the kernel function [16]. The decision SVM 

function is formed on dot product of input feature vector having support vectors which means it 

has no dimension requirements of the feature vector. 
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2.4 Extreme Gradient Boosting Random Forest 

(XGBRF) 

XGBRF, which stands for extreme Gradient Boosting Random Forest, is an advanced 

machine learning algorithm that combines the strengths of gradient boosting and random forest 

techniques [18]. It is particularly well-suited for solving complex regression and classification 

problems. In this model, RF just replaces the DT as the base [19]. 

The XGBRF algorithm is a machine learning technique that integrates the fundamental principles 

of gradient boosting. This approach entails the iterative inclusion of decision trees into the 

ensemble, with each subsequent tree rectifying the errors committed by its predecessors [16]. The 

present study proposes a boosting approach that enhances the predictive efficacy of the model by 

prioritizing the samples that exhibit a higher degree of complexity in terms of correct classification. 

The XGBRF model employs the random forest algorithm, a technique that integrates multiple 

decision trees to enhance the precision of predictions. The Random Forest algorithm introduces 

stochasticity into the model building process by selecting subsets of features and training samples 

for each decision tree in the ensemble. The present study elucidates the creation of a diverse 

ensemble of decision trees that synergistically collaborate to yield precise predictions and mitigate 

the backlash of overfitting. 

The XGBRF algorithm represents a noteworthy advancement in the domain of machine learning, 

as it adeptly amalgamates the favorable attributes of gradient boosting and random forest 

techniques. The amalgamation of various techniques has resulted in the development of XGBRF, 

which has proven to be a powerful tool for tackling complex machine learning problems. The 

popularity of a certain tool among data scientists and researchers in diverse domains can be 

attributed to its capacity to effectively manage voluminous datasets, furnish precise predictions, 

and offer interpretability. 
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Chapter 3 

Methodology 

This chapter presents the methodology used to detect mental disorders using 

electroencephalography (EEG) using machine learning algorithms. The aim is to provide a 

comprehensive understanding of the measures taken to accurately and reliably detect mental 

disorders using EEG signals. 

3.1 Dataset Description 

3.1.1 Dataset Overview 

The dataset utilized in this thesis was available from the Open Science Framework (OSF) 

repository, especially at the following URL: https://osf.io/8bsvr/. The dataset was composed by a 

team of researchers from different institutions, and it has been created for the purpose of studying 

psychiatric disorders using Electro Encephalography (EEG) signal recordings. It is assembled 

from up of a huge collection of EEG data from people with different kinds of mental health 

conditions as well as HC participants. 

3.1.2 Data Collection Procedure 

The EEG data in this dataset was acquired using accepted practices to guarantee 

consistency and homogeneity among patients. To locate people and gather data, academic 

institutions, research facilities, and clinical settings were employed. Prior to the data collection, all 

participants provided their informed consent, and the study's methodology was approved by the 

relevant ethics committees. [10] 

Participants' EEGs were captured throughout the data collecting procedure in meticulously 

controlled settings with minimum outside interference. Modern EEG equipment was utilized with 

the correct electrode placements to detect brain activity. The recordings were made either when 

subjects were at rest or engaged in certain mental activity, depending on the study's design. 
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3.1.3 Participant Demographics  

The data set includes a diverse group of participants of different ages, genders and mental states. 

Along with EEG data, demographic data of the participants such as age, gender and  

clinical diagnosis are provided. The sample size and distribution of main and specific mental 

disorders is as follows: 

 Mood Disorder: 266 participants 

 Depressive Disorder (DD): 199 participants 

 Bipolar Disorder: 67 participants 

 Schizophrenia: 117 participants 

 Addictive Disorder: 186 participants 

 Behavioral Addiction Disorder (BAD): 93 participants 

 Alcohol Use Disorder: 93 participants 

 Anxiety Disorder: 107 participants 

 Social Anxiety Disorder (SAD): 48 participants 

 Panic Disorder: 59 participants 

 Trauma and Stress Related Disorder: 128 participants 

 Post-traumatic Stress Disorder (PTSD): 52 participants 

 Adjustment Disorder: 38 participants 

 Acute Stress Disorder: 38 participants 

 Obsessive Compulsive Disorder: 46 participants 

 Healthy Control (HC): 95 participants 

The overall coverage of different patients having both main and specific disorders in percentage is 

shown below in forms of pie charts. 
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Fig 3.1.1: Coverage of Different Main Disorders 

 

 

 

 

 

 

 

 

 

Fig 3.1.2: Coverage of Different Specific Disorders 
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3.1.4 EEG Data Format and Preprocessing 

The EEG data in the data set is kept in a standard format, such as the Neurophysiology 

Data Transfer Standard (NEXUS) or the European Data Format (EDF). Multiple channels that 

correspond to various scalp electrode placements make up each EEG recording. 

EEG data underwent a number of pre-processing processes to enhance quality and identify 

pertinent information before analysis. Filtering to remove noise, artifact suppression to get rid of 

eye blink and muscular artifacts, and down-sampling to simplify computations are common 

preprocessing methods used on raw EEG data. Epochs were also carried out to divide continuous 

EEG data into shorter time frames that corresponded to certain activity circumstances or states of 

rest. 

3.1.5 Annotations and Ground Truth Labels 

The dataset contains annotations and ground truth labels for each participant to aid in the 

categorization and evaluation of mental diseases. These labels represent the presence or absence 

of certain mental diseases that have been identified by clinical professionals in accordance with 

accepted diagnostic criteria (such as the DSM-5). To guarantee correctness and coherence, 

annotations are checked by a large number of professionals. 

 

3.1.6 Data Availability and Usage Restrictions 

The dataset is freely available for research purposes upon request through the OSF repository. 

However, it is important to note that the dataset is subject to certain usage restrictions, as specified 

by the data contributors and outlined in the accompanying documentation. Researchers are 

encouraged to adhere to the ethical guidelines and data usage agreements when utilizing the 

dataset.  

Of all the participants, there were total 601 male contributors and 344 female contributors aging 

between 18 years old to 71 years old.  
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This study was approved by the Institutional Review Board (IRB) (20/16/2019). In line with the 

retrospective study design, the participants' consent was withdrawn [20]. 

 

3.2 Pipeline 

What we did was that we first went for binary classification of the dataset where it would 

detect if a patient were healthy or not. We then multi-classified the main disorder and multi-

classified the specific disorder again. It is done so that the detection procedure becomes easier by 

cross checking the main disorder and specific disorder which would eventually reduce the overall 

error occurrence of the classifier. The used ML algorithms for these cases are RF, LGBM, SVM, 

and XGBRF. The overall pipeline diagram is shown in Fig. 3.2.1. 

 

Fig 3.2.1: Proposed Pipeline 
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3.3 Data Preprocessing 

3.3.1 Label Encoding 

Label encoding is a crucial step in preparing data for machine learning algorithms. In the context 

of detecting mental disorders from EEG data, label coding is used to convert categorical labels 

representing the presence or absence of disorders into numeric values. 

Normalization is a technique to ensure that all data in the database have a similar range. In this 

study, the min-max scaling technique was used to encode the labels. Min-max scaler scales feature 

values within a specified range, typically from 0 to 1.  Min-max Scaler normalization is 

advantageous in high-dimensional data. [21] Min-Max Scaler is a kind of normalization that can 

scale all EEG signal values from 0 to 1. Eq. (1) and Eq. (2) shows how Min-Max Scaler is 

normalized. 

𝑋𝑠𝑡𝑑 =
(𝑋 − 𝑋. 𝑚𝑖𝑛)

(𝑋. 𝑚𝑎𝑥 − 𝑋. 𝑚𝑖𝑛)
 

(5) 

The min-max scaler adjusts the numerical labels' ranges by taking the least value from each label 

and dividing it by the labels' range of values. In order to facilitate subsequent analysis and model 

training, this procedure makes sure that the encoded labels are normalized and lie within the 

desired range. 

The categorical classifications for psychiatric diseases are converted into numerical values 

appropriate for machine learning methods by applying label encoding with the min-max scaler. As 

a result, the algorithms can successfully identify patterns and generate predictions using the 

encoded labels. The resultant normalized encoded labels help in the correct identification of 

psychological conditions from EEG data. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑  =  𝑋𝑠𝑡𝑑  ×  (𝑋. 𝑚𝑎𝑥 −  𝑋. 𝑚𝑖𝑛)  +  𝑋. 𝑚𝑖𝑛                 (6) 
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3.3.2 Up Sampling of Data 

A critical preprocessing step is balancing the data, especially when working with 

unbalanced datasets where the proportion of instances in various classes changes greatly. To make 

sure that the machine learning models are not biased towards the majority class and can accurately 

capture patterns from all classes, dealing with class imbalance is crucial for diagnosing mental 

diseases from EEG data. 

Our dataset was imbalanced. Thus, we had to balance it. In our case we used the Synthetic Minority 

Over-Sampling Technique (SMOTE) function in order to balance our dataset. In order to increase 

the learning algorithm's capacity to predict examples from the minority class, SMOTE was 

developed to artificially create new instances. SMOTE demonstrated statistically improved 

performance on the mammography data as well as on a number of other datasets, establishing the 

groundwork for learning from unbalanced datasets [22]. 

The SMOTE tool creates synthetic instances by analyzing the feature space and extrapolating 

between existing minority class samples. These artificial instances are added, up sampling the 

minority class and increasing its representation in the dataset. By adding this enhancement, the 

issue of class imbalance is lessened, and it is made sure that the machine learning models have 

enough data from all classes to develop and produce reliable predictions. The SMOTE function 

was specifically used in the multi-class classification task to up-sample the minority classes, 

ensuring a more equitable representation of different psychiatric disorders. This is crucial because 

the occurrence of specific psychiatric disorders may be relatively rare compared to the overall 

dataset. SMOTE helps to balance the representation of different disorders by creating synthetic 

samples which gives the models healthier training data. Before up sampling the dataset there were 

945 samples. After excluding HC data, the number of samples became 850. Then using SMOTE 

function, we made sure that each class had equal number of instances. Hence, while going for 

multiclass classification for MAIN Disorder total numbers of samples were 1596.  In the case of 

multiclass classification for SPECIFIC Disorder the total numbers of samples after up-sampling 

were 2189. Because of this, it is more likely that machine learning models developed from 

balanced data will generalize well and accurately identify psychological disorders from EEG 

signals. 
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3.3.3 Feature Extraction 

When utilizing machine learning algorithms to analyze EEG data in order to find 

psychiatric problems, feature extraction is an essential phase. It involves the extraction of the most 

useful information from the raw EEG signals that can successfully distinguish between various 

classes. Two feature extraction techniques were used in this work to extract essential features: 

Sparse Principal Component Analysis (SPCA) and Analysis of Variance (ANOVA). 

For the binary classification task of distinguishing between healthy and unhealthy individuals, only 

the SPCA method was employed. Sparse principal component analysis is an advanced 

mathematical tool for the analysis of high dimensional data [23]. SPCA is beneficial for generating 

localized and interpretable patterns of variability, whereas PCA provides little interpretational 

value [24]. According to empirical findings, sparse PCA did perform as well as PCA in terms of 

precision and accuracy. By focusing on the most valuable characteristics, the dimensionality 

reduction method SPCA finds a sparse representation of the data. Applying SPCA reduces the 

complexity of the EEG data while preserving the important patterns required for the classification 

problem. This method effectively captures the core mechanisms and distinctive traits that separate 

persons with psychiatric issues from those who are healthy. 

During the multi-class classification tasks of identifying the primary disorder in addition to the 

specific disorders, both SPCA and ANOVA were utilized for the purpose of feature extraction. 

The SPCA method was utilized in order to recognize the essential structures within the EEG data, 

whereas the ANOVA method was employed to zero in on the characteristics that significantly 

differentiated one group from another. 

In the context of ML, ANOVA is an analysis of variance. An effective statistical method for testing 

hypotheses and determining the significance of differences between groups or levels of a 

categorical variable is called an ANOVA. ANOVA is a statistical technique that evaluates the 

importance of group differences. ANOVA techniques are extremely useful in practice. Not only 

do contemporary methods offer more power, but they also provide new perspectives on how 

groups of participants differ and by how much [25]. 
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Our dataset was subjected to ANOVA analysis, resulting in the selection of 100 features that 

exhibited the greatest discriminatory power. The aforementioned characteristics were considered 

to be the most significant in discriminating among various psychiatric conditions, thereby 

promoting precise categorization. ANOVA helped to assess the importance of each factor in 

identifying different psychiatric diseases. It discovers characteristics that differ significantly 

between classes, making them very discriminating for categorization. The ANOVA technique aids 

in the selection of the characteristics that are most crucial for differentiating between various 

psychiatric diseases. 

 

3.4 Model Training and Evaluation 

The methodology for detecting psychiatric disorders from EEG data using machine learning 

algorithms involves critical components of model training and evaluation. The present section 

delineates the procedures involved in model training, algorithm selection, and performance 

assessment. 

3.4.1 Cross Validation 

The technique of cross-validation is extensively employed in the field of machine learning 

for the purpose of evaluating the efficiency and capacity of models in terms of performance and 

generalization. The present investigation employed both 5-fold and 10-fold cross-validation 

techniques to enhance the robustness and dependability of the findings. 

In the process of cross-validation, the dataset is partitioned into numerous folds or subsets. The 

machine learning models are trained on a specific subset of the available data, referred to as the 

training set. The performance of these models is then assessed on the remaining portion of the 

data, commonly referred to as the validation or testing set. The aforementioned procedure is 

iterated numerous times, whereby each fold is utilized as the validation set in a sequential manner. 

The attainment of a more comprehensive evaluation of the model's efficacy can be accomplished 

through the computation of the mean value of the outcomes obtained from all the folds. 
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The integration of cross-validation techniques serves as a possible solution to tackle the plausible 

partiality that may arise from a train-test partition, thereby furnishing a more exhaustive 

assessment of the accuracy of the models. Furthermore, it enables the evaluating of the model's 

ability to generalize to new data. 

3.4.2 Model Selection 

This study employed a range of machine learning methodologies to detect and diagnose mental 

disorders through the analysis of EEG data. This study utilizes four ML algorithms, namely RF, 

LGBM, SVM, XGBRF, for the purpose of binary and multi-class classifications. 

The process of model selection enables the evaluation and selection of optimal algorithms based 

on their efficacy and suitability for the given task. Each algorithm has advantages and 

characteristics that make it ideal for particular applications.  

The study aims to tryout various modeling techniques and their effectiveness in detecting mental 

illnesses using EEG data. The achievement of this objective is facilitated through the utilization of 

multiple ML algorithms. This study attempts to identify the algorithms that exhibit the highest 

potential for accurate classification and prospective medical implementations. 

3.4.3 Model Evaluation 

The assessment of model performance is an essential component of model evaluation. This study 

involved an evaluation process that was centered around the confusion matrices and subsequent 

computation of performance metrics derived from those matrices. 

The utilization of confusion matrices in classification scenarios is widely accepted for providing a 

concrete summary of the classification results. This is obtained by showing the number of true 

positives, true negatives, false positives, and false negatives for each class which enables a 

thorough evaluation of the classification performance. The utilization of matrices enables the 

calculation of diverse performance metrics, such as accuracy, precision, recall, and F1 Score. 
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For the confusion matrix for n = 2 where n is the total number of classes, the following definitions 

for each entry: 

a is the number of correct negative predictions.  

b is the number of incorrect positive predictions.  

c is the number of incorrect negative predictions.  

d is the number of correct positive predictions. [26] 

This matrix can be used to determine the classification error and prediction accuracy as follows: 

These performance indicators offer insights into the models' capacity to properly categorize 

occurrences of various psychiatric diseases. They test the accuracy of the models, as well as their 

sensitivity to recognizing positive cases, their specificity in identifying negative instances, and 

their overall balanced performance. 

The ability of the models to detect mental diseases using EEG data may be evaluated by doing an 

analysis of the performance metrics that are obtained from the confusion matrices. This assessment 

method gives significant information on the strengths and limits of the models, which helps in the 

selection of the most accurate and trustworthy algorithms for the work that is at hand. 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

(7) 

          𝐸𝑟𝑟𝑜𝑟 =
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
                       

(8) 
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3.4.4 Hyper-parameter Tuning 

Hyper-parameters are essential components of machine learning models that require 

configuration to modify the model to the specific dataset. A more effective methodology involves 

conducting an impartial exploration of various values for model hyper-parameters and 

subsequently selecting a subset that yields optimal performance of the model on a designated 

dataset.  

In our work we used Scikit-learn Python machine learning library. Using this library Randomize 

Search Cross Validation (RSCV) has been applied. It defines a search space as a bounded domain 

of hyper-parameter values and randomly sample points in that domain. 

 There is another one Grid Search Cross Validation (GSCV). This can be defined as a 

structured arrangement of hyper-parameter values in a grid format, wherein each position in the 

grid is systematically evaluated. The grid search method is a valuable tool for evaluating 

combinations that have a proven track record of high performance. The random search approach 

is advantageous for the purpose of exploration and identifying hyper-parameter configurations that 

may not have been intuitively anticipated, albeit its execution may typically demand a greater 

amount of time.  
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Chapter 4 

Performance Metrics 

 

In the realm of machine learning, performance measures are crucial instruments for 

determining the efficacy of categorization models as well as their level of precision. They give 

quantifiable measurements that indicate how well the models perform in diagnosing psychiatric 

conditions using EEG data. The present chapter is dedicated to the examination of performance 

measurements employed in the current study. These measurements include the Receiver Operating 

Characteristic (ROC) curve, Accuracy, Precision, and Recall Scores, as well as the F1 Score. By 

scrutinizing these metrics, one can acquire valuable insights into the efficacy of the models, their 

ability to effectively classify diverse categories, and their overall predictive proficiency. 

The utilization of performance measures allows for the evaluation of how accurate a prediction 

model is. Accuracy is the metric that is utilized the most frequently in classification processes. 

However, for datasets that are not balanced, the accuracy results are skewed toward the dominant 

group, which might result in significant misinterpretation. [27]. 

When doing non-equilibrium classification tasks, class-specific counters make the process far 

more convenient. These ideas may be communicated more clearly thanks to the confusion matrix, 

which is displayed in Table II. There are two different outcomes that might occur due to the binary 

categorization problem. The answer is False (0) and True (1). 
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Table 4.1 Confusion Table format 

 Predicted 

A
ct

u
a
l 

Categories False (0) True (1) 

False (0) TN FP 

True (1) FN TP 

 

Table 4.2 Performance Parameter and Corresponding Equations 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Name Equation 

Recall 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (9) 

 

F1 Score 
(2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)
 (10) 

 

Accuracy 
(𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 (11) 

 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

 

AUC-ROC 
𝑇𝑃

  (𝑇𝑃 +  𝐹𝑁)
−  

𝐹𝑃 

(𝑇𝑁 +  𝐹𝑃)
 (13) 
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Where, 

TP = True Positive; 

TN = True Negative; 

FP = False Positive; 

FN = False Negative 

Accurate predictions for positive (1) class instances are denoted by the abbreviation TP, and 

accurate predictions for negative (0) class instances are denoted by the abbreviation TN. The 

prediction of negative instances as positive is shown by FP, whereas the prediction of positive 

cases as negative is shown by FN. In this investigation, unusual occurrences are assigned the 

number 1 so as to designate a distinct subgroup. Typical instances are counted as zero and make 

up the majority of the class. These four fundamental concepts serve as the basis for defining the 

major figures used in evaluation. A more vivid understanding of the confusion matrix format is 

presented in table 4.1. 

 

4.1 Accuracy 

The assessment of accuracy is a widely employed metric within the domain of machine learning, 

serving as a key performance indicator. The primary purpose of its application is to assess the 

overall efficacy of a classification model in terms of its accuracy. The present study provides a 

straightforward evaluation of the model's ability to accurately predict class labels. The present 

study examines the calculation of accuracy in classification tasks. Specifically, accuracy is 

operationalized as the ratio of correctly classified instances to the total number of examples in the 

dataset. The conventional representation of this concept involves the utilization of a numerical 

value expressed as a percentage, which is bounded by the values of 0% and 100%, and is 

contingent upon the specific contextual circumstances. A higher accuracy value is indicative of a 

greater number of accurate predictions generated by the model. The accurate identification of 
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psychiatric disorders from electroencephalogram (EEG) data is crucial for assessing the efficacy 

of models in accurately discriminating between healthy and unhealthy individuals. 

The present study examines the advantages of utilizing accuracy as a metric for evaluating 

classification models. Specifically, the study highlights that accuracy is a simple and easily 

interpretable measure that provides a comprehensive assessment of the model's performance. The 

present study offers a concise and easily interpretable metric for assessing the degree of precision 

in predictive models, as represented by the proportion of correct forecasts. An evaluation of the 

model's overall predictive power is provided by accuracy. It measures how well the model can 

categorize instances accurately across all classes. Thus, Accuracy makes it possible to compare 

many models or iterations of the same model. When the classes in the dataset are balanced, or 

when there are an equal number of cases for each class, accuracy performs well. 

However, the majority class of the dataset dominates a model's classification accuracy [28]. When 

working with records that aren't balanced, which means that one class has a lot more cases than 

the others, accuracy may not tell the whole story. When this happens, the model's accuracy can be 

skewed toward the class that makes up the majority. This can make it hard to tell how well the 

model is doing. Another thing to think about with accuracy is that it is based on the idea that the 

importance of all classes is the same. Nevertheless, incorrectly identifying cases as belonging to 

one category can have significantly more severe repercussions in certain contexts than in others. 

 

4.2 Recall 

The probability of correctly identifying a positive test sample or a minority test sample is indicated 

by recall [29]. Recall, sometimes referred to as sensitivity or true positive rate, is a performance 

indicator used to assess a classification model's capacity to find every genuine positive event in a 

dataset. It gives a numerical value to the percentage of accurately anticipated positive cases relative 

to the total number of instances that really are positive.  
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It is possible to calculate the percentage of accurate diagnoses by dividing the total number of 

correct diagnoses by the number of false negatives in addition to the total number of correct 

diagnoses. A greater recall value suggests a lower rate of false negatives and a stronger ability of 

the model to detect positive examples. It can be expressed as a value between 0 and 1, where a 

higher recall value signifies a lower rate of false negatives. A recall value of 1 indicates perfect 

recall, which indicates that all actual positive examples are properly detected by the model. This 

is denoted by the term "perfect recall."  

The performance of a classification model can be better understood through the use of recall, which 

provides numerous significant insights. Recall emphasizes maximizing the detection of true 

positives in order to make sure that positive instances are not missed. It is crucial in situations like 

medical diagnosis or anomaly identification, where skipping over good evidence can have serious 

repercussions. Secondly, Recall measures how thorough or comprehensive a model's predictions 

are. It evaluates the model's capacity to identify all genuine positive instances, hence reducing the 

possibility of false negatives and assuring an improved understanding of the underlying data.  

There is frequently a trade-off between recall and precision. Precision may decline when recall 

increases, and vice versa. Depending on the particular needs and priorities of the application, a 

balance between recall and precision can be achieved. 

Some limitations of Recall are it ignores false positive and Class Imbalance Challenges. Recall 

does not consider false positives (instances incorrectly classified as positive). In some applications, 

false positives may have negative consequences. Therefore, it is necessary to consider recall in 

conjunction with other metrics, such as precision and F1 score, to obtain a comprehensive 

evaluation of the model's performance. Unbalanced datasets can also have an impact on recall. In 

these circumstances, getting good recall becomes difficult since the model can give the majority 

class priority. Reliable recall evaluation requires proper treatment of class imbalance. 
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4.3 Precision 

The term "precision" refers to the proportion of discovered minority that corresponds to 

the correct answers. Due to the fact that it incorporates the findings of both major and small 

samples, the precision is dependent on the order in which the classes are presented [29]. Precision 

measures the percentage of positive cases that were accurately predicted out of all the instances 

that the model classified as positive. Precision is especially helpful in situations like medical 

diagnosis, fraud detection, or spam filtering when minimizing false positives is crucial. 

Precision is determined by dividing the number of true positives (TP) by the total number of true 

positives and false positives (FP). A higher precision value suggests a lower rate of false positives 

and a higher accuracy in forecasting positive instances. It is given as a number between 0 and 1. 

All of the model's successful predictions have a precision value of 1, which denotes flawless 

precision. 

By optimizing precision, the model ensures that positive predictions are reliable and trustworthy, 

minimizing the risk of incorrect decisions based on false positive results. In situations when the 

repercussions of false positives are severe, precision is especially crucial. For instance, in the 

identification of psychiatric disorders, misdiagnosing a healthy person as having a condition may 

result in unneeded interventions or treatments. High precision aids in preserving the integrity of 

judgments made using model predictions. 

Some limitations of Precision are it ignores false negative and its sensitivity to Class Imbalance. 

Precision ignores false negatives (cases that are mistakenly categorized as positive) and only 

concentrates on false positives. False negatives can have serious repercussions in some 

applications, such the detection of life-threatening illnesses. Therefore, accuracy must be taken 

into account together with other measures like recall and F1 score. Unbalanced datasets, in which 

the proportion of positive examples is significantly lower than that of negative instances, can have 

an impact on precision. In these circumstances, even a little variation in false positive predictions 

can have a big influence on precision. Precision must be interpreted in light of class distribution. 
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4.4 F1- Score 

F1-score uses the harmonic mean of the two metrics (precision and recall) of a classifier to 

combine them into a single statistic. The F1-score is used to assess classifications that have a high 

percentage of false positives and false negatives [30]. It offers a fair assessment of a classification 

model by taking both false positives and false negatives into account. 

The F1 score is computed by utilizing the harmonic mean of precision and recall. The metric ranges 

from 0 to 1, where a larger value signifies superior model performance. The F1 score is determined 

by the following formula: 

(2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)
 

(14) 

The F1 score offers several noteworthy revelations regarding the performance of the model. 

Initially, it is noteworthy that the F1 score offers an equitable assessment of the model's efficacy 

by amalgamating precision and recall. Attaining optimal balance involves considering the 

compromise between minimizing the occurrence of false positives, which is precision, and false 

negatives, which is recall. The F1 score is commonly used by practitioners to assess the overall 

effectiveness of a classification model. A model that exhibits high performance in making both 

positive and negative predictions is characterized by a superior F1 score. Professionals can utilize 

this approach to ascertain the optimal equilibrium between recall and precision for a given task. 

The F score metric exhibits limitations in its sensitivity to class imbalance and its applicability to 

specific contexts. Imbalanced datasets have the potential to impact the F1 score. Under certain 

conditions, the F1 score may exhibit a bias towards the majority class, thereby requiring the 

implementation of supplementary methodologies such as data resampling or class weighting. The 

significance of the F1 score may vary depending on the specific application and its associated 

criteria. Under certain conditions, prioritizing precision or recall may supersede the comprehensive 

equilibrium that is encapsulated by the F1 score. A comprehensive comprehension of the specific 

context is necessary for the accurate assessment of the F1 score. 
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4.5 Receiver Operating Characteristics (ROC) 

The Receiver Operating Characteristic (ROC) curve is an indispensable instrument for evaluating 

the efficacy of classification models. The present study examines the relationship between the true 

positive rate (TPR) and the false positive rate (FPR) as a means of evaluating the ability of models 

to differentiate between multiple classes. This analysis is critical for gaining insights into the trade-

off between TPR and FPR and its implications for model performance. 

The generation of the receiver operating characteristic (ROC) curve necessitates the plotting of the 

true positive rate (TPR) against the false positive rate (FPR) at various classification thresholds. 

The True Positive Rate (TPR) is a fundamental metric in binary classification that quantifies the 

proportion of positive instances that are correctly classified by a given model. It is defined as the 

ratio of the number of true positive predictions to the total number of actual positive instances in 

the dataset. The TPR is a crucial performance measure that is widely used in various fields, 

including machine learning, statistics, and medical diagnosis, to evaluate the effectiveness of a 

binary classifier in correctly identifying positive cases. The metric commonly referred to as 

sensitivity or recall is a measure of the ability of a classification model to correctly identify positive 

instances. The false positive rate (FPR) is a metric that denotes the ratio of negative cases that are 

erroneously classified as positive. 

The present study aims to investigate the impact of classification threshold adjustments on the 

model's performance in terms of positive example recognition and negative instance 

misidentification. This allows us to observe how the model performs. This trade-off is graphically 

represented by the ROC curve, in which the FPR is shown along the x-axis and the TPR is shown 

along the y-axis. 

One of the major measures that can be produced with the use of the ROC curve is the area under 

the curve, which is abbreviated as AUC-ROC. The AUC-ROC value can take on any value 

between 0 and 1, with a greater value signifying improved classification accuracy. A score of 0.5 

for the AUC-ROC metric suggests that the classifier could as well be making guesses at random; 

whilst a score of 1 for the AUC-ROC metric shows that it is faultless. 



32 

 

In the context of diagnosing psychiatric problems using EEG data, the ROC curve gives us the 

ability to evaluate the models' ability to discriminate between persons who are healthy and those 

who are not well. In addition to this, it sheds light on how well the models are able to diagnose 

particular psychiatric diseases. We are able to evaluate the sensitivity and specificity of the models 

at a variety of classification thresholds by doing an analysis of the ROC curve. This provides us 

with the ability to make informative choices regarding the classification threshold that is most 

appropriate. However, the ROC curve isn't the only performance indication that has to be 

considered; in order to get a comprehensive understanding of the advantages and disadvantages 

associated with the models, it is necessary to take into consideration other performance measures 

as well. 
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Chapter 5 

Results and Discussion 

5.1 Simulation Outcomes 

Table 5.1.1: Confusion matrix for binary classification (5 fold) 

 

Algorithm 

Predicted 

A
ct

u
a
l 

C
a
te

g
o
ri

es
 

RF LGBM SVM XGBRF 

0 1 0 1 0 1 0 1 

0 172 0 170 0 172 0 171 0 

1 9 8 1 18 17 0 0 18 

 

 

 

Table 5.1.2: Confusion matrix for binary classification (10 fold) 

 

 

Algorithm 

Predicted 

A
ct

u
a
l 

C
a
te

g
o
ri

es
 RF LGBM SVM XGBRF 

0 1 0 1 0 1 0 1 

0 86 0 87 0 89 0 90 0 

1 4 4 0 8 6 0 0 5 
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Table 5.1.3: Comparison between 5 fold and 10 fold 

 

Algorithm 5-fold 10-fold 

RF 85.42 86.06 

LGBM 85.15 85.33 

SVM 87.52 88.21 

XGBRF 70.53 69.93 

 

 

 

 

 

 

 

Table 5.1.4: Confusion matrix for MCC (5 fold) 

 
 

A
ct

u
a

l 

C
a
te

g
o

ri
es

 

Algorithm 

Predicted 

RF LGBM SVM XGBRF 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

0 49 1 4 0 2 1 49 0 6 1 1 0 44 2 6 2 1 0 39 3 0 1 2 2 

1 0 46 6 1 2 2 0 47 6 1 3 0 0 45 3 0 1 0 0 42 3 2 10 1 

2 5 7 28 5 6 7 0 8 29 3 8 10 2 19 15 1 6 5 2 14 24 5 8 6 

3 0 0 1 50 1 0 0 0 1 51 0 0 0 0 0 58 0 0 0 1 1 45 1 0 

4 0 0 1 0 42 1 0 1 4 1 38 0 1 4 3 0 52 0 0 4 2 1 41 9 

5 2 1 2 0 4 42 0 1 5 0 2 43 1 1 5 0 3 39 1 3 4 1 6 35 
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Table 5.1.5: Confusion matrix for MCC after SMOTE and SPCA (5 fold) 

 

 

 
 

 

The above tables depict the confusion matrices for binary classification and MCC for main and 

specific disorders. The table 5.1.3 shows the comparison between 5-fold and 10-fold cross 

validation and it was observed that the change was not that significant when it was compared 

against the time and computing power utilized.  
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Algorithm 

Predicted 

RF LGBM SVM XGBRF 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

0 39 4 8 0 0 1 36 0 8 1 2 1 37 2 4 2 2 0 41 1 1 2 2 0 

1 0 46 3 0 0 2 0 52 4 0 6 0 1 52 0 0 0 0 1 44 2 2 4 0 

2 6 7 20 3 8 1 2 2 35 0 4 4 6 7 26 1 3 9 3 11 17 4 10 7 

3 0 0 0 53 0 0 0 0 1 60 0 0 0 0 0 56 0 0 1 4 2 49 0 0 

4 0 3 6 0 51 1 0 0 3 0 45 1 0 0 4 0 40 0 0 5 1 2 35 1 

5 1 0 10 0 0 46 0 0 10 0 2 41 6 1 8 0 0 52 3 3 7 3 6 45 
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Table 5.1.6: Confusion Matrix for Specific Disorder using SPCA in case of SVM 

 

 

Predicted 

A
ct

u
a

l 
 

C
a

te
g
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es
 

0 1 2 3 4 5 6 7 8 9 10 

0 51 0 0 0 0 0 0 0 0 0 0 

1 0 44 0 0 0 1 0 0 0 0 0 

2 0 1 44 0 0 3 0 0 0 1 1 

3 0 0 0 33 0 1 0 0 0 0 0 

4 0 0 0 0 28 1 0 0 0 0 0 

5 0 1 0 2 4 9 5 3 1 6 2 

6 0 0 0 0 0 0 43 0 0 0 0 

7 0 0 0 0 0 1 0 31 0 0 0 

8 0 0 1 0 0 1 0 0 32 0 0 

9 0 0 2 0 2 5 0 0 0 37 0 

10 0 0 0 0 0 0 0 0 0 0 41 
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Table 5.1.7: Confusion Matrix for Specific Disorder using ANOVA in case of SVM 

 

Predicted 

A
ct

u
a
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C
a

te
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0 1 2 3 4 5 6 7 8 9 10 

0 51 0 0 0 0 0 0 0 0 0 0 

1 0 43 0 0 0 2 0 0 0 0 0 

2 2 1 39 0 0 6 0 0 1 1 0 

3 0 0 1 33 0 0 0 0 0 0 0 

4 0 0 0 0 29 0 0 0 0 0 0 

5 2 1 2 2 2 8 2 4 2 5 3 

6 0 0 0 0 1 3 39 0 0 0 0 

7 0 0 0 0 1 0 0 31 0 0 0 

8 0 0 1 0 0 0 0 0 33 0 0 

9 0 0 2 1 3 6 0 1 0 32 1 

10 0 0 0 0 0 0 0 0 0 0 41 
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5.2 Results 

 

Table 5.2.1: Binary Class Classification Performance Metrics 

 

Performance Metrics 

Algorithm ROC 
Accuracy 

(%) 
Precision Recall F1 Score 

RF 0.66 93.12 0.93 0.93 0.91 

LGBM 0.98 99.47 0.99 0.99 0.99 

SVM 0.49 89.84 0.80 0.89 0.85 

XGBRF 0.97 99.25 0.99 0.99 0.99 

 

 

 

 

Table 5.2.2: Performance Metrics of Main Disorders Using SPARSE PCA 

 

Performance Metrics 

Algorithm ROC 
Accuracy 

(%) 
Precision Recall F1 Score 

RF 0.94 78.01 0.78 0.78 0.77 

LGBM 0.96 80.69 0.82 0.81 0.81 

SVM 0.95 79.57 0.79 0.80 0.79 

XGBRF 0.91 68.98 0.69 0.69 0.68 
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Table 5.2.3: Performance Metrics of Main Disorders Using ANOVA 

 

 

Performance Metrics 

Algorithm ROC 
Accuracy 

(%) 
Precision Recall F1 Score 

RF 0.95 77.31 0.77 0.77 0.77 

LGBM 0.96 78.94 0.80 0.79 0.79 

SVM 0.92 77.01 0.76 0.77 0.76 

XGBRF 0.91 68.98 0.70 0.79 0.68 

 

 

 

 

Table 5.2.4: Performance Metrics of Specific Disorders Using SPARSE PCA 

 

Performance Metrics 

Algorithm ROC 
Accuracy 

(%) 
Precision Recall F1 Score 

RF 0.97 85.42 0.83 0.85 0.83 

LGBM 0.98 85.15 0.85 0.85 0.85 

SVM 0.98 87.52 0.87 0.88 0.87 

XGBRF 0.93 70.53 0.70 0.71 0.69 
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Table 5.2.5: Performance Metrics of Specific Disorders Using ANOVA 

 

 

Performance Metrics 

Algorithm ROC 
Accuracy 

(%) 
Precision Recall F1 Score 

RF 0.97 83.46 0.83 0.83 0.82 

LGBM 0.98 84.10 0.84 0.84 0.84 

SVM 0.97 85.01 0.84 0.85 0.84 

XGBRF 0.93 69.07 0.69 0.69 0.68 

 

 

In the above tables 5.2.1-5.2.5, different performance metrics has been tabulated for binary 

classification and multiclass classification by using feature extracting and feature selecting 

methods for both the main and specific disorders. It can be seen that in case of binary classification, 

LGBM gave the highest accuracy of 99.47%. Surprisingly, LGBM showed its capability when it 

comes to multiclass classifications of the main disorders. For main disorders, the highest 

performance was obtained from LGBM with an accuracy of 80.69% using SPCA. On the other 

hand, for specific disorders, SVM showed the highest accuracy of 87.52% when it used SPCA as 

well. Throughout the whole runs, SPCA provided better results compared to ANOVA.  
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5.3 Comparative Analysis 

 

Table 5.3.1: Comparison with Relevant Works 

 

Reference Algorithm Accuracy Recall F1-Score ROC 

[4] RF 90.16 0.97 0.91 - 

[10] SVM 87.59 - - - 

[31] LDA 87.00 - 0.85 0.92 

[10] RF 86.16 - - - 

This Study SVM 87.52 0.88 0.87 0.98 

 

When compared to the results of relevant works, the accuracy of this study is highly comparable 

and competitive. Even though the referenced studies were not completely in line with the principles 

of this study, these were the closest we could find and the metrics are compared above in table 

5.3.1. 
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5.4 Feature Importance 

 

 

 

 

 

 

 

Fig 5.4.1: Important Features for Main Disorders 

 

 

 

 

 

 

 

Fig 5.4.2: Important Features for Specific Disorders 

In the chosen dataset, the total number of features is 1145. Of them, by using feature 

selection, 100 features were selected and the feature that was carrying the highest significance or 

weight was gender/ sex. It was observed that compared to the other features (received brain wave 

signals), sex had a higher determining factor when it came to classifying the entire subjects’ list. 
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Chapter 6 

Potential Future Development 

This study has come up with a lot of conclusive results and directions. Rather than closing the 

chapter, it has opened the path for the future so that the concept can be implemented for even more 

advanced and prompt detection of psychiatric disorders. The overall blueprint for the future can 

be observed from fig 6.1 as we move forward.  

 

 

Fig 6.1: Overview of Future Development 
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6.1 Gender Specific Classification 

The feature importance analysis reveals that gender holds greater significance; thus, future 

research could concentrate on establishing classification models that are specific to gender. We 

can identify distinctive patterns and traits that may affect the development and diagnosis of 

psychiatric disorders by taking gender into account as a differentiating factor. The implementation 

of a customized approach has the potential to result in enhanced precision and personalized 

medical care. 

6.2 Application with Different Datasets or Merging 

Multiple Datasets 

The expansion of the application of proposed models and techniques to diverse datasets is 

an essential area for future research. This can involve analyzing EEG data from diverse 

populations, cultural backgrounds, or specific psychiatric disorders. Moreover, the integration of 

multiple datasets can yield a broader and more standard sample, resulting in reliable and useful 

findings. 

 

6.3 Implementation of Deep Learning 

The utilization of hybrid algorithms has been found to improve performance and robustness 

in machine learning. This is achieved through the combination of multiple algorithms. Subsequent 

studies may investigate the utilization of hybrid algorithms that incorporate the advantageous 

features of diverse methodologies, such as ensemble techniques or hybrid deep learning 

architectures. 
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6.4 Age-Specific Classification 

The categorization of psychiatric disorders based on age is a critical factor to consider as 

it influences their symptoms and identification. Further study endeavors may concentrate on 

developing classification models that are specific to different age groups, to accommodate the 

distinct attributes and developmental modifications that are present within each group. The 

precision and applicability of our findings in diagnosing and treating psychiatric disorders can be 

enhanced by customizing classification algorithms to different age groups. 

 

 

6.5 Efficiency Improvement 

Although our research has yielded encouraging outcomes, there exists potential for further 

optimization of the suggested algorithms to improve their efficiency. Further study endeavors may 

investigate methodologies aimed at mitigating computational complexity, augmenting real-time 

processing capabilities, and enhancing the scalability of the models. The proposed approach aims 

to facilitate the integration of machine learning-based classification of psychiatric disorders into 

clinical practice, thereby enabling a seamless and efficient adoption of this technology. 

 

6.6 Implementation of More Hybrid Algorithms 

The utilization of hybrid algorithms has been found to improve performance and robustness 

in machine learning. This is achieved through the combination of multiple algorithms. Subsequent 

studies may investigate the utilization of hybrid algorithms that incorporate the advantageous 

features of diverse methodologies, such as ensemble techniques or hybrid deep learning 

architectures. 
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Chapter 7 

Conclusion 

Analysis of Psychiatric Disorders from EEG Signals Using Machine Learning Techniques 

holds immense potential in revolutionizing the field of mental health diagnosis and treatment. 

Through the utilization of machine learning, we have conducted an evaluation, and enhancement 

of the efficacy of diverse ML algorithms to achieve precise identification of anomalies in EEG-

based psychiatric disorder classification. 

The significance of EEG signals in comprehending the intricacies of psychiatric disorders cannot 

be overemphasized. Analogous to the way industrial control systems acquire data from sensors to 

ensure coherence within an industrial setting, EEG signals constitute a valuable data source for 

capturing neural activity and cognitive processes. This study aimed to measure the effectiveness 

of machine learning algorithms in a unique context characterized by the absence of temporal 

similarities, which proved to be a challenge for the detection of abnormalities. 

This research approach undertook an investigation into the efficacy of binary and multi-class 

classification techniques for psychiatric disorders. The study's findings provided a comprehensive 

understanding of the distinctive characteristics of these methods and the challenges that must be 

overcome to achieve accurate diagnoses. This research employed various machine learning 

algorithms, namely SVM, RF, LGBM, and XGBRF, to accurately classify both general and 

specific PDs. The present study reports on the findings of a series of experiments and performance 

evaluations aimed at evaluating the efficacy of ML techniques in improving the overall diagnostic 

process. Our results indicate that these techniques hold significant promise in terms of enhancing 

classification accuracy, thereby suggesting their potential utility in clinical settings. The present 

study demonstrates the efficacy of employing sophisticated feature engineering techniques, 

namely SMOTE and SPCA, in addressing the issue of class imbalance and dimensionality 

reduction respectively. A higher performance was achieved by using these unique algorithms. The 

implications of the research possess a wide-ranging purview. The identification of aberrations by 
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medical professionals and scholars can result in vital intervention, providing improved diagnosis, 

fine-tuned therapeutic approaches, and ultimately advanced patient prognoses.  

The study comes with its inherent limitations. The research highlights the value of high quality 

EEG data and emphasizes the necessity for additional investigation into the adaptability of ML 

models within the domain of PDs. The outcome containing all the demographics in a single bubble 

should be of utmost importance. 
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