
A Comprehensive approach to the detection of Liver disease using

Machine Learning Techniques with comparison of different

Oversampling Techniques on Imbalanced Liver Disease Dataset

by

Mir Samsul Arefin – 180021209

Chowdhury Sadeeya Naimah – 180021219

Rayeed Rahman – 180021238

A Thesis Submitted to the Academic Faculty in Partial Fulfillment of the Requirements

for the Degree of

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC

ENGINEERING

Department of Electrical and Electronic Engineering

Islamic University of Technology (IUT)

The Organization of Islamic Cooperation (OIC)

Board Bazar, Gazipur-1704, Bangladesh

May 2023

i

CERTIFICATE OF APPROVAL

The thesis titled “A Comprehensive approach to the detection of Liver disease using Machine

Learning Techniques with comparison of different Oversampling Techniques on Imbalanced Liver

Disease Dataset” submitted by Mir Samsul Arefin (180021209), Chowdhury Sadeeya Naimah

(180021219), and Rayeed Rahman (180021238) has been found as satisfactory and accepted as

partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical and

Electronic Engineering on May 2023.

Approved by:

--

(Signature of the Supervisor)

Mirza Muntasir Nishat

Assistant Professor

Department of Electrical and Electronic Engineering

Islamic University of Technology

ii

DECLARATION OF CANDIDATES

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for award

of any degree or diploma.

--

(Signature of the Candidate)

Mir Samsul Arefin

Student ID: 180021209

--

(Signature of the Candidate)

Chowdhury Sadeeya Naimah

Student ID: 180021219

--

(Signature of the Candidate)

Rayeed Rahman

Student ID: 180021238

iii

DEDICATION

We would like to dedicate this thesis to our family members and everyone who has given us

unwearied support throughout the entirety of our existence and every situation of our life. They

have always been a source of motivation for us. They pushed us ahead and showed us how to make

the correct decisions. They never fail to inspire us to work hard and move forward to overcome

life's difficulties. They have provided us with the protection, wisdom, and fortitude we need to

face difficult situations.

iv

ACKNOWLEDGEMENTS

First, we would want to express our heartfelt gratitude to Almighty Allah, our Creator, for creating

and instilling in us the intellect to educate ourselves with worldly knowledge and, therefore,

complete our thesis research. Prof. Dr. Md. Ashraful Hoque, Professor, Department of EEE, IUT,

is our respected supervisor. We owe him a debt of gratitude for his continuous advice, care, and

support in our pursuit of a career in electrical and electronic engineering. He has always

encouraged us to learn new things and broaden our horizons to keep our minds sharp. We would

not be exploring the power electronics area if it were not for his motivation. He has encouraged us

to learn the fundamentals of the specific field and shown us how to proceed in the right direction

Mr. Mirza Muntasir Nishat, Assistant Professor, Department of EEE, IUT, is our co-supervisor,

and we are grateful for his constant mentoring and genuine efforts in our thesis research. He

devoted his considerable time guiding and motivating us to finish the work. We conducted a study

and collected numerous informative analyses under his leadership to get positive results.

Moreover, he gave us the most efficient technique to better understand our research. Without his

help, we would become lost and unable to pick the best course of action.

Mr. Fahim Faisal, Assistant Professor, Department of EEE, IUT, served as our co-supervisor and

mentored us throughout the research process. He has always been encouraging and motivating us

to complete our work correctly. In addition, he has motivated us to study the primary goal of our

project, which has given us greater confidence in our ability to build skills while working on the

thesis.

Finally, we owe a debt of gratitude to our family for encouraging and assisting us in overcoming

life's challenges, as well as enchanting us with their wonderful words. Last but not least, we would

like to express our gratitude to our friends for their unconditional support and for keeping our

spirits upbeat throughout this journey.

v

ABSTRACT

The liver is one of the most important organs in the body. It is responsible for controlling the

chemical balance of the bloodstream as well as the removal of waste products among other vital

functions. Liver disease is important to be diagnosed early on as symptoms do not begin to show

until most of the liver is already damaged. Machine learning could be a crucial tool in the

prediction of liver disease in patients which could lead to early diagnosis and also early treatment.

In this study a dataset with 583 instances has been pre-processed and the imbalance had been

handled in 5 separate ways, namely, Synthetic Minority Oversampling Technique (SMOTE),

Adaptive Synthetic (ADASYN), Synthetic Minority Oversampling Technique and Conformal

Clustering (CC), Synthetic Minority Oversampling Technique and Tomeklinks and Synthetic

Minority Oversampling Technique and edited nearest neighbor (SMOTE+ENN). Then various

machine learning algorithms like Decision Tree Classifier, Logistic Regression, Gaussian Naïve

Bayes, Random Forest Classifier, K-Nearest Neighbors, and Support Vector Machine algorithms

etc has been used. The experiment gave the best result when SMOTE+ENN was used as the

imbalance handling technique with an accuracy of 98.37%. This accuracy was found using the

support vector machine (SVM) approach. Therefore, this study shows the comparative analysis of

the different imbalance handling techniques and the one which performs the best among each of

these. It presents SMOTE+ENN as the best in case of this specific dataset.

vi

Table of Contents

CERTIFICATE OF APPROVAL ... i

DECLARATION OF CANDIDATES .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT .. v

LIST OF TABLES ... viii

LIST OF FIGURES .. x

LIST OF ACRONYMS .. xi

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statement ... 2

1.3 Thesis Organization ... 3

CHAPTER 2 .. 4

Background Study ... 4

CHAPTER 3 .. 6

Methodology ... 6

3.1 Data Collection .. 6

3.1.1 Data Source: ... 6

3.1.2 Data Structure: ... 7

3.1.3 Data Features: .. 8

3.1.4 Data Preprocessing: ... 9

3.1.4.1 Cleaning Duplicate Data: ... 9

3.1.4.2 Handling Missing Data: ... 9

3.1.4.3 Data Encoding: .. 10

3.1.4.4 Transforming Skew Data: .. 10

3.2 Feature Selection: ... 14

3.3 Scaling: .. 15

3.3.1 Min-Max Scaling: .. 16

3.3.2 Standard Scaling: .. 18

vii

3.4 Handling Imbalanced Data: ... 19

3.4.1 SMOTE: ... 21

3.4.2 ADASYN: ... 23

3.4.3: SMOTE + TOMEKLINKS .. 25

3.4.4 SMOTE+Cluster Centrioids ... 30

3.4.5 SMOTE+ENN (Edited Nearest Network) .. 33

CHAPTER 4 .. 37

Results ... 37

4.1 Before Imbalance Handling ... 41

4.2 After Imbalance Handling ... 42

4.2.1 SMOTE: ... 42

4.2.2 ADASYN: ... 43

4.2.3 SMOTE + CC .. 44

4.2.4 SMOTE + TOMEKLINKS ... 46

4.2.5 SMOTE + ENN ... 47

4.3 Hyperparameter Tuning .. 48

4.3.1 SMOTE: ... 49

4.3.2 ADASYN .. 50

4.3.3 SMOTE+CC: .. 51

4.3.4 SMOTE+TOMEKLINKS ... 52

4.3.5 SMOTE + ENN ... 53

CHAPTER 5 .. 54

Discussion.. 54

CHAPTER 6 .. 60

Limitations .. 60

CHAPTER 7 .. 61

CONCLUSION AND FUTURE WORKS ... 61

References .. 62

viii

LIST OF TABLES

No. Title Page No.

3.1 Statistical information of the attributes

4.1 Performance of Machine learning and Deep learning models before

Imbalance handling

4.2 Results after SMOTE applied to dataset

4.3 Result after ADASYN applied to dataset

4.4 Result after SMOTE + CC applied to dataset

4.5 Result after SMOTE + TOMEKLINKS applied to dataset

4.6 Result after SMOTE + ENN applied to dataset

4.7 Performance Comparison of Machine Learning Algorithms with SMOTE

and GridSearchCV

4.8 Performance Comparison of Machine Learning Algorithms with SMOTE

and RandomizedsearchCV

4.9 Performance Comparison of Machine Learning Algorithms with ADASYN

and GridSearchCV

4.10

Performance Comparison of Machine Learning Algorithms with ADASYN and

RandomizedSearchCV

4.11 Performance Comparison of Machine Learning Algorithms with

SMOTE+CC and GridSearchCV

4.12 Performance Comparison of Machine Learning Algorithms with

SMOTE+CC and RandomizedSearchCV

4.13 Performance Comparison of Machine Learning Algorithms with SMOTE +

TOMEKLINKS and GridSearchCV

4.14 Performance Comparison of Machine Learning Algorithms with SMOTE +

TOMEKLINKS and RandomizedSearchCV

4.15 Performance Comparison of Machine Learning Algorithms with

SMOTE+ENN and GridSearchCV

ix

4.16 Performance Comparison of Machine Learning Algorithms with

SMOTE+ENN and RandomizedSearchCV

x

LIST OF FIGURES

No. Title Page No.

3.1 Histogram for Age with Disease

3.2 Observing skewness before and after transformation

3.3 Correlation heatmap of attributes

3.4 Before and after Min-Max Scaling

3.5 Before and after Standard Scaling

3.6 Example of balanced and imbalanced data

3.7 Before, during and after applying SMOTE to a dataset

3.8 Before and after ADASYN applied to a dataset

3.9 a) Original Dataset b) Finding Tomeklinks c) Resampled Dataset

3.10 Original dataset (left) and Dataset ofter smote+Tomeklinks (right) has been

applied

3.11 Example of centroid locations before (left) and after (right) one k-means

iteration. K-means moves the centroids towards the actual cluster centers

3.12 Samples simulation plot after the SMOTE-ENN sampled

4.1 Structure of a confusion matrix

4.2 Comparative figures of all the performance parameter (accuracy, precision,

recall and f1 score) for each machine learning algorithm with each

imbalance handling technique applied

xi

LIST OF ACRONYMS

Abbreviated Form Description

SMOTE Synthetic Minority Over-sampling Technique

ADASYN Adaptive Synthetic

CC Cluster Centroid

ENN Edited Nearest Neighbor

ML Machine Learning

DL Deep Learning

KNN k-nearest neighbors algorithm

ANN Artificial Neural Network

SMOTE + NC Synthetic Minority Over-sampling Technique for Nominal

and Continuous

XGBoost Extreme Gradient Boosting

AdaBoost Adaptive Boosting

RF Random Forest

SVM Support Vector Machines

ILDP Indian Liver Patient Dataset

LSTM

CV

Long Short-Term Memory Networks

Cross Validation

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The advancement of science and technology naturally raises the standard of living of human

beings. This applies to every aspect of life including, but not limited to, food and nutrition,

transport, communication, healthcare etc. In the domain of human healthcare, one of the most

important organs to take note of is the liver. The liver, which also excretes bile, controls most

of the chemical levels of the bloodstream. This helps the liver remove waste products [1]. Any

of the wide array of conditions which may cause damage to the liver is labelled as “liver

disease”. Cirrhosis (scarring) can develop over time due to liver disease and without treatment

more and more healthy tissue will be replaced with scar tissue which can prevent the liver from

working as it should. Liver failure and liver cancer may result from untreated liver disease [2].

The likelihood of a person getting inflicted with liver disease depends on risk factors like

alcohol consumption, obesity, diabetes, and hepatitis B and C virus infections. It becomes

arduous to get a diagnosis of liver disease early on as the liver still functions without much

symptoms even if some parts of it is damaged [3]. Therefore, a significant number of people

die annually due to liver disease. Cirrhosis, as well as chronic liver disease, is responsible for

around two million lives being lost each year throughout the world [4], and the modern lifestyle

which includes desk jobs, increased alcohol consumption and smoking aids in the risk of liver

disease. In the fight against liver disease, to give the affected a better chance of survival, it is

crucial to diagnose the liver disease at the early stages [5].

In recent times, machine learning has been a powerful tool to analyze, evaluate and predict

various medical conditions [6]. With a big enough dataset with varied parameters, machine

learning and deep learning algorithms can find out, to a significant degree of accuracy, the

relation between different symptoms to the possibility of having liver disease [7].

In Bangladesh, there is a doctor to patient ratio of 5.26 to 10,000 [8]. Therefore, this could

prove to be a difference maker in third world countries like Bangladesh where there is a deficit

of healthcare professionals.

2

1.2 Problem Statement

Liver diseases pose significant health challenges worldwide, affecting millions of individuals

and leading to substantial morbidity and mortality rates [9]. Early and accurate detection of

liver diseases plays a crucial role in improving patient outcomes, as timely intervention and

treatment can prevent disease progression and associated complications [10]. However,

conventional diagnostic approaches for liver diseases often rely on invasive procedures and

expert interpretation, leading to potential delays, subjectivity, and resource limitations.

In recent years, machine learning techniques have demonstrated remarkable potential in

various medical applications, including disease diagnosis and prediction. Leveraging the power

of machine learning algorithms, particularly in the field of liver disease detection, has the

potential to significantly enhance diagnostic accuracy and efficiency, thereby revolutionizing

clinical practice.

Despite the promise of machine learning in liver disease detection, several challenges need to

be addressed to ensure its successful implementation. Firstly, the availability of large-scale,

diverse, and well-annotated datasets of liver disease cases is essential for training robust

machine learning models. However, the scarcity of such datasets and the need for ensuring data

quality and representativeness hinder the development of accurate and reliable models.

Secondly, the interpretability and explainability of machine learning models used for liver

disease detection are crucial for clinical acceptance and trust. Physicians and healthcare

professionals require transparency in the decision-making process to understand the reasoning

behind the predictions made by these models and to ensure the integration of their expertise

into the diagnostic workflow.

Furthermore, the integration of machine learning models into existing healthcare systems and

workflows poses logistical challenges, including the need for seamless integration, scalability,

and interoperability [11]. Overcoming these challenges is essential to facilitate the practical

implementation and adoption of machine learning-guided liver disease detection in real-world

clinical settings.

Therefore, this thesis aims to address the aforementioned challenges and contribute to the

advancement of machine learning-guided liver disease detection. The research will focus on

developing accurate and interpretable machine learning models by leveraging diverse and well-

annotated liver disease datasets

3

By successfully addressing these challenges, this research endeavors to enhance diagnostic

accuracy and efficiency in liver disease detection, leading to improved patient outcomes,

reduced healthcare costs, and a significant advancement in the field of medical diagnostics.

1.3 Thesis Organization

This thesis focuses on using machine learning algorithms on a liver disease dataset to gain a

high accuracy in the prediction of liver disease in a patient. This is done following the pre-

processing of the dataset using various methods.

✓ In chapter 2, the literature review or background study is given where the research

works done in this domain is reviewed.

✓ In Chapter 3, the methodology has been discussed which includes details about the

data, where it has been sourced from and how it is structured. The processing

techniques used have been mentioned in this section which includes the imbalance

handling techniques used. This section also holds the different machine learning

algorithms which were used.

✓ In chapter 4, the results which were found after the different algorithms were are

discussed. This involves the results before and after handling imbalance and also after

cross validation is performed.

✓ In Chapter 5, the results are discussed in detail. The different algorithms and imbalance

handling techniques are compared to find the best performing one.

✓ In Chapter 6, the limitation of this study is given.

✓ In Chapter 7, the conclusion of the thesis is included, including a quick review of the

findings and some recommendations for further research.

4

CHAPTER 2

Background Study

As time progresses so do the tools which assist in the workloads of human beings. Machine

learning is rapidly becoming one of these tools which is aiding the world of disease prediction.

Various research has been done on the utilization of machine learning techniques to find liver

disease in recent years. The health industry has experienced a spike in the creation of

applications as machine learning has grown in popularity in recent years [12]. Several studies

have been conducted in the domain of liver disease detection using machine learning

algorithms. For instance, Ritesh Choudhary et al. used Logistic Regression, Support Vector

Classifier, Naïve Bayes, Random Forest, and Gradient Boosting algorithms to diagnose liver

disease and predict risk [1]. The study found that Logistic Regression achieved the best result

with an accuracy of 71%. Similarly, Elias Dritsas et al. proposed voting as their model of choice

and used SMOTE as their imbalance handling technique, achieving an accuracy of 80.1% [13].

Shuwei Weng et al. used SMOTE-NC and 10-fold cross-validation, performing eight different

machine learning algorithms on a liver disease dataset for the Chinese population [14]. They

found XGBoost to be the best predictor among all tested methods with an accuracy of 89.7%.

Other studies also compared multiple algorithms, such as Srilatha Tokala et al., who found

Random Forest to perform the best with an accuracy of 87% [15]. Hong-Ye Peng et al.

developed and validated five machine learning models for NAFLD (Non-alcoholic fatty liver

disease), among which XGBoost demonstrated the best performance with an accuracy of 0.89

[16]. Furthermore, some studies explored multiple algorithms and found that Random Forest,

Light GB, and AdaBoosting algorithm gave better results, such as Ketan Gupta et al.'s analysis

of liver disease [17]. Bendi Venkata Ramana et al. used ten popular classification algorithms

with a combination of four feature selection methods [18], while Xieyi Pei et al. used SMOTE

as their imbalance handling technique and found XGBoost to have a better prediction of Fatty

Liver disease among individuals with minimal variables [19]. A.Sivasangari et al. analyzed the

liver disease dataset and found SVM to have the highest accuracy of 95.18% [20]. Shamima

Akter et al. also analyzed liver disease data and found Random Forest and CART to have 94%

and 95% accuracy, respectively [21]. Maria Alex Kuzhippallil et al. used feature selection and

outlier elimination, finding that all 10 machine learning algorithms' accuracies improved, with

5

Random Forest having the highest accuracy of 88% [22]. Mohammad Fathi et al. presented

their analysis on two different datasets using SVM for the classification of liver disease,

achieving an accuracy of 90.9% and 92.2% for the ILDP and BUPA datasets, respectively [23].

6

CHAPTER 3

Methodology

3.1 Data Collection

Before machine learning (ML) can be effectively applied, the process of data collection plays

a pivotal role. Data serves as the lifeblood for ML algorithms, providing the necessary

information for them to learn and make accurate predictions or decisions. The quality, quantity,

and diversity of the collected data directly impact the performance and reliability of ML

models. By amassing a substantial and diverse dataset, researchers and practitioners can ensure

that the models are trained on a wide range of scenarios, enabling them to generalize and handle

various real-world situations. Furthermore, comprehensive data collection allows for the

identification of patterns, correlations, and insights that might otherwise remain hidden. Thus,

data collection serves as the foundation upon which ML algorithms are built, allowing them to

extract valuable knowledge and deliver meaningful results.

3.1.1 Data Source:

The "Indian Liver Patient Records" dataset used in this research was graciously provided by

Dr. S. Sridhar, Dr. Bevera Lakshmana Rao, K. Ravi Kanth, and B. Sai Prasad [24]. Initially,

the dataset was utilized for a comparative analysis of liver patients from the United States and

India, conducted by these esteemed researchers [25]. The study aimed to explore and compare

various aspects of liver diseases, such as prevalence, risk factors, and treatment outcomes,

between the two countries. Subsequently, recognizing its value for the broader scientific

community, the dataset was made publicly available. This decision allowed researchers

worldwide to access and utilize the dataset for further investigations and advancements in liver

disease research.

7

3.1.2 Data Structure:

The "Indian Liver Patient Records" dataset is structured as a single CSV file, presenting a well-

organized format for analysis. It contains 583 records from the North East region of Andhra

Pradesh, India, comprising 416 liver patient records and 167 non-liver patient records. Each

row represents a patient's comprehensive medical information, while the columns capture

different attributes and features relevant to liver disease. The dataset's tabular structure allows

for efficient organization and enables researchers to explore correlations between various

features and the occurrence of liver disease. The dataset includes a "Dataset" column serving

as the class label, distinguishing liver patients from non-liver patients. Additionally, it consists

of 441 male patient records and 142 female patient records. Notably, for privacy protection,

any patient aged over 89 is labeled as "90". This dataset provides valuable insights into liver

disease patterns in the specified region, making it an essential resource for researchers studying

liver diseases and their associated factors in this population.

Sl No. Attribute Name Max Mean Min Standard

Deviation

1 Age 90 44.75 4 16.18

2 Total Bilirubin 75 3.298 0.4 6.209

3 Direct Bilirubin 19.7 1.486 0.1 2.8

4 Alkaline Phosphotase 2110 290.57 63 242.93

5 Alamine Aminotransferase 2000 80.71 10 182.62

6 Aspartate Aminotransferase 4929 109.91 10 288.91

7 Total Protiens 9.6 6.48 2.7 1.08

8 Albumin 5.5 3.14 0.9 0.795

9 Albumin and Globulin Ratio 2.8 0.94 0.3 0.3195

10 Datasetc(target) 2 1.286 1 0.452

Table 3.1: statistical information of the attributes

During our preliminary investigation, we discovered that the dataset contained a minimal

number of duplicated entries, with only 13 instances of duplicated data. Additionally, we

8

identified that there were four missing values specifically related to the Albumin and Globulin

Ratio feature.

Fig 3.1: Histogram for Age with Disease

3.1.3 Data Features:

The features in the "Indian Liver Patient Records" dataset play a crucial role in identifying and

understanding liver diseases. Age, as an important feature, provides insights into the patient's

age group, which can be a significant factor in determining the susceptibility to liver diseases.

Liver diseases often exhibit age-related patterns, and certain conditions may be more prevalent

in specific age ranges [26]. Gender, another feature, is significant because liver diseases can

exhibit gender-specific variations [27]. By considering the gender of the patient, researchers

can analyze and identify potential disparities or trends in the occurrence and progression of

liver diseases between male and female populations. Biochemical markers such as Total

Bilirubin (TB), Direct Bilirubin (DB), Alkaline Phosphotase (Alkphos), Alamine

Aminotransferase (Sgpt), and Aspartate Aminotransferase (Sgot) provide critical information

about liver function and damage. Elevated levels of these markers can indicate liver

dysfunction and help in the diagnosis and monitoring of liver diseases. Total Proteins (TP),

Albumin (ALB), and the Albumin and Globulin Ratio (A/G Ratio) are essential indicators of

liver health. Abnormal levels of these proteins can signify liver disorders, as they reflect the

9

liver's synthetic and detoxification functions. A decrease in albumin levels and alterations in

the A/G ratio can point towards liver disease progression. The Selector feature, used to split

the data into liver disease and non-liver disease groups, is crucial in building predictive models

and evaluating the performance of algorithms. By categorizing patients based on expert

opinions, researchers can train models to accurately identify liver disease cases. Overall, these

features collectively provide valuable information for the identification, diagnosis, and

monitoring of liver diseases. Understanding the relationships and patterns between these

features and liver disease outcomes can assist in developing effective prediction models and

improving patient care and management strategies.

3.1.4 Data Preprocessing:

3.1.4.1 Cleaning Duplicate Data:

Dataset may contain rows with duplicate sets of values. When all the values in all the columns

match exactly or are identical, there are said to be duplicate rows [28]. The rows with duplicate

values were eliminated in order to guarantee data integrity and reduce redundancy in the dataset

for forecasting liver disease. We ensure the dataset contains unique and non-redundant

information by dropping the duplicate rows, boosting the efficacy and integrity of subsequent

research and model development.

3.1.4.2 Handling Missing Data:

Dataset occasionally contain null or missing values. These missing data can be handles either

by dropping the records or by using various data imputation techniques. In the proposed work,

the missing data has been handled by filling in the missing values using two techniques.

For the data type having integer or float numbers the missing data has been handled by filling

in the data by the mean value of the corresponding feature. This method, known as mean

imputation, involves calculating the average value of the feature from the available data and

replacing the missing values with this average. Mean imputation is an easy-to-use method that

aids in preserving the dataset's general statistical characteristics [29]. The imputed dataset

maintains the same mean value for the feature by substituting missing values with the mean,

reducing the effect on the distribution and avoiding potential bias.

For the object type data, the missing data has been filled up by using the mode value of the

corresponding feature. The value of a variable that appears the most frequently is its mode. We

10

impute the missing data with the value that is most frequently seen for that specific feature by

replacing the missing values with the mode. This method makes sure that the imputed values

are in line with the majority of the observations while maintaining the distribution and

frequency of the existing data.

3.1.4.3 Data Encoding:

Before training different models, categorical data must be transformed into numerical values.

Data replacement is used to perform this conversion. There is only one categorical feature—

gender—in the Indian Liver dataset. The female and male classes in gender columns are

replaced as 0 and 1, respectively. This procedure preserves the fundamental data included in

the categorical characteristics while also ensuring compliance with the selected algorithms.

3.1.4.4 Transforming Skew Data:

The term "skewness" describes the asymmetry of a variable's distribution, with a positive skew

denoting a longer tail on the right side and a negative skew denoting a longer tail on the left.

Skewed data can have a negative impact on performance by going against model presumptions

or by changing how feature importances are interpreted. There many techniques by which the

skewness of the data can be brought into a symmetrical distribution. The Yeo-Johnson

transformation was used to solve the issue of skewed data in the context. A power

transformation method that can handle both positively and negatively skewed data is the Yeo-

Johnson transformation. The Yeo-Johnson transformation can handle data with zero or

negative values, unlike other transformations like the logarithmic or square root

transformations [30]. A more symmetrical distribution was achieved by applying the Yeo-

Johnson transformation to the skewed variables, which improved the data's suitability for

statistical methods and machine learning algorithms that presume normality. The overall

patterns and relationships within the data are preserved but the impact of outliers and extreme

numbers is reduced. The effectiveness of machine learning models may be enhanced by this.

The equation (1) for is given below-

11

The distribution graph of the data before and after the transformation has been applied can be

observed from the figure (3.2)

12

13

Fig 3.2: Observing skewness before and after transformation

14

3.2 Feature Selection:

Data Dropping due to correlation:

Data dropping was done using a correlation heatmap to simplify the dataset and increase the

effectiveness of the predictive modeling procedure. The correlation heatmap revealed

information about the connections between the various dataset variables. According to the

correlation heatmap’s findings, the column ‘Direct Bilirubin’ was chosen and then deleted

from the dataset. This column was eliminated because of its high correlation with another

variable, which suggested a strong link or duplication of information. This column’s removal

aids in the reduction of multicollinearity, which can have a negative effect on the

effectiveness and interpretability of machine learning models.

The dataset is now more refined and suited for further research due to data dropping based on

the correlation heatmap. With the help of this procedure, the remaining variables are made to

be less heavily reliant on one another and a more accurate picture of the independent traits

that are involved in predicting liver disease is given.

15

Fig 3.3: Correlation heatmap of attributes

3.3 Scaling:

Scaling, in the context of machine and deep learning, refers to the process of adapting or

transforming the input data to a specific range or distribution that is suitable for the learning

algorithms and neural networks [31]. It involves manipulating the feature values to ensure that

they are on a similar scale or have comparable magnitudes.

Scaling is essential in machine and deep learning for several reasons:

Numerical Stability: Scaling helps to stabilize the learning process by preventing numerical

instabilities that can arise when working with features that have significantly different scales.

Large differences in feature magnitudes can cause issues like slow convergence,

vanishing/exploding gradients, and difficulties in optimizing the model.

Improved Optimization: Scaling can enhance the efficiency and effectiveness of optimization

algorithms. Gradient-based optimization techniques, such as stochastic gradient descent

16

(SGD), rely on the magnitudes of gradients to adjust the model parameters. When features are

on different scales, the gradients can vary widely, leading to suboptimal convergence. Scaling

mitigates this problem by ensuring that the gradients have consistent magnitudes.

Balanced Influence: Scaling ensures that all features contribute proportionally to the learning

process. If some features have larger scales than others, they might dominate the learning

process and overshadow the importance of other features. By scaling the features, their

influences are balanced, allowing the model to learn from all the relevant information [32-33].

A few different kinds of scaling which has been used in this study are Min-Max scaling and

standard scaling.

3.3.1 Min-Max Scaling:

Min-max scaling, also known as normalization, is a data preprocessing technique used to

transform numerical features into a common scale. The goal is to map the values of a feature

to a specific range, typically between 0 and 1. This process is crucial when dealing with features

that have different scales or units, as it ensures fair comparisons and prevents certain features

from dominating the learning process [35].

To perform min-max scaling, we follow a straightforward formula for each feature:

 X_scaled = (X - X_min) / (X_max - X_min)

Here, X represents the original value of a feature, X_min is the minimum value in that feature,

and X_max is the maximum value. By subtracting the minimum value and dividing by the

range (the difference between the maximum and minimum values), we obtain the scaled value

X_scaled within the desired range. A visual aid for min-max scaling is given below.

17

Figure 3.4: Before and after Min-Max Scaling

One significant advantage of min-max scaling is that it maintains the shape and distribution of

the original feature while transforming its values. It is particularly useful in scenarios where

the scale of features varies widely. For example, if one feature ranges from 0 to 100 and another

from 0 to 100,000, the latter feature would dominate the learning process if left unscaled. By

applying min-max scaling, we bring both features to a comparable range, ensuring that they

contribute equally during model training.

Min-max scaling plays a crucial role in machine learning algorithms, especially those that

utilize gradient-based optimization methods. Without scaling, features with larger magnitudes

can have a more significant impact on the model's weights and biases, leading to biased or

inefficient learning. By scaling the features to a common range, we mitigate the influence of

outliers and improve the convergence speed and performance of the learning algorithm.

It's worth noting that min-max scaling is sensitive to outliers. If a feature contains extreme

values, they can disproportionately affect the scaling process and potentially compress the

majority of the values. In such cases, alternative scaling techniques like standardization (Z-

score scaling) may be more appropriate, as they are more robust against outliers.

18

Overall, min-max scaling is a vital preprocessing step in machine learning. It ensures that

features are uniformly scaled to a common range, allowing models to make fair and accurate

comparisons. By employing this technique, we enable efficient learning, mitigate the impact

of varying feature scales, and improve the overall performance of machine learning algorithms.

3.3.2 Standard Scaling:

Standard scaling, also known as Z-score scaling or standardization, is a popular technique used

for feature scaling in machine learning. It transforms numerical features to have zero mean and

unit variance, resulting in a standardized distribution [34].

The formula for standard scaling is as follows:

X_scaled = (X - X_mean) / X_std

Here, X represents the original value of a feature, X_mean is the mean of that feature, and

X_std is the standard deviation. By subtracting the mean and dividing by the standard

deviation, we obtain the scaled value X_scaled. A visual aid of Standard Scaling is given below.

Figure 3.5: Before and after Standard Scaling

Standard scaling offers several advantages in machine learning. First and foremost, it brings

features to a common scale, making them directly comparable. This is especially useful when

features have different units or scales, as it ensures that each feature contributes proportionally

19

to the learning process. Standardization also helps in cases where the distribution of a feature

is skewed or has outliers. By transforming the data to have zero mean and unit variance, it

reduces the impact of extreme values and makes the data more suitable for algorithms that

assume a Gaussian distribution.

Another advantage of standard scaling is that it simplifies the interpretation of feature

importance. Since all features are on the same scale, the magnitude of their coefficients or

weights in a model can directly indicate their relative importance. This is particularly valuable

in linear models, where the coefficients represent the contributions of features to the output.

However, it is important to note that standard scaling is sensitive to outliers. Outliers can have

a significant influence on the mean and standard deviation, affecting the scaled values. In such

cases, robust scaling techniques that are less affected by outliers, such as min-max scaling or

quantile scaling, may be more appropriate.

Additionally, standard scaling does not guarantee a specific range for the scaled values. The

transformed values can be positive or negative, depending on their relation to the mean. If

maintaining a specific range is necessary, alternative scaling techniques like min-max scaling

may be more suitable.

In summary, standard scaling is a widely used technique in machine learning that transforms

features to have zero mean and unit variance. It enables fair comparisons between features,

simplifies feature interpretation, and is particularly effective in handling skewed distributions.

However, it can be sensitive to outliers and does not enforce a specific range for the scaled

values. Careful consideration should be given to the specific characteristics of the data and the

requirements of the machine learning algorithm when choosing the appropriate scaling

technique.

3.4 Handling Imbalanced Data:

Imbalanced data refers to a situation where the classes or categories in a dataset are not

represented equally. In other words, one class has a significantly larger number of instances

compared to the other class(es), resulting in an imbalance in the distribution of the classes

[35]. This issue is common in various real-world scenarios, such as fraud detection, disease

diagnosis, anomaly detection, and rare event prediction.

20

Figure 3.6: Example of balanced and imbalanced data

Imbalanced data can cause several challenges in machine learning [36-37]:

Biased model performance: When faced with imbalanced data, machine learning models tend

to favor the majority class, as it provides higher accuracy by simply predicting the majority

class for most instances. As a result, the model may have poor performance in predicting the

minority class, which is often the class of interest in many applications.

Misleading evaluation metrics: Traditional evaluation metrics, such as accuracy, can be

misleading when dealing with imbalanced data. For instance, if a dataset has 95% of instances

belonging to the majority class and only 5% belonging to the minority class, a model that

predicts the majority class for all instances would achieve 95% accuracy. However, this model

provides no meaningful insights about the minority class. Therefore, alternative evaluation

metrics like precision, recall, F1-score, or area under the receiver operating characteristic curve

(AUC-ROC) are often used to assess model performance on imbalanced datasets.

Sampling bias: Imbalanced data can introduce sampling bias, where the model learns to favor

the majority class due to the abundance of its instances. This bias can lead to incorrect

predictions and reduced generalization on unseen data. The model may fail to capture the

patterns and characteristics specific to the minority class.

Difficulty in detecting rare events: Imbalanced data often occurs in scenarios where the

minority class represents rare events or anomalies that are of particular interest. Identifying

these rare events becomes challenging due to their scarcity in the dataset. Machine learning

21

models trained on imbalanced data may struggle to recognize and accurately classify these rare

events.

To handle the imbalance, there are various kinds of imbalance handling techniques. The ones

used in this study is described in detail in the following articles.

3.4.1 SMOTE:

SMOTE (Synthetic Minority Over-sampling Technique) is a popular technique used to address

the issue of imbalanced data by generating synthetic samples for the minority class. It aims to

increase the diversity and representation of the minority class in the dataset. SMOTE works by

creating synthetic examples along the line segments connecting pairs of minority class

instances [38].

Below are the step-by-step process of SMOTE:

1. Identify the minority class: First, we identify the minority class in the imbalanced

dataset. The minority class is the class with fewer instances.

2. Select a minority class instance: Randomly select an instance from the minority class

as the starting point for the synthetic sample generation.

3. Find k nearest neighbors: Calculate the k nearest neighbors for the selected instance.

The value of k is a user-defined parameter.

4. Choose a random neighbor: Randomly select one of the k nearest neighbors and denote

it as the neighbor instance.

5. Create a synthetic sample: For each feature in the dataset, calculate the difference

between the feature values of the selected instance and the neighbor instance. Multiply

this difference by a random number between 0 and 1. Add the result to the feature values

of the selected instance to create a new synthetic sample.

6. Repeat the process: Repeat steps 2-5 to generate a desired number of synthetic samples

for the minority class.

22

By generating synthetic samples, SMOTE increases the number of instances in the minority

class, resulting in a more balanced distribution between the classes.

Figure 3.7: Before, during and after applying SMOTE to a dataset

The equation used in SMOTE to create synthetic samples is as follows:

Synthetic sample = Instance + (Neighbor - Instance) * random_number

Here, "Instance" represents the feature values of the selected instance, "Neighbor" represents

the feature values of the neighbor instance, and "random_number" is a random value between

0 and 1.

Advantages of SMOTE:

SMOTE helps to address the class imbalance problem by increasing the representation of the

minority class, thereby improving the model's ability to learn its patterns [38]. The synthetic

samples generated by SMOTE are based on the existing instances, which helps to preserve the

characteristics and distribution of the minority class [49].

Disadvantages of SMOTE:

SMOTE may introduce some degree of overfitting, as the synthetic samples are created by

interpolating existing instances [39]. This can potentially amplify the noise or outliers present

in the minority class. SMOTE is less effective in scenarios where the minority class instances

are highly overlapping or densely packed, as the synthetic samples may not introduce

significant diversity.

23

3.4.2 ADASYN:

ADASYN (Adaptive Synthetic Sampling) is a data augmentation technique specifically

designed to handle imbalanced datasets. It focuses on generating synthetic samples for the

minority class based on the density distribution of the instances [40]. ADASYN aims to address

the limitation of SMOTE, where the synthetic samples are equally generated for all instances

regardless of their level of difficulty in learning [42].

Here is the step-by-step process of ADASYN:

• Identify the minority class: Similar to other techniques, ADASYN starts by identifying

the minority class in the imbalanced dataset.

• Compute the level of imbalance: Calculate the imbalance ratio of the dataset, which is

the ratio of the majority class instances to the minority class instances.

• Calculate the required number of synthetic samples: Determine the number of synthetic

samples to be generated for each minority class instance based on its difficulty in

learning. This calculation takes into account the imbalance ratio and the density

distribution of instances.

Compute the synthetic samples: For each minority class instance, ADASYN performs the

following steps [41]:

a. Calculate the k nearest neighbors for the instance. The value of k is a user-defined parameter.

b. Determine the relative density of each neighbor by considering the imbalance ratio. The

relative density is a measure of how much the instance is surrounded by majority class instances

compared to the minority class instances.

c. Calculate the contribution factor for each neighbor based on its relative density. The

contribution factor reflects the importance of the neighbor in generating synthetic samples.

d. Generate synthetic samples for the instance by interpolating between the instance and its

selected neighbors. The number of synthetic samples is determined by the required number of

synthetic samples calculated in step 3, and the contribution factor is used to determine the

weights for the interpolation.

The equation used in ADASYN to calculate the contribution factor is as follows:

24

Contribution Factor = (Relative Density of Neighbor) / (Sum of Relative

Densities of Neighbors)

Figure 3.8: Before and after ADASYN applied to a dataset

Advantages of ADASYN:

• ADASYN adapts to the density distribution of instances, focusing on generating

synthetic samples for the instances that are more difficult to learn.

• It helps to further address the class imbalance problem by increasing the representation

of the minority class, especially in regions where it is sparsely represented.

Disadvantages of ADASYN:

25

• ADASYN may still introduce some degree of overfitting if the synthetic samples

amplify noise or outliers in the minority class.

• The performance of ADASYN heavily relies on the choice of the k parameter, which

determines the number of nearest neighbors considered.

3.4.3: SMOTE + TOMEKLINKS

SMOTE is a popular oversampling technique that generates synthetic samples for the minority

class by interpolating new instances between existing minority class instances. It helps to

balance the class distribution and improve the performance of classifiers. However, SMOTE

may also generate noisy or irrelevant synthetic instances, which can affect the classifier's

performance. To address this issue, SMOTE+Tomek Links combines SMOTE with the Tomek

Links under sampling technique [43].

 Tomek links:

 Tomek Links are a technique used for cleaning up imbalanced datasets in machine

learning. They are pairs of samples from different classes that are close to each other but are

considered to be misclassified instances or outliers. By removing these instances, the decision

boundary of a classifier can be improved [44].

Here's the process of identifying Tomek Links:

For each instance in the dataset, calculate its distance to the nearest instance of the opposite

class.

If the distance to the nearest instance of the opposite class is smaller than the distance to the

nearest instance of the same class, then the pair of instances is considered a Tomek Link.

Once Tomek Links are identified, there are two common approaches for handling them:

Tomek Link Undersampling: In this approach, one instance of each Tomek Link pair is

removed from the dataset. By removing these instances, the overlapping region between the

26

classes is reduced, making it easier for classifiers to discriminate between the classes. The

equation below illustrates the removal of instances:

D' = D - {(x, y) | x and y form a Tomek Link pair}

Where:

D' - The new dataset after removing Tomek Link instances.

D - The original dataset.

(x, y) - A pair of instances forming a Tomek Link.

Tomek Link Combination: In this approach, the majority class instances involved in the Tomek

Link pairs are removed, while the minority class instances are retained. This method aims to

enhance the separability of the minority class by eliminating majority class instances that are

near the minority class. The equation below illustrates this process:

D' = D - {x | x is a majority class instance involved in a Tomek Link pair}

Where:

D' - The new dataset after removing majority class instances in Tomek Links.

D - The original dataset.

x - A majority class instance involved in a Tomek Link pair.

27

Figure 3.9: a) Original Dataset b) Finding Tomeklinks c) Resampled Dataset

Now, to apply SMOTE+Tomek links involves the following steps [45]:

1. Apply SMOTE: Generate synthetic instances for the minority class by interpolating

between existing minority class instances. This step increases the number of minority

class instances. The parameters for SMOTE include the number of synthetic instances

to generate (N) and the number of nearest neighbors to consider (K).

2. Identify Tomek Links: After applying SMOTE, identify Tomek Links between the

synthetic minority class instances and the majority class instances. Tomek Links are

pairs of instances, one from the minority class and one from the majority class, that are

closest to each other but belong to different classes. This step aims to identify and

remove noisy or misclassified synthetic instances.

3. Remove instances involved in Tomek Links: Remove the instances involved in the

Tomek Links identified in the previous step. This can be achieved by selecting one of

the instances in each Tomek Link for removal. The decision on which instance to

remove can be based on various criteria, such as removing the instance from the

majority class to reduce noise.

4. The resulting dataset after removing the instances involved in Tomek Links is the final

preprocessed dataset.

28

Figure 3.10: Original dataset (left) and Dataset ofter smote+Tomeklinks (right) has

been applied

Advantages of SMOTE+TOMEKLINKS:

1. Improved performance: SMOTE+Tomek Links can effectively address the class

imbalance problem by oversampling the minority class and undersampling the majority

class [46-48]. This can lead to improved performance of classifiers, especially when

dealing with imbalanced datasets.

2. Noise reduction: By applying Tomek Links after SMOTE, noisy or misclassified

synthetic instances generated by SMOTE can be identified and removed. This helps in

reducing the noise in the dataset and improves the quality of the minority class samples

[50].

3. Preserves important instances: SMOTE+Tomek Links focuses on preserving the

important minority class instances while removing noisy instances and instances near

the decision boundary. This can help classifiers to better generalize and make more

accurate predictions.

29

4. Simplicity: The implementation of SMOTE+Tomek Links is relatively straightforward.

It involves applying SMOTE to generate synthetic instances and then applying Tomek

Links to remove undesirable instances. This simplicity makes it easy to integrate into

the machine learning pipeline.

Disadvantages of SMOTE+Tomek Links:

1. Potential information loss: Although SMOTE+Tomek Links aim to remove noisy or

misclassified instances, there is a possibility of removing valid instances that are near

the decision boundary. This can lead to information loss and may affect the classifier's

performance.

2. Increased computational complexity: Applying both SMOTE and Tomek Links can

increase the computational complexity compared to using either technique alone.

Generating synthetic instances with SMOTE and then identifying and removing Tomek

Links require additional computational resources and time.

3. Sensitivity to parameter selection: SMOTE+Tomek Links, like other machine learning

techniques, has certain parameters that need to be set appropriately. The performance

of SMOTE+Tomek Links can be sensitive to the selection of these parameters, such as

the number of synthetic instances generated by SMOTE or the distance threshold used

in identifying Tomek Links.

4. Dependency on data distribution: SMOTE+Tomek Links may not be equally effective

for all types of imbalanced datasets. Its performance can depend on the specific

characteristics and distribution of the data. It may not provide significant improvements

in scenarios where the class imbalance is extreme or when the minority class is highly

overlapping with the majority class

It's important to note that the effectiveness of SMOTE+Tomek Links may vary depending on

the dataset and the specific problem at hand. It is always recommended to experiment and

evaluate different techniques to find the most suitable approach for a given scenario.

30

3.4.4 SMOTE+Cluster Centrioids

Cluster Centroids:

Cluster centroids are representative points that summarize the characteristics of a cluster. In

the context of clustering algorithms, such as k-means, cluster centroids are the mean or median

values of the feature vectors within a cluster [51]. They serve as prototypes or central points

that represent the underlying data distribution of each cluster.

Figure 3.11: Example of centroid locations before (left) and after (right) one k-means iteration.

K-means moves the centroids towards the actual cluster centers

Here's how cluster centroids are calculated:

1. Given a clustering algorithm (e.g., k-means), the algorithm assigns data points to

clusters.

2. For each cluster, the cluster centroid is calculated as the mean or median of the feature

vectors belonging to that cluster.

3. The resulting cluster centroids represent the central tendencies of their respective

clusters.

SMOTE+Cluster Centroids:

SMOTE+Cluster Centroids is a combination of two techniques: SMOTE and cluster centroids.

It is primarily used for addressing the class imbalance problem in machine learning.

Here's the process of using SMOTE+Cluster Centroids:

31

1. Apply cluster-based undersampling: Initially, the majority class is undersampled using

a clustering algorithm (e.g., k-means). The algorithm clusters the majority class

instances and selects cluster centroids as representative points.

• The equation below shows the selection of cluster centroids:

C = {c1, c2, ..., ck} = ClusterCentroids(D', N)

Where:

C - Set of cluster centroids.

D' - The majority class instances after undersampling using clustering.

N - The desired number of cluster centroids.

2. Apply SMOTE: Apply the SMOTE algorithm to oversample the minority class by

generating synthetic instances. The synthetic instances are created by interpolating

between minority class instances and their nearest neighbors.

• The equation below illustrates the SMOTE process:

S = SMOTE(D, N, K)

Where:

S - Set of synthetic instances.

D - The minority class instances.

N - The desired number of synthetic instances.

32

K - The number of nearest neighbors to consider during the interpolation.

3. Combine minority class with synthetic instances: Combine the original minority class

instances with the synthetic instances generated by SMOTE.

D'' = D ∪ S

Where:

D'' - The final dataset with both original minority class instances and synthetic

instances.

Advantages of SMOTE+Cluster Centroids:

1. Effective handling of class imbalance: SMOTE+Cluster Centroids can address class

imbalance by oversampling the minority class using SMOTE and undersampling the

majority class using cluster centroids. This approach helps in balancing the class

distribution and improves the performance of classifiers [53].

2. Reduced risk of overgeneralization: By generating synthetic instances based on the

characteristics of the minority class and undersampling the majority class using cluster

centroids, SMOTE+Cluster Centroids can reduce the risk of overgeneralization. It helps

in preserving the underlying data structure of the minority class and avoids

oversampling the noisy majority class instances.

3. Improved representation of the minority class: By combining the original minority class

instances with synthetic instances, SMOTE+Cluster Centroids provides a more

representative and diverse set of samples for the minority class. This can help classifiers

to learn and generalize better on the minority class [52].

33

Disadvantages of SMOTE+Cluster Centroids:

1. Dependency on clustering algorithm: The effectiveness of SMOTE+Cluster Centroids

heavily relies on the quality and accuracy of the clustering algorithm used to select the

cluster centroids. If the clustering algorithm fails to capture the underlying data

structure or if the clusters are not well-separated, it may impact the overall performance

of SMOTE+Cluster Centroids.

2. Computational complexity: SMOTE+Cluster Centroids can be computationally

expensive, especially when dealing with large datasets. It involves performing both

clustering and oversampling steps, which may require significant computational

resources and time.

3. Sensitivity to parameter selection: SMOTE+Cluster Centroids, like other machine

learning techniques, requires appropriate parameter selection. Parameters such as the

number of cluster centroids, the number of nearest neighbors for SMOTE, and the

clustering algorithm itself need to be carefully chosen. Poor parameter selection can

lead to suboptimal results.

4. Sensitivity to dataset characteristics: The performance of SMOTE+Cluster Centroids

can vary depending on the specific characteristics of the dataset. If the minority class

instances are not well-separated or if the clusters overlap significantly, it may be

challenging for the technique to effectively address the class imbalance.

5. Potential information loss: The undersampling step using cluster centroids may result

in the loss of some information from the majority class. This information loss can affect

the classifier's ability to generalize accurately, particularly if important instances are

removed.

3.4.5 SMOTE+ENN (Edited Nearest Network)

ENN (Edited Nearest Neighbors):

ENN (Edited Nearest Neighbors) is a data cleaning technique used for addressing the class

imbalance problem in machine learning. It aims to remove noisy or misclassified instances

from both the majority and minority classes [54]. ENN examines each instance and removes it

if its class label does not match the majority of its nearest neighbors.

34

Here's how ENN works:

1. For each instance in the dataset, ENN identifies its k nearest neighbors based on a

distance metric (e.g., Euclidean distance).

2. If the class label of the instance does not match the majority class label of its k nearest

neighbors, the instance is considered noisy or misclassified and is removed from the

dataset.

ENN helps in eliminating instances that are likely to contribute to misclassifications or increase

the complexity of the decision boundary. By removing such instances, ENN can improve the

performance of classifiers on imbalanced datasets.

SMOTE+ENN:

SMOTE+ENN is a combination of two techniques: SMOTE (Synthetic Minority Over-

sampling Technique) and ENN (Edited Nearest Neighbors). It is used for addressing class

imbalance in machine learning datasets.

Figure 3.12: Samples simulation plot after the SMOTE-ENN sampled

Here's the process of using SMOTE+ENN [55]:

1. Apply SMOTE: Initially, SMOTE is applied to oversample the minority class by

generating synthetic instances. SMOTE generates synthetic samples by interpolating

between existing minority class instances and their nearest neighbors.

• The equation below illustrates the SMOTE process:

S = SMOTE(D, N, K)

35

Where:

S - Set of synthetic instances.

D - The minority class instances.

N - The desired number of synthetic instances.

K - The number of nearest neighbors to consider during interpolation.

2. Apply ENN: After applying SMOTE, the ENN technique is applied to remove noisy or

misclassified instances from the dataset, considering both the majority and minority

classes. ENN examines each instance and removes it if its class label does not match

the majority of its nearest neighbors.

Advantages of SMOTE+ENN:

1. Improved classification performance: SMOTE+ENN can help improve the

performance of classifiers on imbalanced datasets by addressing both oversampling and

undersampling [56-58]. It generates synthetic instances for the minority class using

SMOTE while removing noisy or misclassified instances using ENN.

2. Reduction of noise and irrelevant instances: By applying ENN after SMOTE, noisy or

irrelevant instances that could potentially affect the classifier's performance are

removed. This helps in reducing the impact of noisy data on the learning process and

improves the quality of the dataset [59-60].

3. Preserving important instances: SMOTE+ENN aims to remove instances that are likely

to contribute to misclassifications or increase the complexity of the decision boundary

[61]. However, it takes care to preserve important instances by considering the majority

of nearest neighbors during the removal process.

Disadvantages of SMOTE+ENN:

1. Potential information loss: ENN may remove valid instances that are misclassified or

have minority class neighbors, but are still important for the classifier's decision

36

boundary. This can lead to information loss and potentially affect the performance of the

classifier.

2. Sensitivity to parameter selection: SMOTE+ENN requires appropriate parameter

selection, such as the number of synthetic instances to generate with SMOTE and the

number of nearest neighbors to consider in ENN [62]. Choosing suboptimal parameters

may impact the effectiveness of the technique.

3. Computational complexity: Applying both SMOTE and ENN can increase the

computational complexity, particularly when dealing with large datasets. Generating

synthetic instances and performing neighbor-based computations for ENN can be

computationally [63].

37

CHAPTER 4

Results

After rigorous data handling and machine and deep learning model implementation we will see

the results in this chapter. This section will give us the quantitative analysis of the performance

matrices of our model on the data. The data is presented in three stages, before imbalance

handling, after imbalance handling and after hyper-parameter tuning. The performance

parameters for our study are accuracy, precision, F1 score and recall. Each of these

performance parameters describes a different attribute of the model. To understand the interpret

the results successfully the confusion matrix needs to be elaborated.

A confusion matrix represents the predictive performance of a model on a dataset [64]. For a

binary class dataset (which consists of, suppose, “positive” and “negative” classes), a confusion

matrix has four essential components:

True Positives (TP): Number of samples correctly predicted as “positive.”

False Positives (FP): Number of samples wrongly predicted as “positive.”

True Negatives (TN): Number of samples correctly predicted as “negative.”

False Negatives (FN): Number of samples wrongly predicted as “negative.”

Figure 4.1: Structure of a confusion matrix

38

Accuracy is one metric for evaluating classification models. Informally, accuracy is the

fraction of predictions our model got right [65]. Formally, accuracy has the following

definition:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

For binary classification, accuracy can also be calculated in terms of positives and negatives as

follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False

Negatives.

Precision is another indicator of a model’s performance. Precision is the proportion of positive

identifications which is actually correct [66]. Precision is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

It is a measure of how well our model can predict correctly the positive identifications, in this

case it would be the measure of how well the model can correctly predict patients who do have

liver disease.

Recall, also known as the true positive rate (TPR), is the percentage of data samples that a

machine learning model correctly identifies as belonging to a class of interest—the “positive

class”—out of the total samples for that class. Recall tries to answer the question of what

proportion of actual positives were identified correctly. Mathematically, recall is defined as

follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

39

F1 score is a machine learning evaluation metric that measures a model’s accuracy. It combines

the precision and recall scores of a model. The accuracy metric computes how many times a

model made a correct prediction across the entire dataset. This can be a reliable metric only if

the dataset is class-balanced; that is, each class of the dataset has the same number of samples.

In the real world, as well as in this case the dataset is class-imbalanced, often making this metric

unviable. For example, if a binary class dataset has 90 and 10 samples in class-1 and class-2,

respectively, a model that only predicts “class-1,” regardless of the sample, will still be 90%

accurate. Accuracy computes how many times a model made a correct prediction across the

entire dataset. However, can this model be called a good predictor? This is where the F1 score

comes into play.

Precision measures how many of the “positive” predictions made by the model were correct.

Recall measures how many of the positive class samples present in the dataset were correctly

identified by the model. Precision and recall offer a trade-off, i.e., one metric comes at the cost

of another. More precision involves a harsher critic (classifier) that doubts even the actual

positive samples from the dataset, thus reducing the recall score. On the other hand, more recall

entails a lax critic that allows any sample that resembles a positive class to pass, which makes

border-case negative samples classified as “positive,” thus reducing the precision. Ideally, we

want to maximize both precision and recall metrics to obtain the perfect classifier. The F1 score

combines precision and recall using their harmonic mean, and maximizing the F1 score implies

simultaneously maximizing both precision and recall. Thus, the F1 score has become the choice

of researchers for evaluating their models in conjunction with accuracy [67].

The F1 score is defined based on the precision and recall scores, which are mathematically

defined as follows:

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

40

Therefore,

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

In terms of the basic four elements of the confusion matrix, by replacing the expressions for

precision and recall scores in the equation above, the F1 score can also be written as follows:

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

41

4.1 Before Imbalance Handling

After the data was pre-processed using the various method, machine and deep learning

algorithms were applied. These algorithms were used before any kind of imbalance handling

was performed. The results are given below:

ML

Algorithm

Accuracy Precision Recall F1 Score

Logistic

Regression

.7094 .7115 .9487 .8132

SVM .66666 .66666 1 .8

Random Forest .66666 .696969 .8846 .77966

Naïve Bayes

Gaussian

.5897 .9687 .3974 .5636

Naïve Bayes

Multinomial

.6923 .7916 .7307 .76

Decision Tree .6495 .7078 .8076 .75449

KNN .6324 .6881 .8205 .7485

Gradient

Boosting

Classifier

.7008 .7263 .8846 .7976

XGboost

Classification

.6666 .7142 .8333 .7692

ANN .6752 .7272 .8205 .7710

Multi-layer

Perceptron

Classifier

.6666 .6695 .9871 .7979

LSTM .6666 .6666 1 .8

Table 4.1 Performance of Machine learning and Deep learning models before Imbalance

handling

42

From the table above, the noteworthy value comes from the SVM and LSTM, which gave a

recall value of 1.

4.2 After Imbalance Handling

From the upper result although most of the values for accuracy, precision, recall and F1 scores

are realistic, the Recall scores of 1 for SVM and LSTM cannot be overlooked. Finding a recall

value of 1 for both LSTM and SVM models is not common and is generally unlikely, although

it depends on the specific characteristics of the dataset and the problem being solved. While a

recall value of 1 is desirable, it is more common to see values below 1, as achieving perfect

recall typically indicates a well-behaved and separable dataset or potential overfitting. To

prevent some of these problems, a number of imbalance handling techniques were used and

the models were run again to get new results.

4.2.1 SMOTE:

ML

Algorithm

Accuracy Precision Recall F1 Score

Logistic

Regression

0.69 0.86 0.64 0.73

SVM 0.68 0.90 0.58 0.71

Random Forest 0.65 0.72 0.78 0.75

Naïve Bayes

Gaussian

0.59 0.96 0.41 0.57

Naïve Bayes

Multinomial

0.61 1 0.42 0.59

Decision Tree 0.63 0.72 0.71 0.72

KNN 0.64 0.77 0.65 0.71

43

Gradient

Boosting

Classifier

0.69 0.77 0.77 0.77

XGboost

Classification

0.70 0.76 0.79 0.78

ANN 0.65 0.73 0.74 0.74

Multi-layer

Perceptron

Classifier

0.67 0.85 0.61 0.71

LSTM 0.53 0.83 0.38 0.52

Table 4.2: Results after SMOTE applied to dataset

After SMOTE was used for imbalance handling the best result for Accuracy came out to be 0.7

from XGBoost Classificaiton. Best result for precision came from Naïve Bayes Multinomial

with a value of 1, Best recall score was from XGBoost classifier with a value of 0.79 and best

F1 score also came from XGBoost classifier with a score of 0.78

4.2.2 ADASYN:

ML

Algorithm

Accuracy Precision Recall F1 Score

Logistic

Regression

.6495 .8627 .5641 .6821

SVM .6495 .9111 .5256 .6666

Random Forest .6923 7560 7948 .7749

Naïve Bayes

Gaussian

.5897 .9687 3974 .5636

Naïve Bayes

Multinomial

.5726 1 .3589 .5283

Decision Tree .6923 .7625 .7820 7721

KNN .6666 .8095 .6538 .7234

44

Gradient

Boosting

Classifier

.6923 .7837 .7435 .7631

XGboost

Classification

.6923 .7386 .8333 .7831

ANN .6581 .7317 .7692 .7499

Multi-layer

Perceptron

Classifier

.6324 .8301 .5641 .6717

LSTM .4957 .9130 .2692 .4158

Table 4.3: Result after ADASYN applied to dataset

The best result for accuracy came from a number of algorithms. Random forest, Decision tree,

Gradient Boosting Classifier and XGBoost classifier all gave a value of 0.6923. A precision

value of 1 was found from Naïve Bayes Multinomial which was the highest. Maximum value

of recall was found from XGBoost classification which came out to be 0.8333 and maximum

F1 score was found from XGBoost classification with a score of 0.7831.

4.2.3 SMOTE + CC

ML

Algorithm

Accuracy Precision Recall F1 Score

Logistic

Regression

.6581 .8518 .5897 .6969

SVM .6752 .9 .5769 .7031

Random Forest .6923 .7692 .7692 .7692

Naïve Bayes

Gaussian

.5982 .9696 .4102 .5765

Naïve Bayes

Multinomial

.6068 1 .4102 .5818

45

Decision Tree .6837 .7469 .7948 .7701

KNN .6581 .7968 .6538 .7183

Gradient

Boosting

Classifier

.7179 .7922 .7820 .7870

XGboost

Classification

.7008 .7654 .7948 .7798

ANN .6410 .6836 .8589 .7613

Multi-layer

Perceptron

Classifier

.6495 .8363 .5897 .6917

LSTM .5042 .8571 .3076 .4528

Table 4.4: Result after SMOTE + CC applied to dataset

The best accuracy when using SMOTE + CC as the imbalance handling technique came from

Gradient Boosting Classifier with a value of 0.7179. The best result for precision came from

Naïve Bayes Multinomial with a value of 1. The best result for Recall came from ANN with a

value of 0.8589 and the best result of F1 score was 0.7870 which came from XGBoost

Classification.

46

4.2.4 SMOTE + TOMEKLINKS

ML

Algorithm

Accuracy Precision Recall F1 Score

Logistic

Regression

0.67 0.85 0.61 0.71

SVM 0.66 0.89 0.56 0.69

Random Forest 0.68 0.73 0.82 0.77

Naïve Bayes

Gaussian

0.59 0.96 0.41 0.57

Naïve Bayes

Multinomial

0.62 1 0.43 0.60

Decision Tree 0.69 0.76 0.77 0.77

KNN 0.64 0.77 0.65 0.70

Gradient

Boosting

Classifier

0.68 0.76 0.75 0.76

XGboost

Classification

0.66 0.71 0.82 0.76

ANN 0.68 0.76 0.77 0.76

Multi-layer

Perceptron

Classifier

0.65 0.85 0.58 0.69

LSTM 0.52 0.84 0.34 0.49

Table 4.5: Result after SMOTE + TOMEKLINKS applied to dataset

Next is the SMOTE + TOMEKLINKS method. The best result for accuracy came from

decision tree with a value of 0.69. Best precision value came from Naïve Bayes Multinomial

which gave a value of 1. Best Recall value came from Random forest and XGBoost

47

classification which gave a value of 0.82. And the best F`1 score came from Decision tree

which gave a value of 0.77

4.2.5 SMOTE + ENN

ML

Algorithm

Accuracy Precision Recall F1 Score

Logistic

Regression

.6495 .9111 .5256 .6666

SVM .6581 .9318 .5256 .6721

Random Forest .6837 .8059 0.6923 .7448

Naïve Bayes

Gaussian

.6239 .9722 .4487 .6140

Naïve Bayes

Multinomial

.6068 1 .4102 .5818

Decision Tree .5897 .7777 .5384 .6363

KNN .5726 .7916 .4871 .6031

Gradient

Boosting

Classifier

.6752 .9 .5769 .7031

XGboost

Classification

.7179 .9090 .6410 .7518

ANN .6153 .7538 .6282 .6853

Multi-layer

Perceptron

Classifier

.6495 .9302 .5128 .6611

LSTM .4700 .8636 .2435 .3800

Table 4.6: Result after SMOTE + ENN applied to dataset

48

The best accuracy when SMOTE + ENN was used came from XGBoost Classification which

gave a value of 0.7179. The best value of precision came from the Naïve Bayes Multinomial

which gave a value of 1. The best value of Recall came from Random Forest with a value of

0.6923. And the best value of F1 score came from the XGBoost Classification with a value of

0.7518.

From the above tables we can see the results of the machine and deep learning algorithms once

the different imbalance handling method has been used. Below is the summary of the best

performance which has been found for each of the imbalance handling method used.

4.3 Hyperparameter Tuning

Hyperparameter tuning was performed after the results of the newly balanced data was found. The

results of all the algorithms are given below. Hyperparameter tuning is an important step to prevent

overfitting or underfitting. Two hyperparameter tuning techniques have been applied, these are,

gridsearchcv and randomizedsearchcv. We can verify that the model is optimal for the particular job

and gives the best potential outcomes by picking the optimum collection of hyperparameters [68].

GridSearchCV [69] is guaranteed to identify the optimum hyperparameter combination inside the

search space, but it can be computationally costly, particularly when working with a large number of

hyperparameters. RandomizedSearchCV, on the other hand, is less computationally expensive and can

still identify appropriate hyperparameters by randomly searching the search space. There is no

assurance, however, that it will locate the optimal hyperparameters. In the testing done, this holds true

as GridSearcCV has better results than RandomiedSearchCV for every ML algorithm used.

Below are the results after hyper-parameter tuning for each of the imbalance handling method used:

49

4.3.1 SMOTE:

For GridsearchCV

model score bs_5folds bp_5 br_5 bf_5 bs_10folds bp_10 br_10 bf_10

svm 0.713559 0.835871 0.904298 0.760492 0.823387 0.829939 0.899323 0.757398 0.816492

randomforest 0.686148 0 846329 0.893517 0.805048 0.842321 0.837357 0.893435 0.780660 0.827881

naive_bayes_gaussian 0.557335 0.677582 0.910183 0.396839 0.548818 0.678995 0.891618 0.411230 0.559376

naive_bayes_multinomial 0.557335 0 668693 0.695839 0.606760 0.647084 0.662555 0.688282 0.603298 0.640356

decision_tree 0.637931 0.739837 0.752377 0.722037 0.736376 0.741198 0.739659 0.757576 0.745755

knn 0.651578 0.705708 0.825403 0.535777 0.643436 0.721905 0.845094 0.553476 0.660035

logistic_regression 0.713647 0.714586 0.797346 0.577349 0.667211 0.714442 0.792545 0.582888 0.668610

Gradient_Boosting_Classifier 0.708445 0.772342 0.816032 0.731255 0.764077 0.764969 0.813438 0.718627 0.755124

XGboost Classification 0.696318 0.821187 0.862865 0.787270 0.818429 0.834636 0.881711 0.798574 0.831020

Table 4.7: Performance Comparison of Machine Learning Algorithms with SMOTE and

GridSearchCV

For RandomizedSearchCV

model score bs_5folds bp_5 br_5 bf_5 bs_10folds bp_10 br_10 bf_10

svm 0.713559 0.794499 0 849346 0.737006 0.783318 0.720325 0.881398 0.508913 0.642157

random_forest 0.686148 0 812266 0 844560 0.787094 0 810399 0.828468 0.895027 0.757041 0.816382

naive_bayes_gaussian 0.557335 0.676100 0.910183 0.393898 0.545422 0.678995 0.891618 0.411230 0.559376

naive_bayes_multinomial 0.557335 0.668693 0.695839 0.606760 0 647084 0.662555 0 688282 0.603298 0.640356

decisionjree 0.637931 0.756024 0.786804 0.704653 0 739958 0.739794 0.767833 0.718449 0.734521

knn 0.651578 0.705708 0.825403 0.535777 0 643436 0.721905 0.845094 0.553476 0.660035

logistic_regression 0.713647 0.716068 0.797895 0.580334 0 669355 0.712972 0.790017 0.582888 0.667518

Gradient_Boosting_Classifier 0.708445 0.772342 0.823537 0.728270 0.763792 0.763411 0808490 0.715686 0.752190

XGboost Classification 0.696318 0.821187 0.862865 0.787270 0.818429 0.834636 0.881711 0.798574 0.831020

Table 4.8: Performance Comparison of Machine Learning Algorithms with SMOTE and

RandomizedsearchCV

50

4.3.2 ADASYN

For GridsearchCV

model score bs_5folds bp_5 br_5 bf_5 bs_10folds bp_10 br_10 bf_10

svm 0.713559 0.821301 0.895391 0.718876 0.796683 0.822774 0.887358 0.736809 0.802369

random_forest 0.705026 0.818403 0.866255 0.748244 0.800958 0.815714 0.866483 0.743048 0.796220

naive_bayes_gaussian 0.557335 0.675738 0.865599 0.393108 0.539442 0.677246 0.876053 0.393939 0.540561

naive_bayes_multinomial 0.557335 0.687943 0.860835 0.414442 0.558047 0.686338 0.869428 0.405615 0.547132

decision_tree 0.648130 0.750355 0.748575 0.727788 0.737132 0.756177 0.766633 0.725134 0.741282

knn 0.651578 0.688687 0.821686 0.461194 0.588809 0.693023 0.810867 0.482353 0.601815

logistic_regression 0.713647 0.713210 0.811871 0.532046 0.641199 0.707578 0.814408 0.527184 0.633167

Gradient_Boosting_Classifier 0.694652 0.768012 0.812845 0.694996 0.745029 0.775424 0.826030 0.707487 0.754985

XGboost_Classification 0.696318 0.822771 0.863219 0.766023 0.809079 0.823106 0.860143 0.778253 0.811758

Table 4.9: Performance Comparison of Machine Learning Algorithms with ADASYN and

GridSearchCV

For RandomizedSearchCV

model score bf_3_bs_5folds bp_5 br5 bf_5 bs_10folds bp_10 br_10 bf_10

svm 0.713559 0.808320 0.866280 0.718788 0.784916 0.822774 0.887358 0.736809 0.802369

random_forest 0.705026 0.812658 0.851797 0.745127 0.793364 0.818592 0.860356 0.760873 0.802421

naive_bayes_gaussian 0.557335 0.675738 0.865599 0.393108 0.539442 0.674389 0.865797 0.393939 0.538824

naive_bayes_multinomial 0.557335 0.687943 0.860835 0.414442 0.558047 0.686338 0.869428 0.405615 0.547132

decision_tree 0.641379 0.733448 0.749645 0.692098 0.717188 0.746605 0.767342 0.701693 0.728082

knn 0.651578 0.688687 0.821686 0.461194 0.588809 0.693023 0.810867 0.482353 0.601815

logistic_regression 0.713647 0.711761 0.807603 0.532046 0.640100 0.707536 0.808927 0.533066 0.635508

Gradient_Boosting_Classifier 0.694652 0.766573 0.810729 0.694996 0.744012 0.773996 0.824288 0.707487 0.753932

XGboost_Classification 0.696318 0.822771 0.863219 0.766023 0.809079 0.818841 0.858486 0.775401 0.807579

Table 4.10: Performance Comparison of Machine Learning Algorithms with ADASYN and

RandomizedSearchCV

51

4.3.3 SMOTE+CC:

For GridsearchCV

model score bs_5folds bp_5 br5 bf5 bs_10folds bp_10 br_10 bf_10

svm 0.713559 0.838780 0.906384 0.772388 0.824540 0.834219 0.897221 0.768717 0.819409

random_forest 0.696493 0.818007 0.890472 0.751493 0.801814 0.840255 0.889935 0.798752 0.832341

naive_bayes_gaussian 0.557335 0.683279 0.876442 0.411633 0.535237 0.684372 0.890115 0.410784 0.536760

naive_bayes_multinomial 0.557335 0.656939 0.715502 0.583231 0.624845 0.668437 0.721199 0.561497 0.622936

decision_tree 0.655172 0.724891 0.747472 0.704478 0.717748 0.73378 0.752811 0.71016 0.72686

knn 0.651578 0.714455 0.854361 0532748 0.644032 9.732221 0.877869 0.550000 0.662553

logistic_regression 0.713647 0.708486 0.806906 0.550658 0.642164 9.718591 0.819939 0.564795 0.656939

Gradient_Boosting_Classifier 0.699825 0.769303 0.828004 0.725066 0.755572 0.773617 0.826723 0.724688 0.760038

XGboost_Classification 0.696318 0.815087 0.870540 0.775066 0.806250 0.840277 0.897366 0.792959 0.829503

Table 4.11: Performance Comparison of Machine Learning Algorithms with SMOTE+CC and

GridSearchCV

For RandomizedSearchCV

model score _bs_5folds bp_5 br5 bf_5 bs_10folds bp_10 br_10 bf_10

svm 0.713559 0.801765 0.890097 0.710623 0.772573 0.791352 0.888007 0.682977 0.756139

random_forest 0.696493 0.794434 0.857660 0.736918 0.779314 0.837270 0.892631 0.789929 0.827490

naive_bayes_gaussian 0.557335 0.683279 0.876442 0.411633 0.535237 0.684372 0.890115 0.410784 0.536760

naive_bayes_multinomial 0.557335 0.656939 0.715502 0.583231 0.624845 0.668437 0.721199 0.561497 0.622936

decision_tree 0.655172 0.714455 0.817018 0.559350 0.655776 0.750154 0.765869 0.745544 0.746345

knn 0.651578 0.714455 0.854361 0.532748 0.644032 0.732221 0.877869 0.550000 0.662553

logistic_regression 0.713647 0.708486 0.814329 0.541791 0.637835 0.718591 0.819939 0.564795 0.656939

Gradient_Boosting_Classifier 0.699825 0.769292 0.816893 0.733977 0.757135 0.772103 0.825266 0.718806 0.757153

XGhoost_Classification 0.696318 0.813627 0.873582 0.763521 0.800658 0.826975 0.886282 0.778164 0.814627

Table 4.12: Performance Comparison of Machine Learning Algorithms with SMOTE+CC and

RandomizedSearchCV

52

4.3.4 SMOTE+TOMEKLINKS

For GridsearchCV

model score bs_5folds bp_5 br_5 bf_5 bs_1 Ofolds bp_10 br_10 bf_10

svm 0.713559 0.858261 0.932261 0.775577 0.845132 0.856779 0.939834 0.766288 0.842016

random_forest 0.689451 0.847505 0.896921 0.791154 0.838894 0.849159 0.915755 0.775758 0.836774

naive_bayes_gaussian 0.557335 0.688542 0.907442 0.420481 0.572077 0.688678 0.905137 0.423958 0.574842

naive_bayes_multinomial 0.557335 0.671875 0.695806 0.615625 0.652678 0.665625 0.678261 0.634375 0.654741

decision_tree 0.636119 0.745313 0.767406 0.715625 0.737535 0.765625 0.808872 0.715625 0.754259

knn 0.651578 0.721306 0.847792 0.538990 0.656082 0.730601 0.857379 0.554735 0.670826

logistic_regression 0.713647 0.746136 0.870370 0.582308 0.694173 0.749471 0.861670 0.598390 0.701603

Gradient_Boosting_Classifier 0.699825 0.794598 0.848478 0.741346 0.785697 0.782356 0.834799 0.729261 0.773583

XGboost_Classification 0.696318 0 828864 0.878634 0.778846 0.821950 0.835168 0.887262 0.778883 0.826166

Table 4.13: Performance Comparison of Machine Learning Algorithms with

SMOTE+TOMEKLINKS and GridSearchCV

For RandomizedSearchCV

Table 4.14: Performance Comparison of Machine Learning Algorithms with

SMOTE+TOMEKLINKS and RandomizedSearchCV

model score bs_5folds bp_5 br_5 bf_5 bs_10folds bp_10 br_10 bf_10

svm 0.713559 0.856698 0.928315 0.775481 0.843339 0.805385 0.868550 0.726042 0.787716

random_forest 0.689451 0.828791 0.865551 0.787981 0.821737 0.818053 0.859057 0.769602 0.809353

naive_bayes_gaussian 0.557335 0.685405 0.911425 0.411106 0.564582 0.688678 0.905137 0.423958 0.574842

naive_bayes_multinomial 0.557335 0.671875 0.695806 0.615625 0.652678 0.665625 0.678261 0.634375 0.654741

decisionjree 0.636119 0.736822 0.769635 0.694375 0.723256 0.726034 0.737926 0.710511 0.722520

knn 0.651578 0.721306 0.847792 0.538990 0.656082 0.730601 0.857379 0.554735 0.670826

logistic_regression 0.713647 0.744598 0.863373 0.585433 0.694429 0.747909 0.858409 0.598390 0.700434

Gradient_Boosting_Classifier 0.699825 0.797699 0.852645 0.741346 0.787919 0.782404 0.833422 0.729451 0.773119

XGboost_Classification 0.696318 0.828864 0.878634 0.778846 0.821950 0.833582 0.880252 0.785038 0.825697

53

4.3.5 SMOTE + ENN

For GridsearchCV

model score bs_5folds bp_5 br5 bf_5 bs10folds bp_10 br_10 bf_10

svm 0.713559 0.983710 0.971903 0.984615 0.977474 0.983709 0.972381 0.984615 0.977450

random_forest 0.706604 0.932136 0.959304 0.846154 0.898719 0.943168 0.953022 0.884615 0.915110

naive_bayes_gaussian 0.557335 0.875194 0.985714 0.653846 0.782880 0.877778 0.938495 0.700000 0.798434

naive_bayes_multinomial 0.557335 0.739620 0.960000 0.312000 0.459300 0.740285 0.900000 0.314744 0.448673

decision_tree 0.634424 0.891485 0.895872 0.792308 0.838724 0.899700 0.905866 0.807692 0.850516

knn 0.651578 0.910441 0.981781 0.761538 0.855556 0.915841 0.992308 0.769231 0.861459

logistic_regression 0.713647 0.918586 0.963333 0.800000 0.873302 0.921246 0.972106 0.800000 0.874723

Gradient_Boosting_Classifier 0.699825 0.915957 0.936000 0.815385 0.870523 0.929595 0.964126 0.830769 0.890815

XGboost_Classification 0.696318 0.921362 0.947636 0.823077 0.880204 0.943093 0.968290 0.869231 0.912795

Table 4.15: Performance Comparison of Machine Learning Algorithms with SMOTE+ENN and

GridSearchCV

For RandomizedSearchCV

model score bs_5folds bp_5 br_5 bf_5 bs_10

folds

bp_10 br_10 bf_10

svm 0.713559 0.98371 0.971903 0.984615 0.977474 0.983709 0.972381 0.984615 0.97745

random_forest 0.706604 0 924028 0.943333 0.838462 0.887285 0.926802 0.954242 0.838462 0.889584

naive_bayes_gaussian 0.557335 0 875194 0.985714 0.653846 0.78288 0.877778 0.938495 0.7 0.798434

naive_bayes_multinomial 0.557335 0.73962 0.96 0.312 0.4593 0.740285 0.9 0.314744 0.448673

decision_tree 0.634424 0 864347 0.805038 0.830769 0.814654 0.902402 0.914957 0.807692 0.854139

knn 0.651578 0.910441 0.981781 0.761538 0.855556 0.915841 0.992308 0.769231 0.861459

logistic_regression 0.713647 0 918586 0.963333 0.8 0.873302 0.921246 0.972106 0.8 0.874723

Gradient_Boosting_Classifier 0 699825 0 915920 0.937905 0.815385 0.871652 0.929505 0.964126 0.830769 0.890815

XGboost

Classification 0.696318 0.921362 0.947636 0.823077 0.880204 0.943093 0.96829 0.869231 0.912795

Table 4.16: Performance Comparison of Machine Learning Algorithms with SMOTE+ENN and

RandomizedSearchCV

54

CHAPTER 5

Discussion

Before any imbalance was handled the data gave us results which had some anomalies. For

example, before handling imbalance the Recall score of SVM came out to be 1. This means

that the model has achieved perfect recall on the given dataset. Recall, also known as sensitivity

or true positive rate, is a performance metric that measures the proportion of actual positive

instances correctly identified by the model.

When recall = 1, it indicates that the SVM has correctly identified all positive instances in the

dataset without any false negatives. In other words, the model did not miss any positive

instances and identified all of them correctly. This is the ideal scenario for recall, as it signifies

that the model has achieved the highest level of sensitivity in detecting positive instances.

However, it is highly unlikely that the model can correctly identify all the positive instances. It

is more likely that the data being used has some imbalance which needs to be taken care of.

After the data has been handled for imbalance, the result is tabulated for every imbalance

handling method used. Another unlikely outcome was observed after handling the imbalance.

For every imbalance handling method used, the precision of Naïve Bayes Multinomial for each

imbalance handling method used came to be 1. This means all instances predicted as positive

by the model are indeed true positives, and there are no instances falsely classified as positive.

This is also unlikely that perfect precision can be found. Hyperparameter tuning could be a

good way to solve this anomaly.

And it is seen that after hyperparameter tuning has been done, the precision value of Naïve

Bayes Multinomial becomes a more realistic value. The results after performing hyper

parameter tuning with 5-fold and 10-fold cross validation has been tabulated above in the

results chapter.

Below is a comparison of the machine learning model performance for every imbalance

handling method used. The graphs have the accuracy, precision, recall and F1 scores for every

machine learning algorithm used. The analysis utilized the results obtained from

GridSearchCV, employing a 10-fold cross-validation technique exclusively.

55

0

20

40

60

80

100

120

Sensitivity precision Recall F1 Score

SVM

0

20

40

60

80

100

120

Sensitivity precision Recall F1 Score

Random Forest

56

0

20

40

60

80

100

120

Sensitivity precision Recall F1 Score

Naïve Bayes Gaussian

0

20

40

60

80

100

120

Sensitivity precision Recall F1 Score

Naïve Bayes Multinomial

57

0

20

40

60

80

100

120

Sensitivity precision Recall F1 Score

KNN

0

10

20

30

40

50

60

70

80

90

100

Sensitivity precision Recall F1 Score

Gradient Boosting Classifier

58

Figure 4.2: Comparative figures of all the performance parameters (accuracy, precision, recall

and f1 score) for each machine learning algorithm with each imbalance handling technique

applied.

0

10

20

30

40

50

60

70

80

90

100

Sensitivity precision Recall F1 Score

XGBoost CLassification

0

10

20

30

40

50

60

70

80

90

100

Sensitivity precision Recall F1 Score

Decision Tree

59

From the above comparison we can see that besides the recall and F1 score of Naïve Bayes

Multinomial, SMOTE+ENN gives the best result across all the machine learning algorithms

used for all the performance parameters.

Best working algorithm (highest score): SVM with a score of 0.713559.

For the evaluation metrics:

The best accuracy was found from SVM with a value of 0.983710 (5-fold) and 0.983709 (10-

fold). Best precision Naive Bayes (Gaussian) with a value of 0.985714 (5-fold) and KNN with

a value of 0.992308 (10-fold). The best recall was found using SVM with a value of 0.984615

(5-fold and 10-fold). Best F1 score using SVM with a value of 0.977474 (5-fold) and 0.977450

(10-fold). Therefore, the best working algorithm overall is SVM, and it also achieved the

highest accuracy, recall, and F1 score. Naive Bayes (Gaussian) and KNN performed the best

in terms of precision.

60

CHAPTER 6

Limitations

The dataset used in the study consists of only 583 samples, which may be considered relatively

small for training a complex machine learning model. The limited number of instances could

potentially affect the model's ability to capture the full range of patterns and variations present

in liver disease data. The dataset comprises data solely from Indian patients, which introduces

a potential limitation in terms of generalizability. The characteristics and risk factors associated

with liver disease may differ among populations worldwide. Therefore, the findings and

predictions made by the model may not fully reflect the nuances and diversity of liver disease

in a global context. Since the dataset exclusively focuses on Indian patients, the model's

predictions might be biased towards the specific characteristics and health conditions prevalent

in the Indian population. The model may not account for the unique factors or variations present

in other populations, potentially limiting its applicability and generalizability to individuals

from different ethnic backgrounds. The dataset used in the study may lack certain important

variables that could contribute to a more comprehensive understanding of liver disease.

Absence of relevant features, such as genetic factors, lifestyle habits, or other underlying health

conditions, could limit the model's predictive accuracy and overall performance.

61

CHAPTER 7

CONCLUSION AND FUTURE WORKS

In this fast-growing world, in terms of technology and population, there is a grave requirement

to use all the resources at hand to provide swift and proper service to the ever-growing

population. In the field of medicine, the use of modern technology like Artificial Intelligence

has become a crucial way to provide accurate and reliable prediction of different diseases so

that treatment can be started as soon as possible. Liver disease is one of the diseases which

needs to be identified very early on as late diagnosis may result in treatment beginning too late.

In this study, 5 different Imbalance handling techniques have been used on a liver disease

dataset after the dataset had been pre-processed. Among all the imbalance handling methods

used, it is seen that SVM, applied to the SMOTE+ENN dataset, gave us the best results. The

best accuracy, recall and F1 score was found using SVM all of which gave a value of 98.37%,

98.46% and 97.74% respectively. The best precision came from Naive Bayes (Gaussian) with

a value 98.57% (5-fold) and KNN with a value of 99.23% (10-fold). The ROC_AUC score for

SVM also came at 98% for 5-fold cross validation. Therefore, SMOTE+ENN is best at

handling this kind of dataset. With the promising result found in this study, a notable

contribution can be made in the prediction of liver disease and an automated system can be put

in place which allows computer-aided diagnosis system for e-healthcare applications.

62

References

1. Choudhary, R., Gopalakrishnan, T., Ruby, D., Gayathri, A., Murthy, V.S. and Shekhar, R., 2021.

An Efficient Model for Predicting Liver Disease Using Machine Learning. Data Analytics in

Bioinformatics: A Machine Learning Perspective, pp.443-457.

2. Dritsas, E. and Trigka, M., 2023. Supervised Machine Learning Models for Liver Disease Risk

Prediction. Computers, 12(1), p.19.

3. Tokala, S., Hajarathaiah, K., Gunda, S.R.P., Botla, S., Nalluri, L., Nagamanohar, P.,

Anamalamudi, S. and Enduri, M.K., 2023. Liver Disease Prediction and Classification using

Machine Learning Techniques. International Journal of Advanced Computer Science and

Applications, 14(2).

4. Weng, S., Hu, D., Chen, J., Yang, Y. and Peng, D., 2023. Prediction of Fatty Liver Disease in

a Chinese Population Using Machine-Learning Algorithms. Diagnostics, 13(6), p.1168.

5. Peng, H.Y., Duan, S.J., Pan, L., Wang, M.Y., Chen, J.L., Wang, Y.C. and Yao, S.K., 2023.

Development and validation of machine learning models for nonalcoholic fatty liver

disease. Hepatobiliary & Pancreatic Diseases International.

6. Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I. and Chouvarda, I., 2017.

Machine learning and data mining methods in diabetes research. Computational and structural

biotechnology journal, 15, pp.104-116.

7. Ramana, B.V., Babu, M.P. and Venkateswarlu, N.B., 2012. Liver classification using modified

rotation forest. International Journal of Engineering Research and Development, 6(1), pp.17-

24.

8. Pei, X., Deng, Q., Liu, Z., Yan, X. and Sun, W., 2021. Machine learning algorithms for predicting

fatty liver disease. Annals of Nutrition and Metabolism, 77(1), pp.38-45.

9. Xiao, J., Wang, F., Wong, N.K., He, J., Zhang, R., Sun, R., Xu, Y., Liu, Y., Li, W., Koike, K. and

He, W., 2019. Global liver disease burdens and research trends: analysis from a Chinese

perspective. Journal of hepatology, 71(1), pp.212-221.

10. Khan, M.A.R., Afrin, F., Prity, F.S., Ahammad, I., Fatema, S., Prosad, R., Hasan, M.K. and

Uddin, M., 2023. An effective approach for early liver disease prediction and sensitivity

analysis. Iran Journal of Computer Science, pp.1-19.

11. Alber, M., Buganza Tepole, A., Cannon, W.R., De, S., Dura-Bernal, S., Garikipati, K.,

Karniadakis, G., Lytton, W.W., Perdikaris, P., Petzold, L. and Kuhl, E., 2019. Integrating

machine learning and multiscale modeling—perspectives, challenges, and opportunities in the

biological, biomedical, and behavioral sciences. NPJ digital medicine, 2(1), p.115.

12. Kolachalama, V.B. and Garg, P.S., 2018. Machine learning and medical education. NPJ digital

medicine, 1(1), p.54.

13. Dritsas, E. and Trigka, M., 2023. Supervised Machine Learning Models for Liver Disease Risk

Prediction. Computers, 12(1), p.19.

63

14. Weng, S., Hu, D., Chen, J., Yang, Y. and Peng, D., 2023. Prediction of Fatty Liver Disease in

a Chinese Population Using Machine-Learning Algorithms. Diagnostics, 13(6), p.1168.

15. Tokala, S., Hajarathaiah, K., Gunda, S.R.P., Botla, S., Nalluri, L., Nagamanohar, P.,

Anamalamudi, S. and Enduri, M.K., 2023. Liver Disease Prediction and Classification using

Machine Learning Techniques. International Journal of Advanced Computer Science and

Applications, 14(2).

16. Peng, H.Y., Duan, S.J., Pan, L., Wang, M.Y., Chen, J.L., Wang, Y.C. and Yao, S.K., 2023.

Development and validation of machine learning models for nonalcoholic fatty liver

disease. Hepatobiliary & Pancreatic Diseases International.

17. Gupta, K., Jiwani, N., Afreen, N. and Divyarani, D., 2022, April. Liver Disease Prediction using

Machine learning Classification Techniques. In 2022 IEEE 11th International Conference on

Communication Systems and Network Technologies (CSNT) (pp. 221-226). IEEE.

18. Ramana, B.V., Babu, M.S.P. and Venkateswarlu, N.B., 2011. A critical study of selected

classification algorithms for liver disease diagnosis. International Journal of Database

Management Systems, 3(2), pp.101-114.

19. Pei, X., Deng, Q., Liu, Z., Yan, X. and Sun, W., 2021. Machine learning algorithms for predicting

fatty liver disease. Annals of Nutrition and Metabolism, 77(1), pp.38-45.

20. Sivasangari, A., Reddy, B.J.K., Kiran, A. and Ajitha, P., 2020, October. Diagnosis of liver

disease using machine learning models. In 2020 Fourth International Conference on I-SMAC

(IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 627-630). IEEE.

21. Akter, S., Shekhar, H.U. and Akhteruzzaman, S., 2021. Application of biochemical tests and

machine learning techniques to diagnose and evaluate liver disease. Advances in Bioscience

and Biotechnology, 12(6), pp.154-172.

22. Kuzhippallil, M.A., Joseph, C. and Kannan, A., 2020, March. Comparative analysis of machine

learning techniques for indian liver disease patients. In 2020 6th International Conference on

Advanced Computing and Communication Systems (ICACCS) (pp. 778-782). IEEE.

23. Fathi, M., Nemati, M., Mohammadi, S.M. and Abbasi-Kesbi, R., 2020. A machine learning

approach based on SVM for classification of liver diseases. Biomedical Engineering:

Applications, Basis and Communications, 32(03), p.2050018.

24. OUR DATASET

25. Ramana, B.V., Babu, M.S.P. and Venkateswarlu, N.B., 2012. A critical comparative study of

liver patients from USA and INDIA: an exploratory analysis. International Journal of Computer

Science Issues (IJCSI), 9(3), p.506.

26. Schmucker, D.L., 2005. Age-related changes in liver structure and function: Implications for

disease?. Experimental gerontology, 40(8-9), pp.650-659.

27. Harrison-Findik, D.D., 2010. Gender-related variations in iron metabolism and liver

diseases. World journal of hepatology, 2(8), p.302.

28. Rahm, E. and Do, H.H., 2000. Data cleaning: Problems and current approaches. IEEE Data

Eng. Bull., 23(4), pp.3-13.

64

29. Mehrotra, D.V., Liu, F. and Permutt, T., 2017. Missing data in clinical trials: control‐based mean

imputation and sensitivity analysis. Pharmaceutical statistics, 16(5), pp.378-392.

30. Weisberg, S., 2001. Yeo-Johnson power transformations. Department of Applied Statistics,

University of Minnesota. Retrieved June, 1, p.2003.

31. [31] https://www.atoti.io/articles/when-to-perform-a-feature-

scaling/#:~:text=Feature%20scaling%20is%20a%20method,during%20the%20data%20prepr

ocessing%20step.

32. Abdennour, N., Ouni, T. and Amor, N.B., 2021, November. The importance of signal pre-

processing for machine learning: The influence of Data scaling in a driver identity classification.

In 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications

(AICCSA) (pp. 1-6). IEEE.

33. Alshaher, H., 2021. Studying the effects of feature scaling in machine learning (Doctoral

dissertation, North Carolina Agricultural and Technical State University).

34. https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-

normalization-standardization/

35. https://www.analyticsvidhya.com/blog/2021/06/5-techniques-to-handle-imbalanced-data-for-a-

classification-problem/

36. https://machinelearningmastery.com/imbalanced-classification-is-hard/

37. Ito, A., Saito, K., Ueno, R. and Homma, N., 2021. Imbalanced data problems in deep learning-

based side-channel attacks: Analysis and solution. IEEE Transactions on Information

Forensics and Security, 16, pp.3790-3802.

38. Blagus, R., Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC

Bioinformatics 14, 106 (2013). https://doi.org/10.1186/1471-2105-14-106

39. Hadwan, M., Al-Sarem, M., Saeed, F. and Al-Hagery, M.A., 2022. An improved sentiment

classification approach for measuring user satisfaction toward governmental services’ mobile

apps using machine learning methods with feature engineering and SMOTE technique. Applied

Sciences, 12(11), p.5547.

40. R. Blagus and L. Lusa, "Evaluation of SMOTE for High-Dimensional Class-Imbalanced

Microarray Data," 2012 11th International Conference on Machine Learning and Applications,

Boca Raton, FL, USA, 2012, pp. 89-94, doi: 10.1109/ICMLA.2012.183.

41. Haibo He, Yang Bai, E. A. Garcia and Shutao Li, "ADASYN: Adaptive synthetic sampling

approach for imbalanced learning," 2008 IEEE International Joint Conference on Neural

Networks (IEEE World Congress on Computational Intelligence), Hong Kong, 2008, pp. 1322-

1328, doi: 10.1109/IJCNN.2008.4633969.

42. He, H., Yang, B., Garcia, E.A. and Li, S.A., adaptive synthetic sampling approach for

imbalanced learning. Proeedings f the 2008 IEEE International Joint Conference on Neural

Networks (IEEE World Congress on Computational Intelligence); June 2008; Hong Kong,

China.

43. Ramadhan, N.G., 2021. Comparative Analysis Of Adasyn-Svm And Smote-Svm Methods On

The Detection Of Type 2 Diabetes Mellitus. Scientific Journal Of Informatics, 8(2), pp.276-282.

https://www.atoti.io/articles/when-to-perform-a-feature-scaling/#:~:text=Feature%20scaling%20is%20a%20method,during%20the%20data%20preprocessing%20step
https://www.atoti.io/articles/when-to-perform-a-feature-scaling/#:~:text=Feature%20scaling%20is%20a%20method,during%20the%20data%20preprocessing%20step
https://www.atoti.io/articles/when-to-perform-a-feature-scaling/#:~:text=Feature%20scaling%20is%20a%20method,during%20the%20data%20preprocessing%20step
https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-normalization-standardization/
https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-normalization-standardization/
https://www.analyticsvidhya.com/blog/2021/06/5-techniques-to-handle-imbalanced-data-for-a-classification-problem/
https://www.analyticsvidhya.com/blog/2021/06/5-techniques-to-handle-imbalanced-data-for-a-classification-problem/
https://machinelearningmastery.com/imbalanced-classification-is-hard/
https://doi.org/10.1186/1471-2105-14-106

65

44. https://machinelearningmastery.com/combine-oversampling-and-undersampling-for-

imbalancedclassification/#:~:text=SMOTE%20is%20an%20oversampling%20method,dataset

%20that%20have%20different%20classes.

45. https://www.kdnuggets.com/2016/08/learning-from-

imbalancedclasses.html/2#:~:text=For%20example%2C%20Tomek%20links%20are,majority

%20instance%20of%20the%20pair.

46. Monard, M.C. and Batista, G.E.A.P.A., 2002. Learning with skewed class

distributions. Advances in Logic, Artificial Intelligence and Robotics, 85, pp.173-180.

47. Hairani, H., Anggrawan, A. and Priyanto, D., 2023. Improvement Performance of the Random

Forest Method on Unbalanced Diabetes Data Classification Using Smote-Tomek Link. JOIV:

International Journal on Informatics Visualization, 7(1), pp.258-264.

48. Chandra, W., Suprihatin, B. and Resti, Y., 2023. Median-KNN Regressor-SMOTE-Tomek Links

for Handling Missing and Imbalanced Data in Air Quality Prediction. Symmetry, 15(4), p.887.

49. Q. Ning, X. Zhao and Z. Ma, "A Novel Method for Identification of Glutarylation Sites Combining

Borderline-SMOTE With Tomek Links Technique in Imbalanced Data," in IEEE/ACM

Transactions on Computational Biology and Bioinformatics, vol. 19, no. 5, pp. 2632-2641, 1

Sept.-Oct. 2022, doi: 10.1109/TCBB.2021.3095482.

50. Zhou, H., Dong, X., Xia, S. and Wang, G., 2021. Weighted oversampling algorithms for

imbalanced problems and application in prediction of streamflow. Knowledge-Based

Systems, 229, p.107306.

51. Jeatrakul, P., 2012. Enhancing classification performance over noise and imbalanced data

problems (Doctoral dissertation, Murdoch University).

52. Xu, Z., Shen, D., Nie, T., Kou, Y., Yin, N. and Han, X., 2021. A cluster-based oversampling

algorithm combining SMOTE and k-means for imbalanced medical data. Information

Sciences, 572, pp.574-589.

53. Singh, N.D. and Dhall, A., 2018. Clustering and learning from imbalanced data. arXiv preprint

arXiv:1811.00972.

54. Buabeng, A., Simons, A., Frempong, N.K. and Ziggah, Y.Y., 2021. A novel hybrid predictive

maintenance model based on clustering, smote and multi-layer perceptron neural network

optimised with grey wolf algorithm. SN Applied Sciences, 3(5), p.593.

55. https://towardsdatascience.com/imbalanced-classification-in-python-smote-enn-method-

db5db06b8d50

56. Gao, Q., Jin, X., Xia, E., Wu, X., Gu, L., Yan, H., Xia, Y. and Li, S., 2020. Identification of orphan

genes in unbalanced datasets based on ensemble learning. Frontiers in Genetics, 11, p.820.

57. More, A., 2016. Survey of resampling techniques for improving classification performance in

unbalanced datasets. arXiv preprint arXiv:1608.06048.

58. Lamari, M., Azizi, N., Hammami, N.E., Boukhamla, A., Cheriguene, S., Dendani, N. and

Benzebouchi, N.E., 2021. SMOTE–ENN-Based Data Sampling and Improved Dynamic

https://machinelearningmastery.com/combine-oversampling-and-undersampling-for-imbalancedclassification/#:~:text=SMOTE%20is%20an%20oversampling%20method,dataset%20that%20have%20different%20classes
https://machinelearningmastery.com/combine-oversampling-and-undersampling-for-imbalancedclassification/#:~:text=SMOTE%20is%20an%20oversampling%20method,dataset%20that%20have%20different%20classes
https://machinelearningmastery.com/combine-oversampling-and-undersampling-for-imbalancedclassification/#:~:text=SMOTE%20is%20an%20oversampling%20method,dataset%20that%20have%20different%20classes
https://www.kdnuggets.com/2016/08/learning-from-imbalancedclasses.html/2#:~:text=For%20example%2C%20Tomek%20links%20are,majority%20instance%20of%20the%20pair
https://www.kdnuggets.com/2016/08/learning-from-imbalancedclasses.html/2#:~:text=For%20example%2C%20Tomek%20links%20are,majority%20instance%20of%20the%20pair
https://www.kdnuggets.com/2016/08/learning-from-imbalancedclasses.html/2#:~:text=For%20example%2C%20Tomek%20links%20are,majority%20instance%20of%20the%20pair
https://towardsdatascience.com/imbalanced-classification-in-python-smote-enn-method-db5db06b8d50
https://towardsdatascience.com/imbalanced-classification-in-python-smote-enn-method-db5db06b8d50

66

Ensemble Selection for Imbalanced Medical Data Classification. In Advances on Smart and

Soft Computing: Proceedings of ICACIn 2020 (pp. 37-49). Springer Singapore.

59. Kumari, M. and Subbarao, N., 2022. A hybrid resampling algorithms SMOTE and ENN based

deep learning models for identification of Marburg virus inhibitors. Future Medicinal

Chemistry, 14(10), pp.701-715.

60. Puri, A. and Kumar Gupta, M., 2022. Improved hybrid bag-boost ensemble with K-means-

SMOTE–ENN technique for handling noisy class imbalanced data. The Computer

Journal, 65(1), pp.124-138.

61. Azhar, N.A., Pozi, M.S.M., Din, A.M. and Jatowt, A., 2022. An Investigation of SMOTE based

Methods for Imbalanced Datasets with Data Complexity Analysis. IEEE Transactions on

Knowledge and Data Engineering.

62. Kabir, M.F. and Ludwig, S., 2018, December. Classification of breast cancer risk factors using

several resampling approaches. In 2018 17th IEEE International Conference on Machine

Learning and Applications (ICMLA) (pp. 1243-1248). IEEE.

63. Wang, Q., Luo, Z., Huang, J., Feng, Y. and Liu, Z., 2017. A novel ensemble method for

imbalanced data learning: bagging of extrapolation-SMOTE SVM. Computational intelligence

and neuroscience, 2017.

64. Xu, Z., Shen, D., Nie, T. and Kou, Y., 2020. A hybrid sampling algorithm combining M-SMOTE

and ENN based on random forest for medical imbalanced data. Journal of Biomedical

Informatics, 107, p.103465.

65. https://www.sciencedirect.com/topics/engineering/confusionmatrix#:~:text=A%20confusio

n%20matrix%20is%20a,performance%20of%20a%20classification%20algorithm.

66. https://deepai.org/machine-learning-glossary-and-terms/accuracy-error-rate

https://www.javatpoint.com/precision-and-recall-in-machine-learning

67. https://www.iguazio.com/glossary/recall/#:~:text=Recall%2C%20also%20known%20as%20t

he,total%20samples%20for%20that%20class.

68. https://www.v7labs.com/blog/f1-score-guide#:~:text=for%20Machine%20Learning-

,What%20is%20F1%20score%3F,prediction%20across%20the%20entire%20dataset.

69. https://www.anyscale.com/blog/what-is-

hyperparametertuning#:~:text=Hyperparameter%20tuning%20consists%20of%20finding,bet

ter%20results%20with%20fewer%20errors.

70. Ahmad, G.N., Fatima, H., Ullah, S. and Saidi, A.S., 2022. Efficient medical diagnosis of human

heart diseases using machine learning techniques with and without GridSearchCV. IEEE

Access, 10, pp.80151-80173.

71. Chakraborty, D. and Elzarka, H., 2019. Advanced machine learning techniques for building

performance simulation: a comparative analysis. Journal of Building Performance

Simulation, 12(2), pp.193-207.

https://www.sciencedirect.com/topics/engineering/confusionmatrix#:~:text=A%20confusion%20matrix%20is%20a,performance%20of%20a%20classification%20algorithm
https://www.sciencedirect.com/topics/engineering/confusionmatrix#:~:text=A%20confusion%20matrix%20is%20a,performance%20of%20a%20classification%20algorithm
https://deepai.org/machine-learning-glossary-and-terms/accuracy-error-rate
https://www.javatpoint.com/precision-and-recall-in-machine-learning
https://www.iguazio.com/glossary/recall/#:~:text=Recall%2C%20also%20known%20as%20the,total%20samples%20for%20that%20class
https://www.iguazio.com/glossary/recall/#:~:text=Recall%2C%20also%20known%20as%20the,total%20samples%20for%20that%20class
https://www.v7labs.com/blog/f1-score-guide#:~:text=for%20Machine%20Learning-,What%20is%20F1%20score%3F,prediction%20across%20the%20entire%20dataset
https://www.v7labs.com/blog/f1-score-guide#:~:text=for%20Machine%20Learning-,What%20is%20F1%20score%3F,prediction%20across%20the%20entire%20dataset
https://www.anyscale.com/blog/what-is-hyperparametertuning#:~:text=Hyperparameter%20tuning%20consists%20of%20finding,better%20results%20with%20fewer%20errors
https://www.anyscale.com/blog/what-is-hyperparametertuning#:~:text=Hyperparameter%20tuning%20consists%20of%20finding,better%20results%20with%20fewer%20errors
https://www.anyscale.com/blog/what-is-hyperparametertuning#:~:text=Hyperparameter%20tuning%20consists%20of%20finding,better%20results%20with%20fewer%20errors

67

