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ABSTRACT 

 
The liver is one of the most important organs in the body. It is responsible for controlling the 

chemical balance of the bloodstream as well as the removal of waste products among other vital 

functions. Liver disease is important to be diagnosed early on as symptoms do not begin to show 

until most of the liver is already damaged. Machine learning could be a crucial tool in the 

prediction of liver disease in patients which could lead to early diagnosis and also early treatment. 

In this study a dataset with 583 instances has been pre-processed and the imbalance had been 

handled in 5 separate ways, namely, Synthetic Minority Oversampling Technique (SMOTE), 

Adaptive Synthetic (ADASYN), Synthetic Minority Oversampling Technique and Conformal 

Clustering (CC), Synthetic Minority Oversampling Technique and Tomeklinks and Synthetic 

Minority Oversampling Technique and edited nearest neighbor (SMOTE+ENN). Then various 

machine learning algorithms like Decision Tree Classifier, Logistic Regression, Gaussian Naïve 

Bayes, Random Forest Classifier, K-Nearest Neighbors, and Support Vector Machine algorithms 

etc has been used. The experiment gave the best result when SMOTE+ENN was used as the 

imbalance handling technique with an accuracy of 98.37%. This accuracy was found using the 

support vector machine (SVM) approach. Therefore, this study shows the comparative analysis of 

the different imbalance handling techniques and the one which performs the best among each of 

these. It presents SMOTE+ENN as the best in case of this specific dataset. 
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CHAPTER 1 

INTRODUCTION  

 

1.1 Introduction 

 
The advancement of science and technology naturally raises the standard of living of human 

beings. This applies to every aspect of life including, but not limited to, food and nutrition, 

transport, communication, healthcare etc. In the domain of human healthcare, one of the most 

important organs to take note of is the liver. The liver, which also excretes bile, controls most 

of the chemical levels of the bloodstream. This helps the liver remove waste products [1]. Any 

of the wide array of conditions which may cause damage to the liver is labelled as “liver 

disease”. Cirrhosis (scarring) can develop over time due to liver disease and without treatment 

more and more healthy tissue will be replaced with scar tissue which can prevent the liver from 

working as it should. Liver failure and liver cancer may result from untreated liver disease [2].  

The likelihood of a person getting inflicted with liver disease depends on risk factors like 

alcohol consumption, obesity, diabetes, and hepatitis B and C virus infections. It becomes 

arduous to get a diagnosis of liver disease early on as the liver still functions without much 

symptoms even if some parts of it is damaged [3]. Therefore, a significant number of people 

die annually due to liver disease. Cirrhosis, as well as chronic liver disease, is responsible for 

around two million lives being lost each year throughout the world [4], and the modern lifestyle 

which includes desk jobs, increased alcohol consumption and smoking aids in the risk of liver 

disease. In the fight against liver disease, to give the affected a better chance of survival, it is 

crucial to diagnose the liver disease at the early stages [5]. 

In recent times, machine learning has been a powerful tool to analyze, evaluate and predict 

various medical conditions [6]. With a big enough dataset with varied parameters, machine 

learning and deep learning algorithms can find out, to a significant degree of accuracy, the 

relation between different symptoms to the possibility of having liver disease [7].  

In Bangladesh, there is a doctor to patient ratio of 5.26 to 10,000 [8]. Therefore, this could 

prove to be a difference maker in third world countries like Bangladesh where there is a deficit 

of healthcare professionals.  
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1.2 Problem Statement 

 

Liver diseases pose significant health challenges worldwide, affecting millions of individuals 

and leading to substantial morbidity and mortality rates [9]. Early and accurate detection of 

liver diseases plays a crucial role in improving patient outcomes, as timely intervention and 

treatment can prevent disease progression and associated complications [10]. However, 

conventional diagnostic approaches for liver diseases often rely on invasive procedures and 

expert interpretation, leading to potential delays, subjectivity, and resource limitations. 

In recent years, machine learning techniques have demonstrated remarkable potential in 

various medical applications, including disease diagnosis and prediction. Leveraging the power 

of machine learning algorithms, particularly in the field of liver disease detection, has the 

potential to significantly enhance diagnostic accuracy and efficiency, thereby revolutionizing 

clinical practice. 

Despite the promise of machine learning in liver disease detection, several challenges need to 

be addressed to ensure its successful implementation. Firstly, the availability of large-scale, 

diverse, and well-annotated datasets of liver disease cases is essential for training robust 

machine learning models. However, the scarcity of such datasets and the need for ensuring data 

quality and representativeness hinder the development of accurate and reliable models. 

Secondly, the interpretability and explainability of machine learning models used for liver 

disease detection are crucial for clinical acceptance and trust. Physicians and healthcare 

professionals require transparency in the decision-making process to understand the reasoning 

behind the predictions made by these models and to ensure the integration of their expertise 

into the diagnostic workflow. 

Furthermore, the integration of machine learning models into existing healthcare systems and 

workflows poses logistical challenges, including the need for seamless integration, scalability, 

and interoperability [11]. Overcoming these challenges is essential to facilitate the practical 

implementation and adoption of machine learning-guided liver disease detection in real-world 

clinical settings. 

Therefore, this thesis aims to address the aforementioned challenges and contribute to the 

advancement of machine learning-guided liver disease detection. The research will focus on 

developing accurate and interpretable machine learning models by leveraging diverse and well-

annotated liver disease datasets 
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By successfully addressing these challenges, this research endeavors to enhance diagnostic 

accuracy and efficiency in liver disease detection, leading to improved patient outcomes, 

reduced healthcare costs, and a significant advancement in the field of medical diagnostics. 

 

 

 

1.3 Thesis Organization 

 

This thesis focuses on using machine learning algorithms on a liver disease dataset to gain a 

high accuracy in the prediction of liver disease in a patient. This is done following the pre-

processing of the dataset using various methods.  

 

✓ In chapter 2, the literature review or background study is given where the research 

works done in this domain is reviewed.  

 

✓ In Chapter 3, the methodology has been discussed which includes details about the 

data, where it has been sourced from and how it is structured. The processing 

techniques used have been mentioned in this section which includes the imbalance 

handling techniques used. This section also holds the different machine learning 

algorithms which were used.  

 

✓ In chapter 4, the results which were found after the different algorithms were are 

discussed. This involves the results before and after handling imbalance and also after 

cross validation is performed.  

 

✓ In Chapter 5, the results are discussed in detail. The different algorithms and imbalance 

handling techniques are compared to find the best performing one.  

 

✓ In Chapter 6, the limitation of this study is given.  

 

✓ In Chapter 7, the conclusion of the thesis is included, including a quick review of the 

findings and some recommendations for further research. 
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CHAPTER 2 

Background Study 

 

As time progresses so do the tools which assist in the workloads of human beings. Machine 

learning is rapidly becoming one of these tools which is aiding the world of disease prediction.  

Various research has been done on the utilization of machine learning techniques to find liver 

disease in recent years. The health industry has experienced a spike in the creation of 

applications as machine learning has grown in popularity in recent years [12]. Several studies 

have been conducted in the domain of liver disease detection using machine learning 

algorithms. For instance, Ritesh Choudhary et al. used Logistic Regression, Support Vector 

Classifier, Naïve Bayes, Random Forest, and Gradient Boosting algorithms to diagnose liver 

disease and predict risk [1]. The study found that Logistic Regression achieved the best result 

with an accuracy of 71%. Similarly, Elias Dritsas et al. proposed voting as their model of choice 

and used SMOTE as their imbalance handling technique, achieving an accuracy of 80.1% [13]. 

Shuwei Weng et al. used SMOTE-NC and 10-fold cross-validation, performing eight different 

machine learning algorithms on a liver disease dataset for the Chinese population [14]. They 

found XGBoost to be the best predictor among all tested methods with an accuracy of 89.7%. 

Other studies also compared multiple algorithms, such as Srilatha Tokala et al., who found 

Random Forest to perform the best with an accuracy of 87% [15]. Hong-Ye Peng et al. 

developed and validated five machine learning models for NAFLD (Non-alcoholic fatty liver 

disease), among which XGBoost demonstrated the best performance with an accuracy of 0.89 

[16]. Furthermore, some studies explored multiple algorithms and found that Random Forest, 

Light GB, and AdaBoosting algorithm gave better results, such as Ketan Gupta et al.'s analysis 

of liver disease [17]. Bendi Venkata Ramana et al. used ten popular classification algorithms 

with a combination of four feature selection methods [18], while Xieyi Pei et al. used SMOTE 

as their imbalance handling technique and found XGBoost to have a better prediction of Fatty 

Liver disease among individuals with minimal variables [19]. A.Sivasangari et al. analyzed the 

liver disease dataset and found SVM to have the highest accuracy of 95.18% [20]. Shamima 

Akter et al. also analyzed liver disease data and found Random Forest and CART to have 94% 

and 95% accuracy, respectively [21]. Maria Alex Kuzhippallil et al. used feature selection and 

outlier elimination, finding that all 10 machine learning algorithms' accuracies improved, with 



5  
 

Random Forest having the highest accuracy of 88% [22]. Mohammad Fathi et al. presented 

their analysis on two different datasets using SVM for the classification of liver disease, 

achieving an accuracy of 90.9% and 92.2% for the ILDP and BUPA datasets, respectively [23]. 
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CHAPTER 3 

Methodology 

 

 

3.1 Data Collection 

Before machine learning (ML) can be effectively applied, the process of data collection plays 

a pivotal role. Data serves as the lifeblood for ML algorithms, providing the necessary 

information for them to learn and make accurate predictions or decisions. The quality, quantity, 

and diversity of the collected data directly impact the performance and reliability of ML 

models. By amassing a substantial and diverse dataset, researchers and practitioners can ensure 

that the models are trained on a wide range of scenarios, enabling them to generalize and handle 

various real-world situations. Furthermore, comprehensive data collection allows for the 

identification of patterns, correlations, and insights that might otherwise remain hidden. Thus, 

data collection serves as the foundation upon which ML algorithms are built, allowing them to 

extract valuable knowledge and deliver meaningful results. 

3.1.1 Data Source:  

The "Indian Liver Patient Records" dataset used in this research was graciously provided by 

Dr. S. Sridhar, Dr. Bevera Lakshmana Rao, K. Ravi Kanth, and B. Sai Prasad [24]. Initially, 

the dataset was utilized for a comparative analysis of liver patients from the United States and 

India, conducted by these esteemed researchers [25]. The study aimed to explore and compare 

various aspects of liver diseases, such as prevalence, risk factors, and treatment outcomes, 

between the two countries. Subsequently, recognizing its value for the broader scientific 

community, the dataset was made publicly available. This decision allowed researchers 

worldwide to access and utilize the dataset for further investigations and advancements in liver 

disease research.  
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3.1.2 Data Structure:  

The "Indian Liver Patient Records" dataset is structured as a single CSV file, presenting a well-

organized format for analysis. It contains 583 records from the North East region of Andhra 

Pradesh, India, comprising 416 liver patient records and 167 non-liver patient records. Each 

row represents a patient's comprehensive medical information, while the columns capture 

different attributes and features relevant to liver disease. The dataset's tabular structure allows 

for efficient organization and enables researchers to explore correlations between various 

features and the occurrence of liver disease. The dataset includes a "Dataset" column serving 

as the class label, distinguishing liver patients from non-liver patients. Additionally, it consists 

of 441 male patient records and 142 female patient records. Notably, for privacy protection, 

any patient aged over 89 is labeled as "90". This dataset provides valuable insights into liver 

disease patterns in the specified region, making it an essential resource for researchers studying 

liver diseases and their associated factors in this population. 

 

 

Sl No. Attribute Name  Max Mean Min Standard 

Deviation 

1 Age  90 44.75 4 16.18 

2 Total Bilirubin 75 3.298 0.4 6.209 

3 Direct Bilirubin 19.7 1.486 0.1 2.8 

4 Alkaline Phosphotase 2110 290.57 63 242.93 

5 Alamine Aminotransferase 2000 80.71 10 182.62 

6 Aspartate Aminotransferase 4929 109.91 10 288.91 

7 Total Protiens 9.6 6.48 2.7 1.08 

8 Albumin 5.5 3.14 0.9 0.795 

9 Albumin and Globulin Ratio 2.8 0.94 0.3 0.3195 

10 Datasetc(target) 2 1.286 1 0.452 

 

Table 3.1: statistical information of the attributes 

 

 

During our preliminary investigation, we discovered that the dataset contained a minimal 

number of duplicated entries, with only 13 instances of duplicated data. Additionally, we  
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identified that there were four missing values specifically related to the Albumin and Globulin 

Ratio feature.  

 

Fig 3.1: Histogram for Age with Disease 

 

 

 

3.1.3 Data Features:  

The features in the "Indian Liver Patient Records" dataset play a crucial role in identifying and 

understanding liver diseases. Age, as an important feature, provides insights into the patient's 

age group, which can be a significant factor in determining the susceptibility to liver diseases. 

Liver diseases often exhibit age-related patterns, and certain conditions may be more prevalent 

in specific age ranges [26]. Gender, another feature, is significant because liver diseases can 

exhibit gender-specific variations [27]. By considering the gender of the patient, researchers 

can analyze and identify potential disparities or trends in the occurrence and progression of 

liver diseases between male and female populations. Biochemical markers such as Total 

Bilirubin (TB), Direct Bilirubin (DB), Alkaline Phosphotase (Alkphos), Alamine 

Aminotransferase (Sgpt), and Aspartate Aminotransferase (Sgot) provide critical information 

about liver function and damage. Elevated levels of these markers can indicate liver 

dysfunction and help in the diagnosis and monitoring of liver diseases. Total Proteins (TP), 

Albumin (ALB), and the Albumin and Globulin Ratio (A/G Ratio) are essential indicators of 

liver health. Abnormal levels of these proteins can signify liver disorders, as they reflect the  
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liver's synthetic and detoxification functions. A decrease in albumin levels and alterations in 

the A/G ratio can point towards liver disease progression. The Selector feature, used to split 

the data into liver disease and non-liver disease groups, is crucial in building predictive models 

and evaluating the performance of algorithms. By categorizing patients based on expert 

opinions, researchers can train models to accurately identify liver disease cases. Overall, these 

features collectively provide valuable information for the identification, diagnosis, and 

monitoring of liver diseases. Understanding the relationships and patterns between these 

features and liver disease outcomes can assist in developing effective prediction models and 

improving patient care and management strategies. 

 

3.1.4 Data Preprocessing: 

3.1.4.1 Cleaning Duplicate Data: 

Dataset may contain rows with duplicate sets of values. When all the values in all the columns 

match exactly or are identical, there are said to be duplicate rows [28]. The rows with duplicate 

values were eliminated in order to guarantee data integrity and reduce redundancy in the dataset 

for forecasting liver disease. We ensure the dataset contains unique and non-redundant 

information by dropping the duplicate rows, boosting the efficacy and integrity of subsequent 

research and model development. 

3.1.4.2 Handling Missing Data: 

Dataset occasionally contain null or missing values. These missing data can be handles either 

by dropping the records or by using various data imputation techniques. In the proposed work, 

the missing data has been handled by filling in the missing values using two techniques.  

For the data type having integer or float numbers the missing data has been handled by filling 

in the data by the mean value of the corresponding feature. This method, known as mean 

imputation, involves calculating the average value of the feature from the available data and 

replacing the missing values with this average. Mean imputation is an easy-to-use method that 

aids in preserving the dataset's general statistical characteristics [29]. The imputed dataset 

maintains the same mean value for the feature by substituting missing values with the mean, 

reducing the effect on the distribution and avoiding potential bias. 

For the object type data, the missing data has been filled up by using the mode value of the 

corresponding feature. The value of a variable that appears the most frequently is its mode. We 
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impute the missing data with the value that is most frequently seen for that specific feature by 

replacing the missing values with the mode. This method makes sure that the imputed values 

are in line with the majority of the observations while maintaining the distribution and 

frequency of the existing data. 

3.1.4.3 Data Encoding: 

Before training different models, categorical data must be transformed into numerical values. 

Data replacement is used to perform this conversion. There is only one categorical feature—

gender—in the Indian Liver dataset. The female and male classes in gender columns are 

replaced as 0 and 1, respectively. This procedure preserves the fundamental data included in 

the categorical characteristics while also ensuring compliance with the selected algorithms.  

3.1.4.4 Transforming Skew Data: 

The term "skewness" describes the asymmetry of a variable's distribution, with a positive skew 

denoting a longer tail on the right side and a negative skew denoting a longer tail on the left. 

Skewed data can have a negative impact on performance by going against model presumptions 

or by changing how feature importances are interpreted. There many techniques by which the 

skewness of the data can be brought into a symmetrical distribution. The Yeo-Johnson 

transformation was used to solve the issue of skewed data in the context. A power 

transformation method that can handle both positively and negatively skewed data is the Yeo-

Johnson transformation. The Yeo-Johnson transformation can handle data with zero or 

negative values, unlike other transformations like the logarithmic or square root 

transformations [30]. A more symmetrical distribution was achieved by applying the Yeo-

Johnson transformation to the skewed variables, which improved the data's suitability for 

statistical methods and machine learning algorithms that presume normality. The overall 

patterns and relationships within the data are preserved but the impact of outliers and extreme 

numbers is reduced. The effectiveness of machine learning models may be enhanced by this. 

The equation (1) for  is given below- 
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The distribution graph of the data before and after the transformation has been applied can be 

observed from the figure (3.2) 
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Fig 3.2: Observing skewness before and after transformation 
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3.2 Feature Selection: 

Data Dropping due to correlation: 

Data dropping was done using a correlation heatmap to simplify the dataset and increase the 

effectiveness of the predictive modeling procedure. The correlation heatmap revealed 

information about the connections between the various dataset variables. According to the 

correlation heatmap’s findings, the column ‘Direct Bilirubin’ was chosen and then deleted 

from the dataset. This column was eliminated because of its high correlation with another 

variable, which suggested a strong link or duplication of information. This column’s removal 

aids in the reduction of multicollinearity, which can have a negative effect on the 

effectiveness and interpretability of machine learning models.  

The dataset is now more refined and suited for further research due to data dropping based on 

the correlation heatmap. With the help of this procedure, the remaining variables are made to 

be less heavily reliant on one another and a more accurate picture of the independent traits 

that are involved in predicting liver disease is given. 

 



15  
 

 

Fig 3.3: Correlation heatmap of attributes 

 

3.3 Scaling:  

Scaling, in the context of machine and deep learning, refers to the process of adapting or 

transforming the input data to a specific range or distribution that is suitable for the learning 

algorithms and neural networks [31]. It involves manipulating the feature values to ensure that 

they are on a similar scale or have comparable magnitudes. 

Scaling is essential in machine and deep learning for several reasons: 

Numerical Stability: Scaling helps to stabilize the learning process by preventing numerical 

instabilities that can arise when working with features that have significantly different scales. 

Large differences in feature magnitudes can cause issues like slow convergence, 

vanishing/exploding gradients, and difficulties in optimizing the model. 

Improved Optimization: Scaling can enhance the efficiency and effectiveness of optimization 

algorithms. Gradient-based optimization techniques, such as stochastic gradient descent 
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(SGD), rely on the magnitudes of gradients to adjust the model parameters. When features are 

on different scales, the gradients can vary widely, leading to suboptimal convergence. Scaling 

mitigates this problem by ensuring that the gradients have consistent magnitudes. 

Balanced Influence: Scaling ensures that all features contribute proportionally to the learning 

process. If some features have larger scales than others, they might dominate the learning 

process and overshadow the importance of other features. By scaling the features, their 

influences are balanced, allowing the model to learn from all the relevant information [32-33]. 

A few different kinds of scaling which has been used in this study are Min-Max scaling and 

standard scaling.  

 

3.3.1 Min-Max Scaling:  

Min-max scaling, also known as normalization, is a data preprocessing technique used to 

transform numerical features into a common scale. The goal is to map the values of a feature 

to a specific range, typically between 0 and 1. This process is crucial when dealing with features 

that have different scales or units, as it ensures fair comparisons and prevents certain features 

from dominating the learning process [35]. 

To perform min-max scaling, we follow a straightforward formula for each feature: 

                                            

      X_scaled = (X - X_min) / (X_max - X_min) 

                                             

Here, X represents the original value of a feature, X_min is the minimum value in that feature, 

and X_max is the maximum value. By subtracting the minimum value and dividing by the 

range (the difference between the maximum and minimum values), we obtain the scaled value 

X_scaled within the desired range. A visual aid for min-max scaling is given below.  
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Figure 3.4: Before and after Min-Max Scaling 

 

One significant advantage of min-max scaling is that it maintains the shape and distribution of 

the original feature while transforming its values. It is particularly useful in scenarios where 

the scale of features varies widely. For example, if one feature ranges from 0 to 100 and another 

from 0 to 100,000, the latter feature would dominate the learning process if left unscaled. By 

applying min-max scaling, we bring both features to a comparable range, ensuring that they 

contribute equally during model training. 

 

Min-max scaling plays a crucial role in machine learning algorithms, especially those that 

utilize gradient-based optimization methods. Without scaling, features with larger magnitudes 

can have a more significant impact on the model's weights and biases, leading to biased or 

inefficient learning. By scaling the features to a common range, we mitigate the influence of 

outliers and improve the convergence speed and performance of the learning algorithm. 

 

It's worth noting that min-max scaling is sensitive to outliers. If a feature contains extreme 

values, they can disproportionately affect the scaling process and potentially compress the 

majority of the values. In such cases, alternative scaling techniques like standardization (Z-

score scaling) may be more appropriate, as they are more robust against outliers. 
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Overall, min-max scaling is a vital preprocessing step in machine learning. It ensures that 

features are uniformly scaled to a common range, allowing models to make fair and accurate 

comparisons. By employing this technique, we enable efficient learning, mitigate the impact 

of varying feature scales, and improve the overall performance of machine learning algorithms. 

 

3.3.2 Standard Scaling:  

Standard scaling, also known as Z-score scaling or standardization, is a popular technique used 

for feature scaling in machine learning. It transforms numerical features to have zero mean and 

unit variance, resulting in a standardized distribution [34]. 

The formula for standard scaling is as follows: 

X_scaled = (X - X_mean) / X_std 

Here, X represents the original value of a feature, X_mean is the mean of that feature, and 

X_std is the standard deviation. By subtracting the mean and dividing by the standard 

deviation, we obtain the scaled value X_scaled. A visual aid of Standard Scaling is given below.  

 

Figure 3.5: Before and after Standard Scaling 

Standard scaling offers several advantages in machine learning. First and foremost, it brings 

features to a common scale, making them directly comparable. This is especially useful when 

features have different units or scales, as it ensures that each feature contributes proportionally 
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to the learning process. Standardization also helps in cases where the distribution of a feature 

is skewed or has outliers. By transforming the data to have zero mean and unit variance, it 

reduces the impact of extreme values and makes the data more suitable for algorithms that 

assume a Gaussian distribution. 

Another advantage of standard scaling is that it simplifies the interpretation of feature 

importance. Since all features are on the same scale, the magnitude of their coefficients or 

weights in a model can directly indicate their relative importance. This is particularly valuable 

in linear models, where the coefficients represent the contributions of features to the output. 

However, it is important to note that standard scaling is sensitive to outliers. Outliers can have 

a significant influence on the mean and standard deviation, affecting the scaled values. In such 

cases, robust scaling techniques that are less affected by outliers, such as min-max scaling or 

quantile scaling, may be more appropriate. 

Additionally, standard scaling does not guarantee a specific range for the scaled values. The 

transformed values can be positive or negative, depending on their relation to the mean. If 

maintaining a specific range is necessary, alternative scaling techniques like min-max scaling 

may be more suitable. 

In summary, standard scaling is a widely used technique in machine learning that transforms 

features to have zero mean and unit variance. It enables fair comparisons between features, 

simplifies feature interpretation, and is particularly effective in handling skewed distributions. 

However, it can be sensitive to outliers and does not enforce a specific range for the scaled 

values. Careful consideration should be given to the specific characteristics of the data and the 

requirements of the machine learning algorithm when choosing the appropriate scaling 

technique. 

 

3.4 Handling Imbalanced Data:  

Imbalanced data refers to a situation where the classes or categories in a dataset are not 

represented equally. In other words, one class has a significantly larger number of instances 

compared to the other class(es), resulting in an imbalance in the distribution of the classes 

[35]. This issue is common in various real-world scenarios, such as fraud detection, disease 

diagnosis, anomaly detection, and rare event prediction. 
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Figure 3.6: Example of balanced and imbalanced data 

 

Imbalanced data can cause several challenges in machine learning [36-37]: 

Biased model performance: When faced with imbalanced data, machine learning models tend 

to favor the majority class, as it provides higher accuracy by simply predicting the majority 

class for most instances. As a result, the model may have poor performance in predicting the 

minority class, which is often the class of interest in many applications. 

Misleading evaluation metrics: Traditional evaluation metrics, such as accuracy, can be 

misleading when dealing with imbalanced data. For instance, if a dataset has 95% of instances 

belonging to the majority class and only 5% belonging to the minority class, a model that 

predicts the majority class for all instances would achieve 95% accuracy. However, this model 

provides no meaningful insights about the minority class. Therefore, alternative evaluation 

metrics like precision, recall, F1-score, or area under the receiver operating characteristic curve 

(AUC-ROC) are often used to assess model performance on imbalanced datasets. 

 

Sampling bias: Imbalanced data can introduce sampling bias, where the model learns to favor 

the majority class due to the abundance of its instances. This bias can lead to incorrect 

predictions and reduced generalization on unseen data. The model may fail to capture the 

patterns and characteristics specific to the minority class. 

Difficulty in detecting rare events: Imbalanced data often occurs in scenarios where the 

minority class represents rare events or anomalies that are of particular interest. Identifying 

these rare events becomes challenging due to their scarcity in the dataset. Machine learning 
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models trained on imbalanced data may struggle to recognize and accurately classify these rare 

events. 

To handle the imbalance, there are various kinds of imbalance handling techniques. The ones 

used in this study is described in detail in the following articles.  

 

3.4.1 SMOTE:  

 

SMOTE (Synthetic Minority Over-sampling Technique) is a popular technique used to address 

the issue of imbalanced data by generating synthetic samples for the minority class. It aims to 

increase the diversity and representation of the minority class in the dataset. SMOTE works by 

creating synthetic examples along the line segments connecting pairs of minority class 

instances [38]. 

Below are the step-by-step process of SMOTE: 

 

1. Identify the minority class: First, we identify the minority class in the imbalanced 

dataset. The minority class is the class with fewer instances. 

2. Select a minority class instance: Randomly select an instance from the minority class 

as the starting point for the synthetic sample generation. 

3. Find k nearest neighbors: Calculate the k nearest neighbors for the selected instance. 

The value of k is a user-defined parameter. 

4. Choose a random neighbor: Randomly select one of the k nearest neighbors and denote 

it as the neighbor instance. 

5. Create a synthetic sample: For each feature in the dataset, calculate the difference 

between the feature values of the selected instance and the neighbor instance. Multiply 

this difference by a random number between 0 and 1. Add the result to the feature values 

of the selected instance to create a new synthetic sample. 

6. Repeat the process: Repeat steps 2-5 to generate a desired number of synthetic samples 

for the minority class. 
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By generating synthetic samples, SMOTE increases the number of instances in the minority 

class, resulting in a more balanced distribution between the classes. 

 

Figure 3.7: Before, during and after applying SMOTE to a dataset 

The equation used in SMOTE to create synthetic samples is as follows: 

 

Synthetic sample = Instance + (Neighbor - Instance) * random_number 

 

Here, "Instance" represents the feature values of the selected instance, "Neighbor" represents 

the feature values of the neighbor instance, and "random_number" is a random value between 

0 and 1. 

Advantages of SMOTE: 

SMOTE helps to address the class imbalance problem by increasing the representation of the 

minority class, thereby improving the model's ability to learn its patterns [38]. The synthetic 

samples generated by SMOTE are based on the existing instances, which helps to preserve the 

characteristics and distribution of the minority class [49]. 

Disadvantages of SMOTE: 

SMOTE may introduce some degree of overfitting, as the synthetic samples are created by 

interpolating existing instances [39]. This can potentially amplify the noise or outliers present 

in the minority class. SMOTE is less effective in scenarios where the minority class instances 

are highly overlapping or densely packed, as the synthetic samples may not introduce 

significant diversity. 
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3.4.2 ADASYN: 

ADASYN (Adaptive Synthetic Sampling) is a data augmentation technique specifically 

designed to handle imbalanced datasets. It focuses on generating synthetic samples for the 

minority class based on the density distribution of the instances [40]. ADASYN aims to address 

the limitation of SMOTE, where the synthetic samples are equally generated for all instances 

regardless of their level of difficulty in learning [42]. 

 

Here is the step-by-step process of ADASYN: 

• Identify the minority class: Similar to other techniques, ADASYN starts by identifying 

the minority class in the imbalanced dataset. 

• Compute the level of imbalance: Calculate the imbalance ratio of the dataset, which is 

the ratio of the majority class instances to the minority class instances. 

• Calculate the required number of synthetic samples: Determine the number of synthetic 

samples to be generated for each minority class instance based on its difficulty in 

learning. This calculation takes into account the imbalance ratio and the density 

distribution of instances. 

Compute the synthetic samples: For each minority class instance, ADASYN performs the 

following steps [41]: 

a. Calculate the k nearest neighbors for the instance. The value of k is a user-defined parameter. 

b. Determine the relative density of each neighbor by considering the imbalance ratio. The 

relative density is a measure of how much the instance is surrounded by majority class instances 

compared to the minority class instances. 

c. Calculate the contribution factor for each neighbor based on its relative density. The 

contribution factor reflects the importance of the neighbor in generating synthetic samples. 

d. Generate synthetic samples for the instance by interpolating between the instance and its 

selected neighbors. The number of synthetic samples is determined by the required number of 

synthetic samples calculated in step 3, and the contribution factor is used to determine the 

weights for the interpolation. 

The equation used in ADASYN to calculate the contribution factor is as follows: 
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Contribution Factor = (Relative Density of Neighbor) / (Sum of Relative 

Densities of Neighbors) 

 

Figure 3.8: Before and after ADASYN applied to a dataset 

 

 

Advantages of ADASYN: 

• ADASYN adapts to the density distribution of instances, focusing on generating 

synthetic samples for the instances that are more difficult to learn. 

• It helps to further address the class imbalance problem by increasing the representation 

of the minority class, especially in regions where it is sparsely represented. 

Disadvantages of ADASYN: 



25  
 

• ADASYN may still introduce some degree of overfitting if the synthetic samples 

amplify noise or outliers in the minority class. 

• The performance of ADASYN heavily relies on the choice of the k parameter, which 

determines the number of nearest neighbors considered. 

 

3.4.3: SMOTE + TOMEKLINKS  

SMOTE is a popular oversampling technique that generates synthetic samples for the minority 

class by interpolating new instances between existing minority class instances. It helps to 

balance the class distribution and improve the performance of classifiers. However, SMOTE 

may also generate noisy or irrelevant synthetic instances, which can affect the classifier's 

performance. To address this issue, SMOTE+Tomek Links combines SMOTE with the Tomek 

Links under sampling technique [43]. 

 Tomek links: 

 Tomek Links are a technique used for cleaning up imbalanced datasets in machine 

learning. They are pairs of samples from different classes that are close to each other but are 

considered to be misclassified instances or outliers. By removing these instances, the decision 

boundary of a classifier can be improved [44]. 

 

Here's the process of identifying Tomek Links: 

 

For each instance in the dataset, calculate its distance to the nearest instance of the opposite 

class. 

If the distance to the nearest instance of the opposite class is smaller than the distance to the 

nearest instance of the same class, then the pair of instances is considered a Tomek Link. 

Once Tomek Links are identified, there are two common approaches for handling them: 

 

Tomek Link Undersampling: In this approach, one instance of each Tomek Link pair is 

removed from the dataset. By removing these instances, the overlapping region between the 
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classes is reduced, making it easier for classifiers to discriminate between the classes. The 

equation below illustrates the removal of instances: 

 

D' = D - {(x, y) | x and y form a Tomek Link pair} 

 

Where: 

D' - The new dataset after removing Tomek Link instances. 

D - The original dataset. 

(x, y) - A pair of instances forming a Tomek Link. 

 

Tomek Link Combination: In this approach, the majority class instances involved in the Tomek 

Link pairs are removed, while the minority class instances are retained. This method aims to 

enhance the separability of the minority class by eliminating majority class instances that are 

near the minority class. The equation below illustrates this process: 

 

D' = D - {x | x is a majority class instance involved in a Tomek Link pair} 

 

Where: 

D' - The new dataset after removing majority class instances in Tomek Links. 

D - The original dataset. 

x - A majority class instance involved in a Tomek Link pair. 
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Figure 3.9: a) Original Dataset b) Finding Tomeklinks c) Resampled Dataset 

Now, to apply SMOTE+Tomek links involves the following steps [45]: 

1. Apply SMOTE: Generate synthetic instances for the minority class by interpolating 

between existing minority class instances. This step increases the number of minority 

class instances. The parameters for SMOTE include the number of synthetic instances 

to generate (N) and the number of nearest neighbors to consider (K). 

2. Identify Tomek Links: After applying SMOTE, identify Tomek Links between the 

synthetic minority class instances and the majority class instances. Tomek Links are 

pairs of instances, one from the minority class and one from the majority class, that are 

closest to each other but belong to different classes. This step aims to identify and 

remove noisy or misclassified synthetic instances. 

3. Remove instances involved in Tomek Links: Remove the instances involved in the 

Tomek Links identified in the previous step. This can be achieved by selecting one of 

the instances in each Tomek Link for removal. The decision on which instance to 

remove can be based on various criteria, such as removing the instance from the 

majority class to reduce noise. 

4. The resulting dataset after removing the instances involved in Tomek Links is the final 

preprocessed dataset. 
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Figure 3.10: Original dataset (left) and Dataset ofter smote+Tomeklinks (right) has 

been applied 

Advantages of SMOTE+TOMEKLINKS: 

1. Improved performance: SMOTE+Tomek Links can effectively address the class 

imbalance problem by oversampling the minority class and undersampling the majority 

class [46-48]. This can lead to improved performance of classifiers, especially when 

dealing with imbalanced datasets. 

2. Noise reduction: By applying Tomek Links after SMOTE, noisy or misclassified 

synthetic instances generated by SMOTE can be identified and removed. This helps in 

reducing the noise in the dataset and improves the quality of the minority class samples 

[50]. 

3. Preserves important instances: SMOTE+Tomek Links focuses on preserving the 

important minority class instances while removing noisy instances and instances near 

the decision boundary. This can help classifiers to better generalize and make more 

accurate predictions. 
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4. Simplicity: The implementation of SMOTE+Tomek Links is relatively straightforward. 

It involves applying SMOTE to generate synthetic instances and then applying Tomek 

Links to remove undesirable instances. This simplicity makes it easy to integrate into 

the machine learning pipeline. 

 

Disadvantages of SMOTE+Tomek Links: 

1. Potential information loss: Although SMOTE+Tomek Links aim to remove noisy or 

misclassified instances, there is a possibility of removing valid instances that are near 

the decision boundary. This can lead to information loss and may affect the classifier's 

performance. 

2. Increased computational complexity: Applying both SMOTE and Tomek Links can 

increase the computational complexity compared to using either technique alone. 

Generating synthetic instances with SMOTE and then identifying and removing Tomek 

Links require additional computational resources and time. 

3. Sensitivity to parameter selection: SMOTE+Tomek Links, like other machine learning 

techniques, has certain parameters that need to be set appropriately. The performance 

of SMOTE+Tomek Links can be sensitive to the selection of these parameters, such as 

the number of synthetic instances generated by SMOTE or the distance threshold used 

in identifying Tomek Links. 

4. Dependency on data distribution: SMOTE+Tomek Links may not be equally effective 

for all types of imbalanced datasets. Its performance can depend on the specific 

characteristics and distribution of the data. It may not provide significant improvements 

in scenarios where the class imbalance is extreme or when the minority class is highly 

overlapping with the majority class 

It's important to note that the effectiveness of SMOTE+Tomek Links may vary depending on 

the dataset and the specific problem at hand. It is always recommended to experiment and 

evaluate different techniques to find the most suitable approach for a given scenario. 
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3.4.4 SMOTE+Cluster Centrioids 

Cluster Centroids: 

Cluster centroids are representative points that summarize the characteristics of a cluster. In 

the context of clustering algorithms, such as k-means, cluster centroids are the mean or median 

values of the feature vectors within a cluster [51]. They serve as prototypes or central points 

that represent the underlying data distribution of each cluster. 

 

Figure 3.11: Example of centroid locations before (left) and after (right) one k-means iteration. 

K-means moves the centroids towards the actual cluster centers 

Here's how cluster centroids are calculated: 

1. Given a clustering algorithm (e.g., k-means), the algorithm assigns data points to 

clusters. 

2. For each cluster, the cluster centroid is calculated as the mean or median of the feature 

vectors belonging to that cluster. 

3. The resulting cluster centroids represent the central tendencies of their respective 

clusters. 

SMOTE+Cluster Centroids: 

SMOTE+Cluster Centroids is a combination of two techniques: SMOTE and cluster centroids. 

It is primarily used for addressing the class imbalance problem in machine learning. 

 

Here's the process of using SMOTE+Cluster Centroids: 
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1. Apply cluster-based undersampling: Initially, the majority class is undersampled using 

a clustering algorithm (e.g., k-means). The algorithm clusters the majority class 

instances and selects cluster centroids as representative points. 

 

• The equation below shows the selection of cluster centroids: 

 

C = {c1, c2, ..., ck} = ClusterCentroids(D', N) 

 

Where: 

C - Set of cluster centroids. 

D' - The majority class instances after undersampling using clustering. 

N - The desired number of cluster centroids. 

 

2. Apply SMOTE: Apply the SMOTE algorithm to oversample the minority class by 

generating synthetic instances. The synthetic instances are created by interpolating 

between minority class instances and their nearest neighbors. 

 

• The equation below illustrates the SMOTE process: 

 

S = SMOTE(D, N, K) 

 

Where: 

S - Set of synthetic instances. 

D - The minority class instances. 

N - The desired number of synthetic instances. 
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K - The number of nearest neighbors to consider during the interpolation. 

 

3. Combine minority class with synthetic instances: Combine the original minority class 

instances with the synthetic instances generated by SMOTE. 

 

D'' = D ∪ S 

 

Where: 

D'' - The final dataset with both original minority class instances and synthetic 

instances. 

 

Advantages of SMOTE+Cluster Centroids: 

 

1. Effective handling of class imbalance: SMOTE+Cluster Centroids can address class 

imbalance by oversampling the minority class using SMOTE and undersampling the 

majority class using cluster centroids. This approach helps in balancing the class 

distribution and improves the performance of classifiers [53]. 

 

2. Reduced risk of overgeneralization: By generating synthetic instances based on the 

characteristics of the minority class and undersampling the majority class using cluster 

centroids, SMOTE+Cluster Centroids can reduce the risk of overgeneralization. It helps 

in preserving the underlying data structure of the minority class and avoids 

oversampling the noisy majority class instances. 

 

3. Improved representation of the minority class: By combining the original minority class 

instances with synthetic instances, SMOTE+Cluster Centroids provides a more 

representative and diverse set of samples for the minority class. This can help classifiers 

to learn and generalize better on the minority class [52]. 
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Disadvantages of SMOTE+Cluster Centroids: 

 

1. Dependency on clustering algorithm: The effectiveness of SMOTE+Cluster Centroids 

heavily relies on the quality and accuracy of the clustering algorithm used to select the 

cluster centroids. If the clustering algorithm fails to capture the underlying data 

structure or if the clusters are not well-separated, it may impact the overall performance 

of SMOTE+Cluster Centroids. 

2. Computational complexity: SMOTE+Cluster Centroids can be computationally 

expensive, especially when dealing with large datasets. It involves performing both 

clustering and oversampling steps, which may require significant computational 

resources and time. 

3. Sensitivity to parameter selection: SMOTE+Cluster Centroids, like other machine 

learning techniques, requires appropriate parameter selection. Parameters such as the 

number of cluster centroids, the number of nearest neighbors for SMOTE, and the 

clustering algorithm itself need to be carefully chosen. Poor parameter selection can 

lead to suboptimal results. 

4. Sensitivity to dataset characteristics: The performance of SMOTE+Cluster Centroids 

can vary depending on the specific characteristics of the dataset. If the minority class 

instances are not well-separated or if the clusters overlap significantly, it may be 

challenging for the technique to effectively address the class imbalance. 

5. Potential information loss: The undersampling step using cluster centroids may result 

in the loss of some information from the majority class. This information loss can affect 

the classifier's ability to generalize accurately, particularly if important instances are 

removed. 

 

3.4.5 SMOTE+ENN (Edited Nearest Network) 

ENN (Edited Nearest Neighbors): 

ENN (Edited Nearest Neighbors) is a data cleaning technique used for addressing the class 

imbalance problem in machine learning. It aims to remove noisy or misclassified instances 

from both the majority and minority classes [54]. ENN examines each instance and removes it 

if its class label does not match the majority of its nearest neighbors. 
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Here's how ENN works: 

 

1. For each instance in the dataset, ENN identifies its k nearest neighbors based on a 

distance metric (e.g., Euclidean distance). 

2. If the class label of the instance does not match the majority class label of its k nearest 

neighbors, the instance is considered noisy or misclassified and is removed from the 

dataset. 

ENN helps in eliminating instances that are likely to contribute to misclassifications or increase 

the complexity of the decision boundary. By removing such instances, ENN can improve the 

performance of classifiers on imbalanced datasets. 

 

SMOTE+ENN: 

SMOTE+ENN is a combination of two techniques: SMOTE (Synthetic Minority Over-

sampling Technique) and ENN (Edited Nearest Neighbors). It is used for addressing class 

imbalance in machine learning datasets. 

 

Figure 3.12: Samples simulation plot after the SMOTE-ENN sampled 

Here's the process of using SMOTE+ENN [55]: 

 

1. Apply SMOTE: Initially, SMOTE is applied to oversample the minority class by 

generating synthetic instances. SMOTE generates synthetic samples by interpolating 

between existing minority class instances and their nearest neighbors. 

 

• The equation below illustrates the SMOTE process: 

 

S = SMOTE(D, N, K) 
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Where: 

S - Set of synthetic instances. 

D - The minority class instances. 

N - The desired number of synthetic instances. 

K - The number of nearest neighbors to consider during interpolation. 

 

2. Apply ENN: After applying SMOTE, the ENN technique is applied to remove noisy or 

misclassified instances from the dataset, considering both the majority and minority 

classes. ENN examines each instance and removes it if its class label does not match 

the majority of its nearest neighbors. 

 

Advantages of SMOTE+ENN: 

 

1. Improved classification performance: SMOTE+ENN can help improve the 

performance of classifiers on imbalanced datasets by addressing both oversampling and 

undersampling [56-58]. It generates synthetic instances for the minority class using 

SMOTE while removing noisy or misclassified instances using ENN. 

 

2. Reduction of noise and irrelevant instances: By applying ENN after SMOTE, noisy or 

irrelevant instances that could potentially affect the classifier's performance are 

removed. This helps in reducing the impact of noisy data on the learning process and 

improves the quality of the dataset [59-60]. 

 

3. Preserving important instances: SMOTE+ENN aims to remove instances that are likely 

to contribute to misclassifications or increase the complexity of the decision boundary 

[61]. However, it takes care to preserve important instances by considering the majority 

of nearest neighbors during the removal process. 

 

Disadvantages of SMOTE+ENN: 

 

1. Potential information loss: ENN may remove valid instances that are misclassified or 

have minority class neighbors, but are still important for the classifier's decision 
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boundary. This can lead to information loss and potentially affect the performance of the 

classifier. 

 

2. Sensitivity to parameter selection: SMOTE+ENN requires appropriate parameter 

selection, such as the number of synthetic instances to generate with SMOTE and the 

number of nearest neighbors to consider in ENN [62]. Choosing suboptimal parameters 

may impact the effectiveness of the technique. 

 

3. Computational complexity: Applying both SMOTE and ENN can increase the 

computational complexity, particularly when dealing with large datasets. Generating 

synthetic instances and performing neighbor-based computations for ENN can be 

computationally [63]. 
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CHAPTER 4 

Results 

 

After rigorous data handling and machine and deep learning model implementation we will see 

the results in this chapter. This section will give us the quantitative analysis of the performance 

matrices of our model on the data. The data is presented in three stages, before imbalance 

handling, after imbalance handling and after hyper-parameter tuning. The performance 

parameters for our study are accuracy, precision, F1 score and recall. Each of these 

performance parameters describes a different attribute of the model. To understand the interpret 

the results successfully the confusion matrix needs to be elaborated. 

A confusion matrix represents the predictive performance of a model on a dataset [64]. For a 

binary class dataset (which consists of, suppose, “positive” and “negative” classes), a confusion 

matrix has four essential components: 

True Positives (TP): Number of samples correctly predicted as “positive.” 

False Positives (FP): Number of samples wrongly predicted as “positive.” 

True Negatives (TN): Number of samples correctly predicted as “negative.” 

False Negatives (FN): Number of samples wrongly predicted as “negative.” 

 

Figure 4.1: Structure of a confusion matrix 
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Accuracy is one metric for evaluating classification models. Informally, accuracy is the 

fraction of predictions our model got right [65]. Formally, accuracy has the following 

definition: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 

 

For binary classification, accuracy can also be calculated in terms of positives and negatives as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False 

Negatives. 

 

Precision is another indicator of a model’s performance. Precision is the proportion of positive 

identifications which is actually correct [66]. Precision is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

It is a measure of how well our model can predict correctly the positive identifications, in this 

case it would be the measure of how well the model can correctly predict patients who do have 

liver disease.  

Recall, also known as the true positive rate (TPR), is the percentage of data samples that a 

machine learning model correctly identifies as belonging to a class of interest—the “positive 

class”—out of the total samples for that class. Recall tries to answer the question of what 

proportion of actual positives were identified correctly. Mathematically, recall is defined as 

follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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F1 score is a machine learning evaluation metric that measures a model’s accuracy. It combines 

the precision and recall scores of a model. The accuracy metric computes how many times a 

model made a correct prediction across the entire dataset. This can be a reliable metric only if 

the dataset is class-balanced; that is, each class of the dataset has the same number of samples. 

In the real world, as well as in this case the dataset is class-imbalanced, often making this metric 

unviable. For example, if a binary class dataset has 90 and 10 samples in class-1 and class-2, 

respectively, a model that only predicts “class-1,” regardless of the sample, will still be 90% 

accurate. Accuracy computes how many times a model made a correct prediction across the 

entire dataset. However, can this model be called a good predictor? This is where the F1 score 

comes into play. 

Precision measures how many of the “positive” predictions made by the model were correct. 

Recall measures how many of the positive class samples present in the dataset were correctly 

identified by the model. Precision and recall offer a trade-off, i.e., one metric comes at the cost 

of another. More precision involves a harsher critic (classifier) that doubts even the actual 

positive samples from the dataset, thus reducing the recall score. On the other hand, more recall 

entails a lax critic that allows any sample that resembles a positive class to pass, which makes 

border-case negative samples classified as “positive,” thus reducing the precision. Ideally, we 

want to maximize both precision and recall metrics to obtain the perfect classifier. The F1 score 

combines precision and recall using their harmonic mean, and maximizing the F1 score implies 

simultaneously maximizing both precision and recall. Thus, the F1 score has become the choice 

of researchers for evaluating their models in conjunction with accuracy [67]. 

 

The F1 score is defined based on the precision and recall scores, which are mathematically 

defined as follows: 

 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙
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Therefore,  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

In terms of the basic four elements of the confusion matrix, by replacing the expressions for 

precision and recall scores in the equation above, the F1 score can also be written as follows: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)
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4.1 Before Imbalance Handling  

After the data was pre-processed using the various method, machine and deep learning 

algorithms were applied. These algorithms were used before any kind of imbalance handling 

was performed. The results are given below:  

 

ML 

Algorithm 

Accuracy  Precision Recall  F1 Score 

Logistic 

Regression 

.7094 .7115 .9487 .8132 

SVM .66666 .66666 1 .8 

Random Forest .66666 .696969 .8846 .77966 

Naïve Bayes 

Gaussian 

.5897 .9687 .3974 .5636 

Naïve Bayes 

Multinomial 

.6923 .7916 .7307 .76 

Decision Tree .6495 .7078 .8076 .75449 

KNN .6324 .6881 .8205 .7485 

Gradient 

Boosting 

Classifier 

.7008 .7263 .8846 .7976 

XGboost 

Classification 

.6666 .7142 .8333 .7692 

ANN .6752 .7272 .8205 .7710 

Multi-layer 

Perceptron 

Classifier 

.6666 .6695 .9871 .7979 

LSTM .6666 .6666 1 .8 

 

Table 4.1 Performance of Machine learning and Deep learning models before Imbalance 

handling 
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From the table above, the noteworthy value comes from the SVM and LSTM, which gave a 

recall value of 1.  

 

4.2 After Imbalance Handling 

From the upper result although most of the values for accuracy, precision, recall and F1 scores 

are realistic, the Recall scores of 1 for SVM and LSTM cannot be overlooked. Finding a recall 

value of 1 for both LSTM and SVM models is not common and is generally unlikely, although 

it depends on the specific characteristics of the dataset and the problem being solved. While a 

recall value of 1 is desirable, it is more common to see values below 1, as achieving perfect 

recall typically indicates a well-behaved and separable dataset or potential overfitting. To 

prevent some of these problems, a number of imbalance handling techniques were used and 

the models were run again to get new results.  

 

4.2.1 SMOTE: 

 

ML 

Algorithm 

Accuracy  Precision Recall  F1 Score 

Logistic 

Regression 

0.69 0.86 0.64 0.73 

SVM 0.68 0.90 0.58 0.71 

Random Forest 0.65 0.72 0.78 0.75 

Naïve Bayes 

Gaussian 

0.59 0.96 0.41 0.57 

Naïve Bayes 

Multinomial 

0.61 1 0.42 0.59 

Decision Tree 0.63 0.72 0.71 0.72 

KNN 0.64 0.77 0.65 0.71 
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Gradient 

Boosting 

Classifier 

0.69 0.77 0.77 0.77 

XGboost 

Classification 

0.70 0.76 0.79 0.78 

ANN 0.65 0.73 0.74 0.74 

Multi-layer 

Perceptron 

Classifier 

0.67 0.85 0.61 0.71 

LSTM 0.53 0.83 0.38 0.52 

 

Table 4.2: Results after SMOTE applied to dataset 

After SMOTE was used for imbalance handling the best result for Accuracy came out to be 0.7 

from XGBoost Classificaiton. Best result for precision came from Naïve Bayes Multinomial 

with a value of 1, Best recall score was from XGBoost classifier with a value of 0.79 and best 

F1 score also came from XGBoost classifier with a score of 0.78 

 

4.2.2 ADASYN: 

ML 

Algorithm 

Accuracy  Precision Recall  F1 Score 

Logistic 

Regression 

.6495 .8627 .5641 .6821 

SVM .6495 .9111 .5256 .6666 

Random Forest .6923 7560 7948 .7749 

Naïve Bayes 

Gaussian 

.5897 .9687 3974 .5636 

Naïve Bayes 

Multinomial 

.5726 1 .3589 .5283 

Decision Tree .6923 .7625 .7820 7721 

KNN .6666 .8095 .6538 .7234 
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Gradient 

Boosting 

Classifier 

.6923 .7837 .7435 .7631 

XGboost 

Classification 

.6923 .7386 .8333 .7831 

ANN .6581 .7317 .7692 .7499 

Multi-layer 

Perceptron 

Classifier 

.6324 .8301 .5641 .6717 

LSTM .4957 .9130 .2692 .4158 

 

Table 4.3: Result after ADASYN applied to dataset  

The best result for accuracy came from a number of algorithms. Random forest, Decision tree, 

Gradient Boosting Classifier and XGBoost classifier all gave a value of 0.6923. A precision 

value of 1 was found from Naïve Bayes Multinomial which was the highest. Maximum value 

of recall was found from XGBoost classification which came out to be 0.8333 and maximum 

F1 score was found from XGBoost classification with a score of 0.7831.  

 

4.2.3 SMOTE + CC 

ML 

Algorithm 

Accuracy  Precision Recall  F1 Score 

Logistic 

Regression 

.6581 .8518 .5897 .6969 

SVM .6752 .9 .5769 .7031 

Random Forest .6923 .7692 .7692 .7692 

Naïve Bayes 

Gaussian 

.5982 .9696 .4102 .5765 

Naïve Bayes 

Multinomial 

.6068 1 .4102 .5818 
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Decision Tree .6837 .7469 .7948 .7701 

KNN .6581 .7968 .6538 .7183 

Gradient 

Boosting 

Classifier 

.7179 .7922 .7820 .7870 

XGboost 

Classification 

.7008 .7654 .7948 .7798 

ANN .6410 .6836 .8589 .7613 

Multi-layer 

Perceptron 

Classifier 

.6495 .8363 .5897 .6917 

LSTM .5042 .8571 .3076 .4528 

 

Table 4.4: Result after SMOTE + CC applied to dataset  

 

The best accuracy when using SMOTE + CC as the imbalance handling technique came from 

Gradient Boosting Classifier with a value of 0.7179. The best result for precision came from 

Naïve Bayes Multinomial with a value of 1. The best result for Recall came from ANN with a 

value of 0.8589 and the best result of F1 score was 0.7870 which came from XGBoost 

Classification.  
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4.2.4 SMOTE + TOMEKLINKS 

ML 

Algorithm 

Accuracy  Precision Recall  F1 Score 

Logistic 

Regression 

0.67 0.85 0.61 0.71 

SVM 0.66 0.89 0.56 0.69 

Random Forest 0.68 0.73 0.82 0.77 

Naïve Bayes 

Gaussian 

0.59 0.96 0.41 0.57 

Naïve Bayes 

Multinomial 

0.62 1 0.43 0.60 

Decision Tree 0.69 0.76 0.77 0.77 

KNN 0.64 0.77 0.65 0.70 

Gradient 

Boosting 

Classifier 

0.68 0.76 0.75 0.76 

XGboost 

Classification 

0.66 0.71 0.82 0.76 

ANN 0.68 0.76 0.77 0.76 

Multi-layer 

Perceptron 

Classifier 

0.65 0.85 0.58 0.69 

LSTM 0.52 0.84 0.34 0.49 

 

Table 4.5: Result after SMOTE + TOMEKLINKS applied to dataset  

 

Next is the SMOTE + TOMEKLINKS method. The best result for accuracy came from 

decision tree with a value of 0.69. Best precision value came from Naïve Bayes Multinomial 

which gave a value of 1. Best Recall value came from Random forest and XGBoost 
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classification which gave a value of 0.82. And the best F`1 score came from Decision tree 

which gave a value of 0.77 

 

4.2.5 SMOTE + ENN 

 

ML 

Algorithm 

Accuracy  Precision Recall  F1 Score 

Logistic 

Regression 

.6495 .9111 .5256 .6666 

SVM .6581 .9318 .5256 .6721 

Random Forest .6837 .8059 0.6923 .7448 

Naïve Bayes 

Gaussian 

.6239 .9722 .4487 .6140 

Naïve Bayes 

Multinomial 

.6068 1 .4102 .5818 

Decision Tree .5897 .7777 .5384 .6363 

KNN .5726 .7916 .4871 .6031 

Gradient 

Boosting 

Classifier 

.6752 .9 .5769 .7031 

XGboost 

Classification 

.7179 .9090 .6410 .7518 

ANN .6153 .7538 .6282 .6853 

Multi-layer 

Perceptron 

Classifier 

.6495 .9302 .5128 .6611 

LSTM .4700 .8636 .2435 .3800 

 

Table 4.6: Result after SMOTE + ENN applied to dataset 
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The best accuracy when SMOTE + ENN was used came from XGBoost Classification which 

gave a value of 0.7179. The best value of precision came from the Naïve Bayes Multinomial 

which gave a value of 1. The best value of Recall came from Random Forest with a value of 

0.6923. And the best value of F1 score came from the XGBoost Classification with a value of 

0.7518.  

From the above tables we can see the results of the machine and deep learning algorithms once 

the different imbalance handling method has been used. Below is the summary of the best 

performance which has been found for each of the imbalance handling method used.  

 

4.3 Hyperparameter Tuning 

Hyperparameter tuning was performed after the results of the newly balanced data was found. The 

results of all the algorithms are given below. Hyperparameter tuning is an important step to prevent 

overfitting or underfitting. Two hyperparameter tuning techniques have been applied, these are, 

gridsearchcv and randomizedsearchcv. We can verify that the model is optimal for the particular job 

and gives the best potential outcomes by picking the optimum collection of hyperparameters [68]. 

GridSearchCV [69] is guaranteed to identify the optimum hyperparameter combination inside the 

search space, but it can be computationally costly, particularly when working with a large number of 

hyperparameters. RandomizedSearchCV, on the other hand, is less computationally expensive and can 

still identify appropriate hyperparameters by randomly searching the search space. There is no 

assurance, however, that it will locate the optimal hyperparameters. In the testing done, this holds true 

as GridSearcCV has better results than RandomiedSearchCV for every ML algorithm used.  

Below are the results after hyper-parameter tuning for each of the imbalance handling method used: 
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4.3.1 SMOTE: 

For GridsearchCV 

model score bs_5folds bp_5 br_5 bf_5 bs_10folds bp_10 br_10 bf_10 

svm 0.713559 0.835871 0.904298 0.760492 0.823387 0.829939 0.899323 0.757398 0.816492 

randomforest 0.686148 0 846329 0.893517 0.805048 0.842321 0.837357 0.893435 0.780660 0.827881 

naive_bayes_gaussian 0.557335 0.677582 0.910183 0.396839 0.548818 0.678995 0.891618 0.411230 0.559376 

naive_bayes_multinomial 0.557335 0 668693 0.695839 0.606760 0.647084 0.662555 0.688282 0.603298 0.640356 

decision_tree 0.637931 0.739837 0.752377 0.722037 0.736376 0.741198 0.739659 0.757576 0.745755 

knn 0.651578 0.705708 0.825403 0.535777 0.643436 0.721905 0.845094 0.553476 0.660035 

logistic_regression 0.713647 0.714586 0.797346 0.577349 0.667211 0.714442 0.792545 0.582888 0.668610 

Gradient_Boosting_Classifier 0.708445 0.772342 0.816032 0.731255 0.764077 0.764969 0.813438 0.718627 0.755124 

XGboost Classification 0.696318 0.821187 0.862865 0.787270 0.818429 0.834636 0.881711 0.798574 0.831020 

 

Table 4.7: Performance Comparison of Machine Learning Algorithms with SMOTE and 

GridSearchCV 

 

For RandomizedSearchCV 

model score bs_5folds bp_5 br_5 bf_5 bs_10folds bp_10 br_10 bf_10 

svm 0.713559 0.794499 0 849346 0.737006 0.783318 0.720325 0.881398 0.508913 0.642157 

random_forest 0.686148 0 812266 0 844560 0.787094 0 810399 0.828468 0.895027 0.757041 0.816382 

naive_bayes_gaussian 0.557335 0.676100 0.910183 0.393898 0.545422 0.678995 0.891618 0.411230 0.559376 

naive_bayes_multinomial 0.557335 0.668693 0.695839 0.606760 0 647084 0.662555 0 688282 0.603298 0.640356 

decisionjree 0.637931 0.756024 0.786804 0.704653 0 739958 0.739794 0.767833 0.718449 0.734521 

knn 0.651578 0.705708 0.825403 0.535777 0 643436 0.721905 0.845094 0.553476 0.660035 

logistic_regression 0.713647 0.716068 0.797895 0.580334 0 669355 0.712972 0.790017 0.582888 0.667518 

Gradient_Boosting_Classifier 0.708445 0.772342 0.823537 0.728270 0.763792 0.763411 0808490 0.715686 0.752190 

XGboost Classification 0.696318 0.821187 0.862865 0.787270 0.818429 0.834636 0.881711 0.798574 0.831020 

  

Table 4.8: Performance Comparison of Machine Learning Algorithms with SMOTE and 

RandomizedsearchCV 
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4.3.2 ADASYN 

For GridsearchCV 

model score bs_5folds bp_5 br_5 bf_5 bs_10folds bp_10 br_10 bf_10 

svm 0.713559 0.821301 0.895391 0.718876 0.796683 0.822774 0.887358 0.736809 0.802369 

random_forest 0.705026 0.818403 0.866255 0.748244 0.800958 0.815714 0.866483 0.743048 0.796220 

naive_bayes_gaussian 0.557335 0.675738 0.865599 0.393108 0.539442 0.677246 0.876053 0.393939 0.540561 

naive_bayes_multinomial 0.557335 0.687943 0.860835 0.414442 0.558047 0.686338 0.869428 0.405615 0.547132 

decision_tree 0.648130 0.750355 0.748575 0.727788 0.737132 0.756177 0.766633 0.725134 0.741282 

knn 0.651578 0.688687 0.821686 0.461194 0.588809 0.693023 0.810867 0.482353 0.601815 

logistic_regression 0.713647 0.713210 0.811871 0.532046 0.641199 0.707578 0.814408 0.527184 0.633167 

Gradient_Boosting_Classifier 0.694652 0.768012 0.812845 0.694996 0.745029 0.775424 0.826030 0.707487 0.754985 

XGboost_Classification 0.696318 0.822771 0.863219 0.766023 0.809079 0.823106 0.860143 0.778253 0.811758 

 

Table 4.9: Performance Comparison of Machine Learning Algorithms with ADASYN and 

GridSearchCV 

 

For RandomizedSearchCV 

model score bf_3_bs_5folds bp_5 br5 bf_5 bs_10folds bp_10 br_10 bf_10 

svm 0.713559 0.808320 0.866280 0.718788 0.784916 0.822774 0.887358 0.736809 0.802369 

random_forest 0.705026 0.812658 0.851797 0.745127 0.793364 0.818592 0.860356 0.760873 0.802421 

naive_bayes_gaussian 0.557335 0.675738 0.865599 0.393108 0.539442 0.674389 0.865797 0.393939 0.538824 

naive_bayes_multinomial 0.557335 0.687943 0.860835 0.414442 0.558047 0.686338 0.869428 0.405615 0.547132 

decision_tree 0.641379 0.733448 0.749645 0.692098 0.717188 0.746605 0.767342 0.701693 0.728082 

knn 0.651578 0.688687 0.821686 0.461194 0.588809 0.693023 0.810867 0.482353 0.601815 

logistic_regression 0.713647 0.711761 0.807603 0.532046 0.640100 0.707536 0.808927 0.533066 0.635508 

Gradient_Boosting_Classifier 0.694652 0.766573 0.810729 0.694996 0.744012 0.773996 0.824288 0.707487 0.753932 

XGboost_Classification 0.696318 0.822771 0.863219 0.766023 0.809079 0.818841 0.858486 0.775401 0.807579 

 

Table 4.10: Performance Comparison of Machine Learning Algorithms with ADASYN and 

RandomizedSearchCV 
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4.3.3 SMOTE+CC: 

For GridsearchCV 

model score bs_5folds bp_5 br5 bf5 bs_10folds bp_10 br_10 bf_10 

svm 0.713559 0.838780 0.906384 0.772388 0.824540 0.834219 0.897221 0.768717 0.819409 

random_forest 0.696493 0.818007 0.890472 0.751493 0.801814 0.840255 0.889935 0.798752 0.832341 

naive_bayes_gaussian 0.557335 0.683279 0.876442 0.411633 0.535237 0.684372 0.890115 0.410784 0.536760 

naive_bayes_multinomial 0.557335 0.656939 0.715502 0.583231 0.624845 0.668437 0.721199 0.561497 0.622936 

decision_tree 0.655172 0.724891 0.747472 0.704478 0.717748 0.73378 0.752811 0.71016 0.72686 

knn 0.651578 0.714455 0.854361 0532748 0.644032 9.732221 0.877869 0.550000 0.662553 

logistic_regression 0.713647 0.708486 0.806906 0.550658 0.642164 9.718591 0.819939 0.564795 0.656939 

Gradient_Boosting_Classifier 0.699825 0.769303 0.828004 0.725066 0.755572 0.773617 0.826723 0.724688 0.760038 

XGboost_Classification 0.696318 0.815087 0.870540 0.775066 0.806250 0.840277 0.897366 0.792959 0.829503 

 

Table 4.11: Performance Comparison of Machine Learning Algorithms with SMOTE+CC and 

GridSearchCV 

 

For RandomizedSearchCV 

model score _bs_5folds bp_5 br5 bf_5 bs_10folds bp_10 br_10 bf_10 

svm 0.713559 0.801765 0.890097 0.710623 0.772573 0.791352 0.888007 0.682977 0.756139 

random_forest 0.696493 0.794434 0.857660 0.736918 0.779314 0.837270 0.892631 0.789929 0.827490 

naive_bayes_gaussian 0.557335 0.683279 0.876442 0.411633 0.535237 0.684372 0.890115 0.410784 0.536760 

naive_bayes_multinomial 0.557335 0.656939 0.715502 0.583231 0.624845 0.668437 0.721199 0.561497 0.622936 

decision_tree 0.655172 0.714455 0.817018 0.559350 0.655776 0.750154 0.765869 0.745544 0.746345 

knn 0.651578 0.714455 0.854361 0.532748 0.644032 0.732221 0.877869 0.550000 0.662553 

logistic_regression 0.713647 0.708486 0.814329 0.541791 0.637835 0.718591 0.819939 0.564795 0.656939 

Gradient_Boosting_Classifier 0.699825 0.769292 0.816893 0.733977 0.757135 0.772103 0.825266 0.718806 0.757153 

XGhoost_Classification 0.696318 0.813627 0.873582 0.763521 0.800658 0.826975 0.886282 0.778164 0.814627 

 

Table 4.12: Performance Comparison of Machine Learning Algorithms with SMOTE+CC and 

RandomizedSearchCV 
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4.3.4 SMOTE+TOMEKLINKS 

For GridsearchCV 

model score bs_5folds bp_5 br_5 bf_5 bs_1 Ofolds bp_10 br_10 bf_10 

svm 0.713559 0.858261 0.932261 0.775577 0.845132 0.856779 0.939834 0.766288 0.842016 

random_forest 0.689451 0.847505 0.896921 0.791154 0.838894 0.849159 0.915755 0.775758 0.836774 

naive_bayes_gaussian 0.557335 0.688542 0.907442 0.420481 0.572077 0.688678 0.905137 0.423958 0.574842 

naive_bayes_multinomial 0.557335 0.671875 0.695806 0.615625 0.652678 0.665625 0.678261 0.634375 0.654741 

decision_tree 0.636119 0.745313 0.767406 0.715625 0.737535 0.765625 0.808872 0.715625 0.754259 

knn 0.651578 0.721306 0.847792 0.538990 0.656082 0.730601 0.857379 0.554735 0.670826 

logistic_regression 0.713647 0.746136 0.870370 0.582308 0.694173 0.749471 0.861670 0.598390 0.701603 

Gradient_Boosting_Classifier 0.699825 0.794598 0.848478 0.741346 0.785697 0.782356 0.834799 0.729261 0.773583 

XGboost_Classification 0.696318 0 828864 0.878634 0.778846 0.821950 0.835168 0.887262 0.778883 0.826166 

 

Table 4.13: Performance Comparison of Machine Learning Algorithms with 

SMOTE+TOMEKLINKS and GridSearchCV 

 

 

 

 

 

For RandomizedSearchCV 

 

Table 4.14: Performance Comparison of Machine Learning Algorithms with 

SMOTE+TOMEKLINKS and RandomizedSearchCV 

model score bs_5folds bp_5 br_5 bf_5 bs_10folds bp_10 br_10 bf_10 

svm 0.713559 0.856698 0.928315 0.775481 0.843339 0.805385 0.868550 0.726042 0.787716 

random_forest 0.689451 0.828791 0.865551 0.787981 0.821737 0.818053 0.859057 0.769602 0.809353 

naive_bayes_gaussian 0.557335 0.685405 0.911425 0.411106 0.564582 0.688678 0.905137 0.423958 0.574842 

naive_bayes_multinomial 0.557335 0.671875 0.695806 0.615625 0.652678 0.665625 0.678261 0.634375 0.654741 

decisionjree 0.636119 0.736822 0.769635 0.694375 0.723256 0.726034 0.737926 0.710511 0.722520 

knn 0.651578 0.721306 0.847792 0.538990 0.656082 0.730601 0.857379 0.554735 0.670826 

logistic_regression 0.713647 0.744598 0.863373 0.585433 0.694429 0.747909 0.858409 0.598390 0.700434 

Gradient_Boosting_Classifier 0.699825 0.797699 0.852645 0.741346 0.787919 0.782404 0.833422 0.729451 0.773119 

XGboost_Classification 0.696318 0.828864 0.878634 0.778846 0.821950 0.833582 0.880252 0.785038 0.825697 
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4.3.5 SMOTE + ENN 

For GridsearchCV 

model score bs_5folds bp_5 br5 bf_5 bs10folds bp_10 br_10 bf_10 

svm 0.713559 0.983710 0.971903 0.984615 0.977474 0.983709 0.972381 0.984615 0.977450 

random_forest 0.706604 0.932136 0.959304 0.846154 0.898719 0.943168 0.953022 0.884615 0.915110 

naive_bayes_gaussian 0.557335 0.875194 0.985714 0.653846 0.782880 0.877778 0.938495 0.700000 0.798434 

naive_bayes_multinomial 0.557335 0.739620 0.960000 0.312000 0.459300 0.740285 0.900000 0.314744 0.448673 

decision_tree 0.634424 0.891485 0.895872 0.792308 0.838724 0.899700 0.905866 0.807692 0.850516 

knn 0.651578 0.910441 0.981781 0.761538 0.855556 0.915841 0.992308 0.769231 0.861459 

logistic_regression 0.713647 0.918586 0.963333 0.800000 0.873302 0.921246 0.972106 0.800000 0.874723 

Gradient_Boosting_Classifier 0.699825 0.915957 0.936000 0.815385 0.870523 0.929595 0.964126 0.830769 0.890815 

XGboost_Classification 0.696318 0.921362 0.947636 0.823077 0.880204 0.943093 0.968290 0.869231 0.912795 

 

Table 4.15: Performance Comparison of Machine Learning Algorithms with SMOTE+ENN and 

GridSearchCV 

 

For RandomizedSearchCV 

model score bs_5folds bp_5 br_5 bf_5 bs_10 

folds 

bp_10 br_10 bf_10 

svm 0.713559 0.98371 0.971903 0.984615 0.977474 0.983709 0.972381 0.984615 0.97745 

random_forest 0.706604 0 924028 0.943333 0.838462 0.887285 0.926802 0.954242 0.838462 0.889584 

naive_bayes_gaussian 0.557335 0 875194 0.985714 0.653846 0.78288 0.877778 0.938495 0.7 0.798434 

naive_bayes_multinomial 0.557335 0.73962 0.96 0.312 0.4593 0.740285 0.9 0.314744 0.448673 

decision_tree 0.634424 0 864347 0.805038 0.830769 0.814654 0.902402 0.914957 0.807692 0.854139 

knn 0.651578 0.910441 0.981781 0.761538 0.855556 0.915841 0.992308 0.769231 0.861459 

logistic_regression 0.713647 0 918586 0.963333 0.8 0.873302 0.921246 0.972106 0.8 0.874723 

Gradient_Boosting_Classifier 0 699825 0 915920 0.937905 0.815385 0.871652 0.929505 0.964126 0.830769 0.890815 

XGboost 

Classification 0.696318 0.921362 0.947636 0.823077 0.880204 0.943093 0.96829 0.869231 0.912795 

 

Table 4.16: Performance Comparison of Machine Learning Algorithms with SMOTE+ENN and 

RandomizedSearchCV 
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CHAPTER 5 

Discussion 

Before any imbalance was handled the data gave us results which had some anomalies. For 

example, before handling imbalance the Recall score of SVM came out to be 1. This means 

that the model has achieved perfect recall on the given dataset. Recall, also known as sensitivity 

or true positive rate, is a performance metric that measures the proportion of actual positive 

instances correctly identified by the model. 

When recall = 1, it indicates that the SVM has correctly identified all positive instances in the 

dataset without any false negatives. In other words, the model did not miss any positive 

instances and identified all of them correctly. This is the ideal scenario for recall, as it signifies 

that the model has achieved the highest level of sensitivity in detecting positive instances. 

However, it is highly unlikely that the model can correctly identify all the positive instances. It 

is more likely that the data being used has some imbalance which needs to be taken care of.  

After the data has been handled for imbalance, the result is tabulated for every imbalance 

handling method used. Another unlikely outcome was observed after handling the imbalance. 

For every imbalance handling method used, the precision of Naïve Bayes Multinomial for each 

imbalance handling method used came to be 1. This means all instances predicted as positive 

by the model are indeed true positives, and there are no instances falsely classified as positive. 

This is also unlikely that perfect precision can be found. Hyperparameter tuning could be a 

good way to solve this anomaly.  

And it is seen that after hyperparameter tuning has been done, the precision value of Naïve 

Bayes Multinomial becomes a more realistic value. The results after performing hyper 

parameter tuning with 5-fold and 10-fold cross validation has been tabulated above in the 

results chapter.  

Below is a comparison of the machine learning model performance for every imbalance 

handling method used. The graphs have the accuracy, precision, recall and F1 scores for every 

machine learning algorithm used. The analysis utilized the results obtained from 

GridSearchCV, employing a 10-fold cross-validation technique exclusively. 
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Figure 4.2: Comparative figures of all the performance parameters (accuracy, precision, recall 

and f1 score) for each machine learning algorithm with each imbalance handling technique 

applied. 
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From the above comparison we can see that besides the recall and F1 score of Naïve Bayes 

Multinomial, SMOTE+ENN gives the best result across all the machine learning algorithms 

used for all the performance parameters.  

Best working algorithm (highest score): SVM with a score of 0.713559. 

For the evaluation metrics: 

The best accuracy was found from SVM with a value of 0.983710 (5-fold) and 0.983709 (10-

fold). Best precision Naive Bayes (Gaussian) with a value of 0.985714 (5-fold) and KNN with 

a value of 0.992308 (10-fold). The best recall was found using SVM with a value of 0.984615 

(5-fold and 10-fold). Best F1 score using SVM with a value of 0.977474 (5-fold) and 0.977450 

(10-fold). Therefore, the best working algorithm overall is SVM, and it also achieved the 

highest accuracy, recall, and F1 score. Naive Bayes (Gaussian) and KNN performed the best 

in terms of precision. 
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CHAPTER 6 

Limitations 

 

The dataset used in the study consists of only 583 samples, which may be considered relatively 

small for training a complex machine learning model. The limited number of instances could 

potentially affect the model's ability to capture the full range of patterns and variations present 

in liver disease data. The dataset comprises data solely from Indian patients, which introduces 

a potential limitation in terms of generalizability. The characteristics and risk factors associated 

with liver disease may differ among populations worldwide. Therefore, the findings and 

predictions made by the model may not fully reflect the nuances and diversity of liver disease 

in a global context. Since the dataset exclusively focuses on Indian patients, the model's 

predictions might be biased towards the specific characteristics and health conditions prevalent 

in the Indian population. The model may not account for the unique factors or variations present 

in other populations, potentially limiting its applicability and generalizability to individuals 

from different ethnic backgrounds. The dataset used in the study may lack certain important 

variables that could contribute to a more comprehensive understanding of liver disease. 

Absence of relevant features, such as genetic factors, lifestyle habits, or other underlying health 

conditions, could limit the model's predictive accuracy and overall performance. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORKS 

 

In this fast-growing world, in terms of technology and population, there is a grave requirement 

to use all the resources at hand to provide swift and proper service to the ever-growing 

population. In the field of medicine, the use of modern technology like Artificial Intelligence 

has become a crucial way to provide accurate and reliable prediction of different diseases so 

that treatment can be started as soon as possible. Liver disease is one of the diseases which 

needs to be identified very early on as late diagnosis may result in treatment beginning too late. 

In this study, 5 different Imbalance handling techniques have been used on a liver disease 

dataset after the dataset had been pre-processed. Among all the imbalance handling methods 

used, it is seen that SVM, applied to the SMOTE+ENN dataset, gave us the best results. The 

best accuracy, recall and F1 score was found using SVM all of which gave a value of 98.37%, 

98.46% and 97.74% respectively. The best precision came from Naive Bayes (Gaussian) with 

a value 98.57% (5-fold) and KNN with a value of 99.23% (10-fold). The ROC_AUC score for 

SVM also came at 98% for 5-fold cross validation. Therefore, SMOTE+ENN is best at 

handling this kind of dataset. With the promising result found in this study, a notable 

contribution can be made in the prediction of liver disease and an automated system can be put 

in place which allows computer-aided diagnosis system for e-healthcare applications. 
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