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ABSTRACT 

 

Traffic video data has become a critical factor in limiting traffic congestion due to recent 

advancements in computer vision. This work proposes a unique technique for traffic video 

classification using a color-coding scheme before training the traffic data in a deep convolutional 

neural network. At first, the video data is transformed into an imagery data set, and  vehicle 

detection is performed using the You Only Look Once algorithm. A color-coded scheme has been 

adopted to transform the imagery dataset into a binary image dataset. These binary images are fed 

to a deep convolutional network. Using the UCSD dataset, we have obtained a classification 

accuracy of 98.2%. 
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CHAPTER-1 

  Introduction 

 

 

 

Fig 1.1: Traffic Congestion  

 

Urbanization's acceleration speeds up traffic problems, resulting in economic losses and the 

immobilization of urban functions [1]. The effects of traffic congestion extend to individuals as 

well. Some significant effects of traffic congestion are the abundant waste of time, particularly 

during peak hours, mental fatigue, and additional pollution, which contribute to catastrophic 

natural outcomes. The cost of traffic congestion in the four nations of France, Germany, the United 

Kingdom, and the United States is expected to increase by 55 billion US dollars by 2030 [2]. A 
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nation cannot progress without ensuring economic growth and the comfort of its road users, which 

is impossible without efficient traffic flow. The ability to foresee traffic congestion  

 

 

gives officials and consumers the necessary time to allocate resources to ensure that travelers'  

journeys go smoothly. Consequently, a generic and widely applicable traffic congestion-detecting 

system is currently required [3]. 

 

1.1 Spot-based sensor 

 

 

Fig 1.2: Spot-based sensor  

 

Modern information and communication technologies and the Internet of Things have contributed 

to the development of intelligent transportation systems (ITSs), which have enabled the application 

of traffic forecasting (TF) techniques [4]. Starting with a theoretical perspective and progressing 

to data-driven methodologies, an abundance of research has been undertaken on traffic congestion 

forecasting and relevant topics. Traditionally, spot-based sensors are used for traffic estimation. 

Whenever a vehicle stops over a loop or goes by the loop, the sensor will count the number of 
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vehicles that have passed. Inductive loop sensors, piezoelectric sensors, and magnetic loops are 

widely used technologies in the traffic estimation eco. system [5], But these sensors are costly, 

which makes them hard to implement on a wide scale. Also, these spot  

 

sensors can only quantify or measure traffic flow or address certain subtasks (e.g., traffic queue  

measurement and traffic density detection). As a result, this cannot be a sustainable generic model 

to apply [6]. On top of that, recent developments in infrared and laser radar sensors have prompted 

the gradual replacement of conventional spot-based sensors with most of these devices [5]. 

 

1.2 GPS 

 

 

Fig 1.3: GPS in cars 

 

Apart from these sensor-based technologies, a more affordable method of gathering network-wide 

traffic data is emerging, utilizing Global Positioning System (GPS) devices. Through tracking 

vehicle trajectories, in-vehicle GPS technology enables recording vehicle speed and location at a 

given time. It allows them to follow vehicle trajectories and evaluate traffic condition performance 

in a broad network at a reasonable cost, making them popular in large-scale research. However, 

this approach has certain disadvantages; firstly, speed is the only considered parameter, which can 
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sometimes lead to the loss of confidential information from unprocessed GPS data and an 

inaccurate assessment of traffic congestion [7]. Secondly, as  

 

GPS-based intelligent traffic systems depend on the number of vehicles employing GPS, the 

detection precision of traffic updates decreases drastically when the number of GPS-equipped 

vehicles starts to decline significantly [1]. Additionally, Applying GPS-based data to detect traffic 

congestion on arterial roads will become a complicated scenario because of manual manipulations 

[7]. 

 

1.3 Vision-Based Detection: 

 

Fig 1.4: Vision-Based Traffic Detection 

 

On the other hand, TF has shifted from a traffic theory-based approach to a data-driven standpoint 

due to the increased diversity and number of available traffic data provided by ITS [4]. Vision-

based detection technologies 

have improved significantly in recent years. Advanced image processing algorithms and object 

detection techniques have created a new opportunity for vision-based intelligent traffic  
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management systems [8]. Different statistical forecasting approaches, shallow machine learning 

algorithms, and deep learning methods have achieved impressive precision in these classification 

tasks [3]. Principal benefits of these vision-based approaches: 

• They do not rely on picking features manually. Consequently, this eliminates the restrictions on 

systems utilizing camera images for traffic-state evaluation and forecasting [5]. 

• Short-term to long-term estimation of traffic congestion (starting from a few minutes to even for 

multiple hours). 

• This detection system can automatically communicate with other entities of a traffic network, 

thereby contributing to a more optimal environment for traffic management [9]. 

• More information and parameters about traffic can be considered to increase the system's efficacy 

[3]. 

• A higher number of generic data solutions with minimized cost and efficient performance [3]. 

• Easy maintenance and can continuously be updated and driven into a more authentic version with 

relevant sets of recent data [1]. 
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CHAPTER-2 

       Literature Review 

 

2.1 Relevant Research 

Research has been conducted to estimate traffic situations by fusing multiple data sources for 

traffic state estimation with visual inputs integrated with machine learning and deep learning 

approaches. Akhtar and Moridpour [3] show a direct comparison between shallow machine 

learning (SML) algorithms and deep machine learning (DML) algorithms by analyzing several 

notable research works. Most of these works evaluated five parameters: traffic occupancy, 

congestion volume, and vehicle density, along with the traffic congestion index and total travel 

time, predicting and analyzing the overall traffic occupancy. After analyzing these works, it is 

evident that deep learning algorithms can assess large datasets efficiently. As a result, they proved 

it to be more effective tshallowhan In this field, shallow machine learning (SSML), neural 

networks (ANN), and machine learning vector machines (SVM) are used. P. Chakraborty et al. [5] 

used two deep neural networks: deep convolutional neural networks (DCNNs) and you only look 

once (YOLO) and compared these results with the port vector machine (SVM) model to analyze 

the advantages of deep learning models. To produce both short-term and long-term forecasts (from 

5 minutes to up to 4 hours), T. Bogaerts et al. [4] built a hybrid deeper network that concurrently 

extracts the spatial aspects of traffic using graph convolution and its temporal features using Long 

Short Term Memory (LSTM) cells. In addition, they selected the most appropriate road linkages 

for both short- and long-term TF using a data reduction technique, which increased their efficiency. 

M.A.A. Al-qaness et al. [8] demonstrated an intelligent video surveillance-based vehicle tracking 

system that can recognize, track, and count vehicles in various situations by combining neural 

networks, image-based tracking, and You Only Look Once (YOLOv3). H. Cuii et al. [9] employ 

two convolutional networks, AlexNet and GoogLeNet, to characterize traffic congestion 

situations. The images in the dataset here were taken from traffic surveillance images. Despite 

having obscured visual features in some pictures  

in the dataset, AlexNet and GoogLeNet showed a convincing result by successfully classifying the 

images and recognizing highway traffic congestion. In [1], leveraging a gray-level co-occurrence 

matrix, the multi-layered detection method first determines the density of surrounding items. Then 
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the velocity of moving objects is determined by incorporating the Luca-Kana-e optical flow along 

with pyramid implementation. Then a Gaussian mixture model is applied to demonstrate the 

model, which was tuned by CNN. Crc3d is a suggested mapping in [7] to the cube framework to 

forecast the urban traffic pattern for the holistic network utilizing 3-dimensional convolution 

networks, convolutional neural networks (CNN), and recurrent neural networks (RNN). The 

architecture incorporates spatial and temporal dimensions, combining C3D and CNN-RNN. H. 

Nguyen [10] suggests an enhanced vehicle detection scheme based on an accelerated R-CNN. It 

used the mobile net architecture to build the convolution layer. A soft NMS algorithm was 

deployed to address the problem of redundant proposals. A Contcontextre ROI pooling layer was 

used to scale the suggestions to the required dimensions, and MobileNet architecture was used for 

constructing the classifier as the method's final step. A hybrid 2D–3D CNN model-based driving 

assistance system was developed in [11], which uses a transfer learning paradigm. In the first 

architecture, hybrid-TSR is designed to perform the duty of traffic sign recognition efficiently. The 

second framework, called hybrid-SRD, enables semantic road space class ending up-sampled of 

deconvolutional methods. D. Impedovo et al. [12] used feature extraction to classify the congestion 

Various objection detection algorithms were used for vehicle detection and feature extra 

extraction, which were then compared side by side by applying machine learning classifiers and 

deep learning methods to see what the best output was. It is visible in[13] ITSC,t ITSC or 

intelligent traffic control, control can be used to solve the traffic congestion problem efficiently 

Here, reinforcement learning was applied to vehicles detected by the ITSC system to reduce the 

average waiting time. R. Cucchiara et al. [6] propose a 2-level traffic monitoring system called 

VTTS (vehicular accident tracking system) based on vehicle detection and tracking. Vehicle 

detection is done using Dedicated Short-Range Communication 

(DRSC) structures in intersections rather than a camera or loop detector. The reduced image  

processing components harvest visual data under different situations, while the elevated units 

track the vehicles. 
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2.2 Comparative Analysis of Relevant Research 

 

 

Fig 2.1: Framework of color coding-based Traffic congestion Detection 

 

In this paper, we are interested in investigating a new color-coding-based scheme to train a deep 

convolutional neural network (DCNN) and evaluate its performance in forecasting traffic 

congestion at sites that differ significantly from the training data set. The general outline of our 

proposed scheme is illustrated in Fig. 1. 

 

 

We have used the UCSD highway traffic data to train our proposed DCNN. A binary imagery 

dataset of highway traffic was built and labeled with around 3000 congestion and 1000 non-

congestion images. The performance of DCNN has been investigated using the binary image 

dataset. DCNN achieved 98.2%  classification accuracy. We also validate our scheme by feeding 

test images from diverse sites; almost 97% of the cases have been precisely recognized. Our 

proposed color-coding scheme carmaker this congestion challenge more independent of the 

dataset. 
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CHAPTER-3 

  Methodology 

3.1. Basic methodology 

To train a deep convolutional neural network (DCNN) and assess how well it performs in 

predicting traffic congestion at sites that considerably deviate from the training data set, we are 

interested in researching a novel color-coding-based method. Fig. 1 shows the main layout of the 

suggested strategy we have created. 

We trained our suggested DCNN using the UCSD highway traffic data. Approximately 3000 

photos of traffic congestion and 1000 photographs of non-congestion were used to create a 

binary imaging collection of highway traffic. The binary image dataset has been used to examine 

DCNN performance. 

Vehicle detection is the most crucial step in this congestion detection framework. The purpose is 

to portray the number of vehicles in the road segment accurately. Vehicle detection from  

Images consists of two parts, which include image classification and object localization. Using 

image classification, we can classify the image into one of the classes, and using object  

localization, we can find the location of the object within the image. So, our X_train data are the 

images we obtained from the dataset after preprocessing and Y_train data are vectors each of  

size 7 for each image that will be used as input for our CNN. The output we will get is a vector 

of size 7 which will specify whether the object we want to detect is in the image are not, the 

bounding box size, and the center of the location of the detected object To handle multiple 

vehicles in an object, Yolo divides the image into a grid of smaller images, where detection will 

occur only if the center of the bounding box is within a particular grid. This will cancel out all 

other grids except the ones containing the object for detection. After the vehicle detection, we 

employ color coding to turn the image into a binary image, where the red boxes will indicate the 

vehicles’ bounding boxes and the rest of the portion will be turned white. The study utilized a 

traditional convolutional neural network (ConvNet) architecture, specifically a deep 

convolutional neural network (DCNN), which is considered a leading approach for image 
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classification. The UCSD dataset used in the study consists of 254 highway traffic videos, each 

containing 40–50 frames with a resolution of 320 x 240 pixels. 

To extract relevant data, 4-5 frames from each video were selected, and a region of interest 

(ROI) was manually defined to remove unrelated external objects from the scenes. This step 

aimed to focus on the traffic-related information within the images. Subsequently, the trimmed 

images were resized to 180x180 pixels to mitigate memory allocation challenges during the 

model training process 
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3.2. Description of basic methodology 

 

 

 

Fig 3.1: Framework of color-coding based Traffic congestion Detection 

 

Our team embarked on training a deep convolutional neural network (N) to address the issue of 

traffic congestion using highway traffic data. To create a comprehensive binary image dataset 

specifically focused on highway traffic, we gathered approximately 3000 photos depicting 

instances of traffic congestion and 1000 photographs capturing non-congested traffic scenarios. 

Utilizing this dataset, we trained our DCNN model to classify images as either congested or non-

congested traffic. The goal was to develop a robust system to accurately identify and 

differentiate between the two conditions. 

Remarkably, our DCNN model achieved an impressive classification accuracy of 98.2% during 

the training phase. This accuracy metric demonstrates the model's capability to effectively 

discern between congested and non-congested traffic instances based on the visual features 

captured in the images. 

To further evaluate and validate the performance of our system, we conducted testing using a  
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diverse set of test photos sourced from various sites. Through this process, we aimed to assess 

the model's generalization and ability to accurately classify instances of congestion in real-world 

scenarios. 

The results of our testing were highly encouraging. Over 97% of the instances presented in the 

test photos were correctly identified by our DCNN model. This outcome suggests that our 

trained model demonstrates a strong ability to generalize its learnings to new and diverse traffic 

situations, allowing it to effectively classify congestion accurately. 

One notable aspect of our approach is the development of a suggested color-coding system. This 

system complements the DCNN model and aims to enhance the dataset independence of the 

congestion problem. By utilizing specific color codes, we can create a standardized 

representation of traffic congestion across different datasets and environments. 

The suggested color-coding system offers a practical way to make the analysis of congestion 

more consistent and comparable across different sources of data. It provides a common visual 

language that can be applied universally, enabling researchers, transportation planners, and 

stakeholders to assess congestion levels in a dataset-independent manner. 

By incorporating this color-coding system into our approach, we aim to establish a standardized 

framework for analyzing traffic congestion. This framework, combined with the high 

classification accuracy of our DCNN model, enhances the reliability and applicability of our 

solution across various datasets and real-world scenarios. 

In summary, through training a DCNN model using the UCSD highway traffic data, we have 

achieved a remarkable classification accuracy of 98.2%. By further validating the system with 

diverse test photos, we have demonstrated its ability to accurately identify instances of 

congestion, surpassing an accuracy rate of 97%. The introduction of our suggested color-coding 

system adds a layer of dataset independence, enabling consistent analysis and comparison of 

congestion levels across different sources of data. 

In the congestion detection framework, vehicle detection plays a crucial role as it accurately 

portrays the number of vehicles present in a road segment. Vehicle detection from images 

typically involves two main components: image classification and object localization. Image 

classification enables the classification of an image into predefined classes, while object 

localization helps determine the location of the detected object within the image. 
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In this study, the preprocessed images obtained from the dataset serve as the X_train data. These 

images undergo preprocessing steps such as resizing and region of interest (ROI) selection to 

focus on relevant traffic information. On the other hand, the Y_train data consists of vectors, 

with each vector having a size of 7. These vectors are used as input for the Convolutional Neural 

Network (CNN) model. 

 

The output of the model is also a vector of size 7, which provides information about the presence 

of the detected object in the image, the bounding box size, and the center of the detected object's 

location. To handle multiple vehicles in an image, the study utilizes the YOLO (You Only Look 

Once) approach, which divides the image into a grid of smaller regions. Detection occurs if the 

center of the bounding box falls within a particular grid. This approach ensures that only the 

grids containing the object of interest are considered for detection, ignoring the other grids. 

 

After vehicle detection, the study employs color coding to transform the image into a binary 

representation. In this representation, the vehicles' bounding boxes are highlighted in red, while 

the rest of the image is turned into white. This color-coded visualization enhances the 

understanding of the vehicle's presence within the image and aids in congestion analysis. 

 

Overall, the study combines the traditional ConvNet architecture, particularly a Deep 

Convolutional Neural Network (DCNN), with vehicle detection techniques to classify and 

localize vehicles accurately in highway traffic images. The utilization of the UCSD dataset, 

comprising highway traffic videos with 40-50 frames per video and a resolution of 320x240 

pixels, ensures the availability of relevant data for training and evaluation. The preprocessing 

steps, such as frame selection, ROI definition, and image resizing, contribute to addressing 

memory allocation challenges and improving the model's performance during training. 
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3.3. Description of performance matrices in ml/dl 

 

To evaluate the performance of the model, traditional performance metrics such as precision, 

recall, and accuracy were used. To understand these metrics, it is important to define the 

concepts of true positive (TP), true negative (TN), false positive (FP), and false negative (FN). 

 

True positive (TP) refers to cases where a congested image was correctly labeled as congested by 

the model. These are instances where the model successfully identified and classified the 

presence of traffic congestion. 

 

True negative (TN) represents the cases where a non-congested image was correctly labeled as 

non-congested by the model. These are instances where the model accurately recognized and 

classified the absence of congestion. 

 

False positive (FP) occurs when a congested image is predicted to be non-congested by the 

model. In other words, the model incorrectly identifies a non-congested image as congested. 

 

False negative (FN) happens when a non-congested image is predicted to be congested by the 

model. It means the model fails to recognize and correctly classify a non-congested image as 

non-congested. 

 

These definitions allow us to calculate the performance metrics for the model. Precision is the 

ratio of true positives (TP) to the sum of true positives and false positives (TP + FP). It measures 

the accuracy of the model's positive predictions (congested) among all the instances it labels as 

positive. 

 

Recall, also known as sensitivity or true positive rate, is the ratio of true positives (TP) to the 

sum of true positives and false negatives (TP + FN). Recall measures the ability of the model to 

correctly identify all the positive instances (congested) among all the positive instances. 
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Accuracy is the overall correctness of the model's predictions and is calculated as the ratio of the 

sum of true positives and true negatives (TP and TN) to the total number of instances. 

 

By evaluating the model's performance using these metrics, it provides a quantitative assessment 

of its ability to accurately classify congested and non-congested images. These metrics help 

assess the model's effectiveness in capturing and predicting instances of traffic congestion, 

allowing for further analysis and improvement if necessary. 

 

 

     

 

3.4 formula for performance matrices: 

 

Now, Precision, Recall, and Accuracy can be found using 

following equations: 
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CHAPTER-4 

       Dataset Overview 

 

4.1 Dataset: 

 

The UCSD dataset comprises 254 daytime highway traffic videos, from which still images are 

extracted. The dataset includes diverse traffic patterns, excluding medium congestion types for 

consistent analysis. With a total of 4,110 labeled examples, the dataset offers a sufficient number 

of uncongested and congested images for training and evaluating congestion detection models. 

 

 

4.2 Image extraction: 

 

The UCSD dataset used in this study consists of 254 daytime highway traffic videos, which were 

recorded using a stationary camera. As the focus of the paper is on processing still images, 

images are extracted from these videos for analysis and model training. The dataset exhibits 

diverse traffic patterns, including light, medium, and heavy congestion scenarios. 

 

To establish the ground truth for the dataset, hand-labeling has been performed, providing 

annotations that describe each video sequence. The labeling indicates whether the traffic in each 

image is congested or non-congested. However, in cases where it was challenging to determine 

whether the traffic was congested or not, the medium congestion types were excluded from the 

analysis. 

 

After removing the medium congestion types, the dataset contains a total of 4,110 labeled 

examples. Among these, 2,990 images are labeled as uncongested, while 1,120 images are  

 

labeled as congested. This labeling process was conducted by two different annotators to ensure 

consistency and reduce subjective bias. 
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The resulting dataset provides a substantial number of labeled examples for training and 

evaluation of the models. It covers various levels of congestion, allowing for a comprehensive 

analysis of traffic patterns and the development of effective congestion detection models 

 

 

 

4.3 Image Transformation and Class Expansion: 

 

Data classification: 

 

 

Vehicle detection is a crucial step in the congestion detection framework, as it aims to accurately 

determine the number of vehicles in a given road segment. Various techniques have been 

proposed for accurate vehicle detection, including frame differencing, optical flow, region-based 

convolutional neural networks (RCNN), and You Only Look Once (YOLO). 

 

Previous vehicle detection algorithms typically utilized regions or bounding boxes to identify 

vehicles within an image. However, YOLO takes a different approach by using regression to 

predict classes and bounding boxes for the entire image in a single run. This makes YOLO one 

of the fastest vehicle detection techniques, as it requires only one round of image processing. 

 

It's important to note that the accuracy of YOLO may decrease when two different vehicles are 

close to each other, as the model may have difficulty distinguishing between them. In this study, 

the YOLOv3 object detector is adopted, which consists of a convolutional neural   (CNN) called 

Darknet. The Darknet CNN architecture comprises 24 convolutional layers that serve as feature 

extractors, along with two dense layers for prediction. By leveraging YOLOv3, which 

incorporates the Darknet CNN architecture, the study aims to achieve efficient and accurate 

vehicle detection for congestion analysis. 

 

4.4 Image augmentation: 
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Fig: 4.1: Data augmentation (vertical flip) and Fig 4.2: Data augmentation 

(horizontal flip) 

 

Deep Convolutional Neural Networks (DCNNs) are known to be computationally expensive and 

typically require a large number of images for training in order to prevent overfitting. However, 

in this particular study, the researchers encountered a limitation in the amount of available data. 

Only 1,170 images could be generated from the 195 videos through frame extraction, resulting in 

around 1,200 images for training. 

 

To address the limited dataset, the researchers employed data augmentation techniques and 

dropout regularization to mitigate the risk of overfitting. Data augmentation involves applying 

transformations or modifications to existing images to create additional training samples. In this 

study, horizontal flipping (as illustrated in Figure 5) and vertical flipping (as illustrated in Figure 

4) were randomly applied to the sample images to expand the dataset. By flipping the images 

horizontally and vertically, the researchers introduced variations in the dataset, effectively 

increasing the diversity of the training samples. This helps to enhance the model's generalization 

capabilities and reduce the risk of overfitting the limited dataset. 

 

By combining data augmentation techniques with dropout regularization, which randomly 

deactivates certain neurons during training, the researchers aimed to prevent the model from 
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memorizing the specific training examples and instead encourage it to learn more robust and 

generalized features. 

 

Overall, in this study, where the available dataset was limited, the researchers addressed the issue 

by applying data augmentation techniques such as horizontal and vertical flipping to generate 

additional training samples. This approach, along with dropout regularization, aimed to mitigate 

overfitting and improve the generalization capabilities of the deep convolutional neural network. 
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CHAPTER-5 

Introduction to Algorithms 

 

5.1: Vehicle Detection  

 

Vehicle detection plays a pivotal role in the congestion detection framework as it aims to 

accurately portray the number of vehicles present in a given road segment. To achieve this, 

several techniques have been proposed in the literature. These include frame differencing [14], 

which compares consecutive frames to detect moving objects; optical flow [15], which tracks the 

apparent motion of objects; region-based convolutional neural network (R-CNN) [16], which 

uses region proposals to identify vehicles; and You Only Look Once (YOLO) [17]. 

 

While all the vehicle detection algorithms arms employ region-based approaches to identify 

vehicles within an image, YOLO takes a different approach by utilizing regression. YOLO 

predicts the classes and bounding boxes for the entire image in a single run, making it one of the 

fastest vehicle detection techniques. Its efficiency lies in requiring only one pass of image 

processing, thereby significantly reducing computational overhead. YOLO (You Only Look 

Once) v3 is a widely acclaimed object detection algorithm that has significantly advanced in 

real-time object detection. YOLO v3, developed by Yoloeph Redmon and his team, builds upon 

the success of its predecessors by introducing several key improvements. One notable 

enhancement in Yolo v3 is its ability to detect objects at different scales and resolutions. The 

network architecture incorporates a feature pyramid network, allowing the detection of objects at 

various levels of detail. This multi-scale approach enables Yolo v3 to detect both small and large  

objects accurately, making it highly effective in complex scenes with things of different sizes. 

Furthermore, YOLO v3 supports training on large-scale datasets, such as COCO (Common 

Objects in Context), enabling it to learn from diverse object categories. This extensive training 

allows YOLO v3 to generalize well to different object classes and perform excellently on various 

object detection tasks. 
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Fig 5.1: Vehicle Detection Using YOLOv3 
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Fig 5.2: Detailed Object Detection Using YOLOv3 

 

 

However, it is worth noting that YOLO's accuracy can be affected when two different vehicles 

are close to each other, as the bounding boxes may overlap and lead to incorrect predictions. 

Despite this limitation, YOLO, specifically YOLOv3, remains a popular choice for vehicle 

detection due to its speed and efficiency. YOLOv3 utilizes a CNN architecture called Darknet, 

comprising 24 convolutional layers that serve as feature extractors and two dense layers for 

prediction. The Darknet architecture, in conjunction with YOLOv3, enables accurate detection 

and classification of vehicles in real-time scenarios. 

 

In the present study, we have adopted the YOLOv3 object detector with its underlying Darknet 

CNN architecture for vehicle detection. By leveraging the power of Darknet's 24 convolutional 

layers for feature extraction and the subsequent dense layers for prediction, our research aims to 

achieve precise and efficient vehicle detection in congested traffic scenarios. This methodology  
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allows us to capture relevant features and accurately predict the presence and count of vehicles 

within a given road segment, thereby contributing to an improved understanding of traffic 

congestion dynamics. 

 

Overall, using YOLOv3 and Darknet in our research enables us to address the critical vehicle 

detection task within the congestion detection framework. By incorporating this state-of-the-art 

technique, we aim to provide an accurate and efficient solution for quantifying the number of 

vehicles on the road, contributing to better traffic management and congestion analysis. So, 

YOLOv3 represents a significant advancement in object detection. With its multi-scale detection, 

Darknet-53 backbone, skip connections and non-maximum suppression, Yolo v3 offers 

improved accuracy and robustness in detecting objects of different sizes and complexities. Its 

real-time capabilities make it a valuable tool for many applications requiring efficient and 

accurate object detection. 

 

 

5.2: Road Congestion Estimation 

 

Deep Convolutional Neural Networks (DCNNs) are widely recognized as the state-of-the-art 

approach for image classification tasks. In this study, we employed a traditional ConvNet 

architecture consisting of convolutional and pooling layers. The UCSD dataset, comprising 254 

highway traffic videos, served as the foundation for our research. Each tape contained 40–50 

frames with a resolution of 320 x 240 pixels. We selected 4-5 frames from each video to extract 

the most informative frames and manually defined a region of interest (ROI) to exclude 

irrelevant external objects from the scenes. 
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Fig. 5.3: Heavy Congestion Transformation to Binary image  

 

Fig. 5.4: Light Congestion Transformation to Binary image 

 

 

To ensure efficient memory allocation during model training, the trimmed images were resized 

to 180 x 180 pixels. These resized images were then used as input for our model, consisting of 

two successive convolutional layers of 32x3x3, followed by a max pooling layer of size 2x2. The 

network was further extended with two additional convolutional layers of size 64x3x3, followed 

by another max pooling layer of the same size. To mitigate the risk of overfitting, a dropout layer 

with a probability of 0.25 was introduced after each max pooling layer. The rectified linear unit 

(ReLU) activation function was utilized throughout the model. 

 

Deep Convolutional Neural Networks (DCNNs) are computationally demanding and typically 

require many images for practical training and to mitigate overfitting. However, in our study, we 

needed more data. Only 1170 images could be generated from the 195 videos through frame  
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extraction, making approximately 1200 images available for training. To overcome this 

limitation, we incorporated the data augmentation technique [19] in conjunction with dropout 

regularization to enhance the generalization capabilities of the model and prevent overfitting. 

Sample images were randomly flipped horizontally and vertically as part of data augmentation. 

These augmentations increased the diversity and variability of the training data, enabling the 

model to learn robust and generalized representations of the traffic scenes. 

 

The model training was conducted on an NVIDIA Quadro M1000M GPU with 8GB of RAM, 

taking approximately 30 minutes to complete. This powerful computational resource expedited 

the training process, allowing us to optimize the model's performance and validate its efficacy in 

traffic image classification. 

 

In summary, our research leveraged a ConvNet architecture within the domain of traffic image 

classification. Using the UCSD dataset, we extracted relevant frames and defined a region of 

interest (ROI) to focus on the traffic scenes. The model architecture comprised convolutional and 

pooling layers, with dropout regularization implemented to mitigate overfitting. Despite the 

limited availability of training data, we adopted data augmentation techniques and employed a 

powerful GPU for efficient model training. These efforts contribute to advancing image 

classification methods for traffic analysis, offering insights into congestion patterns, and 

facilitating effective traffic management strategies. 

 

5.3 Classification Using Convolutional Neural Network (CNN)  

 

5.3.1. Convolutional Neural Network (CNN)  

 

A convolutional neural network (CNN) is a powerful deep learning model designed explicitly for 

processing and analyzing visual data. CNNs are inspired by the biological optical system, 

mimicking the behavior of neurons in the human brain. It has revolutionized computer vision 

tasks such as image classification, object detection, and image segmentation. 
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The fundamental building block of a CNN is the convolutional layer. In this layer, a set of 

learnable filters, or kernels, are convolved with the input image to extract spatial hierarchies of 

features. The convolution operation is defined as follows: 

 

Hij=σ(∑m,nWmn⋅Xi+m,j+n+b) 

 

Here, Hij represents the output feature map at position (i,j), Wmn denotes the filter weights, 

Xi+m,j+n is the input pixel value at position (i+m,j+n), and b is a bias term. The activation 

function σ introduces non-linearity, allowing the network to model complex relationships within 

the data. 

 

CNNs leverage the concept of parameter sharing, which significantly reduces the number of 

learnable parameters compared to fully connected networks. Each filter is applied across the 

entire input, generating a feature map that captures a particular visual pattern. Multiple filters can 

detect different features simultaneously, forming diverse feature maps. 

 

Pooling layers are commonly employed to capture spatial relationships and reduce spatial 

dimensionality. A popular pooling operation is max pooling, which partitions the input into non-

overlapping regions and selects the maximum value within each area. This down samples the 

feature maps while retaining the most salient features. 

 

Finally, fully connected layers are typically added at the network's end to perform classification 

or regression tasks. These layers connect every neuron to the neurons in the previous layer, 

allowing the web to learn complex combinations of features. For example, a CNN can be trained 

on a large dataset of labeled images for image classification. During training, the network learns 

to recognize various visual patterns and classify pictures into different categories. Once trained, 

CNN can accurately organize unseen images by leveraging known representations and 

hierarchical features. 

 

In summary, CNNs are a highly effective approach for visual data analysis. They can 

automatically learn and extract meaningful features from images using convolutional layers, 
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parameter sharing, and pooling operations. These networks have propelled significant 

advancements in computer vision, enabling tasks such as image recognition, object detection, 

and semantic segmentation to achieve state-of-the-art performance. 

 

 

5.3.2. Application methods 

 

Due to their remarkable performance, deep convolutional neural networks (DCNNs) have 

established themselves as the leading approach for image classification tasks. In this study, we 

employed a traditional ConvNet architecture comprising convolutional and pooling layers. Our 

research utilized the UCSD dataset, which comprises 254 highway traffic videos. Each video 

contained 40–50 frames with a resolution of 320 x 240 pixels. We extracted 4-5 frames from 

each video to focus on the most informative frames and manually defined a region of interest 

(ROI) to exclude unrelated external objects from the scenes. 

 

To address memory allocation challenges during model training, we resized the trimmed images 

to 180 x 180 pixels. These resized images served as the input for our model, structured with two 

successive convolutional layers of size 32x3x3, followed by a max pooling layer of size 2x2. The 

network was further expanded with two additional convolutional layers of size 64x3x3, followed 

by another max pooling layer of the same size. To mitigate the risk of overfitting, a dropout layer 

with a probability of 0.25 was applied after each max pooling layer. The rectified linear unit 

(ReLU) activation function was employed throughout the model to introduce non-linearity and 

enhance the model's ability to capture complex patterns and features. The architecture of our 

DCNN model, as depicted in Table 1, demonstrates the sequential arrangement of the layers, 

providing a clear overview of the model's structure and the parameters associated with each 

layer. This architecture highlights the successive nature of the convolutional layers, followed by 

the pooling layers, emphasizing the hierarchical feature extraction process inherent in ConvNet 

architectures. 

 

By utilizing this carefully designed DCNN architecture, we aimed to leverage the power of deep 

learning to classify and analyze highway traffic images accurately. Including convolutional and 
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pooling layers enables the model to effectively learn hierarchical representations of the traffic 

scenes, simultaneously capturing local details and global patterns. Incorporating dropout layers 

helps mitigate overfitting, enhancing the model's generalization capabilities. 

In conclusion, our research contributes to image classification by utilizing a ConvNet 

architecture, specifically a DCNN, for highway traffic analysis. As outlined in Table 1, the 

architecture provides a comprehensive representation of the model's structure, highlighting the 

arrangement of convolutional and pooling layers. Using the UCSD dataset, we extracted 

informative frames and defined regions of interest to focus on the traffic scenes. The model's 

ability to learn hierarchical features and prevent overfitting, coupled with deep learning, allows 

for accurate image classification and paves the way for improved traffic analysis and 

management strategies. 
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TABLE 5.1: DCNN MODEL ARCHITECTURE USED 

Layer Kernel  Stride  Output shape 

Input   [180, 180, 3]  

Convolution 3x3 1 [180,180, 32] 

Convolution 3x3 1 [178, 178, 32]  

Max Pooling  2x2 2 [89, 89, 32] 

Dropout   [89, 89, 64] 

Convolution 3x3 1 [89, 89, 64] 

Convolution 3x3 1 [87, 87, 64] 

Max Pooling  2x2 2 [43, 43, 64] 

Dropout   [43, 43, 64] 

Dense   512  

Dropout   512  

Dense   2 
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CHAPTER-6 

     Results and Analysis 

 

We achieved 98.2% classification accuracy through our proposed color-coded scheme. We have 

employed two deep learning models: one (YOLO) for vehicle detection and a DCNN for 

classification. The model's performance was evaluated using traditional performance metrics of 

precision, recall, and accuracy. To assess these metrics, we need to define the concepts of 

"true positive (TP), true negative (TN), false positive (FP), and false negative (FN).  

 

TP: When a congested image was correctly labeled  

TN: If a non-congested image was correctly labeled  

FP: If a congested image was predicted as non-congested  

FN: if a non-congested image accuracy predicted as congested 

 

Now, precision, recall, and accuracy can be found using the following equations: 

 

 

 

 

98.2 Recall 95.6 Accuracy 98.2  

The standard metrics of the proposed model are shown in Table II. 
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TABLE 6.1: STANDARD METRICS  

 

Performance Metrics  Result(%) 

Precision 98.2 

Recall 95.6  

Accuracy 98.2  

 

 

Furthermore, we have validated our model with test images of eclectic sites without pre-training  

on those sites. Our model can perform congestion prediction for a different road segment or 

location. To validate this, we feed the ROI images before applying the color coding to the 

DCNN. Without color coding, the model failed to detect the validation set properly (10% 

accuracy only).  

 

 

 

Fig. 6.1: Validation set using color-coded scheme (correct prediction) 

 

 

Fig. 6.2: Validation set without a color-coded scheme (false prediction) 
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From Fig. 6 and Fig. 7, it is evident that a color-coded scheme enhances the performance of 

DCNN regarding data dependency. The validation set is a collection of images of diverse traffic 

congestion. In Fig. 7, as the input image is from the different road segments by which the DCNN 

has been trained, it failed to provide the correct classification. On the contrary, in Fig. 6, due to 

the color-coded scheme, the prediction is accurate. 
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CHAPTER-7 

 Conclusion  

 

This research paper introduces a novel system that utilizes a color-coding scheme to train a Deep 

Convolutional Neural Network (DCNN) for accurately predicting traffic congestion with an 

impressive accuracy rate of 98.2%. Previous studies in the field have often relied heavily on 

specific datasets, each containing different road segments and scenes, resulting in limited 

diversity. In contrast, our proposed color coding of vehicles offers a data-independent 

segmentation approach. By converting the images into color-coded binary representations, we 

establish a clear relationship between occupied space (red color) and vacant space (white color) 

within the road segment. This color-coding technique enhances the diversity and richness of our 

model, as it captures the occupancy patterns more comprehensively. 

 

The work highlights the potential for using color-coded binary images to accumulate diverse 

traffic congestion data. This accumulation could serve as a benchmark for future traffic 

congestion classification challenges. It also opens up possibilities for exploring advanced models 

such as AlexNet, GoogLeNet, and VGGNet to enhance the detection and classification of traffic 

congestion scenarios. By leveraging these state-of-the-art models, we can leverage their 

advanced architectures and capabilities to achieve even higher accuracy and performance in 

traffic congestion prediction tasks. 

The introduction of the color-coding scheme to enhance the training of DCNN models marks a 

significant advancement in traffic analysis and congestion prediction. By focusing on the 

occupancy and vacancy patterns within the road segment, our system offers a more nuanced 

understanding of traffic congestion. This research provides a strong foundation for further 

investigation into color-based segmentation techniques and the utilization of diverse datasets for 

training robust traffic congestion prediction models. The proposed system has the potential to  

revolutionize traffic management strategies by enabling more accurate and timely predictions of 

congestion, leading to improved traffic flow and enhanced transportation efficiency. 
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