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ABSTRACT 

 

With the decline of fossil fuel reserves and the escalating global average 

temperature, the quest for environmentally friendly and renewable energy sources 

has gained significant momentum. Recent interest has focused on wind and 

photovoltaic and biogas-based energy conversion processes. However, due to the 

unpredictable nature of their inputs, incorporating energy storage devices is 

essential to ensure uninterrupted power supply. Furthermore, for hybrid 

renewable power generation to be economically viable, careful optimization of 

the participating generating units is imperative. 

This thesis presents an optimal sizing approach for a Wind-Photovoltaic-Biogas-

Battery system using a single objective optimization (SOO) method. The study 

compares the performance of seven metaheuristic optimizers: Particle Swarm 

Optimization (PSO), Aquila Optimizer (AO), Pelican Optimization Algorithm 

(POA), Dandelion Optimizing Algorithm (DOA), Gazelle Optimization 

Algorithm (GOA), Zebra Optimization Algorithm (ZOA), and Osprey 

Optimization Algorithm (OOA). 

A comprehensive comparative analysis is conducted, evaluating the convergence 

speed and objective mean (for minimization) of the applied metaheuristic 

algorithms. The results demonstrate that the Pelican Optimization Algorithm 

(POA) outperforms other existing algorithms, exhibiting faster convergence and 

lower objective mean. These findings highlight the efficacy of POA for 

optimizing the sizing of hybrid renewable energy systems. 

This research contributes to advancing renewable energy systems by addressing 

intermittent input challenges and facilitating the design optimization of hybrid 

systems. The findings can serve as valuable insights for energy scientists, 
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engineers, and policymakers, enabling them to make well-informed choices 

regarding the deployment and functioning of hybrid renewable energy systems. 

This will contribute to the promotion of a sustainable and resilient energy 

landscape, supporting a future that prioritizes environmental sustainability and 

adaptability. 
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Chapter 1 

Introduction 

1.1 The Importance of Diversifying Energy Sources 

In a world driven by the relentless pursuit of progress, our dependence on non-

renewable energy sources has reached alarming levels. Raw fossil fuels and 

natural gas, the stalwarts of our energy generation, have propelled us forward for 

decades, powering our cities, fueling our vehicles, and driving innovation. Yet, 

this reliance on finite resources has come at a staggering cost. 

As our population continues to surge and technologies advance at breakneck 

speed, our energy consumption has skyrocketed. In just over half a century, it has 

surged by a staggering 51.8% [1, 2]. This insatiable appetite for energy has left a 

gaping ecological deficit in its wake, one that has been growing since the 1970s[3, 

4]. The consequences have been dire, with environmental disasters and tragedies 

becoming all too common. 

But it doesn't end there. Our addiction to non-renewable energy has also hastened 

the ominous specter of global warming. The Earth's temperature, once rising at a 

modest rate, has now spiraled out of control. In the span of a century, it has more 

than doubled its ascent, leaving 2021 as the sixth hottest year ever recorded[5, 6]. 

The signs are clear: we are teetering on the edge of an environmental precipice. 

To restore balance and safeguard our planet, we must turn to alternatives that offer 

hope and redemption[7]. Enter renewable energy sources[8]: the champions of a 

cleaner, greener future. Solar energy, hydro energy, wind energy, biomass, and 

biogas have emerged as beacons of possibility, offering efficient and sustainable 

means of power generation[9]. These sources, when harnessed together in hybrid 
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systems, possess the power to transform our energy landscape, providing us with 

abundant electricity while treading lightly on the Earth. 

But the benefits extend beyond environmental stewardship. Though the initial 

costs of implementing renewable energy power plants may seem daunting, the 

long-term advantages are undeniably compelling[10]. By eliminating the burden 

of fuel costs and associated charges, these systems prove their cost-efficiency 

over time. The investment is recouped within a few short years, paving the way 

for profitability and a secure energy future[11, 12]. 

In a world yearning for a harmonious equilibrium, renewable energy sources hold 

the key to unlocking a brighter tomorrow. They present us with an unparalleled 

opportunity to meet our ever-growing energy needs sustainably and responsibly. 

It's time to harness their immense potential and embark on a transformative 

journey towards a cleaner, greener, and more prosperous future for all. 

 

1.2 Literature Review  

As we speculated the amount of carbon emission[13] in the year of 2022 to be 

around 107 million tons[14], so the renewable energy sources are the best solution 

to global warming and reduction of fossil fuel[15]. Sustainable Energy 

Development Strategies typically involve three major technological changes[16], 

energy savings on the demand side , efficiency improvements in the energy 

production and replacement of fossil fuels by various sources of renewable 

energy. Consequently, large-scale renewable energy implementation plans must 

include strategies for integrating renewable sources in coherent energy systems 

influenced by energy savings and efficiency measures the available renewable 

energy sources that are used [8, 17]: 

1. Solar Energy 
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2. Wind Energy 

3. Biomass 

4. Hydropower 

5. Geothermal 

Each of these renewable sources has different power generation rate based on 

geographical locations and environment but the table 1.1 shows the contribution 

of RE sources way back in 2001[18].  

 

               Resource Annual Delivered Energy (kwh/m2) 
Wind Energy (intermittent) 11(avg. wind speed);  18(high wind speed) 

Biomass (baseload) 15(low efficiency);   45(high efficiency) 
Photovoltaics(intermittent) 50-100 

Geothermal (The Geyser) (baseload) 160-200 
 

We can see the contribution of renewable energy goes way back and has 

developed quickly. The Ministry of Energy and National Resources (MENR) 

encourages to increase the share of RES in electricity generation, and it is striving 

to improve the whole capacity of renewables to 61,000 MW by 2023[19]. 34,000 

MW of this total installed generation will be composed of hydropower; 20,000 

MW of wind power, 1000 MW of geothermal, 5000 MW of solar, and 1000 MW 

of biomass energy. The total estimated cost of this object is almost 60 billion 

dollars (about $180 per person in the US). Table 1.2.2 shows the estimated 

resource-based electricity generation rates in the 2023 MENR strategic plan[19]. 

 

 

 

 

 

 

Table 1.1: Energy generation from RE sources. 
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Table 1.2 : 2023 MENR Strategic Plan: Projected Electricity Generation  

Renewable Energy Sources 2015 2017 2019 2023 

Hydropower 25,526 28,763 32,000 34,000 

Wind 5660 9549 13,308 20,000 

Geothermal 412 559 706 1000 

Solar 300 1800 3000 5000 

Biomass 377 530 683 1000 

Total 32,275 41,241 49,697 61,000 
 

1.2.1    Hybrid Renewable Energy System(HRES) 

As we can see, this field's most recent advancements and research have    

enhanced both manufacturing volume and cost effectiveness. The capacity and 

efficiency of electricity generation have even increased thanks to the 

development of hybrid renewable energy systems(HRES) .The HRES is a novel 

type of power generation that combines two or more renewable energy sources 

with conventional ones. Any combination of renewable resources may be used. 

Nature's renewable energy sources are constantly in a precarious intermittent 

situation. The development of HRES included a hybrid combination of storage 

(also known as a battery), Semiconducting Magnetic Energy Storage (SMES), 

and water storage as a possible hydro turbine[20]. 

1.2.2   Research on HRES 

According to a study from 2023[21],Indonesia possesses a tropical environment 

with abundant solar radiation, making it an ideal candidate for solar power 

production. However, the country has not fully utilized its renewable energy 
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resources. The study highlights that the current usage of solar, wind, and biomass 

energies in Indonesia is only 5.1%, 0.04%, and 0.01%, respectively, despite their 

significant capacities of 32,654 MW, 207,898 MW, and 60,647 MW. 

Recognizing the potential for economic gain and emissions reduction, Indonesia's 

national energy strategy aims to capitalize on these natural resources and address 

its electricity access challenges. 

In a case study region with a daily load demand of 890 kWh and a peak load of 

167.2 kW, an off-grid hybrid system consisting of photovoltaic (PV) panels, a bio 

generator, a diesel generator, batteries, and the grid was recommended[21]. This 

combination optimally addressed the region's energy needs. The study's 

optimization findings indicate a Net Present Cost (NPC) of $1.02 million and a 

Levelized Cost of Energy (COE) of 0.188 $/kWh for the average cost of usable 

energy produced by the system. The NPC measures the present value of a 

system's lifetime costs of investment and operation[21]. 

Another research from 2019[22] demonstrated the technological advantages of a 

hybrid PV-BESS (Battery Energy Storage System) for renewable energy 

utilization. Furthermore, the paper investigated the feasibility of a Building 

Integrated PV (BIPV) system with and without a battery. 

For rural electrification in the outlying district of Korkadu, India, a study focused 

on designing an ideal HRES[23]. Solar photovoltaic, wind turbines, and bio 

generators were considered the primary energy sources due to their abundant 

potential in the Korkadu district. The study calculated the load forecasts for the 

chosen district, encompassing residential, commercial, institutional, and 

agricultural sectors, to ensure reliable electrification. 

In order to harness useful outputs such as power, hydrogen, hot water, and clean 

water, a study proposed a novel flash-binary geothermal power plant coupled 
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with a steam cycle and a carbon dioxide-based Rankine cycle (RC), along with a 

desalination unit and a Proton Exchange Membrane (PEM) electrolyzer[24]. 

In a distant village named Tazouta in the Moroccan Fez-Meknes region, various 

freestanding HRES combinations are evaluated for a constant power supply to 10 

households[25]. The included solar, wind, and biomass energy sources. The best 

configuration scenario, denoted as A (PV-Wind-Biomass-Battery), yielded a unit 

energy cost of 0.2 $/kWh for an average energy requirement of 91.38 kWh/day 

and a peak load of 6.44 kW. Therefore, the proposed system offers a promising 

solution for ensuring energy supply security. 

According to papers[26-28] , the most cost-efficient HRES combination is PV-

WT-BS (photovoltaic, wind turbine, and battery storage). These studies utilize 

six optimal sizing methods to determine the appropriate configuration. 

On the other hand, papers[29-32] explored the HRES combination of PV-WT-

DG-BS (photovoltaic, wind turbine, diesel generator, and battery storage). 

Different algorithms were employed to optimize the sizing of this system 

configuration. 

 

1.2.3   Sizing Methodologies for HRES 

The sizing of HRES is very important as it combines different RE sources[33, 

34]. The sizing has to be perfect so that it is cost efficient as well as it satisfies 

the load demand .The main methodologies are as follows[35]: 

1. Graphic construction method 

2. Probabilistic method 

3. Artificial intelligence method 

4. Iterative method 

5. Hybrid method 
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1.2.3.1  Graphic construction method 

A graph-making approach involves balancing the average value of the HRES 

system's generation with the average value of the load demand. It is necessary to 

employ graphical representations of a sizing curve between the potential sizes of 

HRES and load demand. Borowy and Salameh developed a graphical method for 

calculating the required size of PV modules and batteries depending on wind 

speed and solar radiation for each hour of the day. This hybrid system design was 

used to meet the load demand in a Massachusetts home. The quantity of PV 

modules and LPSP batteries was determined by the cost of the system[36]. 

1.2.3.2  Probabilistic method 

The selection of the optimal size of the microgrid components is one of the most 

essential power system aspects, and probabilistic techniques are one of the finest 

options for sizing[37]. 

It should be noted that insufficient component sizing can lead to problems such 

as microgrids functioning badly in terms of total loss, total cost, load supply, and 

long-term battery bank cell deterioration. Because of the intermittent nature and 

unpredictable output of renewable energy sources, ESSs should be used to avoid 

any negative impacts and increase electrical energy use[38]. 

1.2.3.3  Iterative method 

This approach's performance for HRES is computed using a recursive procedure 

that ends when the ideal configuration is achieved based on the design criteria. 

The recursive procedure used to evaluate iterative approaches for HRES reaches 

a conclusion when the best configuration meets the design requirements[39]. 

Yang et al. proposed for a hybrid wind-solar power system based on COE and 

levelized cost of energy (LCE)[39]. 
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1.2.3.4  Artificial intelligence method 

Machine learning algorithms influenced by human concepts are included in 

AI[40]. Researchers used a variety of AI technologies to improve HRES and 

reduce energy consumption, including Fuzzy Logic, genetic algorithms (GA), 

and artificial neural networks (ANN)[41]. Kumar et al. created a hybrid system 

that used solar, wind, and diesel to lower the overall cost of the HRES[42]. 

 

1.2.3.5  Hybrid methods 

Hybrid solutions effectively integrate two or more diverse strategies to provide 

the best feasible solution for the specific situation. The employment of a hybrid 

technique is more common in multi-objective settings when two or more 

variables are optimized at the same time[43]. Arabali et al. [44]presented a hybrid 

technique based on HRES for assessing the stochastic performance and sizing of 

PV-wind-batteries. The auto regressive moving average (ARMA) technique was 

used to stochastically evaluate the intermittent nature of PV and wind power 

producing systems[45, 46]. To examine the system's dependability and cost-

cutting potential, the pattern search (PS) and sequential Monte Carlo simulation 

(SMCS) methodologies were combined. Instead of implementing Tabu Search 

(TS) and Simulated Annealing (SA) separately, the proposed optimization 

strategies used a hybrid mix of the TS  and SA algorithms to get enhanced 

convergence and optimal outcomes[47]. The hybrid model is the best option for 

microgrid design in rural and isolated places, according to the researchers' 

theoretical analyses of different sizing methodologies[48, 49]. 

There are other ways to categorize methodologies[50, 51]. 

1. Software tools  

2. Evolutionary algorithms   

3. Nature inspired algorithms  
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4. Linear programming  

5. Dynamic programming  I 

6. Matrix approach   

7. Design space-based approach 

1.2.4  Softwares Related To HRES Sizing 

  
Due to multiple generation systems, hybrid system analysis  is quite complex and 

requires to be analyzed thoroughly. This requires software tools for the design, 

analysis, optimization, and economic viability of the systems. The software 

studied are[52] 

 

1. HOMER[53-56] 2. Hybrid2 3. RETScreen 

2. iHOGA 5.  INSEL 6. TRNSYS 

7.  iGRHYSO[57] 8. HYBRIDS 9. RAPSIM 

10. SOMES 11. SOLSTOR 12. HySim 

13.HybSim 14. IPSYS 15. HySys 

16.Dymola/Modelica 17. ARES 18. SOLSIM 

19.HYBRID DESIGNER.    
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1.2.5   Single Objective Optimization (SOO) 

Single objective optimization focuses on satisfying only one objective, there is 

only one objective function. The objective function may contain multiple 

optimization parameter and each of them is linked through it. Each optimization 

parameter will have constraints of its own[58, 59].  

There are many researches in this field. Here are some examples: 

The author of this paper used, differential evolution (DE) ,a new evolutionary 

optimization algorithm that has been shown to be fast and simple for 

unconstrained single-objective optimization problems[60, 61]. 

The research offers a novel improved social spider optimization method (NISSO) 

for solving the optimum power flow (OPF) issue by optimizing electricity 

generating fuel cost, power loss, polluted emission, voltage deviation, and L 

index separately[62, 63]. In the study, the suggested NISSO approach is initially 

created by executing three changes with the goal of improving optimal solution 

quality and speeding up convergence of traditional social spider optimization 

(SSO).Here the conception of single objective optimization is used for the 

algorithm[64, 65]. 

In[66] an SOO based methodology was presented for sizing stand-alone PV/WG 

system. The overall system cost over a 20-year period was equal to the sum of 

the corresponding component capital and maintenance expenses[67, 68]. 

Similar research work has been done in this paper as well using genetic algorithm 

and SOO[69]. 

A method for optimal sizing and strategy control was described in this where 

differential flatness approach was applied. The method included the concept of 

SOO in optimization[70, 71] 
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There are more researches based on single objective optimization. In our thesis, 

we have used single objective optimization where one objective function 

addresses the optimization parameters.  

 

 

 

1.3 Thesis objectives: 

i. To propose an optimization technique for a wind-photovoltaic-

biogas-battery hybrid renewable energy system that is the most 

cost-effective and guarantees zero power supply probability. 

ii. To compare several optimization algorithms recently presented 

for a wind-photovoltaic-biogas-battery hybrid renewable energy 

system. 
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Chapter 2 

Mathematical Model and Problem Formulation 

The studied HRES consists of WT, PV, Biomass and batteries are used as storage 

component. The chapter begins by demonstrating how these components are 

linked to one another. These components are introduced further, along with their 

mathematical equations. These components' specifications for this study are also 

provided. The objective function based on LPSP is presented at the end of this 

chapter. 

2.1 System Architecture  

When different energy sources are used to produce electricity, the system is 

known as a hybrid renewable energy system (HRES). A HRES can be built using 

both renewable and non-renewable energy sources. However, since this idea was 

developed with the intention of replacing nonrenewable sources of energy, HRES 

primarily focuses on the usage of renewable sources of energy. The utilization of 

numerous sources is required to stabilize the system because, in contrast to non-

renewable energy sources, renewable energy is unpredictable. Undoubtedly a 

system consisting of multiple energy sources provides much more reliability in 

terms of cost and efficiency in comparison to a system consisting of a single 

source of energy[72, 73]. Furthermore, due to the rise in the price of petroleum 

goods, HRES that use renewable energy are  gaining appeal, particularly in distant 

places[74]. Researchers throughout the world use a variety of energy sources, 

including hydrogen, fossil fuels, HG, geothermal, BM, BG, WT, and solar energy 

used in PV cells along with energy storage systems[75, 76]. The literature review 
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suggests that PV-WT-BG-BS is the most cost effective and cleanest combination 

among all of them[77]. 

 

Fig. 2.1: A PV-WT-BG-BS hybrid renewable energy system 

 

In this study, the HRES consists of three sources of energy which are wind 

generator, photovoltaic cells and biogas generator and as an energy storage 

system, a battery storage system is employed. Each of the components is 

discussed below:  
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2.2 Mathematical Model  

2.2.1 Wind Turbine Model 

For the HRES, any wind turbine may be chosen. The non-linear power 

characteristics curve provided by the manufacturer of the particular wind turbine, 

however, should be used to analyze the type of wind turbine that was selected. A 

typical power curve is presented in Fig 2.2 to provide an insight into the behavior 

of a wind turbine. 

From Fig. 2.2 it is obvious that wind speed of a particular site plays a vital role 

for generating power. The Typical Meteorological Year (TMY) data can be used 

to calculate the wind speed at a reference height (about 33m) of the research 

location. Based on the study by[78-81], the specific power output, Pw (W/m2), 

depends on the wind speed at that location and is expressed as, 

 

Pw(t) = 0     v(t) < vci  

(2.1) 

Fig. 2.2: Wind turbine power output characteristics 
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vr3 – vci3 vr3 – vci3 

vci3 

Pw(t) = av3(t) – bP    vci ≤ v(t) < vr 

Pw(t) = Pr     vr ≤ v(t) < vco  

Pw(t) = 0     v(t) ≥ vco 

 

Where, 

 a =       , b =      

vci = cut in speed of the WG 

vr = rated speed of the WG 

vco = cut out speed of the WG 

Pr = rated power of WG 

The wind velocity at hub height is required to implement the above equation. The 

following equation is used to calculate velocity at a given height[79, 80]. 

𝑉 = 𝑉          (2.2) 

In equation 2.2, 

vr = windspeed at the reference height; vh = windspeed at the hub height.  

α = power law coefficient 

h = WG installation height; hr = reference height   

From[81], it can be concluded that    

α < 0.10  for flat land, water and ice 

α > 0.25 for heavily forested landscape 

For this study α = 0.15 is taken, as [79] implies, the site being studied is a decent 

approximation for such an area because it almost resembles an open topography 

Pr 

Cut in, rated, cut out speed of the 
wind turbine and the rated 
power of the WG can be found 
from the manufacturer of the 
selected turbine.  
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Table 2.1 : Specifications of Wind Turbine 

of grasses. So, after taking into account all of the aforementioned information, it 

can be said that the actual electric power production as obtained from a wind 

turbine is represented by 

PWG = Pw AWG ηWG         (2.3) 

In equation 2.3,  

PWG = Power produced by WG 

AWG = total swept area by WG 

ηWG = efficiency of WG  

The details of the considered WT are given in the Table 2.1[80] 

 

Power (W) hlow(m) hhigh (m) 
WG capital cost 

($) 

Tower capital cost 

($/unit length) 

1000 11 40 2400 55 
 

2.2.2 Photovoltaic (PV) module model 

This is the second renewable energy source used in this research. It should be 

emphasized that PV modules cannot generate any power at night because they are 

dependent on solar radiation to do so. The power generation of PV modules is 

influenced by factors besides solar radiation, such as ambient temperature and 

irradiation conditions, and these characteristics vary from module to module. The 

manufacturer of the photovoltaic modules supplies this data for the standard test 

conditions (STC) 25 C cell temperature and 1 kW/m2 solar irradiance). By 

incorporating these manufacturer data, the output power of a PV module at any 

one time is determined by the following equation [69] 

PPV (t,β) = Ns.Np.Voc(t,β).Isc(t,β).FF(t) 
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Voc(t,β) = { VOC-STC – KvTc(t)} 

Isc(t,β) = { ISC-STC + KI[ Tc(t) – 25°C] } 
( , )

 

Tc(t) = TA + (NCOT – 20°C) 
( , )

 

In equation 2.4, 

PPV = Power produced by the PV modules 

β = Tilt angle of PV 

Ns = number of PV modules connected in series 

Np = number of PV modules connected in parallel 

Voc = Open circuit voltage 

Isc = Short circuit current 

FF = Fill factor (ratio of actual Pmax to the product of Voc and Isc) 

Kv = Open circuit voltage temperature coefficient 

KI = Short circuit current temperature coefficient 

G = Global solar irradiance 

TA = Ambient Temperature 

NCOT = Nominal cell operating temperature 

It is clear from equation 2.4 that we require the value of incident global solar 

irradiance on the PV module.  Although hourly global irradiance on a horizontal 

plane can be found in meteorological year (TMY) data sets, it is insufficient for 

this investigation because the PV modules are not arranged horizontally. The solar 

irradiance is divided into beam and diffuse components for a slanted PV module. 

Hourly clearance index, kT = 
( )

( )
 

(2.4) 
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β  

α 

z 
θ 

γ β 

ψ 

Where, ratio of beam(G) and diffuse(D) can be expressed in terms of  

    1.0 – 0.09 kT      0 < kT < 0.22 

     0.9511– 0.1604kT + 4.388 kT
2 – 16.638kT

3 + 12.336kT
4 0.22 < kT ≤ 0.80  (2.5) 

     0.065       kT > 0.8 

 

Rb  = 
( ) ( )

             (2.6) 

In equation 2.6, Rb is a geometric factor that represents the ratio of beam radiation 

on a slanted surface to that on a horizontal surface at any given time.  

 

 

 

 

 

 

 

 

 

 

To understand the angles associated in equation 2.6 let us take a look at Fig. 2.3. 

φ is the latitude of this site, β is the tilt angle of the PV module. From  Fig. 2.3 it 

is seen that the PV module is titled at β degree from the horizontal surface. The 

hour angle, denoted as ω, represents the amount of angular displacement of the 

Sun, measured in degrees, towards the east or west of the local meridian due to 

the Earth's rotation on its axis at a rate of 15° per hour. Therefore, in the afternoon, 

the hour angle is positive, and in the morning, it is negative. 

 =  

Fig.2.3 : Angles related to the sun  

θz  
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(2.7) 

The angle of declination, denoted by δ, represents the Sun's position at solar noon 

relative to the equator. It ranges from -23.45° to 23.45° and is positive in the 

northern hemisphere and negative in the southern hemisphere. It impacts the 

amount of solar radiation received by a location, with greater angles resulting in 

more intense radiation. The declination angle is represented by equation 

𝛿 = 23.45 sin 360
284 + 𝑛

365
 

In equation 2.7, n is the day of the year. Incorporating tilt angle of PV, the total 

hourly global radiation can be found from the following equation [82] 

𝐺(𝑡, 𝛽) = (𝐺 − 𝐷)𝑅 + 𝐷 + 𝐺𝜌   

 

In the equation 2.8 ρg is called the ground reflectance. Total power output from 

the PV can be determined from the following expression  

 

𝑃 ( , ) =  𝜂 𝑁 𝑁 𝑃 (𝑡, 𝛽) 

 

Where, 𝜂  is the efficiency of the converter of pv. It should be noted that in the 

current study, the magnitude of the DC bus voltage determines the number of PV 

modules in series, whereas the number of PV modules in parallel is determined 

by the optimization algorithm. 

The details of the considered PV module are given in Table 2.2 [80] 

 

VOC (V) ISC (A) Vmax (V) Imax (A) Pmax (W) Capital Cost ($) 

64.8 6.24 54.7 5.86 320 640 

  

(2.8) 

(2.9) 

Table 2.2: Specification of PV module 
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2.2.3 Biogas Modelling  

It serves as the 3rd renewable energy source in this study. Anaerobic digestion is 

a valuable waste management process that utilizes microorganisms to break down 

biodegradable material, producing biogas which can be utilized as a sustainable 

energy source. The study employed a fixed digestor dome[83] and food waste 

with a gas production rate of 0.05 m3/kg[84]. This technique is crucial due to the 

surge in global waste production caused by urbanization and population growth, 

resulting in the need for sustainable solutions. The output power of a biogas 

model is determined using the following equations[85]  

𝐺𝑎𝑠 = 𝐹𝑜𝑜𝑑 𝑤𝑎𝑠𝑡𝑒 (𝑘𝑔) ∗ 𝐺𝑎𝑠    (𝑚 𝑘𝑔⁄ )  

𝑃 =
𝑉 ∗ 𝐶𝑎𝑙 ∗  𝜂

860
 

In the equation 2.10, 2.11, 

𝑉  = Volume of biogas supplied to biogas engine  

𝐶𝑎𝑙  = Calorific value of biogas 

𝜂𝐵𝑖𝑜  = Efficiency of Bio engine  

𝑃  = Power produced by the Biogas engine 

The details of the considered Biogas engine are given in Table 2.3 

 

Power (W) 
Biogas Engine 

Capital Cost ($) 

Digestor volume 

(m3) 

Digestor Capital 

Cost ($) 

3000 720 22.183 2550 

 

(2.10) 

(2.11) 

Table 2.3: Specification of the Biogas Engine 
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2.2.4 Battery Model  

The selected sources of energy are inherently variable, leading to fluctuations in 

electricity generation that may exceed or fall short of current demand. Ensuring 

consistent and stable operation of energy storage systems requires an energy 

storage system capable of storing excess energy and releasing it as needed. This 

is achieved through the use of a battery that charges and discharges in response 

to current conditions.  

The state of charge (SOC) of the battery is critical to maintaining optimal energy 

balance within the system. Accurate determination of the SOC requires 

understanding of the initial SOC level, charging or discharging duration, and 

current flow magnitude. An equation can be used to determine the SOC at any 

given time  

𝐼 (𝑡) =
𝑃 (𝑡) + 𝑃 (𝑡) − 𝑃 (𝑡)

𝑉 (𝑡)
 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1). 1 −
𝜎. Δ𝑡

24
 +

𝐼 (𝑡). Δ𝑡. 𝜂

𝐶
 

Where, 

σ = self-discharging rate of a battery  

𝐼  = Battery Current 

𝐶  = Nominal Capacity of The Battery  

η = Charging Efficiency 

(2.12) 
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In reference to[81], sigma is dependent on the cumulative charge and in this study 

the value is assumed of 0.2%[86]. Furthermore, charging efficiency is fixed at 

0.8, while discharging efficiency is set at 1. The total charge of a battery storage 

system is determined by the nominal charge of the battery and the number of 

batteries connected in parallel. The number of batteries in series is dependent on 

the DC bus voltage, 

𝑁 = 𝑁 × 𝑁  

𝑁  =
𝑉

𝑉
  

𝐶 = 𝑁 × 𝐶  

 

In equation 2.13, 

𝑁  = Total number of batteries  

(2.13) 

 

Fig. 2.4: Batteries connected in series and parallel 
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Table 2.4 : Specifications of Battery  

𝑁  = Batteries connected in series  

𝑁  = Batteries connected in parallel  

𝑉  = DC bus voltage 

𝑉  = Battery voltage 

𝐶   = Total charge of Battery   

The authors of [87] assert that the longevity of a battery can be compromised by 

overcharging and deep discharging. To optimize battery lifespan, it is advised to 

circumvent these events by refraining from overcharging and critical discharge. 

In this study, the maximum state of charge (SOC) was set at 1, while the minimum 

SOC was set at 0.2. The maximum charge and the maximum and minimum 

charging-discharging capacity can be calculated using following equations[88] 

 

Emax = (Cn × Vbat)/1000 

Ecap_max(t) = (SOCmax – SOC(t)) × Emax 

Ecap_min(t) = (SOC(t) – SOCmin) × Emax 

The details of the considered battery model are given in Table 2.4 

 

 

Price($) Voltage(V) Capacity(Ah) 

1239 12 357 

 

 

 

 

(2.14) 
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2.3 Objective function Formulation  

The objective function is formulated on the basis of loss of power supply 

probability. The economic viability of a Hybrid model is determined by its ability 

to meet the load demand. This is reflected in the loss of power supply probability 

(LPSP)[89] which represents the probability that the model will fail to meet the 

load demand. LPSP ranges from 0 to 1, where 0 indicates complete reliability and 

1 indicates complete failure. LPSP is mathematically expressed as a function that 

governs the probability of power supply failure. LPSP is determined by the 

following equation[81, 90] 

𝐿𝑃𝑆𝑃 =  
∑ 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 (𝑡)

∑ 𝑃 (𝑡)
=

∑ 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑡𝑖𝑚𝑒

𝑇
 

𝐿𝑜𝑠𝑠 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 (𝑡) = 𝑃 (𝑡) − 𝑃 (𝑡) 

𝐿𝑜𝑠𝑠 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑇𝑖𝑚𝑒 =  𝑇𝑖𝑚𝑒 𝑃 (𝑡) < 𝑃 (𝑡)  

In equation 2.15, T is the total number of hours in a year and  

∑ 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑡𝑖𝑚𝑒 represents the summation of all the hours 

during which the available power was less than the demand. 

The main objective of this research is to reduce the costs associated with HRES. 

The LPSP is kept at close to zero, ensuring maximum reliability. After that, the 

cost is computed, resulting in a single-objective optimization.  

This study assumes a 25-year lifespan for the HRES under examination. The 

associated costs include not only the initial setup cost of the PV, WG, and batteries 

but also the maintenance cost throughout its operational lifespan. As indicated in 

reference[91], the objective function can be expressed as follows. 

(2.15) 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑁 , 𝑁 , 𝑁 , 𝛽, ℎ, 𝑁 )

= 𝑁 (𝐶 + 25𝑀 ) + 𝑁 (𝐶 + 25𝑀 + ℎ𝐶 + 25ℎ𝑀 )

+ 𝑁 (𝐶 + 𝑉 𝐶 ) + (25 − 𝑌 − 1)𝑀

+ 𝑁 𝐶 + 25𝑀 ) + 𝐶

+ 25𝑀  

 

Subject to the constraints 

𝑁 > 0 

𝑁 > 0 

𝑁 > 0 

𝑁 > 0 

90° ≥ 𝛽 ≥ 0 

11 ≥ ℎ ≥ 40 

 

In equation 2.16 𝑁 , 𝑁 , 𝑁  𝑎𝑛𝑑 𝑁  are the number of PV modules, WGs, 

batteries and bio-engines respectively, 𝐶 , 𝐶 , 𝐶 , 𝐶  

𝑎𝑛𝑑 𝐶  are the capital cost of PV modules, WGs, batteries and bio-engines 

respectively,𝑀 , 𝑀 , 𝑀 , 𝑀 𝑎𝑛𝑑 𝑀  are the annual 

maintenance cost of PV modules, WGs, batteries, bio-engines and digester 

respectively, Ch is the capital cost per unit height of WG tower, 𝑀  is the yearly 

maintenance cost per unit height of a WG tower and 𝑌  is the expected number 

of battery replacements during the life of HRES. 

 

 

(2.16) 
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2.4 Methodology  

To begin the optimization process, several initial parameters are loaded, such as 

solar irradiance, wind velocity, load demand, and food waste. The population and 

algorithm parameters are then initialized. The simulation starts by generating six 

random solution sets: 𝑁 , 𝑁 , 𝑁 , 𝛽, ℎ 𝑎𝑛𝑑 𝑁 . These sets have defined 

upper and lower bounds. The generated data is fed into corresponding models to 

calculate the power generated by each model, thereby determining the total 

generation. 

Next, the algorithm checks if the total generation meets the total demand. If the 

power generated exceeds the load demand, the surplus energy is stored in the 

battery energy storage for later use. On the other hand, if the generation falls short 

of the load demand, the deficit amount of energy, or a partial amount, can be 

supplied by the battery energy storage. If there is still a shortfall in energy 

demand, it is considered unmet energy. 

This energy monitoring process continues for a year, after which the system 

calculates the Loss of Power Supply Probability (LPSP) and checks if it equals 

zero. If LPSP is zero, the system calculates the value of the fitness function. If the 

maximum number of iterations has not been reached, the entire process repeats. 

All these procedures are illustrated below using flow diagrams in fig 2.4(a), 

2.4(b), 2.4(c). 
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Fig 2.5 (a) : Overall Methodology of the Entire Study Fig 2.5(c) : ESS Charging(B) 

Fig 2.5 (b) : ESS Discharging(A) 

A 

B 
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In summary, the optimization process involves iteratively generating random 

solution sets, calculating power generation, checking energy balance, storing or 

discarding surplus energy, supplying energy from the battery, monitoring energy 

demand for a year, calculating LPSP, evaluating fitness function, and repeating 

until the maximum number of iterations is reached. 

 

2.5 Summary 

The Hybrid Renewable Energy System (HRES) and the objective functions 

linked with it have been explained. The HRES is clearly extremely dependent on 

the environmental conditions of the implementation site. As a result, including an 

energy storage device becomes vital, but it also raises the system's cost. As a 

result, optimizing the consumption of generated energy in an economically viable 

manner is critical.  
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Chapter 3 

Study of Optimization Algorithm 

 

3.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a nature-inspired optimization technique 

that uses a swarm of interacting particles to explore a search space and find the 

optimal solution[92, 93]. These particles, inspired by social swarms like bees and 

ants, exhibit decentralized control and cooperation to achieve emergent behavior 

at a global level[92, 93] . Social Intelligence (SI), a subset of AI, models the 

collective behavior of social swarms such as bird flocks and ant colonies[94]. 

Through verbal or visual communication, like the honey bees' waggle dance, or 

indirect interaction through environmental changes, such as ants leaving 

pheromone trails, swarms efficiently perform essential tasks[95]. PSO, one of the 

popular SI models, mimics the flocking behavior of birds. It iteratively updates 

particle positions based on personal best (Pbest) and global best (Gbest) positions to 

converge towards the optimal solution[96]. Assuming a minimization problem, 

𝑃 = 𝑥∗| 𝑓(𝑥∗) = min 𝑓 𝑥    𝑘 = 1, 2, 3 … … , 𝑡 

𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ {1, 2, … , 𝑁}, 𝑎𝑛𝑑 

𝑔 = 𝑥∗  | 𝑓(𝑥∗ ) = min 𝑓 𝑥  

 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, … , 𝑁 𝑎𝑛𝑑 𝑘 = 1, 2, … , 𝑡 

Here,  

i =  particle’s index, 

t = current iteration  

f = objective function to be optimized 

(3.1) 

(3.2) 
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x = position vector 

N = total number of particles in the swarm  

The following equations update the velocity v and position x of each particle i at 

each current iteration t+1 as follows : 

 

𝑣 = 𝑤𝑣 + 𝑐 𝑟 𝑃 − 𝑥 + 𝑐 𝑟 (𝑔 − 𝑥 ) 

𝑥 =   𝑥 + 𝑣  

 

Where, v represents the velocity vector, w is the inertia weight used to balance 

local and global exploration, r1 and r2 are random vectors uniformly distributed 

within the range [0,1] and c1 and c2 called “acceleration coefficients” are positive 

constant. The "velocity clamping" method[97] prevents particles from reducing 

their search space and encourages exploration across the full domain during 

optimization by setting an upper constraint for the velocity vector. 

Table 3.1 contains step by step instructions for coding PSO 

Table 3.1 : Pseudocode of  Particle Swarm Optimization  
1 Initialize particles' positions and velocities 
2 Initialize global best position and fitness 
3  
4 While termination condition is not met: 
5  For each particle : 
6   Update particle's velocity using the formula: 
7    velocity = (inertia weight) * velocity 
8     + (cognitive weight) * rand() * (particle's best position - current 

position) 
9     + (social weight) * rand() * (global best position - current position) 

10      
11   Update particle's position using the formula: 
12    position = position + velocity 
13     
14   Calculate fitness of the new position 
15    

(3.3) 

(3.4) 
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16   If the new position is better than the particle's best position: 
17    Update particle's best position 
18     
19   If the new position is better than the global best position: 
20    Update global best position 
21     
22  Update termination condition (max. number of iterations or target fitness value) 
23   
24 Return global best position and fitness 

  

3.2 Aquila Optimizer 

The Aquila, an extensively studied bird, excels in hunting with its speed and sharp 

talons. When hunting solo, male Aquila capture a significant amount of prey. 

They employ four different hunting methods and can quickly adapt between them 

depending on the situation. Their prey includes squirrels, rabbits, and even full-

grown deer[98]. It involves three stages in its operation.  

Expanded Exploration 

X1(t+1) =Xbest(t) × Xbest (1 − )+ (XM (t) -Xbest (t)× rand) 

Where, X1(t + 1) is the solution of the next iteration of t, Xbest(t) is the best 

obtained solution until tth iteration, XM(t) is the locations mean value of the 

current solutions. 

 

Narrowed Exploration 

X2(t+1)= Xbest(t)×Levy(D)+XR(t)+(y-x) ×rand 

𝑦 = 𝑟 × 𝑐𝑜𝑠 𝜃 ;   𝑥 = 𝑟 × sin 𝜃  ;  𝑟 = 𝑟 + 𝑈 × 𝐷 ;  𝜃 = −𝜔 × 𝐷 + 𝜃    

(3.5) 

(3.6) 
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(3.7) 

(3.8) 

Here, X2(t + 1) is the solution of the next iteration of t. x and y are used to 

present the spiral shape in search, Levy(D) denotes levy flight distribution 

function. 

 

Expanded Exploitation   

 X (t + 1)  =  X (t) − X (𝑡) × 𝛼 − 𝑟𝑎𝑛𝑑 + ((𝑈𝐵 − 𝐿𝐵) × 𝑟𝑎𝑛𝑑 + 𝐿𝐵) × 𝛿 

 Here , X3(t+1) =solution of next iteration of t 

    Xbest =approximate location of the prey until ith iteration 

    XM(t) =mean value of the current solution at t th iteration 

 

Narrowed Exploitation 

X (𝑡 + 1) = 𝑄𝐹 × 𝑋   (𝑡) − (𝐺 × 𝑋(𝑡) × 𝑟𝑎𝑛𝑑) − 𝐺 × 𝐿𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 

𝑄𝐹(𝑡) = 𝑡
×
( )  ;    𝐺 = 2 × 𝑟𝑎𝑛𝑑 − 1;  𝐺 = 2 × 1 −

𝑡

𝑇
 

Here, X4(t + 1)  denotes the  solution of the next iteration of t, 𝑄𝐹 defines 

quality function, G1 denotes various motions of the AO and G2  

denotes the flight slope of the AO. 

Table 3.2 contains step by step instructions for coding AO 

Table 3.2 : Pseudocode of  Aquila Optimizer  
1 Initialize the population X and algorithm parameters 
2 while(The termination condition is not met) do 
3  Calculate the fitness function values  
4  Obtain Best Solutions based on fitness values 
5  for(i=1:N) do 
6   Update the values of X (t), x, y, G , G , Levy(d) 

7   if 𝑡 ≤ ∗ 𝑇 then 

8    if 𝑟𝑎𝑛𝑑 ≤ 0.5 then 
9     Update current solution using eqn.(3.5) [Expanded Exploration] 

10    else 
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(3.9) 

11     Update current solution using eqn.(3.6) [Narrowed Exploration] 
12    end if 
13   else 
14    if 𝑟𝑎𝑛𝑑 ≤ 0.5 then 
15     Update current solution using eqn.(3.7) [Expanded Exploitation] 
16    else 
17     Update current solution using eqn.(3.8) [Narrowed Exploitation] 
18    end if 
19   end if 
20  end for 
21 end while 
22 return The best solution (Xbest) 

 

         
3.3 Pelican Optimization Algorithm  

The Pelican Optimization Algorithm (POA) is a nature-inspired optimization 

technique inspired by the foraging behavior of pelicans[99]. It mimics the 

cooperative hunting strategies of pelicans and their ability to adapt to dynamic 

environments. POA iteratively updates a population of candidate solutions, 

representing pelicans, to converge towards the optimal solution. It incorporates 

social interaction, individual learning, and global best information to strike a 

balance between exploration and exploitation[99]. 

The Pelican Optimization Algorithm has shown promising performance and has 

been applied to various optimization problems, including engineering design, 

image processing, and data clustering[99]. It provides a novel and effective 

approach to solving complex optimization problems. 

Initially, population members are randomly initialized according to the lower 

bound and upper bound of the problem by following equation[100] 

𝑥 , = 𝑙 + 𝑟𝑎𝑛𝑑 𝑢 − 𝑙  𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, … , 𝑁 𝑎𝑛𝑑 𝑗 = 1, 2, … . , 𝑚  
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(3.10) 

(3.11) 
(3.12) 

(3.13) 
(3.14) 

The population matrix is used to identify the pelican population members in the 

proposed POA. Here, X is the population matrix of pelican and Xi is the ith pelican 

𝑋 =

⎣
⎢
⎢
⎢
⎡
𝑋
⋮

𝑋
⋮

𝑋 ⎦
⎥
⎥
⎥
⎤

×

 =  

⎣
⎢
⎢
⎢
⎡
𝑥 , ⋯ 𝑥 , ⋯ 𝑥 ,

⋮ ⋱ ⋮ ⋰ ⋮
𝑥 , ⋯ 𝑥 , ⋯ 𝑥 ,

⋮ ⋰ ⋮ ⋱ ⋮
𝑥 , ⋯ 𝑥 , ⋯ 𝑥 , ⎦

⎥
⎥
⎥
⎤

 ×

  

𝐹 =  

⎣
⎢
⎢
⎢
⎡
𝐹
⋮

𝐹
⋮

𝐹 ⎦
⎥
⎥
⎥
⎤

×

=  

⎣
⎢
⎢
⎢
⎡
𝐹(𝑋 )

⋮
𝐹(𝑋 )

⋮
𝐹(𝑋 )⎦

⎥
⎥
⎥
⎤

×

 

 

POA replicates pelican behavior and strategy when attacking and hunting prey in 

order to update candidate solutions. 

 

Phase 1: Exploration Phase  

𝑥 , =
𝑥 , + 𝑟𝑎𝑛𝑑 𝑝 − 𝐼 ∙ 𝑥 ,  , 𝐹 < 𝐹 ;

𝑥 ,  + 𝑟𝑎𝑛𝑑 𝑥 , − 𝑝 , 𝑒𝑙𝑠𝑒 
   ;       𝑋 =

𝑋 , 𝐹 < 𝐹  ;

𝑋   ,  𝑒𝑙𝑠𝑒
 

Where 𝑥 .  is the new position of the ith pelican in the jth dimension. 𝑝   is the 

location of prey in the jth
 dimension and 𝐹  is the objective function. Here, 𝑋  is 

the new status of the ith pelican and 𝐹  is the objective function value based on 

phase 1. 

 

Phase 2 : Exploitation Phase 

𝑥 , = 𝑥 , + 𝑅 1 −
𝑡

𝑇
(2 ∙ 𝑟𝑎𝑛𝑑 − 1) ∙ 𝑥 ,  ;       𝑋  =  

𝑋 , 𝐹 < 𝐹

𝑋  ,               𝑒𝑙𝑠𝑒
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Here, in equation 3.13 & 3.14 𝑥 ,  is the updated position of the ith pelican in jth 

dimension and 𝐹  is the objective function value for 𝑋  .  

Table 3.3 contains step by step instructions for coding POA 

Table 3.3 : Pseudocode of Pelican Optimization Algorithm  
1 Initialize the pelican population with arbitrary placements and velocity 
2 Evaluate the fitness of each pelican in the population 
3 Set the current iteration count to 1 
4  
5 While the termination condition is not met: 
6  For each pelican in the population: 
7   Update the velocity of the pelican using the formula: 
8    velocity = (inertia weight) * velocity 
9     + (cognitive weight) * random() * (pelican's best position - current position) 
10     + (social weight) * random() * (global best position - current position) 
11   
12   Update the position of the pelican using the formula: 
13    position = position + velocity 
14   Evaluate the fitness of the new position 
15   
16   If the fitness of the new position is better than the fitness of the pelican: 
17    Update the pelican's best position and fitness 
18    
19   If the fitness of the new position is better than the global best fitness: 
20    Update the global best position and fitness 
21  Increment the iteration count 
22   
23  Update the termination condition (max. number of iterations or target fitness value) 
24 Return the global best position and fitness 

 

3.4 Dandelion Optimization Algorithm  

The Dandelion Optimization Algorithm (DOA) is a nature-inspired optimization 

technique that mimics the seed dispersal process of dandelion plants[101, 102]. 

It aims to efficiently solve optimization problems by emulating the effective 

dispersal of dandelion seeds in the wind. 
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(3.15) 
 

(3.16) 
 

(3.17) 
 

DOA updates a population of potential solutions, represented as dandelion seeds, 

in an iterative manner to find the optimal solution. Each seed adjusts its position 

based on its properties, interactions with neighboring seeds, and information from 

the best solution in the population. 

To strike a balance between exploration and exploitation during optimization, 

DOA employs various strategies such as seed distribution, pollen competition, 

and seedling growth[103]. This approach has demonstrated outstanding 

performance in diverse fields, including engineering design, data clustering, and 

picture segmentation[104, 105]. 

DOA can be summarized as an optimization algorithm inspired by dandelion seed 

dispersal . It involves three stages in its operation[106].  

Rising Stage  

𝑋 =  
𝑋 +  𝛼 ∙ 𝑣 ∙ 𝑣 ∙ 𝑙𝑛𝑌 ∙ (𝑋 − 𝑋  )     𝑟𝑎𝑛𝑑𝑛 < 1.5

     𝑋 ∙ 𝑘                                    𝑒𝑙𝑠𝑒 
  

Here, 𝑋  represents the position of the dandelion seed after t iteration and 

randn is the random number that follows the standard normal distribution. 

Descending Stage  

𝑋 = 𝑋 − 𝛼 ∙ 𝛽 ∙ 𝑋 − 𝛼 ∙ 𝛽 ∙ 𝑋   ;  𝑋 =  
1

𝑝𝑜𝑝
𝑋  

This stage emphasizes the exploration, here 𝑋  represents the position 

after j iteration and 𝛽  denotes the Brownian motion, 𝑋  denotes the 

avg. position of the population. 

Landing Stage  

𝑋 = 𝑋 + 𝑙𝑒𝑣𝑦(𝜆) ∙ 𝛼 ∙ (𝑋 − 𝑋 ∙ 𝛿) 
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This stage focuses on  exploitation here Xelite  denotes the optimal position 

 of the dandelion in the ith iteration and 𝑙𝑒𝑣𝑦(𝜆) represents the function of 

the levy flight. 

 

Table 3.4 contains step by step instructions for coding DOA 

 

Table 3.4 : Pseudocode of Dandelion Optimization Algorithm  
1 Initialize the population of dandelions with random positions 

2 Evaluate the fitness of each dandelion in the population 
3 Initialize the global best position and fitness 
4 Set the current iteration count to 1 
5  
6 While the termination condition is not met: 
7  For each dandelion in the population: 
8   For each neighbor of the dandelion: 
9    Generate a random direction vector 
10    Calculate the distance between the current dandelion and its neighbor 
11    Update the position of the neighbor dandelion using the formula: 
12     new_position = current_position + (random() * distance * direction_vector) 
13      
14    Evaluate the fitness of the new position 
15     
16    If the fitness of the new position is better than the fitness of the neighbor: 
17     Update the neighbor's position and fitness 
18      
19   Update the best position and fitness of the current dandelion if necessary 
20    
21  Update the global best position and fitness if necessary 
22  Increment the iteration count 
23   
24  Update termination condition (max. number of iterations or target fitness value) 
25   
26 Return the global best position and fitness 
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3.5 Gazelle optimization algorithm 

The Gazelle Optimization Algorithm (GOA) is a nature-inspired optimization 

technique that takes inspiration from the hunting behavior and agility of 

gazelles[107]. GOA aims to efficiently solve optimization problems by emulating 

the adaptive and swift movements of gazelles in search of food and evading 

predators. 

GOA maintains a population of gazelles, where each gazelle represents a potential 

solution, and utilizes various strategies to update the population and search for 

the optimal solution[108, 109]. These strategies include individual movement, 

herd behavior, and predator-prey dynamics. 

The individual movement of gazelles involves adjusting their positions based on 

their own attributes and information from the population's best solution. This 

allows for effective exploration of the search space[110, 111]. The herd behavior 

aspect of GOA emphasizes collaboration and communication among gazelles, 

facilitating information sharing and enhancing the overall search capability of the 

population[112]. It involves 2 stages in its operation  

Exploitation  

    𝑔𝑎𝑧𝑒𝑙𝑙𝑒 = 𝑔𝑎𝑧𝑙𝑙𝑒 + 𝑠. 𝑅 ∗ 𝑅 ∗. (𝐸𝑙𝑖𝑡𝑒 − 𝑅 ∗. 𝑔𝑎𝑧𝑒𝑙𝑙𝑒 ) 

Here in equation 3.18 , 𝑔𝑎𝑧𝑒𝑙𝑙𝑒  is the solution of the next iteration, 𝑔𝑎𝑧𝑙𝑙𝑒   

is the solution at the current iteration  where s denotes the grazing speed. 

Exploration 

𝑔𝑎𝑧𝑒𝑙𝑙𝑒  

=  
𝑔𝑎𝑧𝑒𝑙𝑙𝑒 + 𝐶𝐹[𝐿𝐵 + 𝑅 ∗. (𝑈𝐵 − 𝐿𝐵)] ∗. 𝑈               𝑖𝑓 𝑟 ≤ 𝑃𝑆𝑅𝑠

𝑔𝑎𝑧𝑒𝑙𝑙𝑒 + [𝑃𝑆𝑅𝑠(1 − 𝑟) + 𝑟] 𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − 𝑔𝑎𝑧𝑒𝑙𝑙𝑒      𝑒𝑙𝑠𝑒
 

(3.18) 

(3.19) 
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𝑔𝑎𝑧𝑒𝑙𝑙𝑒 = 𝑔𝑎𝑧𝑒𝑙𝑙𝑒 + 𝑆 ∙ 𝜇 ∙ 𝑅 ∗. 𝑅 ∗. (𝐸𝑙𝑖𝑡𝑒 − 𝑅 ∗. 𝑔𝑎𝑧𝑒𝑙𝑙𝑒 ) 

Here in equation 3.19 & 3.20 PSR is the predator success rate, CF is the 

cumulative effect of the predator. 

Table 3.5 contains step by step instructions for coding GOA 

 

Table 3.5 : Pseudocode of Gazelle Optimization Algorithm 
1 Initialize all algorithm parameters  
2 Initialize gazelle population 
3 while current iteration is less than the max iteration  
4  Calculate the fitness value of the gazelles 
5  Construct the Elite gazelle matrix 
6  if r < 0.5  
7   Exploitation : 
8    Update gazelles based on equation (3.18) 
9  else 

10   Exploration : 
11    if 𝑚𝑜𝑑(𝑖𝑡𝑒𝑟, 2) == 0 
12     𝜇 = −1 
13    else 
14     𝜇 = 1 
15    if 𝑖𝑡𝑒𝑟 < 𝑠𝑖𝑧𝑒(𝑔𝑎𝑧𝑒𝑙𝑙𝑒, 1)/2 
16     For the gazelle population (𝑖 = 1, 2, … , 𝑛/2) 
17     Update gazelle based on the equation (3.20) 
18    else 
19     For the gazelle population (𝑖 = 𝑛/2, … , 𝑛) 
20     Update gazelle based on the equation (3.20) 
21   end if 
22   Update the fitness and top-gazelle 
23   Apply PSRs effect and update based on the equation (3.19) 
24 end while 
25 return top-gazelle from the population 

 

 

 

(3.20) 



41 
 

(3.21)
(3.22) 

3.6 Zebra Optimization Algorithm  

The Zebra Optimization Algorithm (ZOA) is a metaheuristic algorithm inspired 

by the natural behavior of zebras . It combines local search and global exploration 

to efficiently solve optimization problems. ZOA utilizes a population-based 

approach, with individuals representing potential solutions[113]. 

The Zebra Optimization Algorithm (ZOA) combines individual exploration, herd 

mobility, and information sharing to solve optimization problems 

efficiently[113]. It draws inspiration from the behavior of zebras, utilizing their 

natural tendencies to update positions and exchange ideas. ZOA has demonstrated 

promising results in various optimization domains, offering a novel approach 

inspired by nature[113]. ZOA utilizes two natural zebra behaviors to update its 

members, enhancing its performance[114] . 

Foraging Behavior  

𝑥 ,  
, = 𝑥 , + 𝑟 ∙ 𝑃𝑍 − 𝐼 ∙ 𝑥 ,  ;   𝑋 =  

𝑋 , ,     𝐹 , < 𝐹

𝑋                        𝑒𝑙𝑠𝑒 
 

Here 𝑋  
,  is the new position of the ith zebra based on the first phase and 

𝑥 ,  
,  is the jth dimension value. 𝐹 , is the objective function and PZ is the 

pioneer zebra which is the best member. 

Defense Strategies Against Predators  

𝑥 ,  
, =  

𝑆 : 𝑥 , + 𝑅 ∙ (2𝑟 − 1) ∙ 1 −
𝑡

𝑇
∙ 𝑥 , ,    𝑃 ≤ 0.5

𝑆 : 𝑥 , + 𝑟 ∙ 𝐴𝑍 − 𝐼 ∙ 𝑥 , ,                           𝑒𝑙𝑠𝑒
 

𝑋 =  
𝑋 , ,     𝐹 , < 𝐹

𝑋 ,                              𝑒𝑙𝑠𝑒
 

(3.23) 

(3.24) 
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From equation 3.23 and 3.24 𝑋 ,  is the new position of the ith zebra 

based on 2nd phase  𝑥 ,  
,  is its jth dimension value and 𝐹 ,  is the 

objective function. 

Table 3.6 contains step by step instructions for coding ZOA 

 

Table 3.6 : Pseudocode of Zebra Optimization Algorithm 

1 Initialization of optimization problem 
2 Initialize all parameter, position and population 
3  Evaluate the objective function 
4  for 𝑡 = 1: 𝑇 
5    Update pioneer zebra(PZ) 
6   for 𝑖 = 1: 𝑁 
7    Phase 1 : Foraging behavior 
8     Determine the value of ith zebra using eqn.(3.21) 
9     Update ith zebra using eqn.(3.22) 
10    Phase 2: Defense Strategies Against Predators 
11     if  𝑃𝑠 < 0.5, 𝑃𝑠 = 𝑟𝑎𝑛𝑑 
12      Determine the ith zebra's new status using mode S1 and the eqn 3.23 
13     else 
14      Determine the ith zebra's new status using mode S2 and the eqn 3.23 
15     end if 
16     Update the ith zebra using (3.24) 
17   end for 𝑖 = 1: 𝑁 
18   Save the best solution 
19  end for 𝑡 = 1: 𝑇 
20 Return best solution obtained by ZOA 

 

3.7 Osprey Optimization Algorithm 

The Osprey Optimization Algorithm (OOA) is a nature-inspired optimization 

algorithm based on the hunting behavior of the osprey; a predatory bird 

recognized for its exceptional foraging ability. OOA uses the hunting behavior of 

ospreys to efficiently look for optimal solutions in difficult optimization issues. 
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To provide a robust and versatile optimization technique, this algorithm combines 

components of evolutionary computation and swarm intelligence[115]   

Position Identification and Fish Hunting (Exploration) 

𝑥 ,  = 𝑥 , + 𝑟 , ∙ 𝑆𝐹 , − 𝐼 , ∙ 𝑥 ,  

𝑥 , =

𝑥 ,     , 𝑙𝑏 ≤ 𝑥 , ≤ 𝑢𝑏

𝑙𝑏         , 𝑥 , < 𝑙𝑏

𝑢𝑏    , 𝑥 , > 𝑢𝑏

    ;      𝑋 =
𝑋    , 𝐹 < 𝐹

𝑋     , 𝑒𝑙𝑠𝑒
 

Where 𝑋  is the new position of the ith osprey based on the 1st phase 

value, 𝑥 ,  is its jth dimension. 𝐹 is the objective function value and 

𝑆𝐹 ,  is the selected fish for ith osprey in jth dimension. 

Carrying The Fish to The Suitable Position (Exploitation) 

𝑥 , =

𝑥 ,     , 𝑙𝑏 ≤ 𝑥 , ≤ 𝑢𝑏

𝑙𝑏         , 𝑥 , < 𝑙𝑏

𝑢𝑏    , 𝑥 , > 𝑢𝑏

    ;      𝑋 =
𝑋    , 𝐹 < 𝐹

𝑋     , 𝑒𝑙𝑠𝑒
 

Where 𝑋  is the new position of the ith osprey based on the 1st phase 

value, 𝑥 ,  is its jth dimension. 𝐹 is the objective function value and 

𝑆𝐹 ,  is the selected fish for ith osprey in jth dimension. 

 

Table 3.7 : Pseudocode of Osprey Optimization Algorithm 
1 Initialize problem information  
2 Initialize OOA population and parameters  
3  Evaluate the objective function  
4  for 𝑡 = 1: 𝑇 
5   for 𝑖 = 1: 𝑁 
6    Phase 1: Exploration 
7     Update fish position set 

(3.26),
(3.27) 

(3.28),
(3.29) 

(3.25) 
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8     Calculate new position  
9     Check the boundary conditions for the new position using eqn.(3.26) 
10     Update ith member using eqn.(3.27) 
11    Phase 2 : Exploitation 
12     Calculate new position  
13     Check the boundary conditions for the new position using eqn.(3.28) 
14     Update ith member using eqn.(3.29) 
15   end for 𝑖 = 1: 𝑁 
16  end for 𝑡 = 1: 𝑇 
17 return best candidate solution 

 

 

3.8 Summary 

This chapter focused on various optimization algorithms, providing an overview 

of their principles and illustrating their flowcharts. We explored multiple 

algorithms, outlining their key characteristics and depicting their step-by-step 

processes through flowcharts. By delving into these optimization methods, we 

gained a comprehensive understanding of their workings and how they can be 

applied in practice. 
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Chapter 4 

Results And Analysis 

This chapter implements algorithms from Chapter 3 to evaluate their 

effectiveness and reliability. A comparative analysis explores their strengths, 

limitations, and practical applications, providing valuable insights. 

 

4.1 Load Profile 

In order to apply the optimization algorithms, load data  is necessary. The study 

utilized load data from the Islamic University of Technology (IUT), along with 

solar radiation and wind speed measurements, to model the hourly load demands 

using a random Gaussian distribution. A graphical representation of the typical 

day's load demand for IUT is shown in Figure 4.1. 

 

 

 

Hours of the day  

Fig. 4.1: Hourly Load Data (for a day) 

KW
h 
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4.2 Simulation environment  

We used MATLAB (2023) to run our simulations, as this is a simulation- based 

research there were no hardware and machineries involved. The workload totaled 

8760 hours over the course of a year. In each iteration the hourly data of solar 

irradiance, wind velocity, load demand and the daily data of food waste was given 

as input. The algorithm was simulated 30 times in a row, independently. Each of 

these 30 distinct runs consisted of 300 iterations with a population of 150 to 

ensure a complete execution of the algorithm. The algorithms employed in this 

study cease their execution when the maximum iteration limit is attained. The 

result of the iterations gives the best values of the optimization parameters 

𝑁 , 𝑁  , 𝑁 , 𝑁 , ℎ 𝑎𝑛𝑑 𝛽 maintaining their individual constraints has we 

have discussed in chapter 2. The optimized values of each parameter are used in 

the objective function to find the best overall cost . 

4.3 Obtained Results 

After performing 30 independent runs with 300 iterations each, we observed that 

the optimization algorithm reached an equilibrium state. To assess the 

convergence of the algorithm, we plotted the convergence curve using the best 

cost as the convergence metric. The convergence curve illustrates the relationship 

between the number of iterations and the best cost achieved by the algorithm. It 

serves as a valuable tool for analyzing the algorithm's performance and evaluating 

its progress towards finding the optimal solution. By examining the convergence 

curve, we can gain insights into the algorithm's convergence behavior, such as 

whether it converges smoothly, reaches a stable state, or experiences fluctuations 

or plateaus throughout the iterations.  
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Fig 4.2 to Fig 4.8 represents convergence curves of the used algorithms 

 

 

Fig 4.2: Convergence curve of PSO X-axis : iterations; Y-axis : best cost 

Fig 4.3: Convergence curve of AO; X-axis : iterations; Y-axis : best cost 

Fig 4.4: Convergence curve of POA; X-axis : iterations; Y-axis : best cost 
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Fig 4.5: Convergence curve of DOA; X-axis : iterations; Y-axis : best cost 
 

Fig 4.6: Convergence curve of GOA; X-axis : iterations; Y-axis : best cost 

Fig 4.7: Convergence curve of ZOA; X-axis : iterations; Y-axis : best cost 
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The obtained data for all the optimization algorithm are presented in table 4.1 

Table 4.1 : Optimized Cost and Parameter results 

No. 
Optimization 

Algorithm 

Best Cost 

$ 
Nwg Npv Nbat β h Nbio_eng 

1.  PSO 4399402.5 15 125 3427 18 22 6 

2. AO 4375318.69 14 168 3381 13.1 16 10 

3. POA 4276504.73 19 69 3343 31.4 11.3 9 

4. DOA 4394996.11 18 267 3338 8.2 12.4 8 

5. GOA 4284792.80 19 46 3362 51.6 12.6 10 

6. ZOA 4551329.74 12 159 3547 14.4 13 3 

7. OOA 4440412 63 79 3367 23.6 14.7 5 

 

In this study, we conducted a comprehensive comparison of six optimization 

algorithms for our HRES model : Particle Swarm Optimization (PSO), Aquila 

Optimizer (AO), Pelican Optimization Algorithm (POA), Dandelion 

Optimizing), Gazelle Optimization Algorithm (GOA), Zebra Optimization 

Algorithm (ZOA), and Osprey Optimization Algorithm (OOA). 

Table 4.1 : Optimized Cost and Parameter results 

Fig 4.8: Convergence curve of OOA; X-axis : iterations; Y-axis : best cost 
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The primary objective of this study was to identify the most effective optimization 

algorithm that can achieve the lowest best cost while utilizing limited resources 

and minimizing expenses. A lower best cost indicates a better optimization 

algorithm. Analyzing table 4.1 and Fig 4.9 it can be said that Pelican Optimization 

Algorithm (POA) exhibited the lowest best cost of 4276504.73$.  

This indicates that POA outperformed the other algorithms in terms of achieving 

the desired optimization goal while utilizing limited resources and minimizing 

expenses. The POA algorithm demonstrated superior efficiency in finding the 

optimal solution, resulting in lower costs compared to other algorithms. 

 

 

 

 

4399402.5

4375318.69

4276504.73

4394996.11

4284792.8

4551329.74

4440412
B

E
S

T
 C

O
S

T
S

Comparison of Simulation Results

OOA ZOA GOA DOA POA AO PSO

Fig 4.9 : Comparison of Algorithm by simulated result 
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4.4 Performance Comparison  

In order to determine the relative performance of each optimization algorithm, 

we calculate the percentage difference between each algorithm's best cost and the 

lowest best cost observed among all algorithms which is presented in Table 4.2. 

 

Optimization Algorithm Best Cost($) Percentage Difference 

Particle Swarm Optimization 4399402.5 2.87% 

Aquila Optimizer 4375318.69 2.31% 

Pelican Optimization Algorithm 4276504.73 0% 

Dandelion Optimizing Algorithm 4394996.11 2.76% 

Gazelle Optimization Algorithm 4284792.80 0.19% 

Zebra Optimization Algorithm 4551329.74 6.43% 

Osprey Optimization Algorithm 4440412 3.85% 

 

Based on the calculated percentage differences, we can analyze the performance 

of each optimization algorithm: 

The Pelican Optimization Algorithm (POA) and the Gazelle Optimization 

Algorithm (GOA) have the lowest percentage differences of 0% and 0.19% 

respectively, indicating that they perform almost as well as the algorithm with the 

lowest best cost (POA). 

The Aquila Optimizer (AO) and the Dandelion Optimizing Algorithm (DOA) 

exhibit slightly higher percentage differences of 2.31% and 2.76% respectively. 

Although these algorithms are not as efficient as the lowest cost algorithm, they 

still demonstrate competitive performance. 

The Particle Swarm Optimization (PSO) algorithm and the Osprey Optimization 

Algorithm (OOA) have percentage differences of 2.87% and 3.85%  

Table 4.2 : Performance Comparison of Algorithms 
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respectively. While they are less efficient than the algorithms with lower 

percentage differences, they still offer considerable optimization capabilities. 

The Zebra Optimization Algorithm (ZOA) exhibits the highest percentage 

difference of 6.43%. This indicates that it is the least efficient algorithm in terms 

of minimizing the best cost. 

 

In summary, based on the comparison of the best costs, the optimization 

algorithms can be ranked as follows: POA and GOA exhibited the lowest best 

costs, followed by AO, DOA, PSO, OOA, and ZOA. Therefore, if the primary 

goal is to utilize limited resources while minimizing expenses, POA and GOA are 

the recommended optimization algorithms due to their superior performance. 

However, it is important to consider other factors such as convergence speed, 

robustness, and the specific requirements of the problem at hand before finalizing 

the choice of an optimization algorithm. 

 

 

To assess the feasibility of the optimized model, we'll analyze how long it will 

take for the plant to become profitable by reducing the current annual electricity 

bill of $207,301.23 at the Islamic University of Technology (IUT). 

AO PSO 
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By investing in the most cost-effective solution, we can calculate the time it will 

take for the plant to reach a point where the savings on the annual electric bill 

outweigh the initial investment cost. We will compare the profitability timeframes 

for different algorithms.  

From Fig 4.10 it can be said that POA becomes profitable after 20 years  7months 

which about 1 month earlier than GOA. In table 4.3 time required for an algorithm 

to become profitable is listed. 

 

 

-5

-4

-3

-2

-1

0

1
106

0 5 10 15 20 25

X 22
Y 76816.3

POA 

Fig 4.10 : Profitability timeframes of different algorithm  

OOA 

DOA 

ZOA GOA 



54 
 

 

Optimization Algorithm 
Period Required to Be 

Profitable 

Particle Swarm Optimization 21years 2months 12days 

Aquila Optimizer 21years 1months 9days 

Pelican Optimization Algorithm 20years 7months 16days 

Dandelion Optimizing Algorithm 21years 2months 13days 

Gazelle Optimization Algorithm 20years 8months 1day 

Zebra Optimization Algorithm 21years 11months 16days 

Osprey Optimization Algorithm 21years 5months 1day 

 

4.5 Summary  

In this chapter, we conducted comprehensive testing and analysis of all the 

algorithms. We examined each algorithm's performance and presented a detailed 

evaluation. Additionally, we determined the timeframe for the plant to become 

profitable by considering the cost savings achieved through these algorithms. 

  

Table 4.3 : Feasibility Comparison of Algorithms 
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Chapter 5 

Conclusions and Prospects for Future Research 

 

5.1 Conclusion  

Chapter 1 provides a comprehensive overview of the energy crisis and the need 

for alternative energy sources. It conducts a detailed literature review on Hybrid 

Renewable Energy Systems (HRES) and single objective optimization (SOO), 

emphasizing their importance in addressing the energy crisis and achieving 

sustainable energy solutions. The chapter concludes by outlining the thesis 

objectives and presenting the organization of the subsequent chapters. Overall, 

Chapter 1 serves as a foundational introduction to the research on HRES 

optimization and its contribution to resolving the energy crisis. 

Chapter 2 delves into the mathematical modeling of the proposed Hybrid 

Renewable Energy System (HRES). Each component, including PV, wind 

turbines, biogas, and batteries, is thoroughly explored with detailed sections 

containing equations, costs, and specifications. The chapter introduces objective 

functions to minimize the HRES cost over 25 years and evaluates system 

reliability through Loss of Power Supply Probability (LPSP). The optimization 

methodology, tailored to the complexity of the problem, aims to determine the 

best configuration and operation strategy by considering objectives, constraints, 

and system dynamics. These mathematical models, objective functions, and 

optimization approaches set the stage for subsequent chapters, where 

optimization techniques will be implemented to evaluate the performance of the 

HRES. 

In Chapter 3, various popular metaheuristic algorithms, namely Particle Swarm 

Optimization (PSO), Aquila Optimizer (AO), Pelican Optimization Algorithm 
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(POA), Dandelion Optimizing Algorithm (DOA), Gazelle Optimization 

Algorithm (GOA), Zebra Optimization Algorithm (ZOA), and Osprey 

Optimization Algorithm (OOA), are explored. The discussion includes the 

formulation of mathematical models and the presentation of pseudocodes for each 

of these algorithms. By providing mathematical models and pseudocodes, 

Chapter 3 offers a comprehensive understanding of the workings and 

implementation of these metaheuristic algorithms. 

Chapter 4 provides a detailed analysis of the simulation results obtained from the 

proposed HRES model. It covers an overview of the load profile, convergence 

curves, and the use of MATLAB for data analysis and graph plotting. The chapter 

includes a constructive comparison of the algorithms discussed in Chapter 3, 

evaluating their performance in optimizing the HRES model. Additionally, it 

explores the profitability of the HRES plant with the examined algorithms. 

Overall, Chapter 4 offers valuable insights into the simulation results, algorithm 

effectiveness, and the financial viability of the proposed HRES model. 

In this study, we compared seven optimization algorithms for an HRES model to 

minimize costs. The Pelican Optimization Algorithm (POA) emerged as the most 

cost-effective, surpassing the other algorithms. The Gazelle Optimization 

Algorithm (GOA) also demonstrated strong performance. Consequently, we 

recommend using either POA or GOA. Based on profitability analysis, POA 

becomes profitable in approximately 20 years and 7 months, slightly ahead of 

GOA. 

 

5.2 Prospects for Future Research 

The thesis focused on offline analysis using recorded load data. Future research 

can improve the analysis by incorporating real-time load profiles and considering 

weather uncertainties for PV modules, biogas models, and wind turbine models. 
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These enhancements will lead to more accurate and reliable analyses of hybrid 

renewable energy systems. 

Furthermore, while the current work employed a single objective optimization 

(SOO) approach, future studies could explore the benefits of utilizing multi-

objective optimization (MOO) techniques. MOO has the potential to provide 

superior performance by simultaneously considering multiple objectives and 

generating a range of Pareto-optimal solutions. 

The research in this thesis primarily utilized software simulations. To enhance the 

practicality and reliability of the proposed models, future research can explore 

the implementation of hardware models. By transforming the proposed system 

into a miniature form, the effectiveness and feasibility of the models can be 

further evaluated. 
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