
Islamic University of Technology (IUT)

Medical Image Synthesis using Generative

Adversarial Network

Authors

Antara Risha, 180042146

Shaira Saiyara Islam, 180042147

Anika Tahsin, 180042150

Co-Supervisor

Tasnim Ahmed

Lecturer

Dept. of CSE, IUT

Supervisor

Tareque Mohmud Chowdhury

Assistant Professor

Dept. of CSE, IUT

A thesis submitted in partial fulfilment of the requirements

for the degree of B. Sc. in Software Engineering

Academic Year: 2021-2022

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT)

A Subsidiary Organ of the Organization of Islamic Cooperation (OIC)

Dhaka, Bangladesh

June 4, 2023

1

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the

analysis and experiments carried out under the supervision of Tareque Mohmud

Chowdhury, Assistant Professor of the Department of Computer Science and En-

gineering (CSE), Islamic University of Technology (IUT), Dhaka, Bangladesh. It

is also declared that neither of this thesis nor any part of this thesis has been

submitted anywhere else for any degree or diploma. Information derived from the

published and unpublished work of others has been acknowledged in the text and

a list of references is given.

Authors:

Antara Risha

Student ID - 180042146

Shaira Saiyara Islam

Student ID - 180042147

Anika Tahsin

Student ID - 180042150

2

Approved By:

Co-Supervisor:

Tasnim Ahmed

Lecturer

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT), OIC

Supervisor:

Tareque Mohmud Chowdhury

Assistant Professor

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT), OIC

3

Acknowledgement

We would like to express our grateful appreciation for Tareque Mohmud

Chowdhury, Assistant Professor, Department of Computer Science and Engi-

neering, IUT for being our adviser and mentor. His motivation, suggestions and

insights for this research have been invaluable. Without his support and proper

guidance this research would never have been possible. His valuable opinion, time

and input provided throughout the thesis work, from first phase of thesis topics

introduction, subject selection, proposing algorithm, modification till the project

implementation and finalization which helped us to do our thesis work in proper

way. We are really grateful to him.

We are also grateful to Tasnim Ahmed, Lecturer, Department of Computer

Science and Engineering, IUT for his valuable inspection and suggestions on our

proposal of Medical Image Synthesis.

4

Contents

1 Introduction 8

1.1 Overview . 8

1.2 Motivation and Problem Statement 8

1.3 Proposed Idea . 10

1.3.1 Diabetic Retinopathy . 10

1.4 Research Challenges . 12

1.5 Organization of Thesis . 14

2 Background Study 15

2.1 Medical Image Modality . 15

2.2 Medical Image Synthesis . 16

2.3 Importance of medical data synthesis 16

2.4 Generative Adversarial Network (GAN) 17

2.4.1 Importance of using GAN in medical image synthesis 18

2.4.2 Conditional Generative Adversarial Network (cGAN) 19

2.4.3 Benefits of Using cGAN instead of Vanilla GAN 20

2.4.4 Deep Convolutional Generative Adversarial Network

(DCGAN) . 21

2.4.5 Benefits of DCGAN in Medical Image Synthesis 22

2.5 Literature Review . 24

2.5.1 GANs for Medical Image Synthesis 24

2.5.2 GAN-based generative modelling for dermatological appli-

cations . 24

2.5.3 Generating realistic Retinal Fundus Images for Diabetic

Retinotherapy Classification using GAN based model 26

3 Methodology 28

3.1 Pipeline of our methodology . 29

3.2 Data Pre-processing . 30

5

3.3 Implemented Architectures . 31

3.3.1 cGAN using IDRID dataset 31

3.3.2 DCGAN using IDRID dataset 35

4 Result & Analysis 42

4.1 Dataset . 42

4.2 Evaluation Metrics . 43

4.3 Hyperparameters . 45

4.4 Results . 46

4.4.1 Quantitative Result . 46

4.4.2 Qualitative Result . 48

5 Conclusion 49

6

Abstract

Medical image synthesis has emerged as a promising technique in the field of

healthcare, enabling the generation of realistic medical images for various applica-

tions. This study focuses on medical image synthesis using Generative Adversarial

Networks (GANs) applied to the IDRID dataset, which contains retinal images

for diabetic retinopathy analysis. The objective of this research is to explore the

potential of GANs in generating synthetic retinal images that closely resemble

real patient data. The IDRID dataset provides a valuable resource for training

and evaluating the GAN model. By leveraging the power of GANs, the proposed

framework aims to generate high-quality synthetic retinal images with similar char-

acteristics and visual appearance to real patient images. This has the potential to

augment the existing dataset, expand its diversity, and improve the performance of

diagnostic and treatment algorithms. The methodology involves training a GAN

architecture consisting of a generator and a discriminator network. The generator

network learns to generate synthetic retinal images from random noise, while the

discriminator network evaluates the authenticity of the generated images. The

two networks engage in an adversarial training process, where the generator aims

to fool the discriminator into classifying the synthetic images as real. Evaluation

of the synthesized retinal images includes quantitative metrics such as structural

similarity index (SSIM), peak signal-to-noise ratio (PSNR), and analysis to as-

sess the similarity and quality of the generated images compared to real IDRID

dataset images. The outcomes of this research provide insights into the capabili-

ties of GANs in generating realistic retinal images from the IDRID dataset. The

generated images have the potential to enhance the limited availability of labeled

medical data, facilitate algorithm development, and support computer-aided di-

agnosis systems. The findings contribute to the broader field of medical image

synthesis, showcasing the potential of GANs in improving healthcare outcomes

through enhanced image data availability and diversity.

7

1 Introduction

1.1 Overview

One use for the “Generative Adversarial Networks” (GANs), a deep learning model

is medical image processing [1]. A generator and a discriminator are the two

neural networks that make up GANs. The discriminator is trained to discriminate

between real and synthetic data, and the generator is trained to make synthetic

data that is comparable to a given set of real data [2].

Generating artificial medical images to supplement the training data for other

machine-learning models is one potential application of GANs in the analysis of

medical images [3]. This can be especially helpful when there is a shortage of real

training data. GANs can help other machine learning models that are employed

for tasks like diagnosis or prognosis perform better by producing synthetic images

that are comparable to actual ones.

Enhancing the quality of medical photographs is another potential application of

GANs in image processing [4]. GANs could be used, for instance, to improve the

resolution of low-resolution photos or to eliminate noise or artifacts from medical

imaging.

GANs have the potential to greatly increase the accuracy and efficiency of numer-

ous machine-learning tasks using medical pictures, making them a promising tool

in the field of medical image processing.

1.2 Motivation and Problem Statement

The following is a more general description of some of the issues that researchers

studying medical image processing and synthesis have to deal with:

1. Lack of public datasets and insufficient data in public datasets: It can be

difficult for researchers and clinicians to use machine learning techniques

for tasks like diagnosis, prognosis, and treatment planning because there is

8

frequently a lack of public medical image datasets. There are many causes

for this shortage, including:

(a) Privacy issues: It can be challenging to make medical photographs

publicly available without breaking privacy rules since they frequently

include sensitive personal information, such as names and identifying

characteristics.

(b) A restricted supply: Due to the fact that they are often stored in PACS

(Picture Archiving and Communication Systems), medical images are

frequently only accessible for a short time. This means that it can be

difficult to obtain a large, diverse dataset of medical images.

(c) High costs: Obtaining medical imaging can be quite expensive, espe-

cially for academics with tight budgets.

(d) Limited access: Access to medical imaging is frequently restricted to

authorized people, which can make it challenging for researchers to get

the information they require.

The shortage of public medical image datasets is a significant challenge in the

field of medical image analysis and machine learning, and it limits the ability

of researchers to advance our understanding of various medical conditions

and improve patient care.

2. Imbalanced Dataset:

Medical image datasets that are unbalanced do not have an equal amount

of photos from each class. For instance, if there are much more photographs

of non-cancerous tumors than cancerous ones, a dataset of medical images

of cancerous and non-cancerous tumors may be unbalanced.

When developing machine learning models, imbalanced datasets can be prob-

lematic since they can produce biased and subpar results. The reason for this

is because machine learning algorithms are made to maximize the model’s

9

overall accuracy, which can be challenging to do when the data is unbalanced.

Particularly, models developed from unbalanced datasets may perform bet-

ter for classes that make up the majority while performing worse for classes

that make up the minority.

1.3 Proposed Idea

Our main idea is to create a robust Conditional Generative Adversarial Network

(cGAN) so that we can generate a sufficient amount of realistic-looking medical

image data. This approach aims to address the imbalance between malignant and

benign cases, thereby improving the accuracy of disease prediction models.

To accomplish this task, we will utilize one skin-related datasets: the Diabetic

Retinopathy-related dataset, INDIAN DIABETIC RETINOPATHY IMAGE

DATASET (IDRID) [5].

By leveraging this dataset, we aim to augment the existing data by generating

synthetic images that closely resemble real medical images. This augmentation

will effectively increase the size of the dataset, allowing for a more balanced rep-

resentation of malignant and benign cases. Ultimately, this expanded dataset will

contribute to training more accurate disease prediction models.

1.3.1 Diabetic Retinopathy

Diabetic retinopathy is a type of eye damage that can occur in people with dia-

betes. It is caused by changes in the blood vessels of the retina, the light-sensitive

layer of tissue at the back of the eye.

In people with diabetic retinopathy, the blood vessels in the retina may become

damaged and leak fluid or blood into the eye. This can cause vision loss or

blindness if left untreated.

Diabetic retinopathy is a serious complication of diabetes and is a leading cause

of vision loss in adults. It is more likely to occur in people with poorly controlled

diabetes and in those who have had diabetes for a long time.

10

The risk of developing diabetic retinopathy can be reduced by maintaining good

blood sugar control, getting regular eye exams, and managing other risk factors for

diabetes, such as high blood pressure and high cholesterol. Treatment for diabetic

retinopathy may include laser surgery, injections of medications into the eye, or

surgery to remove the damaged blood vessels.

Figure 1: A normal and diabetic retina.

The INDIAN DIABETIC RETINOPATHY IMAGE DATASET (IDRID) [5] is a

collection of medical images of the retina that was created to support the develop-

ment of machine learning algorithms for the diagnosis of diabetic retinopathy. The

IDRID dataset contains images of the retina from individuals with and without

diabetic retinopathy, as well as images of various stages of the disease.

The IDRID dataset was created by a team of researchers in India as part of a

larger effort to improve the diagnosis and management of diabetic retinopathy.

The dataset is intended to be a resource for the development and evaluation of

machine learning algorithms for the diagnosis of diabetic retinopathy, and it is

widely used in the field of medical image analysis.

The IDRID Dataset is available for download by researchers and clinicians who

are interested in using it for machine learning or other research purposes.

11

Figure 2: Some data samples from IDRID Dataset

1.4 Research Challenges

1. Reflecting Real Data Accurately: Making sure the output accurately

reflects actual patient data is one of the problems of working with medical

data. In order to accomplish this, the network must be trained on a com-

prehensive and representative dataset that includes information on a variety

of medical disorders, patient demographics, and imaging techniques. The

generated images may not accurately depict the underlying medical issues

or fail to offer insightful information if the complexity and unpredictability

of real data are not captured.

2. Maintaining Non-Traceability of Medical Data: Medical records con-

tain sensitive and private information about patients’ personal health. It

is imperative to make sure that the created samples of synthetic medical

data do not reveal any recognizable or traceable information about actual

patients. In order to safeguard patient confidentiality, it is imperative to

find a balance between gathering accurate data and protecting privacy.

3. Variation in Terms of Image Acquisition Set-Up, Colors, and Sizes:

In terms of acquisition characteristics, such as imaging machines, protocols,

12

and settings, medical imaging data might show wide differences. Images can

also differ in terms of colors, resolutions, and sizes. The generative model

must be trained to accommodate these variances and provide images that

are consistent with various acquisition setups. The usefulness and usability

of the generated data are limited since failing to take these variances into

account can result in unrealistic or inconsistent generated images.

4. Biased Output of the Network: The biases found in the training data can

affect generative models. The resulting output may potentially show biases

if the training dataset is biased toward particular demographics, medical

problems, or imaging modalities. Due to erroneous portrayals of minority

communities or illnesses, inequities in medical research and application may

result. The careful curation and augmentation of the training dataset, as

well as the creation of training methods that are fairness-aware, are necessary

to address and mitigate bias in generated data.

5. Evaluation and Validation of Generated Data: A crucial problem is

determining the validity and dependability of generated medical data. It’s

possible that conventional computer vision evaluation measures like struc-

tural or pixel-level similarity are insufficient to assess the clinical utility and

accuracy of the generated images. To assure the generated data relevance

and trustworthiness in medical research, diagnosis, and treatment planning,

it is essential to develop rigorous evaluation procedures that include expert

knowledge and clinical validation.

6. Ethical Considerations: The creation of synthetic medical data raises

ethical questions about possible misuse or incorrect interpretation of the

produced samples. When developing and deploying generative models in

the medical field, it is crucial to ensure the appropriate and ethical use of

produced data, set rules for data sharing, and address any potential legal or

privacy consequences. To preserve confidence and integrity in the collection

of medical data, it is crucial to properly handle issues including patient rights

13

protection, informed consent, and data governance.

1.5 Organization of Thesis

The topic and the range of our research are succinctly described in the introduction

section. It clarifies the rationale behind deciding to concentrate our study on

general adversarial network (GAN) [1] and medical image synthesis.

We go into the background research and literature evaluation required for our

thesis research in the second chapter. This section includes a thorough analysis of

pertinent publications and datasets. It provides the framework for our investiga-

tion, guiding how we interpret the body of knowledge and guiding the design of

our architectural framework.

The proposed methodology section describes our research process and the archi-

tecture we used to get the findings we sought. It guarantees transparency and

replicability by providing a thorough justification of our methodology.

A comparative analysis is done to compare our results with existing architecture

results from other literature studies, validating the efficacy of our methodology.

This analysis highlights our work’s contributions and accomplishments while serv-

ing as a baseline for future effort.

Finally, an assessment is made in light of our findings and outcomes. We highlight

the most important findings from our research and analyze the ramifications and

importance of each. We also point out potential directions for future research and

offer ways to improve and broaden the scope of our study.

The thesis report encapsulates the collective efforts of our thesis team, guided

by our supervisor and co-supervisor. It provides a comprehensive account of our

research journey, from the initial motivation to the final conclusions and future

prospects.

14

2 Background Study

2.1 Medical Image Modality

A medical image modality [6] is the particular imaging method or piece of equip-

ment utilized to create the image in the context of medical imaging. Each modality

gives distinct information for diagnosis and therapy and captures various facets

of the human body, such as anatomy, function, or metabolism. Common medical

image modalities include:

1. X-ray: Ionizing radiation is used in X-ray imaging to provide images of

bones and some soft tissues. It is frequently used to diagnose tooth issues,

lung ailments, and fractures.

2. Computed Tomography (CT): CT scans create fine cross-sectional im-

ages of the body using X-rays. Visualizing interior structures including or-

gans, blood arteries, and malignancies is one of the main uses of CT scans.

3. Magnetic Resonance Imaging (MRI): Strong magnetic fields and radio

waves are used in magnetic resonance imaging, or MRI, to provide precise

images of soft tissues and organs. It is frequently employed to assess the

spine, joints, abdomen, and brain.

4. Ultrasound: Using high-frequency sound waves, ultrasound imaging can

produce real-time images of organs, blood vessels, and tissues. It is fre-

quently used to check the heart, abdomen, and blood flow, and track preg-

nancies.

5. Positron Emission Tomography (PET): A radioactive tracer that re-

leases positrons is injected into the patient’s body during a PET scan. Im-

ages that show metabolic activity in tissues are produced by the detection of

the released gamma rays. PET is useful for identifying cancer and evaluating

brain function.

15

6. Single-Photon Emission Computed Tomography (SPECT): Similar

to PET, SPECT imaging employs radioactive tracers but uses different an-

gles to catch gamma rays. It is frequently employed for bone, cardiovascular,

and neurological imaging.

2.2 Medical Image Synthesis

The method of creating artificial medical images using computer algorithms is

known as medical image synthesis [3]. These artificial images, which are created

to resemble actual medical images, can be employed for a number of tasks, such

as data augmentation, image quality enhancement, and model training.

Medical image synthesis is frequently used to produce more training data for

machine learning models. Synthetic images can be used to augment the data

and boost the model’s performance when the amount of genuine training data is

constrained. Testing the resilience and generalization of machine-learning models

can also be done using synthetic images.

Medical image synthesis can be achieved using a variety of techniques, including

Generative Adversarial Networks (GANs) [7], which are a type of deep learning

model that can be used to generate synthetic data that is similar to a given set of

real data. Other techniques for medical image synthesis include image translation,

image-to-image translation, and image super-resolution.

Medical image synthesis is a useful tool for improving the accuracy and efficiency

of machine-learning models that are used for tasks related to medical images.

2.3 Importance of medical data synthesis

Medical data synthesis is the process of combining and evaluating multiple sources

of data to create a comprehensive overview of a particular medical topic or issue.

This can be important for a number of reasons [3] :

1. Medical data synthesis allows researchers to draw more robust conclusions

from their data. By combining multiple studies, researchers can increase the

16

sample size and statistical power of their analysis, which can lead to more

reliable findings.

2. Synthesizing data from multiple sources can help identify patterns and trends

that might not be apparent from a single study. This can be especially useful

for identifying trends over time or in different populations.

3. Medical data synthesis can help to identify gaps in the existing research on a

particular topic. By reviewing all of the available data on a topic, researchers

can identify areas where more research is needed.

4. Synthesizing data can be helpful for making clinical decisions or developing

treatment guidelines. By reviewing all of the available evidence on a par-

ticular topic, clinicians can make informed decisions about how to care for

their patients.

A medical data synthesis is an important tool for advancing our understanding of

various medical topics and for improving patient care.

2.4 Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN) [1] is a type of deep learning model that

is used to generate synthetic data that is similar to a given set of real data. It

consists of two neural networks: a generator and a discriminator. The generator

is trained to produce synthetic data that is similar to the real data, while the

discriminator is trained to distinguish between real and synthetic data.

The training process for a GAN involves a competition between the generator and

discriminator. The generator produces synthetic data, and the discriminator tries

to identify whether the data is real or synthetic. The generator receives feedback

on its performance from the discriminator, and it uses this feedback to improve its

ability to generate realistic synthetic data. The discriminator, in turn, becomes

better at identifying synthetic data. This process continues until the generator is

able to produce synthetic data that is indistinguishable from real data, and the

discriminator is unable to distinguish between the two.

17

GANs have been used for a variety of tasks, including image generation, text

generation, and anomaly detection. They have also been applied to medical image

processing, where they can be used to generate synthetic medical images or to

improve the quality of real medical images.

2.4.1 Importance of using GAN in medical image synthesis

There are several potential benefits of using Generative Adversarial Networks

(GANs) for medical image synthesis [3] :

1. Data augmentation: One potential use of GANs in medical image synthesis

is to generate synthetic medical images that can be used to augment the

available training data for other machine learning models. This can be espe-

cially useful in situations where the amount of real training data is limited.

By generating synthetic images that are similar to real ones, GANs can help

improve the performance of other machine learning models that are used for

tasks such as diagnosis or prognosis.

2. Improved image quality: GANs can also be used to improve the quality of

real medical images. For example, they could be used to remove noise or

artifacts from images or to enhance the resolution of low-resolution images.

3. Increased efficiency: Using GANs to generate synthetic medical images can

be more efficient than manually collecting and labeling large amounts of

real data. This can be especially useful in situations where it is difficult or

time-consuming to obtain real data.

4. Greater flexibility: GANs can be used to generate synthetic images that are

diverse and varied, which can be useful for training machine learning models

to be more robust and generalizable.

GANs have the potential to significantly improve the accuracy and efficiency of

various machine-learning tasks related to medical images.

18

2.4.2 Conditional Generative Adversarial Network (cGAN)

A Conditional Generative Adversarial Network (cGAN) [4] is a type of Genera-

tive Adversarial Network (GAN) that is used to generate synthetic data that is

conditioned on a given set of input data. Like a regular GAN, a cGAN consists of

two neural networks: a generator and a discriminator. The generator is trained

to produce synthetic data that is similar to the real data, while the discriminator

is trained to distinguish between real and synthetic data.

The key difference between a regular GAN and a cGAN is that the generator in a

cGAN is conditioned on a set of input data, which means that it is able to generate

synthetic data that is related to the input data in some way. For example, a cGAN

could be used to generate synthetic images of faces that are conditioned on a set

of input images of faces, in which case the generator would be able to generate

synthetic images that are similar to the input images.

Figure 3: The architectural flow of a conventional cGAN model.

19

cGANs have been used for a variety of tasks, including image generation, text

generation, and anomaly detection. They have also been applied to medical image

processing, where they can be used to generate synthetic medical images or to

improve the quality of real medical images.

2.4.3 Benefits of Using cGAN instead of Vanilla GAN

There are several reasons why a Conditional Generative Adversarial Network

(cGAN) might be preferred over a vanilla Generative Adversarial Network (GAN)

for medical image synthesis [4] :

1. Greater control over the synthesis process: With a cGAN, it is possible

to specify certain conditions or constraints that the synthetic images must

satisfy. This can be useful in situations where it is important to ensure that

the synthetic images are similar to the real ones in certain ways. For example,

a cGAN could be used to generate synthetic images of skin lesions that are

conditioned on the type of lesion (e.g. melanoma, basal cell carcinoma, etc.),

which would allow the generator to produce synthetic images that are more

representative of the real ones.

2. Improved synthesis quality: By conditioning the generator on a set of input

data, it is possible to improve the quality of the synthetic images that are

generated. This can be especially useful in situations where the real data

is noisy or of low quality, as the cGAN can use the input data to guide the

synthesis process and produce more realistic synthetic images.

3. Greater flexibility: cGANs can be used to generate synthetic images that

are diverse and varied, which can be useful for training machine learning

models to be more robust and generalised.

Conclusively, cGANs offer greater control, improved synthesis quality, and greater

flexibility compared to vanilla GANs, which makes them a useful.

20

2.4.4 Deep Convolutional Generative Adversarial Network

(DCGAN)

DCGAN [2] stands for Deep Convolutional Generative Adversarial Network. It is

a type of generative model that uses a combination of deep convolutional neural

networks (CNNs) and adversarial training to generate realistic synthetic data, such

as images.

DCGANs are based on the framework of Generative Adversarial Networks (GANs),

which consist of two main components: a generator network and a discriminator

network. The generator network takes random noise as input and learns to gen-

erate synthetic data samples that resemble the training data. The discriminator

network, on the other hand, learns to distinguish between real and fake data sam-

ples.

Figure 4: The generator and discriminator architecture of a conventional DC-

GAN model [8].

21

In DCGAN, both the generator and discriminator networks are designed using

deep convolutional layers. The generator network typically starts with a low-

resolution input and gradually upsamples the data using transpose convolutions

to generate higher-resolution outputs. This allows the generator to capture spatial

dependencies and generate more realistic images.

The discriminator network, on the other hand, uses a series of convolutional layers

to learn features from both real and generated images. It learns to classify whether

an input image is real or fake. The goal of the discriminator is to correctly classify

real images as real and generated images as fake, while the generator aims to

generate images that can fool the discriminator.

DCGANs are trained in an adversarial manner, where the generator and dis-

criminator networks are trained simultaneously. The training process involves

iteratively updating the networks using backpropagation and gradient descent.

The generator tries to minimize the discriminator’s ability to distinguish between

real and fake samples, while the discriminator tries to maximize its discriminative

accuracy.

DCGANs have been successfully applied to various image generation tasks, such

as generating realistic human faces, natural scenes, and medical images. They

have contributed to significant advancements in the field of generative models and

have opened up new possibilities for creating high-quality synthetic data.

2.4.5 Benefits of DCGAN in Medical Image Synthesis

DCGAN (Deep Convolutional Generative Adversarial Network) is a type of gener-

ative model that has shown promise in various domains, including medical image

synthesis. Here are a few reasons why DCGAN is often preferred for medical

image synthesis:

1. Detecting spatial features: X-rays and MRI scans of medical objects fre-

quently show complicated spatial trends and structures. DCGAN’s deep

22

convolutional architecture allows it to be effective in capturing spatial fea-

tures. Intricate details found in medical images can be modeled by DCGAN

through the convolutional layers’ ability to develop hierarchical representa-

tions of images.

2. Generative capacity: DCGAN was created primarily to produce realistic

images of the highest quality. DCGAN is able to understand the underlying

distribution of medical images in the context of medical image synthesis and

produce new images that closely resemble the original data. Applications

like data augmentation, anomaly detection, or creating artificial datasets for

training other models can all benefit from this.

3. Unsupervised learning: DCGAN is capable of learning to create medical

images without the need of explicit labels or annotations during the training

phase. This can be helpful in the field of medical imaging, where it can

be difficult and time-consuming to collect big labeled datasets. Without

depending on labeled samples, DCGANmay learn from unannotated medical

images and produce synthetic data by utilizing unsupervised learning.

4. Training under adversarial conditions: DCGAN combines a generative and

discriminative framework, simultaneously training a generator network and

a discriminator network. The discriminator gains the ability to tell real

images from generated ones, while the generator gains the ability to create

more realistic images. The generator’s ability to synthesize images gets

better over time thanks to this adversarial training process. DCGAN can

create visually appealing and clinically believable medical images by utilizing

the power of adversarial training.

Though DCGAN has demonstrated potential in the synthesis of medical images, it

is crucial to bear in mind that the generated images need to be rigorously verified

and evaluated for their clinical relevance and accuracy.

23

2.5 Literature Review

2.5.1 GANs for Medical Image Synthesis

Powerful Generative Adversarial Networks (GANs) now produce astounding pho-

torealistic images that mirror the contents of datasets they were trained to du-

plicate. The question of whether GANs can be as effective at producing usable

medical data as they are at producing realistic RGB images is a recurring one

in the field of medical imaging. A recent study by Skandarani et al in their pa-

per “GANs for Medical Image Synthesis: An Empirical Study” concluded with a

performance of a multi-GAN and multi-application study to gauge the benefits of

GANs in medical imaging [1]. They experimented with different GAN architec-

tures, ranging from the straightforward DCGAN to the more complex style-based

GANs, on three different medical imaging modalities and organs: cardiac cine-

MRI, liver CT, and RGB retina pictures. To gauge the visual acuity of the images

produced by GANs, their FID score was estimated from training data taken from

well-known and frequently used datasets. By assessing the segmentation accuracy

of a U-Net trained on these produced images and the original data, their use was

further evaluated. The result of the comparative analysis and study of different

GAN architectures in generating fake images from realistic images gave the con-

clusion that the best GANs can produce medical images that look realistic by FID

standards and that pass certain metrics. They can also deceive educated experts

in a visual Turing test. But according to segmentation results, no GAN is able to

replicate the complete richness of medical datasets.

2.5.2 GAN-based generative modelling for dermatological applications

The main objective behind selecting dermatological images of skin lesions was

because of a rich dataset which is widely being used in different dermatological

disease related researches. The dataset which is a public dataset is already suf-

ficiently large but has limitations which hinder the performance of the trained

models and architectures and also has an issue with the amount of data samples

24

to support disease detection and classification into two classes -benign and malig-

nant. The dataset we considered is the International Skin Imaging Collaboration

Database,2020 (ISIC) which was used in a study by Limeros et al, Sandra Car-

rasco et al, Sylwia Majchrowska et al which produced the paper published in 2022

at a conference. The study “GAN-based generative modelling for dermatological

applications – comparative study” investigated both centralized and decentralized

unconditional and conditional GANs [9]. The decentralized environment resem-

bles a more realistic hospital scenario with three institutions, while the centralized

option mimics studies on large but extremely uneven skin lesion datasets. The

models’ performance in terms of fidelity, diversity, speed of training, and predictive

ability of classifiers trained on the generated synthetic data was also evaluated in

this study. The limitations of the dataset used was profoundly visible. The dataset

was highly unbalanced – only 2% of it’s samples belonged to histopathologically

confirmed malignant melanoma cases. Also, there were significant variations in

image acquisition set up of samples from patients in the lab results in bias of

the dataset. These variations resulted in the bias in dataset which consequently

affected the robustness of trained models.

The preparation and annotation of medical data is an expensive process that

necessitates the help of medical professionals. Additionally, because of patient

privacy concerns, access to medical data requires a crafted approval process. It

becomes impossible for different institutions to share data and thus expertise with

one another. On the other hand, if it is modeled correctly, synthetic data, which is

data that is created entirely from scratch, cannot be linked to any specific person.

Artificial data can be used in two different ways: first, to expand on limited,

imbalanced datasets (such as those of rare diseases), and second, to anonymize

data (to replace instead of augment real samples). In both cases, artificial medical

data must achieve two opposing objectives. The data should provide the people

whose records were used to build it with robust privacy protection while also

correctly reflecting the original data.

The main contribution of this work was a detailed study of GAN-based artificial

25

data generation in the case of one of the latest and largest open-source databases

of skin lesions, namely, International Skin Imaging Collaboration (ISIC), 2020.

Their research was based on StyleGAN2 with adaptive discriminator augmentation

(ADA) architecture, which is considered the state-of-the-art in image generation.

There are several things to think about before using GANs to produce synthetic

healthcare data. One should think about the architecture first. The efficacy of

the selected designs primarily depends on computational resources and time; for

example, unconditional GAN can be a viable option with a limited number of

classes due to the lengthy training time of a single GAN. The GAN should be

trained centrally if there is a large, annotated dataset available. Second, several

viewpoints should be used to examine the generated synthetic data. The two

characteristics that are frequently highlighted are fidelity and diversity, which are

crucial in determining how accurately the synthetic data resembles the underlying

real data. It is vital to check the veracity of the synthetic instances to ensure they

are not merely replicating the training data, as the goal in healthcare is to prevent

sharing data. The synthetic data should also be equally helpful as the real data

for the future task (such as classification), and they should not permit inferences

based on traits that are unrelated to the case, such as those connected to the data

collection method.

2.5.3 Generating realistic Retinal Fundus Images for Diabetic Retinother-

apy Classification using GAN based model

The second dataset in target for the generation of a synthetic dataset is INDIAN

DIABETIC RETINOPATHY IMAGE DATASET (IDRID) which is an insuffi-

ciently small dataset with images not more than 300 in per class samples. It

constitutes typical diabetic retinopathy lesions and also normal retinal structures

annotated at a pixel level and provides information on the disease severity of di-

abetic retinopathy, and diabetic macular edema for each image. There are three

parts of this dataset: segmentation, disease grading and localization. The images

are classified into five classes from mild to severe based on the severity and dense

26

ness of the images. But the prime limitation faced during the study conducted

by Gupta Siddharth, Avnish Panwar, Silky Goel, Ankush Mittal, Rahul Nijhawan

and Amit Kumar Singh. “Classification of Lesions in Retinal Fundus Images for

Diabetic Retinopathy Using Transfer Learning.” 2019 International Conference on

Information Technology (ICIT) (2019) was the scarcity of data from this public

dataset [5]. It has very less amount of training and testing data.

Their main goal was to classify the lesions in retinal color fundus images showing

levels of severity in diabetic retinopathy using deep learning-based feature extrac-

tion and transfer learning-based approach using VGG19 network. In this study,

the authors trained their DL model to identify the variety of lesions present in DR-

affected retina with the goal of detecting and classifying the severity of DR. For

the tasks of image embedding and classification, respectively, a pretrained deep

convolution network VGG19 coupled with a number of classifiers was used. With

a high degree of accuracy, their proposed model and classifiers classify the various

lesions in DR. Based on the frequency of these 5 types of lesions, the severity of DR

is divided into distinct classifications. In order to determine the severity of the DR

in a certain image, a framework that can accurately differentiate between various

types of lesions was also developed in this paper. They used the IDRID dataset,

which contains 122 photos, of which 66% were used to train the model and the

remaining 34% to test it. This amount of sample data is not satisfactory which

is where our contribution comes. We will be generating realistic looking retinal

fundus images from given small samples and increase the amount of training and

testing data.

27

3 Methodology

The methodology using a cGAN (conditional Generative Adversarial Network) for

medical image synthesis would typically involve the following steps:

1. Data preparation: The first step is to prepare the data that will be used to

train the cGAN. This may involve pre-processing the images to ensure that

they are in a suitable format and selecting a subset of the images to use as

training data.

2. Model design: Next, the cGAN model must be designed. This involves

specifying the architecture of the generator and discriminator networks and

determining the appropriate loss functions and optimization algorithms.

3. Model training: Once the cGAN model has been designed, it can be trained

on the prepared data. This typically involves feeding the images and their

corresponding labels into the model and adjusting the model’s parameters

through back propagation and optimization.

4. Model evaluation: After the cGAN model has been trained, it can be evalu-

ated to determine how well it performs at generating synthetic images. This

may involve comparing the synthetic images to real ones or evaluating the

performance of machine learning models that are trained on the synthetic

images.

5. Model fine-tuning: If the cGAN model does not perform as well as desired,

it may be necessary to fine-tune the model by adjusting its parameters or

modifying its architecture.

6. Synthetic image generation: Once the cGAN model is performing well, it

can be used to generate synthetic images by providing it with the desired

labels and allowing it to generate the corresponding images.

The use of a cGAN for medical image synthesis involves preparing and labeling

28

the data, designing and training the model, evaluating its performance, and fine-

tuning it as needed.

3.1 Pipeline of our methodology

Figure 5: A flowchart depicting our proposed architecture.

29

3.2 Data Pre-processing

During the data preprocessing stage, our objective was to prepare the dataset for

performing a comparison between the generated images and the original images.

Initially, the dataset was not divided into classes, so we utilized Python to classify

the dataset into five distinct classes based on the provided annotations in a CSV

(Comma Separated Values) file, which was provided with the dataset and the

images were annotated and the image annotation values were kept in the CSV

files by medical personnel.

To begin the preprocessing, we loaded the original images along with their corre-

sponding annotations from the CSV file. The CSV file contained relevant infor-

mation such as file paths or names of the original images and the associated class

labels. This allowed us to establish a connection between the images and their

respective categories.

Next, we focused on resizing the original images to a standardized size of 28x28

pixels. Resizing the images was essential to ensure consistency in the dataset and

facilitate the subsequent comparison process. To achieve this, we leveraged popu-

lar image processing libraries such as OpenCV or PIL (Python Imaging Library).

These libraries offered convenient functions to resize the images while maintaining

their original aspect ratio.

Furthermore, in order to create a suitable representation for the comparison task,

we converted the resized images to grayscale. By converting the images to a single-

channel representation (28x28x1), we effectively removed the color information

while preserving the essential structural details. The grayscale conversion was

again accomplished using libraries such as OpenCV or PIL.

To ensure uniformity and ease of processing, we proceeded to normalize the pixel

values of the grayscale images. This involved scaling the pixel values to a suitable

range, commonly between 0 and 1. By dividing the pixel values by 255, we achieved

normalization, enabling better convergence during subsequent training or analysis.

30

Additionally, if required, we split the preprocessed dataset into training and testing

sets. This division allowed us to utilize a portion of the data for training our models

while reserving another portion for evaluating their performance. Proper dataset

splitting is crucial to obtain reliable and unbiased model assessments.

Finally, for compatibility with deep learning frameworks such as TensorFlow or

PyTorch, we optionally converted the preprocessed image and label data into

the appropriate format. This involved converting the data into tensors or other

suitable representations that could be directly fed into the deep learning models.

By following these preprocessing steps, we successfully classified the dataset into

five classes based on the provided annotations, resized the original images to 28x28

pixels, converted them to grayscale, normalized the pixel values, and potentially

split the dataset for training and testing. These preparatory measures allowed us

to perform accurate comparisons between the generated images and the prepro-

cessed original images, paving the way for further analysis and evaluation of our

models.

3.3 Implemented Architectures

3.3.1 cGAN using IDRID dataset

The generator model for a conditional generative adversarial network (GAN) is

defined by this architecture. The generator requires two inputs: a category label

of size 1 and a latent vector of size latent dim. Based on these inputs, the gen-

erator’s objective is to produce a 32x32 RGB image. Latent dim (dimensionality

of the latent vector) and n classes (number of classes for the category label; de-

fault value is 5) are the two arguments that the function define generator accepts.

A 1-dimensional input is what is meant by the label input (in label). Using an

embedding layer, the categorical label is included into a continuous vector rep-

resentation (li). 50 is the embedding size. The embedded label is next routed

through a thick layer to add more nodes and increase the number of dimensions

for eventual concatenation.(8, 8, 1) is the output shape, with 1 being the chan-

31

Figure 6: A flowchart depicting the architecture of a generator model for cGAN

using tensor flow.

nel dimension and 8x8 being the spatial dimension. The definition of the picture

generator input (in lat) is a latent vector input with size latent dim. To add

dimensions and modify the latent vector into a tensor of shape (8, 8, 128), a suc-

cession of dense and activation layers are applied. Along the channel dimension,

the resulting image tensor and the label tensor are concatenated. After that, a

transposed convolutional layer is applied to the concatenated tensor to upsample

it to a size of 16x16 while keeping the number of channels constant. With the aid

of a second transposed convolutional layer, the tensor is further upsampled to a

size of 32x32. Finally, a convolutional layer with tanh activation is applied to the

tensor to create an output image tensor with the shape (32, 32, 3) that represents

an RGB image. The inputs (in lat and in label) and output layer (out layer) are

used to create the model, which is then returned.

The flowchart below defines the GAN (Generative Adversarial Network) model by

connecting the generator (g model) and discriminator (d model) models.

32

Figure 7: The step wise depiction of features during definition of GAN model

during cGAN model training using tensor flow.

The trainable attribute of the discriminator model (d model) has been set to False,

making it untrainable. Because we wish to train the generator and discrimina-

tor models independently during GAN training, this is done. The noise vector

gen noise and the categorical label gen label are the two inputs to the generator

model. The generator model (g model), from which these inputs are taken, is

used. The created image is represented by an image tensor of the shape (32, 32,

3), which is the output of the generator model (gen output).

The discriminator model (d model) receives as inputs the output from the genera-

tor and the appropriate input label. The discriminator model assesses the created

image and forecasts its veracity of it. The discriminator’s classification of the

generated image is represented by the discriminator’s output (gan output). The

inputs (gen noise and gen label) and output (gan output) of the GAN model are

specified, and a new model (model) is created using the Model class.

The Adam optimizer is used to create the GAN model, which has a learning rate

33

of 0.0002 and a beta value of 0.5. Binary cross-entropy, which is frequently utilized

for GANs, is the loss function employed. It then returns the finished GAN model

(model).

The GAN model was developed by connecting the generator and discriminator

models. With the help of training the generator to create deceptive images, the

GAN model aims to produce realistic images.

Figure 8: A flowchart showing steps for a discriminator model architecture for

cGAN model using tensor flow.

The discriminator takes two inputs: an image input of shape in shape (default is

(32, 32, 3)) and a categorical label input of size 1. The discriminator’s task is to

classify whether the input image is real or generated by the generator.

The function define discriminator takes two arguments: in shape (shape of the

input image) and n classes (number of classes for the categorical label, default is

5). The label input (in label) is defined as a 1-dimensional input. The categorical

label is embedded into a continuous vector representation (li) using an embedding

layer.

34

The embedding size is 50. The embedded label is then passed through a dense

layer to match the dimensions of the input image. The output shape is (32, 32, 1)

where 32x32 is the spatial dimension and 1 is the channel dimension. The image

input (in image) is defined with the specified shape (in shape). The label tensor

(li) and the image tensor (in image) are concatenated along the channel dimension

to create a tensor with 4 channels (3 channels for the image and 1 channel for the

label). The concatenated tensor is passed through two convolutional layers with

LeakyReLU activation and downsampling to learn hierarchical features.

The output shape after downsampling is (8, 8, 128). The feature maps are flattened

and passed through a dropout layer for regularization. The flattened features

are then passed through a dense layer with sigmoid activation to produce the

discriminator’s output, which is a probability indicating whether the input is real

or generated. The model is instantiated with the inputs (in image and in label)

and the output layer (out layer), and then returned.

The discriminator model is compiled with the Adam optimizer using a learning

rate of 0.0002 and a beta value of 0.5. The loss function used is binary cross-

entropy, and the model is also evaluated using accuracy as a metric.

This architecture defines the discriminator model for the conditional GAN. It takes

an image and a categorical label as inputs and outputs a probability indicating

the authenticity of the input image. The model is trained to distinguish between

real and generated images while considering the corresponding label information.

3.3.2 DCGAN using IDRID dataset

A generator model for a deep convolutional generative adversarial network (DC-

GAN) is defined by this architecture. The generator attempts to produce realistic

images using a random noise vector as input.

The tf.keras function make generator model builds a sequential model.Sequential().

The model begins with a dense layer that is entirely connected and has units of

7x7x256 (12544). A random noise vector is represented by the input shape (100,).

35

Figure 9: The architectural flow of a DCGAN model generator using tensor flow.

Use bias is set to False in the argument. After the dense layer, batch normaliza-

tion is used to normalize the activations and boost the model’s performance and

stability. Batch normalization is followed by the use of a LeakyReLU activation

function. The model learns gradients more effectively and can handle vanishing

gradients thanks to LeakyReLU.

The layers are used to transform the dense layer’s output into a 7x7x256 ten-

sor.function called Reshape. Convolutional layers with item A transposed (lay-

ers.With 128 filters, a kernel size of (5, 5), and a stride of (1, 1), Conv2DTranspose())

is added. Use bias is set to False, and padding is set to’same’. Following the trans-

posed convolutional layer, item Batch normalization and LeakyReLU activation

are used to upsample the spatial dimensions to 7x7x128. With 64 filters, a kernel

size of (5, 5), and a stride of (2, 2), another transposed convolutional layer is added.

Use bias is set to False, and padding is set to’same’. The spatial dimensions are

further upsampled in this layer to 14x14x64. Afterwards, the second transposed

convolutional layer is applied, followed by batch normalization and LeakyReLU

36

activation.

The final step involves the addition of a transposed convolutional layer with 1

filter, kernel size of (5, 5), and stride of (2, 2). The activation function is set to

’tanh’, use bias is set to False, and padding is set to’same’. This layer generates

the resulting image by upsampling the spatial dimensions to 28x28x1. To make

sure the output shapes match the anticipated values, assertions are supplied.

Figure 10: The architectural flow of a DCGAN model discriminator using tensor

flow.

The next architecture defines a discriminator model for a deep convolutional gen-

erative adversarial network (DCGAN). The discriminator takes an input image

and aims to classify whether it is real or generated by the generator.

The function make discriminator model creates a sequential model using tf.keras.Sequential().

The model starts with a convolutional layer (layers.Conv2D()) with 64 filters, a

kernel size of (5, 5), and stride (2, 2). Padding is set to ’same’, and the input shape

is [28, 28, 1], representing a 28x28 grayscale image. This layer performs down-

sampling of the input image. A LeakyReLU activation function is applied after

37

the convolutional layer. LeakyReLU helps the model to learn better gradients and

handle vanishing gradients.

A dropout layer (layers.Dropout()) with a rate of 0.3 is added after the activa-

tion. Dropout helps to regularize the model and prevent overfitting. Another

convolutional layer is added with 128 filters, a kernel size of (5, 5), and stride (2,

2). Padding is set to ’same’. This layer further downsamples the feature maps.

LeakyReLU activation and dropout layers are applied after the second convolu-

tional layer. The feature maps are flattened using layers.Flatten() to convert the

3D tensor into a 1D tensor.

A dense layer (layers.Dense()) with a single unit is added. This layer acts as the

output layer of the discriminator, providing a single scalar output representing the

probability of the input being real or generated.

This architecture defines a discriminator model with multiple convolutional layers

that downsample the input image to learn hierarchical features. The model uses

LeakyReLU activations and dropout layers for better gradient propagation and

regularization. The final dense layer produces a single output that represents the

discriminator’s classification of the input as real or generated.

The PyTorch framework is used in the architecture to define a generator model.

The generator seeks to produce artificial graphics from a random input vector.

The ’Generator’ class is established, deriving from PyTorch’s ’nn.Module’ class.

The generator and its layers are initialized using the constructor “ init,” which is

defined. The number of GPUs to use is represented by the input ’ngpu’. The main

sequential module of the generator, which is made up of numerous convolutional

transpose layers, is represented by the’self.main’ variable.

’nn.ConvTranspose2d’ is the initial layer, and it does a transpose convolution. It

creates a feature map by upsampling the random input vector “Z.” The output has

a kernel size of 4, a stride of 1, and ’ngf * 8’ channels. Padding is not present. The

’False’ value for the ’bias’ argument. After the initial transpose convolutional layer,

38

Figure 11: The architectural flow of a DCGAN model generator using pytorch.

batch normalization (’nn.BatchNorm2d’) is used to normalize the activations and

increase model stability. After the batch normalization layer, a ReLU activation

function (’nn.ReLU(True)’) is used to add non-linearity.

The output from the first “nn.ConvTranspose2d” layer is added to the second

layer, which further upsamples it. It has four channels with ’ngf * 4’, a kernel size

of 4, a stride of 2, and padding of 1. After the second transpose convolutional

layer, batch normalization and ReLU activation are used. Two further transpose

convolutional layers are added, gradually upsampling the feature maps, in a man-

ner similar to the earlier phases. ’ngf’ channels, a kernel size of 16, a stride of 4,

and a padding of 6 are present in the final ’nn.ConvTranspose2d’ layer. It seeks

to produce the desired output image.

After the final convolutional layer, a Tanh activation function (’nn.Tanh()’) is used

to reduce the pixel values to the range [-1, 1], which represents the output image.

The generator’s forward pass is defined to be carried out via the ’forward’ method.

The main sequential module (’self.main’) receives a vector of inputs called ’input’

39

and processes it before returning the produced output.

In order to create a 64x64 image, a generator model is built using many transpose

convolutional layers that gradually upsample the input random vector. The sta-

bility and quality of the generated images are enhanced using batch normalizing

and ReLU activations. To verify that the pixel values are within the desired range,

the Tanh activation function is applied to the output in the end.

Figure 12: The architectural flow of a DCGAN model discriminator using py-

torch.

The following architecture defines a discriminator model using the PyTorch frame-

work. The discriminator is responsible for distinguishing between real and fake

images.

The ‘Discriminator‘ class is defined, inheriting from the ‘nn.Module‘ class provided

by PyTorch. The constructor ‘ init ‘ is defined, which initializes the discrimina-

tor and its layers. It takes an argument ‘ngpu‘, which represents the number of

GPUs to use. The ‘self.main‘ variable represents the main sequential module of

the discriminator, which consists of a series of convolutional layers.

40

The first layer is a ‘nn.Conv2d‘ layer, which performs a convolution. It takes

the input image with ‘nc‘ channels, a kernel size of 16, stride of 4, and padding

of 1. The ‘bias‘ parameter is set to ‘False‘. A LeakyReLU activation function

(‘nn.LeakyReLU(0.2, inplace=True)‘) is applied after the first convolutional layer

to introduce non-linearity. The ‘0.2‘ specifies the negative slope for the negative

input region. The second ‘nn.Conv2d‘ layer is added, which takes the output

from the previous layer and performs another convolution. It has ‘ndf‘ channels,

a kernel size of 4, stride of 2, and padding of 1.

Batch normalization (‘nn.BatchNorm2d‘) is applied after the second convolu-

tional layer to normalize the activations and improve the stability of the model.

LeakyReLU activation is applied after the batch normalization layer. Similar to

the previous steps, two more convolutional layers are added, gradually reducing

the spatial dimensions of the feature maps while increasing the number of chan-

nels. The last ‘nn.Conv2d‘ layer has ‘ndf * 8‘ channels, a kernel size of 4, stride

of 1, and no padding. It aims to produce a single-channel output representing the

probability of the input image being real or fake. A Sigmoid activation function

(‘nn.Sigmoid()‘) is applied after the last convolutional layer to squash the output

values to the range [0, 1], representing the probability. The ‘forward‘ method is

defined to perform the forward pass of the discriminator. It takes an input image

‘input‘ and passes it through the main sequential module (‘self.main‘), returning

the discriminator’s prediction.

A discriminator model is generated with several convolutional layers that pro-

gressively downsample the input image and output a single probability value.

LeakyReLU activations and batch normalization are used to improve the dis-

criminative capacity and stability of the discriminator. The Sigmoid activation

function is applied to the final output to ensure the output is within the range [0,

1], representing the probability of the input image being real.

41

4 Result & Analysis

4.1 Dataset

We used the Indian Diabetic Retinopathy Image Dataset (IDRID) in our thesis

experimentation. The INDIAN DIABETIC RETINOPATHY IMAGE DATASET

(IDRID) [5] is a collection of medical images of the retina that was created to sup-

port the development of machine learning algorithms for the diagnosis of diabetic

retinopathy. The IDRID dataset contains images of the retina from individuals

with and without diabetic retinopathy, as well as images of various stages of the

disease.

The IDRID dataset was created by a team of researchers in India as part of a

larger effort to improve the diagnosis and management of diabetic retinopathy.

The dataset is intended to be a resource for the development and evaluation of

machine learning algorithms for the diagnosis of diabetic retinopathy, and it is

widely used in the field of medical image analysis.

The IDRID Dataset is available for download by researchers and clinicians who

are interested in using it for machine learning or other research purposes.

Figure 13: Some data samples from IDRID Dataset

42

4.2 Evaluation Metrics

For the model evaluation, Peak signal to noise ratio (PSNR) and structural index

similarity (SSIM) values are calculated through comparison of generated images

using the trained model with the original images from the dataset.

Peak Signal to Noise Ratio (PSNR) [10]: The term peak signal-to-noise

ratio (PSNR) is an expression for the ratio between the maximum possible value

(power) of a signal and the power of distorting noise that affects the quality of its

representation. The formula for calculating PSNR value is as follows:

Mean Squared Error, MSE =
1

MN

M∑
n=0

N∑
m=1

[g ˆ(n,m)− g(n,m)]2

PSNR = 10 log10

(
peakval2

MSE

)
Structural Similarity Index Measure (SSIM) [10]: The structural similarity

index measure (SSIM) is a method for predicting the perceived quality of digital

television and cinematic pictures, as well as other kinds of digital images and

videos. SSIM is used for measuring the similarity between two images.

Figure 14: An example of PSNR and SSIM calculation of similar looking im-

ages.

Structural Similarity Index Method can be expressed through these three terms

as:

43

SSIM(x,y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ

Here, l is the luminance (used to compare the brightness between two images), c is

the contrast (used to differ the ranges between the brightest and darkest region of

two images) and s is the structure (used to compare the local luminance pattern

between two images to find the similarity and dissimilarity of the images) and α,

β and γ are the positive constants [11].

Again luminance, contrast and structure of an image can be expressed separately

as:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

,

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

,

s(x, y) =
σxy + C3

σxσy + C3

,

Where µx and µy are the local means, σx and σy are the standard deviations and

σxy is the cross-covariance for images x and y sequentially. If α = β = γ = 1,

then the index is simplified as the following form :

SSIM(x, y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)
·
(

2σxσy + C2

σ2
x + σ2

y + C2

)
·
(
µ2
x + µ2

y + C1

σ2
x + σ2

y + C2

)

44

4.3 Hyperparameters

In generative models, such as Generative Adversarial Networks (GANs), the hy-

perbolic tangent (tanh) activation function is frequently chosen as the generator’s

activation function. For some jobs involving data normalization or creation, the

tanh activation function transfers the generator’s output to a range between -1

and 1.

Regarding the loss function, GANs frequently employ binary cross-entropy for

binary classification tasks like differentiating between genuine and generated data.

The dissimilarity between the anticipated output and the goal label (0 or 1) for

each sample is measured by binary cross-entropy loss.

In the domain of medical image synthesis, the discriminator in a GAN seeks to

distinguish between genuine and created images while the generator in the GAN

strives to produce realistic medical images. The binary cross-entropy loss function

encourages the generator to produce images that the discriminator is more likely

to categorize as real, which can aid in the training process.

It’s crucial to remember that the selection of the activation function and loss

function may change based on the particular specifications and features of the

task involving the synthesis of medical images. Depending on the intended results

and the GAN model’s structure, additional activation functions (like ReLU or

Leaky ReLU) and loss functions (like Wasserstein loss or feature matching loss)

may also be utilized.

45

4.4 Results

4.4.1 Quantitative Result

After running the DCGAN model using tensorflow with the pre-processed data

set at hand - the IDRID dataset - we get the follwing results:

The training loop iterates over the IDRID dataset in batches, with each batch

containing 128 samples. After each iteration, the code prints the sizes of the

tensors used in the training process. These tensor sizes provide insights into the

dimensions of the data being processed. The training progress is displayed in the

format [current epoch/total epochs][current batch/total batches]. This indicates

the progress of the training process in terms of epochs and batches. The [0/5][0/2]

represents the current progress of the training in terms of epochs and batches. In

this example, it shows that the current epoch is 0 out of 5 total epochs, and the

current batch is 0 out of 2 total batches.

The discriminator loss (‘Loss D‘) and generator loss (‘Loss G‘) are printed. These

values represent the calculated losses for the discriminator and generator networks,

respectively. The discriminator loss indicates how well the discriminator can dis-

tinguish between real and fake data, while the generator loss indicates how well

the generator can fool the discriminator.

The average discriminator output for real data (‘D(x)‘) is displayed. This value

represents the average prediction made by the discriminator for real data samples

in the current batch. It shows the discriminator’s confidence in classifying real

data. D(x): 0.2162 value represents the average output of the discriminator (D)

for real data samples (x) in the current batch. The average discriminator output

for generated data (‘D(G(z))‘) is also printed. This value represents the average

prediction made by the discriminator for generated (fake) data samples in the

current batch. It indicates the discriminator’s confidence in classifying generated

data.

D(G(z)): 0.4134 / 0.1291: These values represent the average output of the dis-

criminator (D) for generated data samples (G(z)) and real data samples (x) in

46

the current batch. The first value (0.4134) indicates how well the discriminator is

classifying generated data, while the second value (0.1291) represents its classifica-

tion of real data. Loss D: 2.2727 Loss G: 2.3577 values represent the discriminator

loss (Loss D) and generator loss (Loss G) at the initial steps which gradually de-

creases for the discriminator loss and increases for the generator loss to Loss D:

0.1340 Loss G: 6.8828. The tensor sizes are printed again to provide a comparison

before and after the calculations. This allows for tracking any changes in tensor

dimensions during the training process.

Figure 15: The loss calculation from the trained model.

Figure 16: The PSNR and SSIM calculation from the trained model.

47

(a) Real Image (b) Fake Image

Figure 17: The difference between generated(fake) and original(real) image after

medical image synthesis using DCGAN model.

4.4.2 Qualitative Result

The generated images have been compared to the entire batch of the original

dataset i.e., IDRID dataset and the comparison result has been evaluated through

SSIM and PSNR values. The SSIM and PSNR value obtained for a randomly

picked image against the original dataset was 0.516 and 16.444 respectively. Typi-

cal values for the PSNR in lossy image and video compression are between 30 and

50 dB, where higher is better. Values over 40 dB are normally considered very

good and those below 20 dB are normally unacceptable [12]. An SSIM score of 1.00

indicates perfect structural similarity, as is expected out of identical images [12].

The progress of GAN training by showing the tensor sizes, loss values, and dis-

criminator predictions for real and generated data is the main data displayed

as result for the implemented DCGAN model using pytorch. Monitoring these

metrics helps assess the performance and convergence of the discriminator and

generator networks throughout the training process.

48

5 Conclusion

GANs are deep learning models consisting of a generator and a discriminator.

They are employed in various domains, including medical image processing. GANs

can generate synthetic medical images resembling real data, which aids in aug-

menting limited training data for other machine learning models. This improves

the performance of tasks like diagnosis and prognosis. GANs also enhance medical

image quality by removing noise or artifacts and enhancing resolution.

Our objective was to develop a robust conditional GAN that can generate real-

istic medical image data. This approach aims to address the imbalance between

malignant and benign cases, thereby improving the accuracy of disease predic-

tion models. To achieve this, we utilized the IDRID dataset. By leveraging this

dataset, we generated synthetic images that closely resemble real medical images,

effectively augmenting the existing data. This augmentation will increase the

dataset size, resulting in a more balanced representation of malignant and benign

cases. The expanded dataset will contribute to training more accurate disease

prediction models.

The DCGAN model was trained on the IDRID dataset using PyTorch. The train-

ing loop processed the dataset in batches of 128 samples, displaying tensor sizes

and tracking the progress in terms of epochs and batches. The discriminator and

generator losses were printed, indicating the performance of the networks. Av-

erage discriminator outputs for real and generated data were shown, along with

their respective classifications. The model evaluation involved calculating PSNR

and SSIM values to assess image quality. Overall, the DCGAN model trained on

the IDRID dataset yielded results in terms of loss values, discriminator outputs,

and evaluation metrics like PSNR and SSIM.

A future goal for our research on medical image synthesis using GAN architectures

is to develop more robust and novel GAN architectures and training techniques

that can generate high-fidelity and clinically relevant medical images across mul-

tiple modalities. Additionally, focusing on addressing challenges such as data

49

scarcity, class imbalance, and interpretability of synthesized images would be im-

portant for advancing the field. Ultimately, the goal is to create GAN models that

can generate synthetic medical images with such accuracy and realism that they

can be seamlessly integrated into clinical practice, aiding in diagnosis, treatment

planning, and medical research.

50

References

[1] Youssef Skandarani, Pierre-Marc Jodoin, and Alain Lalande. Gans for medical

image synthesis: An empirical study. Journal of Imaging, 9(3):69, 2023.

[2] Meiqin Gong, Siyu Chen, Qingyuan Chen, Yuanqi Zeng, and Yongqing Zhang.

Generative adversarial networks in medical image processing. Current Phar-

maceutical Design, 27(15):1856–1868, 2021.

[3] Tonghe Wang, Yang Lei, Yabo Fu, Jacob F Wynne, Walter J Curran, Tian

Liu, and Xiaofeng Yang. A review on medical imaging synthesis using deep

learning and its clinical applications. Journal of applied clinical medical

physics, 22(1):11–36, 2021.

[4] Saisai Ding, Jian Zheng, Zhaobang Liu, Yanyan Zheng, Yanmei Chen, Xi-

aomin Xu, Jia Lu, and Jing Xie. High-resolution dermoscopy image synthesis

with conditional generative adversarial networks. Biomedical Signal Process-

ing and Control, 64:102224, 2021.

[5] Siddharth Gupta, Avnish Panwar, Silky Goel, Ankush Mittal, Rahul Ni-

jhawan, and Amit Kumar Singh. Classification of lesions in retinal fundus

images for diabetic retinopathy using transfer learning. In 2019 international

conference on information technology (ICIT), pages 342–347. IEEE, 2019.

[6] Sandeep B Somvanshi and Nanasaheb D Thorat. Introduction to imaging

modalities. In Advances in Image-Guided Cancer Nanomedicine. IOP Pub-

lishing, 2022.

[7] Hamed Alqahtani, Manolya Kavakli-Thorne, and Gulshan Kumar. Applica-

tions of generative adversarial networks (gans): An updated review. Archives

of Computational Methods in Engineering, 28:525–552, 2021.

[8] Y Sravani Devi and S Phani Kumar. Dr-dcgan: A deep convolutional gener-

ative adversarial network (dc-gan) for diabetic retinopathy image synthesis.

Webology (ISSN: 1735-188X), 19(2), 2022.

51

[9] Sandra Carrasco Limeros, Sylwia Majchrowska, Mohamad Khir Zoubi, Anna

Rosén, Juulia Suvilehto, Lisa Sjöblom, and Magnus Kjellberg. Gan-based gen-

erative modelling for dermatological applications–comparative study. arXiv

preprint arXiv:2208.11702, 2022.

[10] Umme Sara, Morium Akter, and Mohammad Shorif Uddin. Image quality

assessment through fsim, ssim, mse and psnr—a comparative study. Journal

of Computer and Communications, 7(3):8–18, 2019.

[11] Rohit Kumar and Vishal Moyal. Visual image quality assessment technique

using fsim. International Journal of Computer Applications Technology and

Research, 2(3):250–254, 2013.

[12] David R Bull. Digital picture formats and representations. Communicating

pictures, pages 99–132, 2014.

52

