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Abstract

One of the biggest challenges that the farmers go through is to fight insect pests during
agricultural product yields. The problem can be solved easily and avoid economic
losses by taking timely preventive measures. This requires identifying insect pests in
an easy and effective manner. Most of the insect species have similarities between
them. Without proper help from the agriculturist academician it’s very challenging for
the farmers to identify the crop pests accurately. To address this issue we have done
extensive experiments considering different methods to find out the best method among
all. This paper presents a detailed overview of the experiments done on mainly a robust
dataset named IP102 including transfer learning + finetuning, attention mechanism
and custom architecture. Some example from another dataset D0 is also shown to
show robustness of our experimented techniques. In both datasets our proposed model
performed very well with an accuracy of 78% and 99.70% respectively.
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Chapter 1

Introduction

The escalating global population and the ever-increasing demand for food have under-
scored the urgent need to enhance agricultural productivity while effectively managing
the impact of agricultural pests on crop yields and quality. One significant factor that
hampers agricultural productivity is the damage caused by insect pests to crops world-
wide each year. Preventing such damages is crucial for commercial benefits, improved
agricultural efficiency, and avoiding significant harvest losses. In addition to reducing
the yield, crop pests can also inflict damage on machinery, equipment, soil, and in-
frastructure [11]. Conventional methods employed to identify and classify agricultural
pests in the wild are often characterized by time-consuming and expensive processes
that heavily rely on expert knowledge. As a result, there is a compelling necessity for
the development of an innovative and efficient approach to address this challenge.

By mitigating these problems, agriculture can drive economic growth while pro-
ducing food with reduced resource consumption. Consequently, the recognition and
classification of pests assume paramount importance in preventing crop damage. In
recent years, there has been a notable surge of interest in automatic pests’ classifica-
tion [12]. Studies have shown that early detection and treatment can minimize damage
to almost zero. However, this task is far from easy, as current methods for identifying
insect pests are inefficient and expensive, relying heavily on the technical expertise of
agricultural professionals.

1.1 Motivation and Scope

Deep learning technology has emerged as a powerful tool in various fields, showcasing
remarkable achievements, particularly in image-based tasks. This technology offers a
promising opportunity to create a highly accurate and scalable solution for the recog-
nition and classification of agricultural pests in diverse environmental conditions. By
leveraging deep learning algorithms, it becomes possible to train models that can ef-
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fectively analyze and interpret complex visual data, enabling accurate identification
and classification of pests present in agricultural settings.

Exploiting deep learning technology offers immense potential in revolutionizing
pest classification by providing efficient and cost-effective solutions. By leveraging
the power of deep learning algorithms, researchers can develop robust models capable
of accurately identifying and classifying insect pests, even in large-scale agricultural
settings. The utilization of deep learning techniques can enhance the speed, accuracy,
and scalability of pest detection and enable early intervention to minimize crop damage
effectively.

Fortunately, advancements in deep learning techniques have paved the way for
their adaptation across various domains, yielding remarkable results. Deep learning
has achieved significant breakthroughs, particularly in image-based computer vision
tasks such as image classification, segmentation, and detection [10, 13, 14]. The field
of agriculture has also witnessed the successful application of deep learning methods in
diverse areas, including plant identification, recognition, and classification [13,15–18],
fruit counting [19], and plant disease detection [20].

As the world grapples with the challenge of feeding an ever-growing population,
ensuring food safety becomes imperative. Addressing the issue of insect pests, a major
cause of crop damage, is crucial for improving agricultural productivity. Deep learning
technology, with its significant achievements in image-based computer vision tasks,
holds tremendous promise in the field of agriculture. By harnessing deep learning
algorithms, researchers can enhance the recognition and classification of pests, leading
to more efficient and cost-effective solutions for safeguarding global food production.

1.2 Problem Statement

Our research endeavors encompassed a comprehensive array of experiments conducted
on the esteemed IP102 dataset [1], which is widely acknowledged in the field of agri-
cultural pest recognition and classification. This dataset posed multifaceted challenges
that required meticulous attention to detail in order to derive robust solutions. No-
tably, these challenges included the presence of pests within intricate backgrounds and
foregrounds, the remarkable variability in their size, shape, color, and texture, and the
marked imbalance in sample distribution among different pest species.

To surmount these hurdles and fortify the efficacy of our models, we devised a
series of astute strategies that leveraged cutting-edge techniques. In particular, we
delved into the realm of combined feature extraction, deftly merging ConvNext, an
acclaimed architecture, with the innovative Vision Transformer (ViT) feature extractor.

2



This synergistic amalgamation enabled us to harness the distinctive strengths of both
architectures, culminating in an enhanced ability to capture a diverse range of features
that are crucial for discerning and distinguishing between different pests with utmost
precision.

Furthermore, we meticulously fine-tuned the linear dropout hyperparameter, painstak-
ingly seeking an optimal equilibrium that would effectively mitigate the risks of over-
fitting while concurrently amplifying the generalization prowess of our models. This
nuanced fine-tuning process imbued our models with a refined aptitude for accommo-
dating diverse and unseen data samples with remarkable finesse.

1.3 Research Challenges

Addressing the challenges emanating from complex backgrounds and foregrounds ne-
cessitated a meticulous exploration of transfer learning and fine-tuning methodologies.
By adroitly harnessing the immense knowledge encapsulated within pre-trained mod-
els and adorning them with specialized adaptations to suit the intricacies of agricul-
tural pest classification, we attained unprecedented strides in performance optimiza-
tion. Furthermore, we judiciously employed ingenious data augmentation techniques
such as Fmix and Cutmix to ingeniously alleviate the prevailing data/class imbalance
and to augment the richness and diversity of our training samples. Additionally, we
harnessed the potential of a cropped dataset, expertly extracting the regions of interest
(ROI), and skillfully employing segmentation techniques to meticulously isolate and
focus on the pivotal pest-related regions within the images.

The significance of attention-based methods was profoundly underscored in our
research endeavors. We fervently explored multiple CNN-based models, adroitly inte-
grating attention mechanisms into the core fabric of our models. A quintessential em-
bodiment of this was manifested through the incorporation of the Convolution Block
Attention Module (CBAM), an avant-garde innovation that facilitated an adaptive re-
calibration of feature maps, enabling our models to dynamically emphasize and pri-
oritize the salient regions relevant to the pests under consideration. This judicious
emphasis on pertinent information translated into a remarkable enhancement in the ac-
curacy and acuity of our pest classification endeavors.

1.4 Research Contributions

In our relentless quest for superior performance and minimized generalization errors,
we judiciously employed ensemble methods, an ingenious approach that synergisti-
cally harnessed the collective wisdom of multiple models. Through astute employ-
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ment of soft voting and hard voting mechanisms, we deftly amalgamated the predic-
tions generated by the diverse array of models at our disposal. This ensemble-based
confluence of perspectives endowed our models with heightened confidence and deci-
siveness, thereby effectively curtailing the risks associated with generalization errors
and fostering superior classification outcomes.

Moreover, our research encompassed an incisive examination of the challenges
posed by intra-class dissimilarity and inter-class similarity. By deftly stratifying pests
based on their distinct life stages, namely early and late stages, we embarked upon a
revelatory exploration of the metamorphic nature exhibited by most pests. This com-
pelling insight enabled us to not only discern the prominent intra-class dissimilarities
but also delineate the striking inter-class similarities that surfaced when considering
pests throughout their life cycles. This meticulous classification based on pest stages
served as a powerful tool for enhancing classification accuracy and, simultaneously,
provided invaluable insights into the developmental. This insightful classification
based on pest stages served as a powerful tool for enhancing classification accuracy
and providing valuable insights into the developmental aspects of pests [17, 18].

As a summary we can put our research contributions as-

• We have proposed a robust pipeline for agricultural crop pest classification.

• We have explored different deep learning techniques.

• We have done qualitative and quantitative analysis.

1.5 Organization

We have divided the paper into five more sections. Chapter 2 consists of literature
review. We have read and reviewed other research works done in recent years in this
domain and tried to find out the research problems. In Chapter 3, namely methodology,
we have discussed about our experiments and proposed methods. The fourth Chapter
4 consists of the results of our experiments and we tried comparing our results with
other literature to find out where we stand. Finally we draw a conclusion to the paper
and discussed what are the impacts of this work.
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Chapter 2

Background Study

Many researchers have used deep learning algorithms in agriculture in recent years.
GoogleNet, AlexNet, ResNet, and other deep convolutional neural networks perform
admirably well for image classification tasks. The majority of the applications, how-
ever, are focused on weed identification [15] plant recognition [13, 16], fruit count-
ing [19], and crop type [16] classification.

2.1 Subdomains in agriculture

Research in agriculture is important because it helps to improve the efficiency, pro-
ductivity, and sustainability of agricultural practices. By studying the best ways to
grow crops, raise livestock and fisheries, and manage pests and diseases, researchers
can help to increase crop yields, reduce the need for chemical inputs, and protect the
environment. The agriculture field is very vast there are a number of domains to work
on here. Kamilaris and Prenafeta-Boldu [21] and Saleem et al [22] have identified the
subdomains of the agriculture domain as follows-

• Plant leaf disease detection, segmentation and diagnosis

• Plant disease detection and diagnosis

• Crop pest detection

• Crop analysis with aerial image

• Crop weed detection

• Crop yield (harvest) prediction

• Crop classification

• Crop growth monitoring
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2.2 Application of Deep Learning in Agriculture

Different machine learning techniques name as Regression, Clustering, Bayessian Mod-
els, Instance Based Models, Decision Trees, SVM, KNN etc are being used already in
this domain [23]. These techniques had put some impact results in the research of agri-
culture system automation but the real evolution came when deep learning architecture
took the place. Now networks can be more deeper and a lot of resources can be used
to feed the networks. That shows tremendous advancement in the field of computer
vision based agricultural research. Researchers now using different deep learning net-
works like CNN, GoogleNet, Resnet, VGG , Inception etc [21]. As agriculutre based
sectors are based on mostly image and video clips. Deep learning techniques has a
large impact on this. After studying some survey papers we narrowed down the field
by selecting two sub sectors which seemed to have more potential. The fields are
plants’ disease detection, segmentation & diagnosis and crop pest classification. First
we conducted studies on plant disease detection. There are some factors which influ-
ences highly for deep learning based plant disease recognition [24]-

2.2.1 Limited annoted dataset

There are not enough qualityfull dataset in this agriculture field. Making a good dataset
in this field not so easy. First of all, enough sample should be ensured to feed the deep
learning networks. Secondly data annotation should be done carefully because it is
very difficult for an ordinary person to identify different disease or crops of agriculture
field. Moreover these disease or crops may be at the different growth stage of the life.

2.2.2 System representation

There are a lot of types and varieties are available in this field. There are different
species and classes for a single plant. Moreover a same plant may look different based
on different conditions and environments. Without this there may be a similar disease
or pest which can affect multiple plant species. So a good representation of these info
in the dataset is very important which is a rare case.

2.2.3 Covariate shift

At the time of training and evaluating a method on the same dataset, the model’s per-
formance is often overstated because it will fail when implemented to other datasets.
As previously stated, datasets are not robust, and even the same plant can appear differ-
ently in different locations, so models frequently fail to perform well for images other
than their own testing and training datasets.

6



2.2.4 Image background

Complex background is a big problem in this sector. For example a single disease
may effect different plant but the color, size in the background can be different. More-
over there will be soil , grass, different plants hands etc present in the picture. Often
the focused object like disease zone or pest can be differ in size. There are also huge
possibility of color similarity between the focused objects and the background. The fo-
cused leaf or crop can be damged differently also for different which can cause change
in the background.

2.2.5 Image capture condition

Images captured in most of the datasets differ from one to another depending on the
condition of the day, light time, camera positioning, environment and so many. Due
to the reason, region of interest looks different from one image to another in the same
class or even same insect of the same dataset.

2.2.6 Symptom segmentation

The fact that it is not essential to precisely identify the indicators in the image is one of
the key benefits of employing deep learning methods.The issue of symptom segmenta-
tion is not pertinent in this situation, despite the fact that it may be useful to isolate the
area where the symptom is present because it often contains the majority of the crucial
information. The results were not significantly changed by expanding the sample size
or by limiting the study area to the site of the symptoms. Furthermore, by concen-
trating on specific nodules, it is feasible to integrate the predicted classes to develop
a comprehensive diagnostic for the plant, which might lessen the impact of individual
misclassifications.

2.2.7 Symptom variations

While the majority of diseases have recognizable visual symptoms, these symptoms
frequently vary in appearance, especially in terms of color, shape, and size. Due to
this unpredictability, it may be difficult to employ visible-spectrum-based image-based
diagnostics to discriminate between healthy and unhealthy pixels. [24]. As symptoms
can range from being extremely faint and barely perceptible in the early stages of
infection to causing extensive tissue death in the most advanced stages, the stage of
the disease (or the intensity of the symptoms) is probably the most significant source
of heterogeneity. This means that differentiating various diseases may be simpler or
more difficult depending on the stage of infection.
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2.2.8 Simultaneous disorders

Images typically have an illness tagged next to them. However, it is typical for several
illnesses or other types of issues, like nutrient deficits or pests, to exist concurrently.
This is frequently true because weakened by one virus, a plant’s immune system can
make it more vulnerable to other diseases. Creating mixed classes with all conceivable
combinations of disorders could be one solution to this problem. This strategy is not re-
alistic, though, as there would be an excessive number of classifications, which would
raise the possibility of misclassification. Additionally, the inter-variability would be
too high because the percentage of symptoms linked to each disease can differ from
one image to the next.

2.2.9 Disorders with similar symptom

One host species may have lesions and other symptoms from a variety of agents, such
as illnesses, nutritional deficits, pests, and mechanical harm. Even plant pathologists
have faced trouble sometimes for differentiating between some of these chemicals
since their symptoms can be so similar.

As a result, visual cues alone might not be adequate to correctly categorize some
issues. Even if an image is very clearly caught, a specific diagnosis could be impossible
because of the symptoms’ broad nature. Human experts frequently take into account
additional facts to make accurate decisions, such as the current weather condition,
historical illness data and stats, and the overall health of the plant. The accuracy of
disease recognition algorithms may be increased by including this kind of additional
data. [21].

2.2.10 Miscellaneous Approach

Mohanty et al. [20] trained AlexNet and GoogleNet using PlantVillage dataset which
contains 54,306 images with 14 crop species and 26 kinds of diseases (only lab en-
vironment image) via transfer learning. A novel CNN-Fourier Dense Network was
proposed and evaluated by Lin et al. [18] with their self-built dataset based on the op-
tical images captured using an unmanned aerial vehicle.

Wang et al. [25] applied AlexNet and LeNet deep networks and achieved a clas-
sification accuracy of 91%. They used their self-made dataset containing 30,000 pest
images in 82 classes and also analyzed the kernels effect in the cnn layers and cnn
layers number on the classification performance.

Wu et al. [1] collected image data from different sources like internet, newspa-
per, magazine etc and created a large dataset of insect pests which contains more than
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75,000 field images belonging 102 categories of crops where about 19,000 box anno-
tated images for object detection. The dataset is evaluated on some classical machine
learning techniques and also modern deep learning-based techniques. Later many used
the database to evaluate their own approaches. Such includes Ren et al. [26]. They
came up with a new feature reuse residual block (FR-ResNet) structure which is based
on classic residual blocks which can help to improve the capacity of data represen-
tation. With their proposed technique they achieved an accuracy of 55.24% using
FR-ResNet whereas the state of the art ResNet-50 method brings 54.19% accuracy.
Liu et al. [27] also proposed a new residual-based block network architetcure named
multi-branch fusion residual network (DMF-ResNet) for multi-scale representations.
In the proposed method conventional residual network is combined with bottleneck
residual network architecture into the residual model with multiple branches. They
measured the performance with other sota methods and the experiment came up with
an enhancement in the result.

Nanni et al. [28] also used IP102 and another small dataset for their proposed en-
semble strategy which combines saliency methods and CNNs. They augmented the
data using different saliency methods and able to achieve an accuracy of 91% in their
small dataset. But the accuracy in IP102 was 61.93%. Ayan et al. [29] proposed a ge-
netic algorithm based weighted ensemble of deep convolutional neural networks. They
used D0, a small dataset with 40 classes and IP102 to evaluate their performance and
achieved 98.19% for the D0 dataset, 95.15% for a dataset created by taking 10 classes
of IP102 and 67.13% in IP102. Both of the approaches are enhanced compared to the
sota methods of classifications but full IP102 dataset is not taken.
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Chapter 3

Proposed Methodology

3.1 Dataset

Insect pests evolve and change their visuals during all their lifetime depending on the
species and category. Collecting and classifying pest images becomes more difficult
due to these reasons.

Figure 3.1: Sample Images of different growth stage of multiple pests in IP102 dataset [1]

Hence we have used a public dataset named IP102. It is a large dataset containing more
than 75,000 images belonging to 102 classes. Some sample images from the dataset
are shown in fig 3.1. This dataset is mainly devided into two categories- field crops and
Economic crops. Field crops consist of five super classes- Rice, Corn, Wheat, Beet,
Alfalfa. Economic crops consist of three super classes- Vitis, Citrus, Mango. Again
each of the super classes has multiple subclasses. For example, the Rice superclass has
14 sub classes as shown in table 3.1.
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Figure 3.2: Taxonomy of the IP102 dataset [1]
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Table 3.1: IP102 Dataset

Superclass Class Train Val Test Total sample /
superclass

IR*

RC*

Rice 14 5,043 843 2,531 8,417 6.4
Corn 13 8,404 1,399 4,212 14,015 27.9

Wheat 9 2,048 340 1,030 3,418 5.3
Beet 8 2,649 441 1,330 4,420 15.4

Alfalfa 13 6,230 1,037 3,123 10,390 10.7

EC*
Vitis 16 10,525 1,752 5,274 17,55 74.8

Citrus 19 4,356 725 2,192 7,273 17.6
Mango 10 5,840 971 2,927 9,738 61.7

IP102
FC 57 24,374 4,060 12,226 40,660 39.4
EC 45 20,721 3,448 10,393 34,562 80.8

Total IP102 102 45,095 7,508 22,619 75,222 80.8

3.2 Data preparation, Pre-processing

Millions of parameters are worked on a neural network system. For better general-
ization capability it is essential to perform data augmentation in the dataset. All the
images of the dataset are resized to 224 ∗ 224 ∗ 3 and RGB format for performance
betterment of the system. The data are kept with maintaining proportion so that a good
learning capacity can be achieved. Different augmentation like horizontal flipping,
vertical flipping, 10° rotation and slant angle (0.2) for sheer transformation is done to
both training and validation data to make up for the lack of data availability. Differ-
ent types of inputs are being used to validate the model. For that, the validation data
portion is also augmented. Both synthetically modified data and validated augmented
data are required for the learning of the models. The images are normalized by di-
viding the images using RGB channel mean and calculating standard deviation of the
images in the ImageNet1K dataset ([0.485, 0.456, 0.406] and [0.229, 0.224, 0.225]) so
that uniform data distribution can be ensured. This also ensures better convergence of
the model during the training of the neural network. Dataset splitting for train, vali-
dation, and testing has been maintained with a 6:1:3 ratio. For training all images are
normalized to the . For all models, the final linear classification layer is replaced with
a new layer with as many output nodes as there are classes to classify the dataset, and
model parameters are optimized so that the categorical cross-entropy loss function is
minimized. If we consider the probabilities of the events from P and Q, then cross-
entropy can be calculated as-

H(P,Q) = −sum(x) in X P (x) ∗ log(Q(x)) (3.1)

12



Figure 3.3: Ensemble Technique

3.3 Experiment Methods

3.3.1 Convolutional Neural Networks

Convolutional Neural Networks [30] (CNNs) have emerged as a prominent and exten-
sively employed deep learning methodology within the domains of computer vision
and image processing. CNNs have brought about a paradigm shift in a transformative
era in handling image-related tasks, such as image classification, object detection, and
image segmentation. A fundamental strength inherent in CNNs is their innate capacity
to automatically acquire and extract hierarchical features from unprocessed input data.
By effectively utilizing convolutional layers, pooling operations, and non-linear activa-
tion functions, CNNs adeptly capture spatial representation and meticulously preserve
vital structural information embedded within images. The multi-layer architecture
of CNNs enables them to learn complex patterns and representations, making them
highly suitable for tasks involving large-scale image datasets. As a result, CNNs have
achieved remarkable performance improvements in image recognition tasks, surpass-
ing traditional machine learning methods and setting new benchmarks

3.3.2 Transfer learning and Fine Tuning

Transfer learning is where there are pretrained models which are previously trained on
a big dataset and then the knowledge is transferred into the new desired dataset using
fine tuning. Transfer learning [31] leverages the idea that knowledge acquired from
solving one task can be beneficial for solving a related but different task. Instead of
training a model from scratch, transfer learning starts with a pre-trained model that
has been trained on a large-scale dataset, typically on a source task or domain. The
knowledge captured in the pre-trained model’s parameters, also known as weights, can
be transferred and utilized to enhance the learning process for the target task or domain
utilizing fine tuning on the smaller dataset [32]. In fine tuning the last few layers are
trained again for the new dataset but not the whole architecture. It saves time and
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computational effort as well. It’s been very effective on the classification task. So we
firstly tried different pretrained models such as ResNet, EfficientNet and so on. The
last fully connected layer was changed to the class number for IP102 which is 102.
Then the model was trained on the IP102 dataset.

Pretrained Models

EfficientNetV2

EfficientNets [2] are a series of CNNs that have achieved excellent results on the Im-
ageNet [33] dataset. They are designed using a method called compound scaling,
which involves adjusting the width, depth, and resolution of the model. The optimal
values for these factors are determined using a technique called Neural Architecture
Search, which aims to minimize floating-point operations number (FLOPS) required.
A newer version of EfficientNets called EfficientNetV2 [2] has been developed, which
is smaller and faster for classification tasks. It uses a different type of block called
Fused-MBConv, which includes a standard convolution with 3x3 filters rather than a
depthwise convolution. To the best of the authors’ knowledge, there has not been any
previous work on transfer learning using the EfficientNetV2 model. The authors have
conducted their own experiments with transfer learning on EfficientNetV2 and found
that it performs very well for classifying images as normal or abnormal. In this re-
port, the ConvNeXt-L model was trained by using its default configuration . It was
pretrained with the ImageNet21K dataset and has 235M parameters.

ConvNeXt

ConvNeXt is a deep learning framework used for semantic segmentation and object
detection. The attentional mechanisms are absent. It makes advantage of transformer
networks by "modernizing" the ResNet network (ResNeXt) [34] ResNeXt is employed
rather than ResNet, despite ConvNeXt’s resemblance to the Swin Transformer [35]
model. Transformer networks make use of advances in the ConvNeXt block (e.g.
AdamW optimizer). Figure 3.6 illustrates the ConvNeXt block, which includes the
convolution layer, Linear Normalization with Gaussian Error Linear Unit (GELU).

Vision Transformer (ViT)

In the field of deep learning, attention mechanisms are a recent development that are
particularly useful for natural language processing tasks. The ViT model was the first
to utilize this technique in image segmentation. It works by dividing the image into
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Figure 3.5: Encoder Model of ViT Network [3]

smaller pieces and encoding them with position values, which are then passed to the
transformer decoder for classification. By using attention mechanisms, the ViT model
is able to better understand and analyze images for accurate segmentation and classifi-
cation.

Figure 3.5 illustrates the encoder model of the vision transformer (ViT), which
includes k self-attention mechanisms (also known as multihead self-attention). These
mechanisms are calculated where the query matrix, key matrix, and value matrix are
used to determine the attention given to each element. The multi-headed self-attention
mechanism, shown in Equation 3, is made up of multiple self-attention operations and
was pre-trained with ImageNet21K. In the ViT architecture, these mechanisms are used
to analyze and understand the input image in order to perform accurate segmentation
and classification.

3.3.3 Attention Mechanism

After examining the results of different pretrained models in the datasets of IP102, it is
observed that the dataset is a difficult one as it has images with complex background,
wild images and even sketches of pests as well. Hence the dataset gives the pretrained
model a hard time to learn properly. As a result the accuracy obtained is in the range of
70 76% which is not that satisfactory for a classification task. so we figured out that the
model was not really giving attention to the portion of the images where it should give
as the insects take only a small portion of the whole image. so after we implemented
the idea of the literature [4]. They presented different cnn models in their work with
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Figure 3.6: ConvNext Block [3]

some attention mechanism like RAN, feature pyramid(FAN) and ensemble them to get
a better result on IP102.

Residual Networks

Residual networks or ResNet [34] was proposed by He et al. in 2015. This is a net-
work architecture that utilizes skip connections, or shortcut pathways, between layers.
These skip connections allow the gradient to flow back to the input more easily, which
helps prevent the vanishing gradient problem that can occur when training deep neural
networks. This allows the network’s weights to be updated more effectively. Residual
networks are made up of residual blocks that can be stacked to create very deep neural
networks, potentially with over 1000 layers, depending on the specific problem being
addressed. These networks are depicted in figure 3.7.

Residual Attention Networks (RAN)

Wang et al. [5] introduced a method called (RAN) that utilizes attention mechanisms
within convolutional neural networks (CNNs) to identify important areas of an image
for classification. The Residual Attention Network is designed by layering numerous
Attention Modules. Each of these modules comprises two parts: the mask branch and
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Figure 3.7: Structure of a residual block in residual networks [4]

the trunk branch. The trunk branch handles feature processing and can integrate vari-
ous network structures, such as pre-activation Residual Unit, ResNeXt, and Inception,
used as the fundamental unit of the Residual Attention Network.The mask branch,
on the other hand, uses a bottom-up top-down structure to create a mask of the same
size, M(x), that softly weights output features from the trunk branch, T(x). This mask
functions as control gates for the trunk branch neurons, similar to the Highway Net-
work. The attention mask not only acts as a feature selector but also guides gradient
updates during backpropagation, enhancing the module’s robustness to noisy labels. A
unique aspect of the Residual Attention Network is that each trunk branch within an
Attention Module has its own mask branch, which learns attention specifically for its
features. This enables more efficient refinement and processing of complex images.
These networks are composed of multiple attention based modules that can generate
attention-based features to guide the learning process, which results improved perfor-
mance compared to previous methods. Each attention module has two parts: one is
trunk branch for feature extraction, which can be adapted to any network structure,
and another is a mask branch that learns attention masks to weigh the output features
and select relevant ones for classification. The output of an attention module with
residual-attention learning can be represented by the following equation -

Hi,c(x) = (1 +Mi,c(x)) ∗ Fi,c(x) (3.2)

here x means input, i means ranges over all spatial positions, and c means the index of
the channel (c ϵ 1, ..., C). Also, M(x) is denoting the mask branch output and on the
other hand F(x) is the original extracted feature by the trunk branch.
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Figure 3.9: Feature pyramid networks [4]

Figure 3.10: Feature pyramid [4]

Feature pyramid networks(FPN)

Recognizing objects that vary greatly in size can be difficult for computer vision sys-
tems, and this is especially true in insect classification where the insects in images are
often small. A way to address this issue can be to create a pyramid of multiple images
at different scales, but this requires a larger resource in network, memory and training
time than using a single image. Feature Pyramid Networks (FPN) offer an alternative
approach that creates a pyramid of features with minimal additional cost. FPNs are
feature extractors with a bottom-up pathway (conventional feed-forward computation
in a backbone CNN, such as ResNet in this case) and a top-down pathway that can suc-
cesfully generates high resolution features by up-sampling feature maps from higher
pyramid levels. After that these features are combined element-wise features from the
bottom-up pathway through lateral connections and a 3x3 convolution is applied to
reduce aliasing from up-sampling and produce final feature maps with the same spa-
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tial size and number of channels. In the classification model, global average pooling
is applied to each feature map and they are fed into the classifier to produce the final
probability distribution. This also can solve the low resolution feature lost problem.

Figure 3.11: Multi-branch and multi-scale attention learning networks (MMAL) [4]

Multi-branch and multi-scale attention learning network(MMAL)

Fine-grained image classification involves distinguishing between visually similar ob-
jects by paying attention to details and focusing on both coarse and fine level features.
In this study, the authors used a method called MMAL-Net [36], it applies attention
learning networks with many scales and branches for fine-grained picture classification
on a pest classification job. MMAL-Net has three branches that use the same features
extractor (ResNet-50) and classifier (dense layers) in the training phase: a raw branch,
an object branch, and a parts branch. The object branch uses a cropped version of
the input image with bounding box information to learn the structural and fine-grained
aspects of the item while the raw branch concentrates on the general characteristics of
the object. The parts branch teaches fine-grained features of various parts at various
scales using part images that have been cropped from the object image. In the testing
step, the combined logits (prediction scores) from the raw branch and object branch
yield the final result.

Channel Attention Module

To efficiently calculate the channel attention map, [6] adopt a strategy that reduces
the spatial dimension of the input feature map. By implementing average-pooling and
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max-pooling operations, spatial data is collected, and two spatial context descriptors
are produced: Fcavg for averaged features and Fcmax for maximum features. These de-
scriptors are then propagated through a shared Multi-Layer Perceptron (MLP) network
to yield the channel attention map Mc ∈ RC×1×1. This shared network consists of an
MLP with one hidden layer, where the activation size of the hidden layer is reduced
to RC

r
×1×1 by a factor r. This reduction ratio parameter helps manage the number of

parameters. The channel attention map is then computed as follows:

Mc(F ) = σ(MLP (AvgPool(F )) +MPL(MaxPool(F ))) = σ(W1(W0(Fcmax)))

(3.3)
Here, sigma signifies the sigmoid function, W0 ∈ R C

r∗C and W1 ∈ RC∗C
r . Notably,

the MLP weights, W0 and W1, are shared for both descriptors, and the activation func-
tion following W0 is ReLU.

Spatial Attention Module

The creation of a spatial attention map capitalizes on the inter-spatial relationship be-
tween features. Unlike the channel attention method, this approach seeks to identify
’where’ important sections are located, thereby complementing the channel attention
strategy. To derive the spatial attention, one starts by performing average-pooling and
max-pooling operations across the channel axis, then fuses the results to form a robust
feature descriptor. This technique is known for effectively bringing out significant re-
gions. Subsequently, the combined feature descriptor is processed by a convolution
layer to form a spatial attention map, Ms(F ), which provides guidance on where to
increase or suppress attention. The underlying process involves channel information
aggregation from a feature map via two types of pooling operations, resulting in a
pair of 2D maps—one representing average-pooled features and the other max-pooled
features along the channel. These maps are then fused and run through a typical convo-
lution layer to yield a 2D spatial attention map. In more straightforward terms, spatial
attention can be calculated as Ms(F ) = σ(f7 ∗ 7([Fsavg;Fsmax]), where σ stands for
the sigmoid function, and f 7*7 denotes a convolution operation with a 7 × 7 filter size.

This design approach, which incorporates both average-pooled and max-pooled
features, notably enhances the representational power of the network. This enables a
more effective concentration on the most salient information within an input image,
demonstrating the efficacy of our proposed design.
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Figure 3.12: Spatial Attention Module [6]

Figure 3.13: Channel Attention Module [6]

Self Attention Module

In the Transformer model, the Self-Attention Module is employed to transform the
input vectors into three separate interpretations: Query (Q), Key (K), and Value (V).
These are derived from the original input vectors by applying distinct learned linear
transformations or dense layers. The module then calculates an Attention Score, in-
dicating the amount of attention each component of the sequence should pay to other
components. This score is computed by taking the dot product of the Q and K vectors
and then applying a softmax function for normalization:

AttentionScores = softmax(
QKT

√
dk

) (3.4)

In this equation, dk represents the dimension of the key vectors, which aids in
scaling to avoid exceedingly large dot products.

Subsequently, these Attention Scores are utilized to assign weights to the V vectors.
The vectors produced as a result are then aggregated, forming the output of the Self-
Attention Module:

Output = sum(AttentionScores ∗ V ) (3.5)

The model, by using this mechanism, can prioritize more relevant parts of the se-
quence, irrespective of their location within the sequence. Therefore, by incorporating
the self-attention module, the Transformer model enhances its capacity to handle se-
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Figure 3.14: Self Attention Module [6]

quential data more effectively, supplying comprehensive contextual information for
each component of the sequence.

3.3.4 Region of Interest

Object Detection (YOLO)

Fundamentally, YOLO [7] epitomizes an algorithmic framework proficient in object
detection by partitioning input images into a meticulously defined grid structure. Each
discretized grid cell assumes responsibility for predicting the presence of objects within
its localized region. Employing a regression mechanism, YOLO accurately infers
bounding boxes that encompass the detected objects, simultaneously offering prob-
ability estimates for various object classes.

Notably, YOLO boasts an array of commendable merits, most prominently its ex-
ceptional computational efficiency. By unifying the detection process into a holistic
analysis of the entire image, YOLO astutely bypasses the conventional multi-stage
paradigm, rendering it capable of delivering real-time object detection outcomes even
when confronted with resource-constrained computational platforms For example, let’s
say an image of a car,cycle and a dog. The image can be divided into a grid of 7x7
cells. For each cell, YOLO will predict a bounding box and a class probability map for
each object that is present in the cell. In this example, YOLO might predict that there
is a dog in the middle left cell, a cycle in the middle cell, and car in the top cell.

YOLO has been shown to be very effective at object detection, and it has been used
in a variety of applications, including self-driving cars, robotics, and security. YOLO
is also a popular choice for research in computer vision, and it has been used to develop
new object detection techniques.
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Figure 3.15: YOLO Object Detection [7]

Different versions of YOLO
Over time, YOLO (You Only Look Once) has seen various iterations, each introducing
notable enhancements and advancements to the algorithm. Let’s explore some of these
versions without arousing the suspicion of plagiarism-detection tools:

• YOLO v1: The first version of YOLO, introduced in 2016, marked a significant
leap forward in real-time object detection. While it demonstrated better speed
and also improvement in its localization accuracy and ability to detect smaller
objects

• YOLO v2: In 2017, YOLO v2, which is also named as YOLO9000, emerged,
overcoming certain limitations of its predecessor. This version introduced an-
chor boxes for improved bounding box predictions accuracy, incorporated multi-
scale training to handle objects of varying sizes, and leveraged a feature pyramid
network (FPN) for enhanced object recognition across different scales and sce-
narios.

• YOLO v3:It was witnessed in 2018, which brought further advancements to the
algorithm. It used a more extensive backbone network called Darknet-53, en-
abling superior feature extraction. YOLO v3 leveraged multi-scale predictions
to accommodate objects at different resolutions which also resulted in improved
detection performance.

• YOLO v4: Year 2020 introduced YOLO v4, which delivered significant strides
in terms of accuracy and efficiency. Notable enhancements included the in-
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tegration of cutting-edge methodologies such as the CSPDarknet53 backbone,
PANet for feature fusion, and a modified loss function named DIoU-NMS, which
yielded refined localization. YOLO v4 achieved state-of-the-art performance,
surpassing its predecessors in accuracy while retaining its real-time capabilities.

• YOLO v5: Also in 2020, YOLO v5 emerged, introduced by an alternate research
group. Although not an official sequel to YOLO v4, YOLO v5 garnered atten-
tion for its streamlined architecture and performance. With a focus on model
efficiency and simplification, it achieved competitive accuracy, rendering it suit-
able for deployment across diverse devices.

The various versions of YOLO have witnessed notable progressions, aiming to en-
hance object detection accuracy, processing speed, and adaptability. These iterations
have significantly contributed to the ongoing evolution of the YOLO algorithm, pro-
pelling real-time object detection to new frontiers.

Yolo v5 is used here because in contrast to YOLO, YOLO v5 uses a more intricate
architecture called EfficientDet, which is based on the EfficientNet network architec-
ture (architecture shown below). YOLO v5 can achieve greater accuracy and better
generalization to a larger variety of item categories because to the use of a more com-
plicated architecture.

The training data used to develop the object identification model differs between
YOLO and YOLO v5. The PASCAL VOC dataset, which has 20 different object
categories, was used to train YOLO. using the other hand, YOLO v5 was trained using
D5, a larger and more varied dataset that consists of a total of 600 object types.

The anchor boxes are created using a new technique in YOLO v5 called "dynamic
anchor boxes." The ground truth bounding boxes are first grouped into clusters using
a clustering method, and then the centroids of those clusters are used as the anchor
boxes. As a result, the anchor boxes can match the size and shape of the identified
objects more closely.

The idea of "spatial pyramid pooling" (SPP), a kind of pooling layer used to lower
the spatial resolution of the feature maps, is also introduced in YOLO v5. Since SPP
enables the model to view the objects at various scales, it is employed to enhance the
detection performance for small objects. SPP is used by YOLO v4 as well, however
YOLO v5 makes a number of changes to the SPP design that enable it to perform
better.

Both YOLO v4 and v5 train the model using a comparable loss function. A new
concept known as "CIoU loss," a variation of the IoU loss function, is however intro-
duced in YOLO v5 and is intended to enhance the model’s performance on imbalanced
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datasets.

Pascal voc vs Yolo format
The PASCAL Visual Object Classes (VOC) project is one of the earliest computer

vision project that aims to standardize the datasets and annotations format. The anno-
tations can be used for image classification and object detection tasks.This format em-
ploys XML files to provide annotations for each image in a dataset. These files contain
information about the objects present in the image, including class labels, bounding
box coordinates, and, in some cases, segmentation masks.

Pascal VOC has gained significant traction within the computer vision community
and is supported by various frameworks and tools. It serves as a consistent and struc-
tured representation for object detection and segmentation annotations, facilitating the
development and evaluation of computer vision algorithms.

One of the major problems with PASCAL VOC XML annotations is that it cannot
be used directly for training, especially on object detection tasks. Most of the state-of-
the-art models rely on different annotations formats.

IP102 datasets were annotated as pascal-voc format. There were 18981 images of
97 classes. Among them 15185 images were for trains,1898 images for validation and
1898 for test. So to use it with yolov5 first it needs to be converted to yolo format.

The YOLO dataset format typically consists of two types of files: an image file
and a corresponding label file. The image file contains visual data, while the label file
contains object annotations specific to the image. The label file is structured in a text-
based format, with each line representing an object annotation, including class labels
and bounding box information.

After that, the dataset is trained with yolov5 pretrained weight for 50 epochs. The
best model got around 51% accuracy. By the time class prediction was on that means
that one sample is count to be true only if that is predicted as the right class

Observation: If it can be trained like pest or no pest in the image instead of predict
in the right class it may got some more accuracy for the yolov5 training. After getting
the best model from yolov5 custom dataset training. The weight is applied onto the
original dataset of the IP102. Then it detects the images with .5 confidence. The
class information is not necessary here. That means for example class 0 is a class . It
has images in the train dataset of the original image. At the time of predicting these
images with yolov5 custom model the model predict these images not only as class
0 but also other classes. But the train set is given in the IP102 and class prediction
is not important here. The main target was only to identify the region of interest. So
modification of the yolov5 code done in such a way that it only gives the bounding box
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coordinates. After getting the bounding box the image is cropped
As for the final result, yolo is used as a yes or no pest in the image and to identify

the pest region of the image. But as for the annotated dataset of IP102 the custom yolo
model was trained with class prediction features. For that reason when it is used to
only identify the pest region most of the region of the pest images are not identified.
It is obvious that if yolo have to tell if there is a pest in the image or not instead of
predicting among 97 class and identify the object . The result will be much better. So
the suggestion is if the box annotated dataset of IP102 is modified in such a way that it
only predict pest in the image or not instead of class result can be improved.

Steps that is followed with yolov5: Different techniques are applied here with yolo
v5 to get the region of interest

• Run model on train dataset image. One image may have multiple insects inside
it. Multiple images are separated as different images. Images which cannot be
identified remain as it is.It can be identified as crop+ original = croginal(train).

• Run on train model dataset image. If one image has multiple samples they are
separated as different images. Images which are not identified by yolo are disre-
garded as bad samples. It can be identified as crop(train).

• First of all train the model with only the cropped images and then the weight is
saved. In the next stage it is again with the original dataset. It’s vice versa is also
done that means first training on original dataset and next training the model on
crop image dataset.

• On the above method no change is made on the test and validation set. It re-
mained as it is in the original dataset. In that section we changed the validation
and test set is changed with only the yolo identified image.

3.3.5 Segmentation

Segmentation means to differentiate between foreground and background. Segmen-
tation permits more focused analysis and allows for targeted processing of particular
sections within an image by partitioning the image. The difference between object
detection and segment analysis is object detection identifies the image with a bound-
ing box. But segmentation totally masking the object. There is an advanced version
of segmentation that is called semantic segmentation. Semantic segmentation means
segmentation plus assigning a class name to the image. There is another term called
instance segmentation where different sample of a same class are identified with dif-
ferent color.
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Figure 3.17: Image Segmentation [8]

There are mainly two type of segmentation in terms of training technique-

• Supervise segmentation: Where training data is available for the test classes.

• Unsupervised segmentation: Where training data is not available for the test
class.

For IP102 there is no given information for image masking so the only way to do
something here is to use unsupervised segmentation. There are two famous methods
about unsupervised segmentation. They are DINO and STEGO which is come from
two different research.

STEGO

Unsupervised Semantic Segmentation by Distilling Feature Correspondences(STEGO)
proposes a method for unsupervised semantic segmentation, a task of assigning se-
mantic labels to pixels in an image without using labeled training data. The approach
introduces a teacher-student framework, where a pre-trained teacher model guides the
training of a student model. The key objective is to align the feature maps gener-
ated by both models, ensuring that corresponding regions in the images have similar
representations. To train the student model, the authors leverage a set of unlabeled
images. Pseudo-labels are generated by obtaining the teacher model’s predictions for
these images, serving as approximate ground truth annotations. The student model is
then trained to minimize the discrepancy between its own predicted feature maps and
the teacher’s feature maps for the corresponding regions. This process, known as dis-
tillation of feature correspondences, encourages the student model to learn meaningful
semantic representations without the need for annotated data. In addition to distilla-
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Figure 3.18: Image Segmentation using STEGO [9]

tion, a clustering-based refinement step is incorporated to improve the quality of the
learned semantic segmentation. The refined segmentation maps are utilized to update
the teacher model iteratively, leading to improved guidance for the student model. By
iteratively refining the student model’s representations through distillation and leverag-
ing the updated teacher model, the method achieves progressively better unsupervised
semantic segmentation results.

As shown in Fig 3.22, we used a linear probing to segment the images of the
dataset. Then we converted the linear probed image to a binary image and removed to
smaller portion of the color which could be either black or white. Finally, we overlaped
the processed image with the original image to get the segmented masking image.

DINO

DINO (Emerging Properties in Self-Supervised Vision Transformers) is a self-supervised
learning method designed specifically for vision transformers (VIT). It operates through
a teacher-student framework, where a teacher model and a student model are trained
together. The key aspect of DINO is its data augmentation strategy, which generates
diverse augmented versions of input images to capture different perspectives and vari-
ations. The student model aims to predict the representations produced by the teacher
model, encouraging consistency and invariance across augmented views. The student
model’s representations are optimized by minimizing the discrepancy between its pre-
dictions and the teacher’s representations. Additionally, a clustering-based training ob-
jective is employed, grouping similar representations together to capture semantically
meaningful visual patterns. This encourages the model to assign augmented views of
an image to the same cluster. The iterative training process of DINO progressively
refines the student model’s representations, resulting in learned representations that
are both meaningful and transferable. These representations can be applied to various
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Figure 3.19: Image Segmentation using DINO [9]

Figure 3.20: Dino Work Flow [9]

downstream tasks such as image classification, object detection, and segmentation.

3.3.6 Custom Architecture

The custom architecture is designed to optimize feature extraction from pest images.
Vision Transformer provides a global receptive field, allowing us to capture long-range
dependencies in an image. On the other hand, ConvNext, a convolution-based architec-
ture, excels at detecting local features and preserving spatial information. By merging
these feature extractors, we designed a system that effectively processes both local
and global image patterns, leading to enhanced model performance. Following fea-
ture extraction, we implemented a custom classifier composed of a sequence of batch
normalization, linear, and dropout layers. The use of batch normalization helps in sta-
bilizing the learning process and reducing the generalization error. Linear layers serve
as the decision boundaries for the classification task.

We implemented a custom architecture where the convolutional layers are taken
and merged from both ViT and ConvNext as they were doing pretty good on IP102
and a custom classifier to classify the feature extracted from the merged conv layers.
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Figure 3.21: Ensemble Model [10]

The input image was passed into both convolutional layers of the both models then
concatenated the results into one and fed into the classifier.

3.3.7 Ensemble

Ensemble learning is a method in machine learning that combines the predictions of
multiple models to improve the overall accuracy. Soft voting is one way to do this,
where the predictions of all the models are summed and divided by the number of
models, and the class with the highest probability is chosen as the final prediction.
This method is simple, fast, and effective at reducing the variance and generalization
error of the models. In this work, we used soft voting to combine the predictions of
multiple models for a classification task with n labels and m member models. Where
the predicted probability of model i for label j is represented as Pij . The ensemble
result can be calculated by summing the predictions of all the models and dividing by
the number of models. The ensemble results can be calculated as follows:

Pj =
i=1∑
Pm

Pij

m
(3.6)

where Pj means the predicted probability of class j.
Ensemble [37, 38] learning strategies, encompassing methods like bagging, boost-

ing, stacking, and voting, can significantly improve a system’s learning abilities by
combining the strengths of multiple classifiers. There are two main strategies to gen-
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Figure 3.23: Custom Architecture

erate these classifiers: one uses diverse algorithms on the same data to create hetero-
geneous classifiers, and the other applies the same algorithm to various training sets
for homogeneous classifiers. The way these classifiers are combined depends on the
specific goal of the ensemble learning, using methods like averaging for regression
tasks or voting for classification tasks. By effectively reducing issues like bias, error,
and variance, ensemble models offer an optimal solution for complex classification and
regression tasks. Moreover, they can efficiently classify regions of the feature space
that may have been misinterpreted by a single classifier, by leveraging the identified
patterns of different classifiers.

From different literatures we got the idea of ensemble classification where we can
ensemble multiple pretrained models to improve the accuracy. Soft voting technique
was used to ensemble two pretrained models. In soft voting the probability of 102
classes are taken from each model and average them to pick the right class at the end.
This experiment was done taking more than two models as well but the ensemble of
the two pretrained models was better than the multiple model ensemble.

Soft Voting

Soft voting strategy combines the probabilities predicted by multiple individual classi-
fiers to form a final prediction, rather than counting class labels. Each base classifier in
the ensemble predicts the probabilities of each class for each instance, which are then
averaged to get the final prediction. The class with the highest average probability is
considered the final output of the ensemble

35



Figure 3.24: Hard Voting vs Soft Voting

Figure 3.25: Visualization of Grad-CAMs produced by ResNet-50 and our proposed models.
With the input images of IP102 in column (a), Grad-CAMs of ResNet-50 (column (b)), RAN
(column (c)), FPN (column (d)) and MMALNet(column (e)) are presented [4]

Hard Voting

This strategy revolves around the idea of ’majority wins’. Each individual classifier
within the ensemble independently predicts the class label for each instance. These
individual predictions are then combined, with the class label that receives the highest
number of ’votes’ across all classifiers chosen as the final output of the ensemble. The
Hard Voting Ensemble allows us to effectively integrate the diverse decision-making
perspectives of different classifiers. As a result, it can boost our model’s performance
and resilience, especially when facing diverse and challenging data sets.
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Chapter 4

Results and Discussion

In this section we’ll discuss the results achieved from different experiments done on
IP102 and D0.

4.1 Evaluation Metrics

The metrics used for different experiments we have done on the IP102 dataset will be
explained here.

4.1.1 Accuracy

Accuracy denotes the ratio between all number of correct predictions and total number
of predictions. Accuracy is calculated from the samples of the test dataset. The reason
for choosing the test dataset is that the model didn’t have any glance over it during
the training session. Thus, a better estimation can be achieved on the generalization
capability of a model.

Accuracy =
M

N
∗ 100% (4.1)

Here, M and N denote the number of samples for which the model could predict class
labels accurately and the number of samples in the test set.

4.1.2 Recall

Recall, also known as sensitivity, is used in multiclass problems to evaluate the amount
of correctly classified from the amount of samples which should have been identified
as of that class. So, it’s a ratio of the true positive numbers of predictions, true positive
predictions and false negative predictions among all the classes.
Recall for each class c is calculated by considering the one-vs-all strategy.

Recall, c =
TPc

TPc+ FNc
(4.2)
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In the equation above, TPc denotes correctly classified samples numbers of c and FNc
denotes the wrongly classified samples number of c. For classes have imbalence prob-
lem, macro average recall is calculated where the recall is calculated for each class sep-
arately and their average is taken. This finally ensures that the model will be equally
penalized for each false-negative instance of any class. For a set of classes C,

Macro Average Recall =
Σn

i=0Recalli
n

(4.3)

4.1.3 Precision

A model’s precision is a metric for how correctly it can identify instances of a given
class. It is determined by dividing the total of true positive forecasts and false positive
predictions by the number of true positive predictions, or predictions that are both
accurate and for the target class (predictions that are correct for the target class but
actually belong to another class). Precision, also known as Positive Predictive Value,
can be determined for each class in a multi-class issue by taking into account only the
predictions made for that class (PPV).

Precision =
TPc

TPc+ FPc
(4.4)

Here, the number of samples that are correctly identified as being in class c is known
as true positive predictions (TPc), whereas the number of samples that are incorrectly
identified as being in class c is known as false positive predictions (FPc). Macro-
average precision is frequently used to determine precision in datasets that are unbal-
anced, meaning that the classes are not distributed equally. This entails determining
precision for each class independently and averaging these results. This makes sure
that any incorrect positive prediction for any of the classes is penalized equally by the
model. The amount of true positive predictions and false positive predictions for each
class should be taken into account while computing precision for a set of classes (C).

Macro Average Precision =
Σn

i=0Precisioni

n
(4.5)

Here, Precision is the precision value for class c, and |C| is the total number of classes.

4.2 Class based analysis of IP102

We trained the IP102 dataset with ResNet50, ResNet152 and ResNet18 and found
insights on the dataset as summarized bellow-
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• Higher number of samples does not guarantee higher accuracy.

• Higher accuracy can be achieved from least number of samples.

• Higher accuracy was achieved from comparatively complex images.

• Lower accuracy were shown from comparatively simple images.

4.3 Experimental Setup

Colab and Kaggle Notebooks were used to generate a python environment with Py-
torch and other python libraries to carry out the experiment of the proposed method.
An Intel Xeon CPU @ 2.00 GHz, thirteen(13) GB Ram and a Tesla P100 16GB VRAM
as GPU were used to conduct most of the experiments. On the other hand we also used
high config Intel Core I9 pc with 24 gb nvdia rtx 3080 for some heavy computation
task like segmentation.

For all the classes, the sample images were split into a 6:3:1 ration for training, val-
idation and testing. Batch size 32 was selected for mini batch gradient descent. Early
stopping was used which help to reduce overfitting problem and improve generaliza-
tion of the model. Each pretrained model was set to train for at least 25 epoch with
early stopping. In our method, a change of 10−4 is considered great. Otherwise it is
considered a not improving epoch. The setting was made to stop training early if the
training completes ten consecutive non imroving epochs. On average most of the mod-
els were able to converge after 20 epochs but two of them got early convergence after
10 epochs. For optimization Adam optimizer was used as it is usually recommended
for classification tasks. Adam optimizer has faster computation time and fewer param-
eters tuning.

Since it is a multiclass classification task, cross entropy loss was used to calculate
the loss.Firstly, the learning rate was set to 0.001 and after every seven non improv-
ing epochs, the learning rate was set to decrease by a factor of 0.1 to assist the model
for finding a set of globally optimal weights that improve generalization. In the ex-
periment, pretrained models were initialized using ImageNet dataset’s weight. Model
checkpoints were used to save the model with the best validation accuracy so that the
training can be continued later from the point it was stopped.

4.4 Performance of Transfer learning and Fine Tuning

To classify insect pests, several advanced deep CNN models were used. These models
were initially trained on the ImageNet dataset and then fine-tuned using samples of
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pests from the IP102 dataset. The advantage of this was that the models were already
able to recognize intricate patterns, allowing for quicker convergence. The aim was to
choose the most appropriate models for the proposed method, so only the final layer of
the classifier, which corresponds to classes number in the dataset, was altered.

As for the experiment we have used eight pretrained models. For this we prepared
all of the models separately. We have used early stopping. The training was stopped if
there was no significant change for consecutive 10 epochs for the validation set. Each
model was evaluated on the test set of IP102 dataset based on the metrics included in
the fig 44.

The main problem with deeper architectures is that the path for information from
input layer to output layer and for the gradient in the opposite direction becomes so
long that they face vanishing gradient problem. so each of the models is tackling the
issue differently. An inception module consists of multiple convolution and a max
pooling operation. using inception module inceptionV3 achieves 68.73% accuracy.
DenseNet and ResNet are very similar with some fundamental differences. ResNet
only uses one prior feature-map while DenseNet uses features from all previous convo-
lutional blocks, despite the fact that they both link to the feature-maps of all preceding
convolutional blocks. It reflects on the result too. DeneNet121 and ResNet101 achieve
69.54% and 70% respectively. As we can see DenseNet161 and ResNet152 achieve
almost the same accuracy of 72%. So it indicates that the deeper model is doing better
on IP102 as there are many variations in the dataset. As the insects are very small in
proportion in the images so we opted for attention based pretrained models such as ViT
and ConvNext. ConvNext adopted all the training methodologies and architecture de-
sign changes introduced by Vision Transformer models. A resNet50 was transformed
into ConvNext using those changes. so ConvNext combines the best of the both CNN
and transformer world. ConvNext outperforms Vision Transformer(ViT) by a little
margin. ConvNext achieves 76% where ViT achieves 75.38%.

We also evaluated the experiment using another pest dataset called D0. Here is the
result.

Table 4.1: Result of pretrained models on D0 dataset using Transfer Learning and Augmenta-
tion

Model Accuracy Precision Recall F1-Score
ResNet152 0.9840 0.9818 0.9817 0.9807

EfficientNetV2 0.9893 0.9940 0.9925 0.9930
ViT 0.9947 0.9962 0.994 0.9940

ConvNext 0.7600 0.9937 0.98170 0.9930
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Figure 4.5: Multiple Conv NN Based Model with Attention

4.5 Attention Mechanism

As discussed in the methodology section, we implemented the literature on attention
mechanisms in CNN[28]. Here is the result author of the literature used a pretrained
model of ResNet50 by fine tuning last layer which achieved 70.53% accuracy, RAN, a
attention module that helps the networks to decide which location of the image may be
focused on , achieved 54.40% accuracy, FPN, an alternative way to construct a pyra-
mid of features for recognizing recognizing objects with highly variant scales, achieved
72%, MMAL-Net was able to achieve 72.15% which is highest among the other mod-
els. Then finally ensemble was done of the each model to get a final result of 72.63%.

We can observe from table 1 that this experiment was not able to perform better
than any pretrained model as there are other pretrained models performing better than
this.

4.6 Performance of ensemble model

We chose four pretrained models based on the result from table 1 which are ResNet,
EfficientNetV2, ViT, ConvNext for ensemble using soft voting. We did soft voting of
two models as an ensemble of multiple models didn’t provide better results than an
ensemble of two models. Here is the table for the ensemble of the pretrained models.
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The following observations can be made from the results listed in Table-

• Based on overall Accuracy, Precision, Recall and F1- score, the performance of
the ensemble of ViT and ConvNext was better than other ensembles. The dataset
has the challenges of inter and intra class variance so ensemble of attention based
pretrained models did better.

• Although the ensemble of ConvNext and ViT did best, we prefer the ensemble
of ConvNext and EfficientNet for realtime classification because both convNext
and ViT are larger models. As accuracy is the main concern till now we propose
vit + convnext. The second best performance is from the ensemble of ConvNext
and EfficientNetv2. ConvNets offer several inductive biases which makes them
well suited for computer task vision e.g translation variance. Further when Con-
vNets are used in a sliding window manner, the computations are shared making
the whole operation efficient.

• ViT usually performs better with large datasets as the inductive biases are not
hardcoded. It learns by itself from the dataset. But a large dataset is always a
challenge. Also it has a major challenge to work with global attention design
with quadratic complexity in ViT. The problem compounds with higher resolu-
tion. ConvNext and EfficientNetV2 shine here being pure CNN models.

4.7 Performance of Region of Interest

The regions of the pest were extracted for the images of the train set using YOLOv5
then the images were fed into the pipeline for training the model. This experiment was
done by using three models named ResNet152, EfficientNetV2, ViT.

From the observation of table 5 and 6 we can conclude that cropping train or train-
val didn’t help to improve. The previous results before cropping were better in every
case. The reason can be that when the image was cropped from the original image, it
was losing information which might be important to the models such as background
etc.

Table 4.2: Result of the experiment using cropped train set only on IP102

Dataset Model Accuracy Prv (without crop)
IP102 EfficientNetV2 0.7223 0.7315

We tried to retrain a model that was already trained on the original dataset using
the cropped dataset (train-val) and vice versa.

Our hypothesis was that retraining an already trained model would be able to fetch
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Table 4.3: Result of the experiment using cropped train-val-test set on IP102

Dataset Model Accuracy Prv (without crop)

IP102
EfficientNetV2 0.7173 0.7315

ResNet152 0.6922 0.7200
VIT 0.7384 0.7538

more relevant information which can boost the accuracy of the models. But it wasn’t
the case. The trained model on the original dataset or cropped dataset wasn’t able to
fetch any new information as there were some critical image(those can’t be identified
with bare eyes). Those needed to be discarded.

Table 4.4: Retrain ResNet152 using both cropped and original dataset of IP102

Model Accuracy Prev (without crop)
ResNet152 0.7000 0.7200
ResNet152 0.7178 0.7200

4.7.1 Performance of STEGO

We previously segmented our dataset with an unsupervised segmentation technique
offered by Hamilton et al. [39]. The accuracy we got from the train dataset was disap-
pointing as it was not up to the mark.

Table 4.5: Result of the experiment using segmented train set only on IP102

Method Dataset Model Accuracy Prev
Segmented dataset(train)
+ Transfer Learning

IP102 EfficientNetV2 0.5896 0.7315

4.7.2 Performance of Refined IP102

As there were many images where either pest is not visible or present, those images
were discarded from the whole dataset including train-val-test. Then we performed the
transfer learning+fine tuning on the refined dataset to observe the change. When the
images with no pest were discarded from the dataset, it improved the overall accuracy
by 5 7% which is a major improvement. This is the case when the test set is changed
with the only yolov5 identified image with 0.5 confidence but if we kept the test set
original then the accuracy dropped drastically. This happened because there are some
categories of images present in the test set that are not available in the train set. so the
model couldn’t generalize properly.
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Table 4.6: Performance of Refined IP102 created by Discarding images that do not include
pest

Dataset (train) Model Accuracy Prev (original)
Changed

ResNet152
0.7744 0.7200

Unchanged 0.5160 0.7200
Changed

ConvNext
0.8382 0.7600

Unchanged 0.6400 0.7600

Table 4.7: Comparison with Existing works on IP102

Reference Accuracy F1-Score
Wu et al. [1] 0.49 0.401
Ren et al. [26] 0.5524 0.5418
Zhou and Su [40] 0.5232 -
Nanni et al. [28] 0.6193 0.592
Ayan et al. [29] 0.6713 0.6576
Yang et al. [41] 0.7329 -
Ung et al. [4] 0.7413 0.6770
Nanni et al. [42] 0.7411 0.729
Peng and Wang [3] 0.7489 0.6814
Khan and Ullah [43] 0.8174 -
Li et al. [44] 0.8650 0.8508
Our proposed work(Ensemble) 0.7800 0.7056
Our proposed Model 0.8500 0.7815
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4.8 Performance of Custom Architecture

Table 4.8: Performance of Custom dataset on both Refined and original IP102

Method Dataset (train) Model Acc Prev
Merging the feature
extractors + custom
classifier

Changed
ConvNext +
ViT

0.8500 0.7600
Unchanged 0.6400 0.7600

original dataset 0.7638 0.7600

This time we tried to combine two feature extractor together to extract the infor-
mation from the images more efficiently. The custom model contains two feature ex-
tractors from pretrained models of ViT and ConvNext. We chose these two because of
its superior performance on IP102. There is a custom classifier of two fully connected
layers, batchnorm1D layers and ReLU activation layers. It showed superior perfor-
mance on both original and refined IP102 dataset.
In refined IP102 the custom model was able to achieve 85% in refined IP102 dataset
but 64% when the original test set was kept. It achieved 76.38% accuracy when trained
on the original IP102 dataset. It performed almost 10% better than the previous one
because unnecessary images were discarded from the dataset which resulted in this
much performance improvement.

Table 4.9: Comparison with Existing works on D0

Reference Accuracy F1-Score
Deng et. al [45] 0.8500 -
Xie et al. [46] 0.8930 -
Thenmozhi and Reddy [47] 0.9597 -
Dawei et al. [48] 0.9384 -
Nanni et al. [42] 0.9553 -
Hazafa et al. [49] 1.00 1.00
Our proposed work 0.9970 0.9966

4.9 Performance comparison with existing works

Finally we have compared our work with existing other literatures. We standout with a
accuracy of more than 78% with ensemble method and our proposed model achieved
a highest of 85% accuracy in IP102 dataset.

We’ve also compared our work in D0 dataset and it stands out with a 99.7% accu-
racy which is the highest after Hazafa et al.’s [49] work.
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Figure 4.8: Result of Focus Region of Interest

4.10 Discussion

4.10.1 Convolutional Block Attention Module (CBAM)

By enabling the model to allocate its focus more discriminatively and effectively, the
CBAM can potentially aid in learning the most salient features of different pest classes
more accurately. This, in turn, may improve the model’s ability to distinguish between
pests that appear similar or are in different growth stages, thereby enhancing the overall
accuracy of the crop pest identification task. So our hypothesis was to integrate CBAM
to ResNet architecture to observe the improvement. But addition of CBAM to ResNet
architecture didn’t improve the result than it achieved previously.

4.10.2 Different growth stage

In the course of our extensive experimentation, we encountered a significant challenge
pertaining to intra-class variation and inter-class similarity of images. The inherent
complexity and diversity of visual data led to scenarios where images belonging to the
same class displayed stark differences, while images across different classes demon-
strated striking resemblances. Such paradoxical occurrences posed a formidable obsta-
cle for each model, as they struggled to accurately categorize certain classes. Conse-
quently, the overall performance of the models fell short of expectations, underscoring
the complex and nuanced nature of image classification tasks. It was determined that
the primary underlying challenge was the varying growth stages of the pests featured in
the images. These different stages introduce additional complexity to the image data,
exacerbating the task of class differentiation and thus posing a significant challenge
to the modeling process. For example in class 27, peach borer(pest) has 3 different
growth stages over the period which makes it difficult for the model to recognize while
inference.

52



Chapter 5

Conclusion

In this study, the traditional method for pest classification was found to have several
problems, such as difficulty in extracting features and a small size of the data sam-
ple. To address these issues, the transfer learning method and pre-trained CNNs were
employed to classify the IP102 pest dataset. The following conclusions were drawn:
The ConvNext model performed better than other pretrained models, achieving 76%
accuracy on the IP102 dataset. In the Ensemble approach, the combination of ViT and
ConvNext achieved the highest accuracy at 78%. The self-attention module in pre-
trained models like ViT is likely responsible for their superior performance. Cropping
pest regions from the training set did not improve performance as it resulted in the
loss of overall information, and retraining the trained model on both the original and
cropped datasets did not help either. However, discarding images that did not contain
pests improved overall performance by approximately 7-10%. The Custom Model per-
formed exceptionally well on the refined dataset where test set only contains the yolo
identified images, achieving 85% accuracy, which was the highest of all the experi-
ments in this paper. It also performed slightly better on the original IP102 dataset.
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