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Abstract

To improve the representational power of convolutional neural networks, several
attention mechanisms have been introduced in recent years. These attention mecha-
nisms are calculated on input feature maps by enhancing some parts of the input data
and diminishing other parts of the input data as all parts of the input do not contain
important features for training. One exception can be seen where weights are used in
place of input feature maps and this approach is known as weight excitation. Since
the weights of a CNN get fine-tuned based on the input data, calculating attention
on weights can be an alternative to calculating attention on input feature maps. One
advantage of this method is that this doesn’t introduce any additional computational
cost at inference time. In this paper, we aimed to overcome the limitations of ex-
isting weight-based attention mechanisms. We have conducted several experiments
to conclude whether weights can be used as an alternative to input feature maps for
computing attention and if this applies to all existing attention mechanisms for Con-
volutional Neural Networks.

Keywords— Convolutional Neural Network, Weight Excitation, Attention Mech-

anisms, Feature Map
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Chapter 1
Introduction

Convolutional neural networks [2] have proven to be very effective in analyzing visual
data and have wide applications in all fields of computer vision. Convolutional Neural
Networks or CNNs are made of up convolutional blocks that consist of filter kernels.
These filters perform convolution operations on the visual data. They consist of weights
or learnable parameters that are acquired backpropagation [3] during the training phase,
depending on various factors like the dataset used, choice of the optimizer [4], and loss

function.

It has been observed through various experiments that all weights or learnable parameters
of a convolutional neural network do not contribute equally to obtaining the final result.
Some weights seem to carry more importance than others. Various existing works have
tried to use this phenomenon to either create a smaller architecture by ignoring or leaving
out the unimportant weights [5] or by attending more to the important weights while
suppressing the less important ones [6], which ultimately resulted in higher accuracy. It
1s also worth mentioning that these attention [7] mechanisms come with little to no ezra
computational expenses for the model during inference time or practical application after
the training phase.

Apart from convolutional neural networks, recently alternative deep learning architectures
like vision transformers [8] and MLP (Multi-Layer Perceptron) Mixer [9] have proven to
be equally competent methods for the analysis of visual data. Transformer architecture
can even surpass convolution-based models as it can capture the global context much
better. MLP mixer is also very useful as it can almost match the accuracy of convolutional
neural networks. MLP mixer-based architectures outperform other models when it comes
to inference speed. No research work exists that takes into account the effectiveness of
weights or learnable parameters in the case of the newer models. As the general principle



of learnable parameters is the same for the 3 mentioned types of architectures, if weight
importance varies in the case of convolution-based models, the same should be the case

for MLP mixer and vision transformer.

Weight Excitation
Module

e —

: cth s s A
(i-1)th layer output 1" layer weights it layer output

Figure 1.1: Preliminary working principle of weight ecxitationt

In our works, we proposed new methods of weight excitation [6] that are more effective
and maintain the same characteristics such as zero inference time overhead. We also
extend weight excitation to other models of computer vision. Formally, we can summarize
our contributions by the following points:

1. Extension of Weight Excitation: As no other work has been done to excite weights
of MLP Mixer architecture, we are the first ones to implement magnitude-based
weight excitation for it. In MLP Mixers, there are fully connected layers. So we

applied the magnitude-based weight excitation to the fully connected.

2. Improvement of Existing Weight Excitation Technique with a Novel Atten-
tion Module: Just like the Squeeze and Excitation module has been used for the
location-based weight excitation in the work of Quader, et al. [6], we took another
approach for this weight excitation. We modified the CBAM (Convolutional Block
Attention Module) [10] to use it as an attention module for location-based weight
excitation and introduced skip connections. The idea behind using skip connec-
tions was that the model might perform better when some weights are not affected
by weight excitation.

3. Generalizing weights to be used as input for all attentions of CNNs We have

conducted extensive experiments to see if weight can be used as input in all types



of attention modules. We have used weights as input in spatial attention, chan-
nel attention, cross-dimensional attention, and branch attention and we saw that
weights could be used as input instead of input feature maps in all of these attention
modules.

4. Checking the regularization effect of weight excitation: We have conducted
extensive experiments to see if weight excitation can be used as a regularization
method. We have repeatedly observed that in our experiments weight excitation
gives us much more smoother curves. This ultimately proves that weight excitation

can be used as a regularization method.

Apart from these, we figured out some limitations and problems of the existing weight

excitation method and proposed some solutions to those.



Chapter 2

Related Works

2.1 Finding important Convolutional neural network pa-

rameters

The earliest work of ConvNet Pruning [5, 11-13] came into existence by identifying
important parameters and removing unimportant parameters to simplify networks, im-
prove generalization, reduce hardware or storage requirements and increase the speed
of training. These pruning methods included- pruning convolutional neural networks for
resource-efficient inference [14], compressing deep neural networks with pruning, trained
quantization and Huffman coding [13], and second-order derivatives for network prun-
ing [12].

after pruning

Figure 2.1: NN Pruning



2.2. ATTENTION ON INPUT FEATURES

We have found 3 common criteria for identifying important ConvNet parameters-

* Higher minimal increase in training error after removing a parameter indicates

higher importance [11, 12]
* Higher magnitude parameters correspond to higher importance [14, 15]

* High or low importance of convolution filter weights depends on location [1]

£ N
Train Connectivity
- J
<
' N
Prune Connections
. J
<
' ™
Train Weights
LN 7

Figure 2.2: Three-step training pipeline for learning weights and connections

2.2 Attention on Input Features

In most of the earlier works, attention has been applied to activation maps/feature maps
[1,10,16,17]. These architectures calculate attention on feature maps to increase the mod-
els’ representation capacity. Squeeze and excitation Network [1] is such an architecture
that calculates the channel attention map of feature maps to produce refined feature maps.
Squeeze and Excitation block is a simple and lightweight module that can be easily inte-
grated into Convolutional Neural Networks with minimal additional computational cost.
To Iimit model complexity and aid generalization, SE parameterizes the gating mecha-
nism by forming a bottleneck [18] with two fully connected (FC) layers around the non-
linearity. One limitation of the SE block is that it doesn’t consider the spatial attention of

mnputs.

To overcome the limitations of SE [1], Convolution Block Attention Module [10] was
introduced. Given an intermediate feature map, the CBAM module sequentially infers
attention maps along two separate dimensions, channel and spatial, then the attention

maps are multiplied by the input feature map for adaptive feature refinement.

After CBAM [10], Bottleneck Attention Module [16] was introduced. BAM infers two
types of 3D attention maps - channel attention map and spatial attention map. In the chan-



2.2. ATTENTION ON INPUT FEATURES
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Figure 2.3: A Sgeeze and Excitation Block

Convolutional Block Attention Module

Spatial Refined Feature
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Figure 2.4: Convolutional Block Attention Module

nel attention module, the feature map in each channel is aggregated using global average
pooling [19] to produce a channel vector that encodes global information in each channel.
The spatial attention map is produced to emphasize or suppress features in different spatial
locations. The feature is projected into a reduced dimension using 1x1 convolution [19]

to integrate and compress the feature map across the channel dimension.

One of the glaring problems with the CBAM module was the relationship between chan-
nel attention and spatial attention was ignored. Since channel attention and spatial atten-
tion are being calculated separately, there is very little scope to capture the interdepen-
dence of the two. This problem was solved by Misra er al. [20]. The work proposed a
Convolutional Triplet Attention Module [20] that calculated attention whilst considering
the interrelations between the height, width, and channel dimension of the input tensor.
This did 2 things very effectively, firstly it helped in capturing rich discriminative feature
representations at a negligible computational overhead. Secondly, it captured the interac-

tion between the spatial dimensions and the channel dimension of the input tensor.



2.3. ATTENTION ON WEIGHTS

Residual
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Figure 2.5: Convolutional Triplet Attention Module. Observe that each branch is cal-
culating attention along a particular plane, which is then broadcasted to meet the same
dimensions as input. Later the three attention maps are averaged.

H

2.3 Attention on weights

Prior works include Weight Normalization [21] which is a Weight Reparameterization
technique used to decouple the length of weight vectors from their directions. After this
other weight reparameterization techniques such as - Weight Standardization [22] and
Spectral Normalization [23] were introduced. Han et al showed the importance of learning
weights along with connections in a neural network [5]. The concept of weights having
different levels of importance based on their location was first introduced in the ablation

study of Squeeze and Excitation Networks [1].

The results found from [5] and [1] worked as the motivation to research weight-based
attention. To provide more attention to important weights based on magnitude and loca-
tion, the Weight Excitation [6] method was introduced. This weight reparameterization
method emphasizes the important weights during training and suppresses the less impor-
tant weights. This method increased the accuracy of Convolutional Neural Networks [20]

without introducing any additional computational cost during the inference stage.

Weight Excitation proposed 2 new strategies to figure out the attention of weight kernels.
In the first case, an observation was made that weights with higher magnitude weights
had more importance. So, an activation function was designed to increase the important

weights and suppress the less important ones.

Another approach was location-based weight excitation. This method identified weights



2.3. ATTENTION ON WEIGHTS

Magnitude-based weight excitation
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Figure 2.6: Magnitude-based weight excitation. The graph shows the activation function
that has been used. Observe that the values at the extreme ends are increased compared
to their identity values.

based on their location in the kernel block and assigned an attention map for every channel
in the filter kernel.
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Figure 2.7: Location-based weight excitation. The flow chart shows how location-based
weights are calculated. The portion is marked red in an SE module. It works differently
as the input in this case is the filter kernel itself and the output is a modified filter kernel.

Recently, there have been many advances in the field of dynamic convolution [24]. Dy-
namic convolution is a concept where architectures have multiple kernels that are dynamic
and weighted by attention maps based on the input features. The basic intuition is that
instead of having just one set of weights, we can have multiple sets of weights that have
different attention based on the input features. This work was advanced by the intro-
duction of omnidirectional attention [25] that takes into account the attention of weight
kernels from 4 different aspects like the number of parameters, spatial size, and the num-
ber of input and output channels.



2.4. WEIGHT-BASED ATTENTION IN DIFFERENT ARCHITECTURES OTHER THAN
CNN 9

attention

avg pool

[ conv, J [ conv, ]

FC * & ans sas *
L

— Data flow

------------- » Model parameter flow

Figure 2.8: Dynamic convolution. Each convolution block has an attention magnitude
multiplied with it. This results in a much better representation power by the CNN model.

2.4 Weight-based attention in different architectures other
than CNN

Successful implementation of Weight Excitation in a Convolutional neural network and
improved classification and detection accuracy motivated us to look into other architec-
tures [8,9] where Weight Excitation can be applied. MLP Mixer [9] is a simple architec-
ture built entirely on multi-layer perceptrons [26]. Vision Transformer is an architecture
that can very effectively take into account the global context of data. Applying weight ex-
citation in such diverse architectures can be a very impactful contribution to the computer

vision community.



Chapter 3
Preliminary Experiments

We have conducted several preliminary experiments based on our initial hypothesis. The
experiments that were conducted covered different fields of work. Our initial plans con-
sisted of improving weight excitation for convolutional neural networks and then applying
weight excitation to other architectures like MLP Mixer and vision transformer. We ended
up trying both types of experiments in parallel and have achieved preliminary success in

both. Details of the experimentations have been discussed below:

3.1 Implementing Location-based Weight Excitation with

different existing Attention Modules

3.1.1 Channel Attention Module: Revisiting Squeeze and Excitation
Squeeze and Excitation Module for LWE

Squeeze and Excitation module was used in the original weight excitation paper for
location-based weight excitation. Two types of operations are performed in this mod-
ule. In squeeze operation, we pass the input feature map to this module and it aggregates
features across the spatial dimension. This gives us a feature descriptor that contains the
global distribution of the channel-wise feature responses. The excitation operation helps
to fully capture channel-wise dependencies by learning non-linear interaction between
channels. The output of this block is a modified feature map that helps to boost feature

discriminability.

10



3.1. IMPLEMENTING LOCATION-BASED WEIGHT EXCITATION WITH DIFFERENT

EXISTING ATTENTION MODULES
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Figure 3.1: The schema of the original Residual module (left) and the SE-ResNet module
(right). [1]

3.1.2 Channel and Spatial Attention Module : CBAM, BAM
Convolution Block Attention Module for LWE

CBAM module is an improvement to Squeeze and Excitation module. This applies both
channel and spatial attention to the input in a sequential manner. In the channel atten-
tion module, Average pooling aggregates spatial information and Max-pooling gathers
important clues about distinctive object features. The Spatial attention map in the chan-
nel attention module encodes where to emphasize or suppress weights. The following

equations 4.1 and 4.2 are used here

W' =M(W)@W (3.1)

W" = MW" @ W' (3.2)

Channel Attention Block: The input to this weight excitation module is the NxN convo-
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Figure 3.2: CBAM Module

lution filter kernels. At first, we generate two spatial context descriptors for aggregating
spatial information of weights using average pooling and max pooling operation in par-
allel. Then both of the spatial context descriptors are passed through a shared network.
The shared network/MLP consists of two fully connected layers and a hidden layer. The
output of this shared network is passed through a sigmoid layer. The output of the sig-
moid layer gives us our channel attention map. We perform channel-wise multiplication
of this channel attention map with the original filter kernel to get modified weights. The

following equation 4.3 is used here

M.(F) =o0(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= o(Wi(Wo(Fg,,) + Wi(Wo(F.0))

avg mazx

(3.3)

Spatial Attention Block: The modified weights from the output of the channel attention
module are passed as input to the spatial attention module. Here max operation and
mean operation is performed on the input weights and their outputs are concatenated.
Then we perform convolution on the output of the concatenation operation. The result of
convolution is passed through a sigmoid layer which gives us our spatial attention map.
Next, we perform element-wise multiplication of the spatial map with the output from
the channel attention module to produce the final output of our location-based weight
excitation module. The size of the filter kernel remains the same after applying weight
excitation. The following equation 4.4 is used here

M (F) = o(f™"([AvgPool(F); MazPool(F)]))
— U(fTXT(IFS _Fs

avg? mam] ))

(3.4)
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Figure 3.3: CBAM Flow Chart

Placement of Attention Blocks: Channel attention and spatial attention modules can be
placed sequentially one after another or in parallel. In [10] it was shown that placing the
two modules separately produced better results. In our weight excitation architecture, we
placed the channel attention module first and then sequentially placed the spatial attention

module.

Spatlal attention

|
: G1anne| attention
1
Previous '
conv blocks

ResBlock + CBAM

Figure 3.4: CBAM Flow Chart

Next
conv blocks

Bottleneck Attention Module

Similar to CBAM, BAM [16] also infers both channel attention and spatial attention, un-
like Squeeze and Excitation approach. Here, for a given input feature map F € RE*H>W,
BAM infers a 3D attention M (F) € RE*#>*W  The channel attention M (F) € R® and
the spatial attention M,(F) € R"*W are computed at two separate branches. Finally, the
attention map M(F) = o(M.(F) + M,(F)) is computed. The refined feature map F is
computed as: F' = F + F @ M(F)

Channel Attention Block: Here as each channel contains a specific feature response, the
feature map in each channel is aggregated using global average pooling on the feature
map F and produces a channel vector F, € R“*'!. This vector softly encodes global

information in each channel. To estimate attention across channels from the channel
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vector F, , it uses a multi-layer perceptron (MLP) with one hidden layer. After the MLP,

it adds a batch normalization (BN) layer to adjust the scale with the spatial branch output.

M.(F) = BN(MLP(AvgPool(F)))

(3:3)
= BJ\‘.(W’H(H'[]AUQPOO!(F) + bU) + bl)

Spatial Attention Block: The spatial branch produces a spatial attention map M (F) €
RH*W o emphasize or suppress features in different spatial locations. The feature F €
RE*HXW s projected into a reduced dimension F € R(C/MXHXW ysing 1x1 convolu-
tion to integrate and compress the feature map across the channel dimension. After the
reduction, two 3x3 dilated convolutions are applied to utilize contextual information ef-

fectively. Finally, the features are again reduced to R'*7*W

spatial attention map using
1x1 convolution. For scale adjustment, a batch normalization layer is applied at the end

of the spatial branch.

M,(F) = BN(f3™ (£ (f{*(fe (F))))) (3.6)
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Input }— Channel= M tF) ERI I
tensor

Figure 3.5: BAM Block Diagram

3.1.3 Branch Attention / Cross Dimensional Attention Module: Ro-
tate to Attend

Triplet attention is a novel method to measure attention weights by capturing the cross-
dimensional interaction of the input tensors. This attention module comprises of three
branches each responsible for capturing crossdimension between the spatial dimensions
and channel dimension of the input. It builds inter-dimensional dependencies by the ro-
tation operation followed by residual transformations. After that it encodes inter-channel
and spatial information with negligible computational overhead. It is lightweight and ef-

ficient. It ensures rich feature representation by capturing cross-dimensional interaction
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at the time of computing attention weights.
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Figure 3.6: Triplet Attention Method: Rotate dimensions to capture cross-dimensional
interaction

Upon receiving an input tensor, each of the branches of the triplet attention module cap-
tures the cross-dimension between the spatial dimensions and channel dimension of the
input. If the shape of the input tensor is (C x H x W), each branch aggregates cross-
dimensional interactive features between either the spatial dimension H or W and the
channel dimension C. This is done by permuting the input tensors in each branch and then
passing the tensor through a Z-pool, followed by a convolutional layer with a kernel size
of KXK. Then sigmoid activation layer is applied to generate attention weights. These at-
tention weights are then applied to the permuted input tensor. After this, the input tensor
1s permuted back to the original input shape. This way triplet attention method captures
cross-dimensional interaction without any dimensionality reduction. It also eliminates

indirect correspondence between channels and weights.

We modified the triplet attention module to take weights as input instead of feature maps.

Experimental results confirmed that this module can be used for weight excitation as well.

3.2 Improving LWE with Novel Attention Module (Mod-
ified CBAM + Skip Connections)

Existing location-based weight excitation was implemented using the Squeeze and Ex-
citation module. The problem with that module was that it used only average pooling
features and didn’t utilize the max pooling features. [27]. Only channel attention was
applied for location-based weight excitation. To produce finer location importance maps,
we used CBAM which utilizes both average pooled and max pooled features of weights.
This weight excitation module sequentially infers a channel attention map and a spatial

attention map. In the channel attention module, Average pooling aggregates spatial in-
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Figure 3.7: Comparisons with different attention modules: (a) Squeeze Excitation (SE)
Module; (b) Convolutional Block Attention Module (CBAM); (c¢) Global Context (GC)
Module; (d) triplet attention (ours). The feature maps are denoted as feature dimensions,
e.g. C x H x W denotes a feature map with channel number C, height H and width
W. represents matrix multiplication, denotes broadcast element wise multiplication and
denotes broadcast element-wise addition.

formation and Max-pooling gathers important clues about distinctive object features. The
Spatial attention map in the channel attention module encodes where to emphasize or
suppress weights. Channel attention and spatial attention modules can be placed sequen-
tially one after another or in parallel. In [10] it was shown that placing the two modules
separately produced better results. In our weight excitation architecture, we placed the

channel attention module first and then sequentially placed the spatial attention module.

Previously, we changed all of the model weights using the weight excitation method.
But it’s possible that the model’s entire weight doesn’t need to be changed. Some of the
original weights were preserved using skip connections. The model was able to produce
sharper attention and gain a better knowledge of the dataset by leaving some weights

unchanged. As aresult, the model was able to predict the training set data more precisely.

In our previous experiments, activation was accomplished through ReLU. We came to the
conclusion that Leaky ReLU will function better for weight excitation after conducting
experiments with various activation functions. Because of this, we used Leaky ReLU
rather than RelU.
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3.3 Experiment with different activation functions for mag-

nitude based weight excitation

3.3.1 Experiment with existing activation functions for MWE

In the original paper, the proposed activation function was differentiable and avoided van-
ishing and exploding gradient problems. We have tried out different types of activation
functions for magnitude-based weight excitation. We did this by plotting the curve and
seeing if the curve increases the higher magnitude value while decreasing the lower mag-
nitude values. None of the existing activation functions showed promising results. The

activation functions that we tried are as follows:

* Sigmoid Activation Softsign Activation

e Tanh Activation

Softplus Activation
* ReLU Activation

Shifted Softplus Activation

GELU Activation

Lecun’s Tanh Activation

Leaky ReLU Activation

* SWish Activation

StarRelLU Activation

None of these existing activation functions gave us satisfactory results. Some of these
were quite close to what we were expecting and some of these were not suitable for
weight excitation experiments. So, we tried modifying some existing activation functions

to get our desired results.

3.3.2 Experiment with novel activation function for MWE

After seeing no improvement in magnitude-based weight excitation after using existing
activation functions, we tried to formulate an activation function that works well for
MWE. We devised an activation function that does not decrease the lower magnitude
weights as much as it increases the higher magnitude weights. Our reasoning behind this
was that lowering the value of lower magnitude weights might remove some important

feature descriptions. This ensured that no feature was neglected.

0.5z

3.7
log(1 + exp™ G0

U.Ci:r)
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In order to formulate new activation functions, we followed a number of steps. The first
thing we did was plot various existing activation functions in Desmos which is a graph
plotting software. Then we modified these activation functions and observed the resul-
tant curves. After experimenting with different functions and modifying them, we came
up with a function that increases the higher magnitude values but decreases the lower
magnitude values by a very small margin. Then we used this function as our activation
function for MWE. When we ran this experiment for 30 epochs, we saw an improvement
in accuracy. But after training the model till convergence, no significant improvement in

accuracy was seen.

Figure 3.8: Graph of our proposed activation function

3.4 Paused Weight Excitation method
Some issues with the existing Weight Excitation method :

* If we re-calibrate [28] weights from the very first epoch, our model will fail to learn

properly.

* Applying WE without the knowledge of important weights can produce erroneous

results.

Proposed Solution : Training the model without any weight excitation for the initial few
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epochs. Then we will apply weight excitation to emphasize the important weights and

suppress the less important weights.

Training without WE

I
Trained Model

<
Apply WE on pre-trained model

<

Further training

Figure 3.9: Proposed Method

3.5 Weight Excitation in MLP Mixer

MLP Mixer is a new and forthcoming deep learning model for visual data analysis. MLP
Mixer was developed by the Google Research team. As mentioned earlier, it is a very
simple model in terms of architecture but it can perform very well even when compared
to state of the art architectures like ConvNets and Vision Transformers. That being said,
unlike Convnets, MLP Mixer has not seen any attention modules being developed for it.
Keeping this in mind, we extend the concept of weight excitation to MLP Mixers. We
use the magnitude based weight excitation method for this purpose. We modify the fully

connected layers of the MLP mixer to use the activation function given below in 3.8

]_ —|—w/;"'.fA

e 3.8
1-— Cb'/i"fA ( )

wyuwe = fa(W)= M4 x 0.5 x In
Where, My = (1+€4) x M, M being the maximum magnitude of weights in the kernels

and e 4 is the hyper-parameter for modifying weight within the range 0 < €4 < 0.2
multirow

This ensures that the weights of the MLP Mixer are changed according to their magni-
tudes, such that the weights with higher magnitudes are given more importance. MLP
Mixer is entirely formed of fully connected layers. This means the weight excitation is
being applied at all levels, from channel mixing layers, and token mixing layers all the

way to the final fully connected classifier. MLp mixer only has fully connected layers.
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So, the application of location-based weight excitation where we identify important chan-
nels, was not possible here. That is why only tried magnitude-based weight excitation In
order to perform well, MLP MIxer has to be trained on very large datasets( Imagenet 21k
and JFT 300M). Which was out of our scope.
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Figure 3.10: MLP Mixer with weight Excitation. The red marked regions show where
magnitude based weight excitation has been applied.

3.6 Weight Excitation as an alternative to Regularization

Regularization [29] is an important step in model training which helps the model to avoid
overfitting. Overfitting occurs when the model fits the training data very well but it fails
to generalize on the test dataset or unseen dataset. This happens because the model learns
the noise of the traing data which helps the model to memorize the training data instead

of learning the patterns in the training data. Overfitting results in poor accuracy.

Cv)

Figure 3.11: (a)Over-fitting, (b) Appropriate fitting (c)Under-fitting in Machine Learning

The weight Excitation method smoothens the learning curve, so the effect of applying
weight excitation on a machine learning model is quite similar to the effect of apply-
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ing regularization. It increases accuracy on test data, reduces noise, and smoothens the
learning curve. If we plot the training vs test accuracy graph, the graph where we use
regularization, and the graph where we use weight excitation both give a smoother curve

compared to the graph where none of the two is used.

ngf‘l vanance HK_]I'I bias Low bias, low vanance
overfitting underfitting Good balance

Figure 3.12: Effect of bias and variance on Machine Learning Model

In our weight excitation method, we have used weight standardization to make weight
excitation more effective. This approach made the learning curve more stable than before
and accelerated the learning process. So, it can be said that the effect of applying weight

excitation to a model is similar to the effect of applying regularization to a model.



Chapter 4

Proposed Method

4.1 Improving LWE with Novel Attention Module (Mod-
ified CBAM + Skip Connections)

Existing location-based weight excitation was implemented using the Squeeze and Ex-
citation module. The problem with that module was that it used only average pooling
features and didn’t utilize the max pooling features. [27]. Only channel attention was
applied for location-based weight excitation. To produce finer location importance maps,
we used CBAM which utilizes both average pooled and max pooled features of weights.
This weight excitation module sequentially infers a channel attention map and a spatial
attention map. In the channel attention module, Average pooling aggregates spatial in-
formation and Max-pooling gathers important clues about distinctive object features. The
Spatial attention map in the channel attention module encodes where to emphasize or

suppress weights. The following equations 4.1 and 4.2 are used here.

W'=M(W)®W 4.1

W' = MW" @ W' (4.2)

4.1.1 Channel Attention Module

The input to this weight excitation module is the NxN convolution filter kernels. At

first, we generate two spatial context descriptors for aggregating spatial information of

22
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Figure 4.1: CBAM Module

weights using average pooling and max pooling operation in parallel. Then both of the
spatial context descriptors are passed through a shared network. The shared network/MLP
consists of two fully connected layers and a hidden layer. The output of this shared
network is passed through a sigmoid layer. The output of the sigmoid layer gives us our
channel attention map. We perform channel-wise multiplication of this channel attention
map with the original filter kernel to get modified weights. The following equation 4.3 is

used here

M.F)=0(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= o(W1(Wo(Fapg) + Wr(Wo(Frraz))

avg :

(4.3)

4.1.2 Spatial Attention Module

The modified weights from the output of the channel attention module are passed as input
to the spatial attention module. Here max operation and mean operation is performed on
the input weights and their outputs are concatenated. Then we perform convolution on
the output of the concatenation operation. The result of convolution is passed through a
sigmoid layer which gives us our spatial attention map. Next, we perform element-wise
multiplication of the spatial map with the output from the channel attention module to
produce the final output of our location-based weight excitation module. The size of the

filter kernel remains the same after applying weight excitation. The following equation
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4 .4 1s used here

M,(F) = o(f™"([AvgPool(F): MazPool(F))))

) (4.4)
= o (F([Feys Foul))

4.1.3 Placement of attention modules

Channel attention and spatial attention modules can be placed sequentially one after an-
other or in parallel. In [10] it was shown that placing the two modules separately produced
better results. In our weight excitation architecture, we placed the channel attention mod-

ule first and then sequentially placed the spatial attention module.

SkipC
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Figure 4.2: Our Novel Attention Module

4.1.4 Skip Connections

In the weight excitation method, we modified all the weights in the model. But all of the
weight in the model might not need modification. We used skip connections to keep some
of the original weights unchanged. Keeping some weights unchanged allowed the model
to produce finer attention and get a better understanding of the dataset. This allowed the

model to predict more accurately on the training set.

4.1.5 Activation Function

Previously ReLU was being used for activation. Our experiments with different types

of activation functions led us to the conclusion that Leaky ReLU will perform better for
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weight excitation. That is why we used Leaky ReLU instead of ReLU.

4.2 Global Weight Excitation

Global Weight Excitation is an approach to learn the global representations of the weights.

So the approach was that, instead of integrating the weight excitation module with the
convolutional layer itself, the plan is to build a separate module which can be called by

convolutional blocks according to their requirement.

This will help to the module to learn a global representations of the weight.

Global Weight
Excitation Module

Return weights Return weights

Convolutional Convolutional
Block Block

Figure 4.3: Global Weight Excitation



Chapter 5
Datasets

To test the effectiveness of the weight excitation technique, several datasets have been
used for different tasks. For Image Classification, Cifar10 [30], Cifar100 [30], and Ima-
geNet [31] datasets have been used. For Semantic Segmentation, the PASCAL VOC [32],
and for Action Recognition, the Mini Kinetics dataset [21], and for Gesture Recognition,
the Jester dataset [17] has been used.

CIFAR-10

The CIFAR-10 dataset (Canadian Institute for Advanced Research, 10 classes) is a subset
of the Tiny Images dataset and consists of 60000 32x32 color images. The images are
labeled with one of 10 mutually exclusive classes: airplane, automobile (but not truck
or pickup truck), bird, cat, deer, dog, frog, horse, ship, and truck (but not pickup truck).
This dataset is divided into five training batches and one test batch. Each of the batches
contains 10,000 images. The test batch contains exactly 1000 randomly-selected images
from each class. The training batches contain the remaining images in random order, but
some training batches may contain more images from one class than another. Between
them, the training batches contain exactly 5000 images from each class.The classes are
completely mutually exclusive. The total size of this dataset is 170 mb. We have con-
ducted several experiments on this dataset to see the effects of weight excitation. We have

come to the conclusion that this dataset is too small to benefit from weight excitation.

26
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Figure 5.1: Cifar10 Dataset

CIFAR-100

Similar to CIFAR-10, the CIFAR-100 dataset also consists of 60000 32x32 color im-
ages but it has 100 classes. These 100 classes in the CIFAR-100 are grouped into 20
superclasses. There are 600 images per class.The dataset is divided into five training
batches and one test batch, each with 10000 images. The test batch contains exactly 1000
randomly-selected images from each class. The training batches contain the remaining
images in random order, but some training batches may contain more images from one
class than another. Between them, the training batches contain exactly 5000 images from
each class. The classes are completely mutually exclusive. Each image comes with a
“fine” label (the actual class to which it belongs) and a "coarse” label (the superclass to
which it belongs). The total size of this dataset is 170 mb. Since we did not have enough
resources to fully train our model on Imagenet, we carried most of our experiments on
this dataset.
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Figure 5.2: Cifar100 Dataset

ImageNet

The ImageNet dataset contains 14,197,122 annotated images according to the WordNet
hierarchy. This dataset serves as a reference for object detection and image classification.
It is a publicly available dataset that includes a collection of training photographs that have
been carefully labeled. Additionally, a set of test photos is made available without manual
annotations. The two types of ILSVRC annotations are (1) image-level annotations with
a binary label indicating whether or not an object class is present in the picture, and (2)
object-level annotations with a small bounding box and a class label enclosing an instance

of an object in the image.
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Figure 5.3: ImageNet Dataset
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PASCAL VOC

The PASCAL Visual Object Classes (VOC) 2012 dataset contains 20 object categories.
This dataset has been widely used as a benchmark for object detection, semantic segmen-
tation, and classification tasks. The PASCAL VOC dataset has a total number of 2913

1mages.

Figure 5.4: PASCAL VOC Dataset

Tiny ImageNet

This dataset contains 100,000 images belonging to 200 classes having 500 images each.
All the images are downsized to 64x64 colored images. Each class has 500 training im-
ages, 50 validation 1mages, and 50 test images. Since we did not have the resources to
train our model on Imagenet dataset for more than 5 epochs, we went for the downsized
version of Imagenet. We used this dataset to understand how weight excitation will per-
form on Imagenet. Uisng this model we were able to train our model till convergence.

CINIC-10

CINIC-10 dataset contains a combination of images from two benchmark datasets- Cifar-
10, and Imagenet. It extends the Cifar-10 dataset by including downsampled images from
the Imagenet dataset. This dataset contains 2,70,000 images belonging to 10 classes.
The dataset is equally divided into train, test, and validation subsets. Each of the subsets
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contains 90,000 images. This dataset is used for performing image classification tasks.
It can be used to identify how well the models trained on the Cifar-10 dataset performs
on the Imagenet dataset. We have experimented with this model to figure out how well
weight excitation works when our dataset combines the features of Cifar-10 and Imagenet
both.
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Figure 5.5: CINIC-10 Dataset




Chapter 6

Experiments and Result Analysis

6.1 Results for Location-based Weight Excitation using
different Attention Modules

6.1.1 Results for Location-based Weight Excitation using SE

We used Resnext architecture as our convolutional neural network model. Our experi-
ments were carried out on the CIFAR-100 dataset. We ran the model for 164 epochs as
the model was run for 164 epochs in the original weight excitation paper. Our model
reached convergence within 150 epochs. We got 80.2% accuracy on the test set using
squeeze and excitation as the attention module. The accuracy in the original paper was
81.5% using the same model architecture. Using different resources for training might

have caused the slight change in results.

Table 6.1: Performance Analysis of SE

Architecture No. of Epochs | Dataset | Accuracy (%) | Comment
ResNext+LWE (SE) 164 Cifar 100 81.5 WE Paper
ResNext+LWE(SE) Cifar 100 80.2 Experiment

6.1.2 Results for Location-based Weight Excitation using CBAM

We shall now look into the preliminary experiments that have been conducted with our
objectives in mind. All our experiments were performed on the Kaggle website. Firstly,
we look at the experiments that were conducted to improve the location-based weight

excitation mechanism for convolutional neural networks. The original work made use

31
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of a Squeeze and Excitation block for generated kernel-wise attention. Another module
named the Convolutional Block Attention Module (CBAM) was experimented in place
of the Squeeze and Excitation block. The result showed that the Convolutional Block
Attention Module(CBAM) gave better results when tested on the Cifar100 dataset. The
number of epochs was limited to 10 due to computational resource limitations.

Table 6.2: Performance Analysis of CBAM

Architecture Epochs | Dataset | Accuracy (%)
ResNext 10 Cifar100 36.78
ResNext + LWE(SE) 10 Cifar100 37.86
ResNext + LWE(CBAM) 10 Cifar100 39.76

In this experiment, it is clear that the ResNext architecture does very well when paired
with CBAM. It is performing much better than ResNext paired with the SE module and
vanilla ResNext as well. Now that this combination is doing well in the cifar100 dataset,
we intend to train it further for more epochs. Also, we plan to repeat the experiments with

the ImageNet dataset for further analysis.

Table 6.3: Performance Analysis of CBAM

Architecture No. of Epochs | Dataset Accuracy (%) | Comment
ResNext+LWE (SE) Cifar 100 8l:5 WE Paper
ResNext+LWE(SE) 164 Cifar 100 80.2 Experiment

ResNext+LWE(CBAM) Cifar100 80.1 Experiment

6.1.3 Results for Location-based Weight Excitation using Cross Di-
mentional Attention

We know that triple attention module outperforms CBAM ans SE module when we use
feature maps or images on input. However, when we modified the triple attention module
to take weights or convolutional filters as input, we did not see any signifact improvement.
There was a slight increase in accuracy. Though it can be said that it performed similar to
SE and CBAM with less number of parameters. It doesn’t help to impprove the accuracy

much but it certainly helps to make the model lighter.



6.2. PERFORMANCE ANALYSIS OF OUR NOVEL LOCATION-BASED WEIGHT
EXCITATION METHOD

Table 6.4: Performance Analysis of Rotate to Attend on Cifar 100 Dataset

Architecture No. of Epochs | Dataset | Accuracy (%) Comment
WE paper +
ResNex: 80:3 Our Experiment
ResNext+LWE(SE) 164 Cifar100 81.5 WE Paper
ResNext+LWE(SE) 80.7 Our Experiment
ResNext+LWE :
(Rotate to Attend) 80.1 Our Experiment

6.2 Performance Analysis of our Novel Location-based
Weight Excitation method

The original weight excitation method got an accuracy of 81.5% on Cifar100 dataset when
trained upto convergence. But, when we cloned thier experiment in our labs, we got an
accuracy of 80.7%. After conducting the experiment with our proposed methodology in

the same machine we got an accuracy of 81.63% which is quite an improvement.

Table 6.5: Performance Analysis of our Novel Location-based Weight Excitation method
on Cifar 100

Architecture No. of Epochs | Dataset | Accuracy (%) Comment

WE paper +
BesiNext S Our Experiment

ResNext+LWE(SE) 164 Cifar100 81.5 WE Paper
ResNext+LWE(SE) 80.7 Our Experiment
ResNext+LWE .
o 81.63 Our Experiment
(Ours)

We ran the experiment with our proposed novel attention module for 50 epochs in the
Cinicl0 dataset. Our proposed methodology similar to the original weight excitation
method. The hypothesis for this is that the data points of this dataset were very close and
are very specific and so, there is not much room for making much changes. The original
weight excitation method got an accuracy of 78.52% and our proposed method got an
accuracy of 78.53%.

Table 6.6: Performance Analysis of our Novel Location-based Weight Excitation method
on Cinic-10

Architecture No. of Epochs | Dataset | Accuracy (%)
ResNet18 77.96
ResNet18+LWE(SE) 50 Cinic 10 78.52
ResNet18+LWE(Ours) 78.53
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We ran the experiment with our proposed novel attention module for 5 epochs in the
ImageNet dataset. Our proposed methodology performed better than the original weight
excitation method in every epoch. If continued upto convergence, we are hopeful that it
will reach convergence faster with a possibility of higher accuracy. The original weight
excitation method got an accuracy of 56.312% and our proposed method got an accuracy
of 56.966%.

Table 6.7: Performance Analysis of our Novel Location-based Weight Excitation method
on Imagenet

Architecture No. of Epochs | Dataset | Accuracy (%)
ResNet18 55.256
ResNet1 8+LWE(SE) 5 ImageNet 56.312
ResNet18+LWE(Ours) 56.966

We can see from the graph that our novel attention module performs better than SE mod-

ule. It gives a smoother learning curve than that of original ResNet18 model.

6.3 Results for Magnitude based Weight Excitation using

Novel Activation Function

Significant improvement was seen when we experimented with few number of epochs.
This gave us the motivation to train the model till convergence to ensure it actually works.
But when we trained the model till convergence, negligible increase in accuracy was
observed. The reason behind this can be using a small datset. We are hopeful that this
activation will perform way better if we try it out on Imagenet dataset. Small dataset can’t

utilize the effect of weight excitation properly like large datsets.

Table 6.8: Performance Analysis of Magnitude Based Weight Exciation

Architecture 2?;:;‘;; No. of Epochs | Dataset | Accuracy (%)
ResNext None 77.961
ResNext+MWE | WE Paper 164 Cifar 100 18.329
ResNext+MWE | Ours 77.719

We have also compared the learning curves of models on which magnitude-based weight
excitation has been applied and on which magnitude-based weight excitation has not been
applied. If we look at the learning curve of Resnet-18, we can see that this model achieves

higher accuracy after using magnitude-based weight excitation. This happens because
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Figure 6.1: Comparison of Original WE and our proposed novel methodology on Ima-
geNet

MWE helps the model to learn faster and better.

We have tried to come up with our own activation function for MWE. Our target was
to devise an activation function that will increase the higher magnitude weights a little
bit and decrease the lower magnitude weights by a smaller margin. Though we thought
this method would give us better results, this resulted in lower accuracy than the original
ResNet-18 model. One reason can be that our dataset was not large enough to realize
the effects of this model. Another reason can be that weights should be increased and

decreased by the same margin.
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Figure 6.2: Comparison between the learning curve of ResNet18 before and after applying
MWE

6.4 Results for Magnitude-based Weight Excitation on
MLP Mixer

Now moving on to our next set of experiments, as mentioned in our contributions, we
want to extend the concept of weight excitation to MLP Mixers and Vision Transformers.
With that view in mind, we tested the magnitude-based weight excitation on MLP Mixers.
The idea was that MLP mixer is made up of fully connected layers, which is the same as
1x1 convolution. So if weight excitation worked for convolutional neurals networks with
1x1 convolution blocks, it would work for MLP mixers too. The result we obtained are
as follows in the case of the cifar100 dataset. In the original weight excitation paper, the
test was carried out on the Imagenet dataset and improvements were seen.

Table 6.9: Performance Analysis of Weight Exciation on MLP Mixer

Attempt | Epochs | Accuracy without MWE (%) | Accuracy with MWE (%)
01 30 54.27 54.63
02 30 3371 5474
03 30 53.50 5542

The table shows that on multiple attempts, we are seeing improvement in accuracy. But
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Figure 6.3: Comparison between the learning curve of ResNet18 before and after applying
Modified MWE

the problem is that the model in general overfits the cifar 100 dataset. This makes it
difficult to say whether the improvement in accuracy will hold on in the case of other
datasets.

We also conducted the same test on the cifar 10 dataset.

In this case, the overfitting does not occur but the increase in accuracy is not found. This
was found to be a problem with the dataset itself. Cifarl0 is a very small dataset and the
mlp mixer model that is being used seems to be tailored for cifar 10 only. This is why

inconsistencies in the result are being observed.

After considering the result of all our experiments on MLP Mixer, we can conclude that it
1s not possible to successfully apply weight excitation on MLP Mixers.The reason behind

these are as follows-

* In convolutional neural networks, the weight kernels have channels. This 1s the rea-
son why applying location importance maps on the channels gives us better results.
But MLP only contains fully connected layers that do not have any channels. So,
the intuition of applying channel attention to the weight kernels can’t be applied
here. That is the reason we only tried applying magnitude-based weight excitation
on MLP mixers. Though we are able to apply MWE to MLP Mixers, the results

were not that satisfactory.
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* MLP Mixer works properly only when it is pre-trained on very large datasets like
JFT-300M and Imagenet-21k. Otherwise, the original model faces problems of
overfitting. Since we do not have the resources to fully train our models on these
very large datasets, these experiments are out of our scope.



6.5. EXPERIMENT USING DIFFERENT ACTIVATION FUNCTIONS IN SE MODULE 39

Training and Validation Accuracy

70 A

20 A1

- TWaining Accuracy

10 4 Validation Accuracy

) 10 20 0
Figure 6.5: Training and Validation Accurcy of MLP Mixer on Cifar100 with MWE

6.5 Experiment using different Activation Functions in
SE module

In this experiment, we have used different combinations of different activation functions
for the Squeeze and Excitation module to compare the accuracies. Better accuracy was
obtained when Leaky-Relu was used in place of the Relu activation function. The intuition
behind this is that, in a neural network, the neurons stop learning when the value of their
weights becomes less than or equal to zero when the Relu activation function is used.
This limitation of Relu is handled by the Leaky-Relu activation function which allows
the neurons to learn even after their weight becomes less than or equal to zero. Using
of Leaky-Relu brings slight changes to the squeeze and excitation module. The modified
squeeze and excitation module performs better than the others and original combinations
as shown in the table. This also signifies that using squeeze and excitation module with
Leaky-Relu will increase the performance of any model in general. We will be conducting
further experiments on this. We can also draw a hypothesis that using this combination in
other attention modules like CBAM and BAM can theoretically give higher accuracy as
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Table 6.10: Experiment using different Activation Functions in SE module

Architecture | Weight Excitation | Activation Function | Accuracy (%)
None None 80.75
ReLU + Sigmoid 82.01
Swish + ReLU 78.72
ReLU + Tanh 80.68
ResNet18 LWE Rel',U+Swish 80.72
Swish+Swish 30.84
Leaky Relu + Tanh 81.03
Swish + Sigmoid 82.40
Leaky ReL U+ Sigmoid 82.74

well. Other activation functions apart from leaky relu was tried as well. other than Swish
and Leaky-Relu, none was better than the originally used Relu activation function.

6.6 Performance Analysis of Global Weight Excitation
Method

We can see from our experiments that applying global weight excitation to ResNet-18
resulted in better accuracy but it could not beat the performance of the original location-

based weight excitation method.

If we look at the learning curve of Global IOcation based weight excitation on Imagenet,
we see that its learning curve converges faster than the original ResNet18 model, But it

can not perform better than the existing weight excitation method.
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Figure 6.7: Training and Validation Accuracy of MLP Mixer on Cifar10 with MWE

Table 6.11: Performance analysis of Global Weight Excitation on Imagenet

Architecture No. of Epochs | Dataset | Accuracy (%)
ResNet18 55.256
ResNet18+LWE(SE) 5 ImageNet 56.312
ResNetl 8+LWE(Ours) 55.944

6.7 Comparison between Weight Excitation and Regu-

larization

We know that regularization helps to decrease the difference between the loss curve of
training and the validation set. Another noticeable change 1s that regularization smoothens
the model’s learning curves. The reason behind these effects is that regularization reduces
the overfitting of learning curves and helps the model to learn better by tuning parameters.
Regularization solves the overfitting and underfitting issue of models which is why we see

that the loss curve of the training and validation set becomes closer.

When we plotted the learning curves of models with excitation and compared them to the
models on which weight excitation has not been applied, we saw that the learning curve
of the models with weight excitation seemed a lot smoother. So, from this, we came to
the conclusion that the effect of applying weight excitation on models is quite similar to
the effect of applying regularization. Both of the experiments result in smoother learning
curves. Though the Weight Excitation method smoothens the learning curve, it can not be

used as an alternative to regularization. In Figure 6.6, we can see that the learning curve
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Figure 6.8: Performance analysis of Global LWE

of the Resnet-18 model fluctuates a lot. After applying location-based weight excitation
to the model, the learning curve becomes much smoother. And we can see that the per-
formance of ResNet-18 with weight excitation is better than the performance of normal
ResNet-18 throughout the whole larning period. The learning curve 1s more stable and it

converges faster than the original one.
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Chapter 7
Contributions

The contributions that we made in this work -

1. Implementation of magnitude based weight excitation for the MLP Mixer ar-
chitecture: As discussed before, weight excitation’s current approach is limited to
convolutional neural networks only. We have expanded the concept to MLP mixer
which are a new kind of model with weight layers consisting of fully connected
layers only. That being said, the increase is accuracy by using weight excitation in
MLP mixer can undoubtedly be used in other domains as well.

2. Implemented new location based weight excitation approach: Inspired by the
CBAM module for attention in feature maps, we have designed a new weight ex-
citation module that performs better than the exciting module. We took the smart
design choices from different modules and put these all in one place, at the same

time added new ideas that we tested to have done better in other places.

3. Improving accuracy of existing location based weight excitation: With our
new weight excitation module, we have successfully improved the performance of

weight excitation. our results on various datasets are a testament to our contribution.

4. Finding problem with Weight Excitation method and proposing solution: We
have found some problems with the existing methods of weight excitation when
applied to small datasets. More research work is needed to bring a effective method
of weight excitation for small datasets.

5. Weights as an alternative to input feature maps: We have conducted several

experiments to conclude whether weights can be used as an alternative to input
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feature maps for computing attention and if this applies to all existing attention

mechanisms for Convolutional Neural Networks.

. Introduction of global weight excitation: We implemented Weight Excitation
block as a separate module which can be called by convolutional layers as needed.
This ensures the model to learn global representations of the weight. One of the
next research endeavours can be that in which ways can global and local weight

excitations can interact with each other in creating a more robust feature map.



Chapter 8
Future Works and Conclusion

There are some more experiments we plan to do for providing a more solid use of our
work. We will implement the proposed methodologies on ImageNet upto convergence to

get a clear idea about the affect of our work in large datasets.

Next, we will try to improve the previous magnitude weight excitation method by chang-
ing the weight excitation function to some learnable function. And finally, we will try to
implement the weight excitation for the transformers.

There are a lot of experiments we are planning to do for improving the weight excitation
effectiveness. The first idea is stacked weight excitation. So, the idea is that the weights
in conv block in weight excitation goes through another weight excitation and so forth.
This means that the weights that are already present in the conv block will go through
another conv block and continue for a certain number of times. Hopefully, this will result

in better accuracy as the internal weights of the conv block to get excited as well.

Our second idea is that the current weight excitation method starts exciting the weights
from the first epoch. If the weights are not given a chance to converge before applying
weight excitation, then the method cannot recognize the important weights properly. So,
what we want to do is to pause the weight excitation for the initial epochs and allow
the weights to converge by themselves at first, and then apply weight excitation in the
later epochs. This should yield a better result according to our intuition as the important

weights will be recognized better and focused more.

Thirdly, we will use the weights from a pre-trained model that already has well-learned

weights in our weight excitation module which will complement our second idea.

Fourthly, as we have already used the design of CBAM/BAM in our weight excitation

module and got better results, we are also planning to use a better submodule design to

46
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improve further.

Next, we will try to improve the previous magnitude weight excitation method by chang-
ing the weight excitation function to some learnable function. And finally, we will try to

implement the weight excitation for the transformers.

In conclusion, we will be devoting our next experiments for further improvement of

weight excitation and extension of weight excitation to others vision architectures.
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