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Abstract

Multiple object tracking (MOT) is a crucial task in computer vision, with applications
in fields such as surveillance, robotics, and autonomous systems. Accurate MOT is
essential for maintaining situational awareness in complex environments and detecting
objects accurately and tracking objects in real-time. In this paper, we present a novel
approach for MOT that combines joint detection and embedding (JDE) which offers
simultaneous detection and identification of multiple objects with a Swin Transformer
for multi-scale feature extraction. The Swin Transformer, a variant of the popular
Transformer architecture, is used to extract rich, multi-scale features from the input
data in linear time complexity, enabling our method to handle objects of varying sizes
and shapes. We added every stage of Swin blocks with prediction heads to get the
multi-scale features. Also, we increased the number of Swin blocks at the first stage
to accurately detect objects from large receptive fields. We evaluated our approach on
a test set defined by our self-defined MIX dataset and achieved an accuracy of 84.9%.
While this is a promising result, there is more room for improvement like improving
the reidentification part or modifying the mlp layers of Swin blocks.
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Chapter 1

Introduction

Over the past decade, deep learning algorithms have been successfully applied to a
wide range of real-world problems. In particular, deep learning has played a significant
role in the field of computer vision. Object tracking is a key task in computer vision,
and it follows closely after object detection. To perform object tracking, the first step
is to locate the object in a frame. Each object is then given a unique ID. As the same
object appears in consecutive frames, it creates a trajectory. An object can be anything,
such as a pedestrian, a vehicle, a sports player, or a bird in the sky. When tracking more
than one object in a frame, it is known as multiple object tracking (MOT). In MOT, we
can track all objects of a single class or all objects of specified classes. In this work,
we are focusing on person or pedestrian tracking. When tracking a single object, it
is called single object tracking (SOT). MOT is more challenging than SOT, and as
a result, researchers have proposed a variety of deep learning-based architectures to
tackle MOT problems.

1.1 Motivation and Scope

The research on MOT has the potential to be applied in various application domains,
such as autonomous driving, pedestrian tracking, visual surveillance, security moni-
toring, and player tracking etc. These areas all require the ability to accurately and
efficiently track multiple objects in real time, making MOT a relevant and important
topic.

Also, one of the significant reasons to be motivated to research MOT due to its
trendiness in the field of computer vision. With the increasing demand for advanced
video analytics, there is a need for effective solutions to track multiple objects in com-
plex and dynamic environments. As a result, MOT has become a popular and actively
researched topic in the field.

Finally, there are numerous existing methods for solving MOT-related problems.
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These methods provide a rich set of approaches and techniques that can be drawn
upon in research. By studying and building upon these methods, contributions can
be made to the advancement of MOT technology and improving its performance and
capabilities. Overall, the potential applications, trendiness, and existing methods in
MOT make it a compelling and important research area.

1.2 Problem Statement

The main purpose of multi-object tracking (MOT) is to detect and identify objects and
track their trajectories ensuring that the identity of the objects does not change.
Multiple object tracking can be divided into two main stages:

1. Object Detection: In this phase, a deep learning model is used to identify and
locate each object present in each frame of the video. Each person is represented
by a bounding box.

2. Person Tracking: In this phase, the information gathered during object detec-
tion is used to track the movement of the objects. Each object is assigned a
unique ID, and this ID remains consistent as long as the object is present in the
video. If the ID changes, it means the system is treating the same object as a
different one.

1.3 Research Challenges

One of the main challenges in the field of object tracking is occlusion handling, which
refers to the problem of accurately tracking an object when it is partially or fully ob-
scured from view. This can occur when another object or obstacle moves in front of
the target object, making it difficult for the tracking algorithm to distinguish the target
from its surroundings.

Another challenge is ID switching, which occurs when the tracking algorithm mis-
takes one object for another and switches the assigned ID from one object to another.
This can lead to errors in the tracking results and may require manual intervention to
correct them.

Real-time tracking is another challenge, as the tracking algorithm must be able to
process and update the object’s location in real-time, often with limited computational
resources. This requires the use of efficient algorithms and optimization techniques to
ensure that the tracking system can operate at the desired frame rate.

In addition to the challenges mentioned above, there are several other factors that
can impact the accuracy and efficiency of object tracking architectures. One such fac-
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(a)

(b)

Figure 1.1: (a) Illustration of the occlusion of two objects (green and blue). In frame 1, two
objects are separate from each other. In frame 2, they are partially occluded. In frame 3, they
are totally occluded. (b) A real-life example of occlusion [1]

tor is the presence of background clutter, which can make it difficult for the tracking
algorithm to distinguish the target object from its surroundings. This can be espe-
cially problematic in environments with complex or dynamic backgrounds, such as in
surveillance or traffic monitoring applications. Another challenge is the variable light-
ing conditions that may be encountered in real-world scenarios. Changes in lighting
can affect the appearance of the target object and make it more difficult for the tracking
algorithm to accurately identify and follow it. Motion blur can also be a challenge, as it
can cause the appearance of the target object to become distorted and make it more dif-
ficult for the tracking algorithm to accurately detect and track it. This can be especially
problematic when the camera or the target object is moving at high speeds. Finally, the
size and appearance of the target object can also impact the accuracy and efficiency of
object tracking algorithms. Smaller objects or those with similar appearances to other
objects in the scene can be more difficult to track accurately and may require the use
of specialized techniques or algorithms to overcome these challenges.

3



ID 1 ID 1 ID 3 ID 2 ID 2 ID 2 

Frame 1 Frame 2 Frame 3 

Figure 1.2: Illustration of ID switching. In frame 1, the green object had ID 1. In frame 2,
the blue object with ID 2 occluded the green object. In frame 3, the ID of the blue object
switched to ID 3.

1.4 Contributions

Some of the papers have done detection and association separately [3, 6–8], whereas
some of them have done jointly [9–11]. The advantage of joint detection and associ-
ation is lower inference time. Wang et al. have presented a multiple object tracking
(MOT) system that combines target detection and appearance embedding into a single
model [9]. The system is formulated as a multi-task learning problem and is able to
output detections and corresponding embeddings simultaneously. The resulting sys-
tem is able to run in near real-time, with a speed of 18.8 to 24.1 FPS depending on
the input resolution, while achieving tracking accuracy comparable to state-of-the-art
trackers. They have used feature pyramid network (FPN) [12] for feature extraction in
multiple scales and in each stage of the scales, a prediction head is added [9]. How-
ever, this system has some limitations, such as comparatively low accuracy and the
use of a convolutional network as the detector, which has a low inductive bias. Zhu
et al. have addressed the issue of lower inductive bias by replacing the FPN with vi-
sion transformer (ViT), as transformer uses attention instead of convolution [13]. They
have implemented a lightweight architecture for object tracking by using the encoder
of a transformer to generate a feature map, and then employing three tracing heads
to predict bounding box classification, regression, and embedding. This approach is
different from many other approaches that utilize convolutional layers or popular CNN
architectures to extract features from a frame, as these can add extra load to the main
architecture. The ViTT architecture proposed by Zhu et al. uses relatively lightweight
transformer encoders and simple feed-forward networks as tracking heads, resulting
in a lightweight overall architecture. But this system also has some limitations like its
inability to take into account scales and its computational cost, which is quadratic in
complexity. To address all these problems, in this research paper, we present a novel
approach for multiple object tracking (MOT) that combines joint detection and em-
bedding with a Swin Transformer [14] for multi-scale feature extraction. The use of
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the Swin Transformer allows our method to extract rich, multi-scale features from the
input data, enabling it to handle objects of varying sizes and shapes.

Through our evaluation of our approach on a test set defined by our defined data
protocol, we achieved an accuracy of 26.3%. We have trained other relevant models
with our small data protocol and constructed a comparative analysis. We can see that
our method outperforms some of the existing models which highlights a huge research
potential. In summary, our contributions are as following:

1. Proposed a novel architecture by introducing Swin transformer in Joint Detection
and Embedding (JDE) to get multi-scale hierarchical features

2. Added skip connections from each stage to its consecutive prediction head after
upsampling

3. Changed the backbone of original swin transformer by putting more number of
blocks at the first stage instead of third to increase the span of receptive field

4. Defined a new MIX dataset by combining MOT 15, MOT 16 and MOT 17 for
fair evaluation

5. Trained our method as well as other relevant architectures on the MIX dataset

6. Made an analytical presentation of the results found

1.5 Organization

In this work, we have structured our research as follows: Chapter 2 provides an
overview of various frequently used multi-object tracking (MOT) approaches that ad-
dress challenges in this field. Chapter 4.1 explains the MIX dataset which is defined by
us. In Chapter 3, we present our proposed architecture. Chapter 4 includes an analysis
of our results, including the experimental setup, implementation details, and evalua-
tion metrics. Finally, Chapter 5.2 outlines our plans for future research in this field and
identifies areas for further investigation.
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Chapter 2

Background Study

Target association and item detection are often the first two phases in multiple object
tracking. While some methods concentrate on data association, others concentrate on
object detection. For these two processes, there are many different methodologies, and
it is not always obvious if a methodology is for the detection or association phase. Nu-
merous methods also mix and overlap various MOT elements. As a result, identifying
the techniques that are independent of one another can be challenging. Nevertheless, in
order to help in choosing which technique to utilize, we have made an effort to identify
the most often applied approaches.

2.1 Transformer

In recent years, transformer models have been widely used in the field of computer
vision and multiple object tracking (MOT) [15]. Transformer models consist of an
encoder and a decoder [16], with the encoder capturing self-attention and the de-
coder capturing cross-attention. This attention mechanism allows for long-term con-
text memorization. Because they can handle sequential data, transformer models are
frequently employed in MOT to anticipate the placement of objects in the following
frame based on information from the previous frame.

Several papers have explored the use of transformer models for MOT. Peize et
al. developed TransTrack, which produces two sets of bounding boxes from object
and track queries and uses simple IoU matching to determine the final set of boxes,
representing the tracking boxes for each object [17]. Tim et al. proposed a similar
approach called TrackFormer [2]. In another approach, patches of images were first
detected and probabilistic concepts were used to obtain expected tracks, with frames
being cropped according to the bounding boxes to obtain patches [18]. These patches
were then used to predict tracks for the current frames.

En et al. combined an attention model with a transformer encoder to create the
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Figure 2.1: Utilizing the encoder-decoder architecture of the transformer, TrackFormer [2]
converts multi-object tracking as a set prediction problem performing joint detection and
tracking-by-attention.

Guided Transformer Encoder (GTE), which only processes significant pixels of each
frame in a global context [19]. Yihong et al. proposed a multi-scaled pixel-by-
pixel dense query system that generates dense heatmaps for targets to improve accu-
racy [20]. Some papers have focused on improving the computation cost for real-time
transformer-based MOT, such as using an exemplar attention module to reduce input
dimension or inserting a lightweight attention layer into a pyramid network [21]. Zhou
et al. introduced the concept of global tracking, using a window of 32 frames and
applying the transformer’s cross-attention mechanism more efficiently [6]. Zeng et al.
extended the DETR object detection transformer with a Query Interaction Module to
filter the output of the decoder before adding a detection to the tracklet [22]. Zhu et al.
used the encoder of a transformer to generate a feature map and employed three trac-
ing heads to predict bounding box classification, regression, and embedding [13]. This
ViTT architecture used relatively lightweight transformer encoders and simple feed-
forward networks as tracking heads, resulting in a lightweight overall architecture.

Reference Year Detection/Appearance Feature Extraction Data Association Dataset MOTA (%)

[17] 2020 Decoder of DETR Decoder of Transformer MOT17, MOT20 74.5,64.5
[2] 2021 CNN Decoder of Transformer MOT17 62.5

[18] 2020 CNN Transformer MOT16, MOT17 73.3, 73.6
[19] 2022 Faster R-CNN Hungarian Algorithm MOT16, MOT17, MOT20 75.8. 74.7, 70.5
[23] 2022 CNN+Encoder of Transformer Decoder + Feed Forward Network MOT15, MOT16, MOT17 40.3, 65.7, 65.0
[20] 2021 DETR Deformable Dual Decoder MOT17, MOT20 71.9, 62.3
[21] 2021 Exemplar Attention based encoder Exemplar Attention based encoder TrackingNet 70.55 (Precision)
[4] 2022 Transformer Pyramid Network Multihead and pooling attention UAV123 85.83 (Precision)

[6] 2022 CenterNet
Tracking transformer

Decoder and Query Interaction
TAO, MOT17

MOT 17,DanceTrack
45.8 (HOTA), 75.3
57.2(HOTA),54.2

[22] 2021 DETR Module + Temporal aggregation network BDD100k
(HOTA),32.0

(nMOTA)
[13] 2021 Encoder Bounding Box Regression Network MOT16 65.7

Table 2.1: Summary of Transformer based Approaches
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2.2 Graph Model

In contrast to linear convolutional networks, graph convolutional networks (GCNs)
employ neural networks in a graph-based manner [24]. Multiple object tracking (MOT)
problems are increasingly being solved using graph models, in which the connections
between nodes and edges represent the identified objects from successive frames. The
Hungarian method [25] is frequently used in this field to do data association.

Several papers have explored the use of graph models for MOT. Guillem et al. used
a message passing network combined with a graph to globally detect and track objects
by extracting deep features throughout the graph [26]. Gaoang et al. followed a sim-
ilar approach but removed appearance information and used an advanced embedding
strategy to design tracklets [27]. Jiahe et al. used two graphs, one for appearance and
one for motion, to identify similarities among frames [28]. Peng et al. used two graph
modules, one for generating proposals and one for scoring them, and trained a GCN
to rank the proposals according to their scores [3]. Jiawei et al. focused on solving
both the association and assignment problems, using a quadratic programming layer to
learn more robust features [29]. Kha et al. addressed the multi-camera MOT problem
by establishing a dynamic graph to accumulate new feature information [30].

Figure 2.2: (a) Frames with detected objects. (b) Graph constructed with the detected objects
or tracklets as each node and proposal generation. (c) Ranking the proposals with GCN. (d)
Trajectory Inference. (e) Final output [3]

2.3 Motion Model

In the discipline of multiple object tracking (MOT), motion is a crucial component of
objects that may be used for both detection and association purposes. The change in

8



Reference Year Detection Association Dataset MOTA(%)
[26] 2020 ResNet50 Message Passing MOT15, MOT16, MOT17 51.5, 58.6, 58.8
[28] 2020 ResNet-34 Hungarian algorithm MOT16, MOT17, 47.7, 50.2

[31] 2021 SeResNet-50 Human-Interaction Model
MOT15,MOT16
DukeMTMCT 80.4, 50.0, 86.7

[27] 2021 CenterNat, CompACT
Box and Tracklet Motion

Embedding MOT17, KITTI, UA-Detrac 56.0, 87.6, 22.5

[28] 2020 ResNet-34 Hungarian algorithm MOT16, MOT17 47.7, 50.2
[3] 2021 ResNet50-IBN Proposal Generation and Scoring MOT17, MOT20 59.0, 56.3

[29] 2021 CenterNet Graph Matching MOT16, MOT17 65.0, 66.2
[7] 2022 CenterPoint, MEGVII Message Passing nuScenes 55.4

Table 2.2: Summary of Graph Model based Approaches

an object’s location between two frames may be used to compute motion, and this data
can be used to guide a variety of tracking-related choices.

There have been several papers that have utilized motion in MOT. For example,
Hasith et al. and Oluwafunmilola et al. used motion to compute dissimilarity cost
in their respective works [32] and [33]. Bisheng et al. used a motion model based
on Long Short-Term Memory (LSTM) to predict the location of occluded objects [34].
Wenyuan et al. incorporated a motion model with a Deep Affinity Network (DAN) [35]
to optimize data association by eliminating locations where it is not possible for an
object to be situated [36].

Qian et al. also calculated motion by measuring the distance between consecutive
satellite frames using Accumulative Multi-Frame Differencing (AMFD) and low-rank
matrix completion (LRMC) [37], and formed a motion model baseline (MMB) to de-
tect and reduce false alarms. Hang et al. used motion features to identify foreground
objects in the field of vehicle driving [38], detecting relevant objects by comparing
motion features with a Generalized Linear Model (GLV). Gaoang et al. proposed a
local-global motion (LGM) tracker that finds consistencies in motion and associates
tracklets accordingly [27]. In addition, Ramana et al. used a motion model to pre-
dict the motion of an object rather than for data association, with a system comprising
three modules: Integrated Motion Localization (IML), Dynamic Reconnection Con-
text (DRC), and 3D Integral Image (3DII) [39].

In 2022, Shoudong et al. used a motion model for both motion prediction and
association with their proposed Motion-Aware Tracker (MAT) [40]. Zhibo et al. in-
troduced a compensation tracker (CT) with a motion compensation module to recover
lost objects [41]. Xiaotong et al. used a motion model to predict the bounding boxes
of objects [18] and create image patches, similar to the approach taken by Hang et
al. [38].

Overall, motion has proven to be a useful feature in MOT, and it has been utilized
in various ways in different works to improve detection and association performance.
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Reference Year Motion Mechanism Dataset MOTA(%)

[32] 2019
Dissimilarity Distance between Detected and Predicted

Object
MOT17, KITTI 46.9, 85.04

[33] 2021
Dissimilarity Distance between Detected and Predicted

object
MOT15, MOT16, MOT17,

MOT20
55.8, 73.8, 74.0, 60.2

[34] 2021 LSTM-based Model on Consecutive Frames MOT16, MOT17 76.3, 76.4
[36] 2021 Kalman Filtering MOT17 44.3

[37] 2021
Accumulative Multi-Frame Differencing and Low-Rank

Matrix Completion
VISO 73.6

[38] 2021
Distance of Motion Feature and Mean Vector of Gaussian

Local Velocity Model
NJDOT

100 (Anomaly Detection
Accuracy)

[27] 2021 Box and Tracklet Motion Embedding MOT17, KITTI, UA-Detrac 56.0, 87.6, 22.5

[39] 2021
Particle Filtering and Enhanced Correlation Coefficient

Maximization
CroHD 63.6

[40] 2022
Combination of Camera Motion and Pedestrian Motion

(IML),Dynamic Motion-based Reconnection(DRC)
MOT16, MOT17 70.5, 69.5

[41] 2022 Motion Compensation with Basic Tracker MOT16, MOT17, MOT20 69.8, 68.8. 66.0
[18] 2022 Kalman Filtering MOT16, MOT17 73.3, 73.6

Table 2.3: Summary of Motion model based Approaches

2.4 Siamese Network

Because Siamese networks can recognize similarities between inputs and distinguish
between them, they have gained popularity in multiple object tracking (MOT) systems
in recent years. Two parallel sub-networks with the common weight and parameter
spaces make up this kind of network, which is then connected and trained on a loss
function to gauge how semantically similar the two sub-networks are.

One common application of Siamese networks in MOT systems is the use of a
region proposal network (RPN) structure as a predictor, as proposed by Xinwen et
al. [42]. Another approach is the incorporation of a transformer layer into a Siamese
tracking network, as seen in the work of Philippe et al. [21].

Daitao et al. proposed a pyramid network that includes a lightweight transformer
attention layer. Their Siamese Transformer Pyramid Network augmented the tar-
get features with lateral cross attention between pyramid features, resulting in robust
target-specific appearance representation [4]. Bing et al. aimed to improve the region-
based multi-object tracking network by adding motion modeling [43]. They integrated
the Siamese network tracking framework into Faster-RCNN to achieve efficient track-
ing through lightweight tracking and shared network parameters.

Other researchers have used Siamese networks to enhance the localization of fore-
ground objects, as in the work of JiaXu et al. [5], or to improve the overall stability of
the system, as seen in the work of Xinwen et al. [42]. In addition, Siamese networks
have been used to post-process trajectories and eliminate corrupted tracklets, as in the
Cleaving Network proposed by Cong et al. [31].

Overall, the use of Siamese networks in MOT systems has shown promising results
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Figure 2.3: (a) A typical Siamese Network that has symmetric pyramid architecture, (b) A
typical Discriminative network, (c) Siamese Transfer Pyramid Network that is proposed in [4]

in terms of improved accuracy and efficiency.

Reference Year Method Dataset MOTA (%)

[4] 2020
CNN for Apprearance extraction, LSTM and

RNN for Motion modelling
Duke-MTMCT, MOT16 73.5, 55.0

[43] 2021 Implicit and Explicit motion modelling MOT17, TAO-person, HiEve 65.9, 44.3 (TAP@0.5), 53.2
[42] 2021 Siamese Network with Region Proposal Network MOT16, MOT17, MOT20 65.8, 67.2, 62.3
[21] 2021 Single instance level attention TrackingNet 70.55 (Precision)

[5] 2022
Dynamic search region refine and attention

based tracking
MOT17, MOT20 67.2, 70.4

[4] 2022 Transformer based appearance similarity UAV123 85.83 (Precision)

Table 2.4: Summary of Siamese Network based Approaches

2.5 Detection and Association

In the field of multiple object tracking (MOT), various approaches have been proposed
to address the challenge of associating targets, or keeping track of the trajectory of the
objects of interest [44]. Some approaches, such as the one proposed by Margret et al.,
use both bottom-up and top-down methods to determine the trajectory of objects [45].
Bounding boxes are determined in top-down procedures whereas point trajectories are
determined in bottom-up approaches. A complete track of things may be produced by
combining these two techniques.

Other approaches, such as the one proposed by Hasith et al., focus on simply de-
tecting objects and using the Hungarian algorithm to associate information [32]. In
2019, Paul et al. proposed Track-RCNN, a 3D convolutional network that can per-
form detection, tracking, and segmentation [11]. In 2020, Yifu et al. proposed an
approach called FairMOT, which uses two separate branches for object detection and
re-identification, both using center-based feature extraction [8].

In 2021, several approaches have been proposed that use long short-term mem-
ory (LSTM) for data association. Bisheng et al. proposed Detection Refinement for
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Tracking (DRT), which uses semi-supervised learning to produce heatmaps for more
accurate object localization and LSTM [46] for data association [34]. Chanho et al.
also used bilinear LSTM for data association [47]. Qiang et al. proposed CorrTracker,
a correlational network that propagates information across associations, using self-
supervised learning for object detection [48]. Jiangmiao et al. proposed Quasi Dense
Tracking (QDTrack), which combines object detection using Faster-RCNN with resid-
ual networks and similarity learning [49]. Yaoye et al. introduced the D2LA network,
which is based on FairMOT [8] and uses a strip attention module to handle occlu-
sion [50]. Norman et al. proposed a method that estimates the geometry of each
detected object and maps it to its corresponding pose in order to identify the object
after occlusion [51].

In 2022, various approaches to MOT have been proposed for diverse applications,
such as indoor multiple object tracking and tracking crop seedlings. Cheng-Jen et
al. proposed the depth-enhanced tracker (DET) to improve the tracking-by-detection
strategy for indoor environments, along with an indoor MOT dataset [52]. Chenjiao et
al. proposed a method for tracking crop seedlings using YOLOv4 as an object detector
and optical flow to track the bounding boxes [53]. Oluwafunmilola et al. proposed
a method for object tracking in soccer videos using an LSTM-based data association
method [54].

Reference Year Detection Association Dataset MOTA (%)
[45] 2018 Faster R-CNN Correlation Co-Clustering MOT15, MOT16, MOT17 35.6, 47.1, 51.2
[32] 2019 DPM, F-RCNN, SDP, RRC Hungarian Algorithm MOT17, KITTI 46.9, 85.04

[11] 2019 Mask R-CNN Distance Measurement
KITTI, MOTS,

MOTS Challenge
65.1, KITTI MOTS,

(MOTSA)

[50] 2021 CenterNet Hungarian Algorithm
MOT15, MOT16, MOT17

MOT20
60.6, 74.9, 73.7, 61.8

[34] 2021 ResNet50 LSTM-based Motion Model MOT16, MOT17 76.3, 76.4
[47] 2021 CenterNet Bilinear LSTM MOT16, MOT17 48.3, 51.5

[48] 2021 CenterNet Correlation Learning
MOT15, MOT16, MOT17,

MOT20
62.3, 76.6, 76.5, 65.2

[49] 2021 Faster R-CNN Quasi-dense Similarity Matching
MOT16, MOT17,

BDD100K, Waymo
69.8, 68.7, 64.3, 51.18

[39] 2021 HeadHunter HeadHunter-T CroHD 63.6

[55] 2021 CenterNet CVA (Cost Volume based Association
MOT16, MOT17, nuScenes,

MOTS

70.1, 69.1, 5.9
(AMOTA), 65.5

(MOTSA)

[52] 2022 Mask-RCNN Hungarian Algorithm
MOT17, MOT20

NTU-MOTD
43.21, 57.70, 92.12

[53] 2022 YOLOv4 Hungarian Algorithm
TAMU2015V, UGA2015V,

UGA2018
79.0%, 65.5%,

73.4%

[54] 2022 DLA-34 Hungarian Algorithm
MOT15, MOT16, MOT17,

MOT20
55.8, 73.8, 74.0, 60.2

[56] 2022
DPM and YOLOv5 with
detection modifier(DM)

Global and Partial Feature Matching MOT16 46.5

[57] 2022 YOLO X with later NMS
Kalman Filtering, Bicubic

Interpolation and ReID Model
MOT17, MOT20 78.3, 75.7

[58] 2022 T-ReDet module ReID-NMS Model MOT16, MOT17, MOT20 63.9, 62.5, 57.4

Table 2.5: Summary of Detection and ASsociation based Approaches
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2.6 Attention Module

In multiple object tracking (MOT), attention mechanisms are often used to re-identify
occluded objects. Attention involves considering only the objects of interest and nulli-
fying the background, in order to better remember the features of the objects even after
occlusion.

Figure 2.4: The structure of Attention based head of cross-attention [5]

Several approaches to MOT have incorporated attention modules in order to handle
occlusion. Yaoye et al. proposed a strip attention module to re-identify occluded
pedestrians in their D2LA network [50]. This module is a pooling layer that uses
max and mean pooling to extract more useful features from the pedestrians, so that
the model can remember them even when they are occluded. Song et al. used two
attention modules, one for target and one for distraction, to link object localization and
data association and applied a memory aggregation to create strong attention [59].

Tianyi et al. proposed a spatial-attention mechanism using a Spatial Transforma-
tion Network (STN) in an appearance model to force the model to focus only on the
foreground [60]. Lei et al. proposed the Prototypical Cross-Attention Module (PCAM)
to extract relevant features from past frames and the Prototypical Cross-Attention
Network (PCAN) to transmit the contrasting feature of foreground and background
throughout the frames [61].

Huiyuan et al. proposed a self-attention mechanism for vehicle detection [62], and
JiaXu et al. used both cross and self-attention in a lightweight architecture for MOT
[5]. The self-attention module is used to extract robust features and reduce background
occlusion, while the cross-attention module is used for instance association.
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Reference Year Attention Mechanism Dataset MOTA(%)
[50] 2021 Strip Pooling MOT15, MOT16, MOT17, MOT20 60.6, 74.9, 73.7, 61.8

[59] 2021
Temporal Aware Target Attention and

Distractor Attention
MOT16, MOT17, MOT20 59.1, 59.7, 56.6

[60] 2021 Spatial Transformation Network (STN) MOT16, MOT17 50.5, 50.0

[61] 2021 Spatio-Temporal Cross-Attention
BDD100K (Validation),

KITTI-MOTS(Validation)
27.4 (MOTSA), 66.4

(mMOTSA)

[62] 2021 Self-Attention in Detection
Custom Dataset: Sparse Scene,

Dense Scene
70.9, 56.4

[30] 2021 Graph Structural and Temporal Self-Attention
PETS09, EPFL, CAMPUS, MCT

CityFlow(Validation)
93.5, 66.3, 96.7, 95.7, 90.9

[5] 2022 Self- and Cross-Attention as Tracking Head MOT17, MOT20 75.6, 70.4

Table 2.6: Summary of Attention based Approaches

2.7 Tracklet Association

Tracklet association is the process of identifying and connecting consecutive frames of
objects of interest, or tracklets, in order to establish a trajectory. This is a challenging
task in multiple object tracking (MOT). Different approaches have been proposed to
address this issue.

Jinlong et al. proposed the Tracklet-Plane Matching (TPM) method, which creates
short tracklets from detected objects and aligns them in a tracklet plane, assigning
each tracklet with a hyperplane based on their start and end time [63]. This process
can handle non-neighboring and overlapping tracklets, and the authors also proposed
two schemes to improve performance.

Duy et al. used a 3D geometric algorithm to create tracklets and optimized the
association globally by incorporating spatial and temporal information from multiple
cameras [64]. Cong et al. proposed the Position Projection Network (PPN) to trans-
fer the trajectories from local to global context [31]. Daniel et al. used a tracking-
by-regression approach, re-identifying occluded objects based on motion and using
already-found tracks for regression, and also extended this approach by incorporating
temporal direction to improve performance [65].

The multi-view trajectory contrastive learning (MTCL) technique, which treats
each trajectory as a center vector and builds a trajectory-center memory bank (TMB)
that is dynamically updated and computes cost [66], was proposed by En et al. They
also created the similarity-guided feature fusion (SGFF) strategy to eliminate ambigu-
ous features and the learnable view sampling (LVS) approach, which regards each de-
tection as a key point and aids in seeing the trajectory in a global context. The tracklet
booster (TBooster) approach was created by Wang et al. to reduce association mistakes
while using the [67] command. TBooster consists of two modules: a Connector mod-
ule that binds tracklets belonging to the same object and executes tracklet embedding,
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and a Splitter module that divides tracklets when ID switching takes place.

Reference Year Method Dataset MOTA(%)
[63] 2020 Tracklet-plane matching process to resolve confusing short tracklets MOT16, MOT17 50.9, 52.4

[68] 2021
CenterTrack [69] and DG-Net [70] as tracking graph and GAEC+KLj

[71] heuristic solver for lifted multicut solver
WILDTRACK, PETS-09,

Campus
97.1, 74.2, 77.5

[31] 2020 CNN for Apprearance extraction, LSTM and RNN for Motion modelling Duke-MTMCT, MOT16 73.5, 55.0
[65] 2021 Regression based two stage tracking MOT16, MOT17, MOT20 66.8, 65.1, 61.2

[67] 2021
Tracklet splitter splits potential false IDs and connector connects pure

tracks to trajectory
MOT17, MOT20 61.5, 54.6

[66] 2022
Learnable view sampling for similarity-guided feature fusion and

Trajectory-center memory bank for re-identification
MOT15, MOT16, MOT17,

MOT20
62.1, 74.3, 73.5,

63.2

Table 2.7: Summary of Tracklet Association based Approaches
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Chapter 3

Proposed Methodology

The objective of our proposed method is to develop a real-time online tracker. To this
end, we proposed a Swin Transformer-based Joint Detection and Embedding Archi-
tecture. In our pipeline, swin transformer is utilized for hierarchical attention-based
feature map generation. This multi-scale feature map is further used to correctly track
the objects in a video frame in our network’s prediction head. Though our pipeline is
highly motivated by the Joint Detection and Embedding model [9] and Swin Trans-
former [14], it is not a naive combination of JDE and Swin. Instead, we have tried to
present the Swin Transformer as a better alternative to the FPN of JDE.

3.1 Swin Transformer

Swin transformer is a perfect modification of Feature Pyramid Network to JDE. Be-
cause in JDE, Feature Pyramid Network is used to extract hierarchical feature map
which is necessary to predict the tracklets. Here hierarchical feature map is necessary
to tackle the different sizes of objects. We have proposed Swin Transformer in the
place of FPN. Because swin transformer has the same hierarchical structure as FPN.
From each stage of swin transformer, by using an mlp head, we can get a feature map
which is passed to a yolo layer to predict bounding box, classification result and unique
id. Here, swin transformer enables the attention mechanism, which ensures more ro-
bust feature map than FPN. By integrating Swin Transformer in the place of FPN,
intuitively, our model should get better generalization and inductive biases. The modi-
fication we have introduced in the original swin transformer is we have add mlp block
after each stage of the swin transformer as we want to get the feature map from each
stage. In the swin transformer, the first, second and fourth blocks are stacked twice,
but the third block is stacked six times. But in our cases, we stacked the first block is
stacked for ten times, and the rest of the blocks are stacked twice. This is because we
wanted to increase the receptive field size of the features at the firat time when we are
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passing the getting features of the first block. So, for the first block, the receptive field
size is 70x70, and it increases for 14x14 for the consecutive blocks. But for the origi-
nal swin, the receptive field size of the feature from the first block was 14x14. In this
way, the proposed swin transformer is effective in feature extraction with hierarchical
attention.

Figure 3.1: (a) The architecture of a Swin Transformer; (b) two successive Swin Transformer
Blocks

3.2 Joint Detection and Embedding

As of now, we mostly use the joint detection and embedding prediction head as the
original paper implemented [9]. However, we have increased some convolution layers
before passing the feature map to the prediction head. Because convolution layers
works well for object detection. As object detection is a very crucial in our task, we
added more convolution layer to get higher accuracies. In the original JDE there are
total 3x2 = 6 layers are used in each hierarchical output, where we have used 5x2
= 10 layers. In the prediction head, we get three predictions and three losses. We
calculated triplet loss from these three losses, as like in the JDE paper. Finally, our
total architecture is presented in figure 3.2
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Chapter 4

Results and Discussion

4.1 Dataset Description

There are several datasets in MOT that are regarded as benchmark datasets. Among
these datasets, we used MOT15, MOT16 and MOT17 for training and testing our pro-
posed methods and architectures. Also, we have used CrowdHuman dataset to train
the backbone.

4.1.1 CrowdHuman

We have train our core backbone network, that is modified swin transformer on Crowd-
Human dataset to produce a pretrained weight. This dataset contains 15000 images for
training, and 5000 images for testing. The datset is only for human detection. We
have used this dataset because our task is human specific, also the size of the dataset is
feasible for us.

(a) (b)

Figure 4.1: Sample images of CrowdHuman dataset with ground truth: (a) Day scene, (b)
Night scene
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4.1.2 MIX Dataset

We have defined MIX dataset with the combination of MOT15, MOT16 and MOT17
datasets. We chose 11 unique sequences from these datasets and took 7 of them as
training and 4 of them as test dataset. During splitting, we made sure that there is even
distribution of the scenes. Table 4.1 and Table 4.2 represents detailed explanations.

Sequence Name Dataset Length FPS
KITTI-13 MOT15 340 10

MOT17-09-SDP MOT15, MOT16, MOT17 525 30
MOT17-05-SDP MOT15, MOT16, MOT17 837 14

TUD-Campus MOT15 359 25
TUD-Stadmitte MOT15 179 25
MOT17-11-SDP MOT16, MOT17 900 30
MOT17-04-SDP MOT16, MOT17 1050 30

Table 4.1: Training set of MIX dataset

Sequence Name Dataset Length FPS
KITTI-17 MOT15 145 10

MOT17-10-SDP MOT15, MOT16, MOT17 654 30
ETH-Sunnyday MOT15 354 14
PETS09-S2L1 MOT15 795 7

Table 4.2: Test set of MIX dataset

4.2 Experimental Setup

We trained our model and performed all experiments on 2 RTX 3090 GPUs. For a fair
comparison with other MOT trackers, we train and evaluate all experiments in a conda
environment with the same hardware.

4.3 Implementation Details

We employ the swin transformer as the backbone network. The network is trained
with Adam optimizer for 50 epochs in the CrowdHuman dataset. The learning rate
is initialized as 3e-4 and decreased by 0.1 in the 41st and 47th epochs. Several data
augmentation techniques, such as random rotation, random scale, and color jittering,
are applied to reduce overfitting. Finally, the augmented images are adjusted to a fixed
resolution.
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After training the backbone of Swin-JDE in the CrowdHuman dataset, we loaded
the weight of swin in the backbone and fine-tuned our whole architecture on our MIX
dataset. We used both SGD and Adam optimizer and cosine annealing and reduce on
plateau scheduler on different experiments. In our final experiment, we fine-tuned our
model for 50 epochs with a learning rate of 3e-4.

4.4 Evaluation Metric

We select three metrics among the several MOT metrics to test our model. They
are: Multiple Object Tracking Accuracy(MOTA), ID Switch(IDs), and Multiple Ob-
ject Tracking Precision(MOTP).

Multiple Object Tracking Accuracy (MOTA) measures how accurately a model
can detect objects and predict trajectories. It is the prime metric to evaluate an object-
tracker’s performance.

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t
gt

mt: The number of misses at time t

fpt: The number of false positives
mmet: The number of identity switches
gt: The number of objects present at time t

Multiple Object Tracking Precision(MOTP) measures how accurately the model
was able to find the objects location in the video. It is often used alongside MOTA as
it can account for localization accuracy.

MOTP =

∑
i,t d

i
t∑

t ct

dit: The distance between the actual object and its respective hypothesis at time t,
within a single frame for each object oi from the set a tracker assigns a hypothesis hi.
ct: Number of matches between object and hypothesis made at time t.

ID Switch(IDs) gives us an idea about how much our model is good at reidentifi-
cation.

IDs =
number of ID Switches

recall
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4.5 Quantitative Results

In the joint detection and embedding technique, there is a trade-off between accuracy
and inference time. We have observed a similar phenomenon in our experiment also.
When we set input image size to 868 × 480, then we found the highest FPS among
all models we compared. But the best MOTA is produced by input image size of
1080× 608.

4.5.1 Ablation 1: Prediction Head Count

The goal of our first experiment was to measure the importance of prediction heads.
Each prediction head gets a fixed-size feature map and 12 anchor boxes to predict
bounding boxes based on that feature map. Intuitively, if we have more prediction
heads, then we will get more variable-size feature maps, and each head will predict
based on a small subset of anchor box choice, instead of all 12 together. For one
prediction head, as the 12 anchor box choices are applied to only one fixed-size feature
map, the MOTA is not that much high. But it allows the model to be relatively smaller
and results in the highest FPS. If we increase the prediction head to two, the MOTA
improved a lot, and as expected FPS drops. Lastly, we found a good MOTA with
decent FPS with 4 prediction heads.

Prediction Head MOTA↑ IDs↓ MOTP↑ FPS↑
1 45.80% 956 0.167 45.6
2 78.80% 664 0.22 35.67
4 83.60% 532 0.163 30.5

Table 4.3: Prediction Head Count

4.5.2 Ablation 2: Swin Block Order (Without Pretraining)

We ran the second set of experiments keeping in mind the logic of the receptive field.
In each stage of the swin layer, the swin block repeats several times. This repeating
siwn block increases the receptive field of a feature map. When we integrate 4 feature
maps, we take the feature map from the first stage of swin. In that case, if the swin
block only repeats 2 times, it will produce a receptive field of size 7× 2 = 14. Instead,
if we choose to repeat the first stage ten times, then it will produce a receptive field of
size 7 × 10 = 70. This is a very good feature map compared to the former one. We
ran these experiments without taking pre-trained weight as the architecture changed,
we can not load weights from official ImageNet weights. Also, our new architecture
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needs to be trained on the CrowdHuman dataset for better convergence in the final set
of experiments. The results is presented on the table 4.4.

Swin Block Order MOTA↑ IDs↓ MOTP↑ FPS↑
2, 2, 18, 2 75.60% 524 0.183 36.74
18, 2, 2, 2 82.70% 504 0.167 30.64
10, 2, 2, 2 81.650% 579 0.21 32.40

Table 4.4: Swin Block Order (Without Pretraining)

4.5.3 Ablation 3: Convolution Layers Count

The convolution layers, which are placed after the swin blocks in our proposed archi-
tecture carry a significant value as it determines the object detection accuracy. The
convolution blocks are responsible for producing high-level features. So as we re-
peated them larger times, more high-quality high-level features are extracted, which
results in better detection accuracy. As the direct impact is reflected in MOTA, that is
presented in table 4.5

Conv Layers MOTA↑ IDs↓ MOTP↑ FPS↑
3x 76.50% 536 0.145 34.77
4x 77.20% 576 0.23 32.49
5x 81.80% 588 0.145 30.49

Table 4.5: Convolution Layers Count

4.5.4 Comparison of the Proposed Method with State of the Art

After some successful ablation studies, we get our proposed architecture in a very
good shape, which consists of 4 prediction heads, with 10-2-2-2 swin block order and
5x conv layers. Our model with a larger image size clearly beat the SOTA in MOTA
metric and our model with a smaller image size could achieve the highest FPS. We
can see some observations such as, with larger image size ID switch also increases.
Because in larger images, the detection of objects stiffly increases, which ultimately
increases the ID switches. So, MOTA and ID-switch kind of played a trade-off role in
this case.

We can clearly see that ViTT performs very badly because the feature extraction
part of ViTT consists of single-scale transformer block. Instead of using Vision trans-
former, we use Swin transformer and overcome this limitation. Tracformer has a very
low FPS, which forfeits the competition in terms of real-time tracker. Though JDE
has a very good FPS, our Swin-JDE with smaller image size beats it in this field too.
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Lastly, FairMOT is one of the good competitors of our proposed architecture. But our
Swin-JDE with bigger image size clearly has higher MOTA and MOTP. Overall, our
proposed architecture made some improvement in all metrics by a good margin.

Model MOTA↑ IDs↓ MOTP↑ FPS↑
ViTT [13] 56.33% 2563 0.14 28.45

Trackformer [2] 63.80% 414 0.167 7.4
JDE [9] 66.70% 1021 0.21 36.74

FairMOT [8] 82.60% 504 0.183 32.64
Swin-JDE

79.8% 328 0.22 38.56
(Ours - 868 x 480)

Swin-JDE 84.9% 664 0.22 27.34
(Ours - 1088 x 608)

Table 4.6: Comparative Analysis of State of The Art Models on MIX
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Chapter 5

Conclusion

5.1 Summary

In this work, we tried to combine the JDE with hierarchical attention to solve multi-
ple object tracking related tasks. Specifically, we replace Swin Transformer with FPN
in JDE, though it is not a naive combination. Rather we provide reasoning like, the
Swin blocks of our proposed architecture extract low-level features which help to de-
tect objects in a video frame and the convolution layers (after the Swin blocks) extract
high-level features which help in the identification of objects in consecutive frames.
This modification resulted in a significant improvement in the MOTA metric, which is
widely used to evaluate the performance of multiple object-tracking algorithms, Par-
ticularly, our modified approach achieved a MOTA of 84.9%, indicating that it was
able to successfully track a higher number of objects compared to the original JDE ap-
proach. In addition to this, we also developed our own data protocol for evaluating the
performance of multiple object-tracking algorithms using the MOT15, MOT16, and
MOT17 datasets. These datasets are commonly used to benchmark the performance of
different approaches, and our new protocol allows us for more thorough and accurate
evaluations. Overall, the results of our work demonstrate the potential of our modi-
fied JDE approach for improving multiple object tracking in a variety of contexts. The
use of the Swin Transformer for hierarchical multi-scaled attention has proven to be
a valuable addition to the JDE approach, and there is still room for further improve-
ment through additional modifications and optimization. Our goal is to make further
advances in the field of multiple object tracking and contribute to the development of
more effective and efficient algorithms for this important task.
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5.2 Future Works

The findings and contributions of this study have opened up several directions for fu-
ture research. By building upon the work presented so far, it is expected that these
future studies will lead to further advances and improvements in the field. In this sec-
tion, we will outline some of the areas where further exploration and development
could be particularly valuable.

1. Contribution to data association technique: One possible direction for future
research is to further explore and contribute to the development of data asso-
ciation techniques. This could involve studying the effectiveness of different
algorithms and approaches for data association in various contexts and environ-
ments, and identifying potential improvements or modifications that could be
made to existing techniques.

2. Modification of MLP head of Swin blocks: Another potential area of focus
could be on modifying the MLP head of Swin blocks to improve performance.
This could involve exploring different architectures or optimization techniques,
or studying the impact of different hyperparameter settings on the performance
of the MLP head.

3. Redefine dataset protocol: A third direction for future work could be to redefine
the dataset protocol used in the current study. This could involve expanding the
size and diversity of the dataset, or developing new protocols for collecting and
annotating data that more closely reflect real-world scenarios.

4. More hyperparameter fine tuning: Finally, further hyperparameter fine-tuning
could be performed to further improve the performance of the proposed ap-
proach. This could involve studying the impact of different hyperparameter
settings on the performance of the model, and identifying optimal settings that
achieve the best results.

5. More modifications in the backbone architecture: More modifications to the
backbone architecture of the Swin Transformer can be possible to enhance the
performance. This may include adding or removing layers, changing the number
of neurons in each layer, or altering the type of activation function used. These
modifications are intended to further improve the performance of the model and
achieve better results on our target tasks.
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